1
|
Zaremba B, Fallahshahroudi A, Schneider C, Schmidt J, Sarropoulos I, Leushkin E, Berki B, Van Poucke E, Jensen P, Senovilla-Ganzo R, Hervas-Sotomayor F, Trost N, Lamanna F, Sepp M, García-Moreno F, Kaessmann H. Developmental origins and evolution of pallial cell types and structures in birds. Science 2025; 387:eadp5182. [PMID: 39946461 DOI: 10.1126/science.adp5182] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 12/03/2024] [Indexed: 04/23/2025]
Abstract
Innovations in the pallium likely facilitated the evolution of advanced cognitive abilities in birds. We therefore scrutinized its cellular composition and evolution using cell type atlases from chicken, mouse, and nonavian reptiles. We found that the avian pallium shares most inhibitory neuron types with other amniotes. Whereas excitatory neuron types in amniote hippocampal regions show evolutionary conservation, those in other pallial regions have diverged. Neurons in the avian mesopallium display gene expression profiles akin to the mammalian claustrum and deep cortical layers, while certain nidopallial cell types resemble neurons in the piriform cortex. Lastly, we observed substantial gene expression convergence between the dorsally located hyperpallium and ventrally located nidopallium during late development, suggesting that topological location does not always dictate gene expression programs determining functional properties in the adult avian pallium.
Collapse
Affiliation(s)
- Bastienne Zaremba
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Amir Fallahshahroudi
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Céline Schneider
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Julia Schmidt
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Ioannis Sarropoulos
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Evgeny Leushkin
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Bianka Berki
- Deep Sequencing Core Facility, CellNetworks Excellence Cluster, Heidelberg University, Heidelberg, Germany
| | - Enya Van Poucke
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - Per Jensen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - Rodrigo Senovilla-Ganzo
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | - Nils Trost
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Francesco Lamanna
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Mari Sepp
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Leioa, Spain
- IKERBASQUE Foundation, Bilbao, Spain
| | - Henrik Kaessmann
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
2
|
Guyonnet AEM, Racicot KJ, Brinkman B, Iwaniuk AN. The quantitative anatomy of the hippocampal formation in homing pigeons and other pigeon breeds: implications for spatial cognition. Brain Struct Funct 2024; 230:9. [PMID: 39688732 DOI: 10.1007/s00429-024-02882-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/30/2024] [Indexed: 12/18/2024]
Abstract
Artificial selection for specific behavioural and physical traits in domesticated animals has resulted in a wide variety of breeds. One of the most widely recognized examples of behavioural selection is the homing pigeon (Columba livia), which has undergone intense selection for fast and efficient navigation, likely resulting in significant anatomical changes to the hippocampal formation. Previous neuroanatomical comparisons between homing and other pigeon breeds yielded mixed results, but only focused on volumes. We completed a more systematic test for differences in hippocampal formation anatomy between homing and other pigeon breeds by measuring volumes, neuron numbers and neuron densities in the hippocampal formation and septum across homing pigeons and seven other breeds. Overall, we found few differences in hippocampal formation volume across breeds, but large, significant differences in neuron numbers and densities. More specifically, homing pigeons have significantly more hippocampal neurons and at higher density than most other pigeon breeds, with nearly twice as many neurons as feral pigeons. These findings suggest that neuron numbers may be an important component of homing behaviour in homing pigeons. Our data also provide the first evidence that neuronal density can be modified by artificial selection, which has significant implications for the study of domestication and interbreed variation in anatomy and behaviour.
Collapse
Affiliation(s)
- Audrey E M Guyonnet
- Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K3M4, Canada
| | - Kelsey J Racicot
- Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K3M4, Canada
| | - Benjamin Brinkman
- Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K3M4, Canada
| | - Andrew N Iwaniuk
- Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K3M4, Canada.
| |
Collapse
|
3
|
Santiago Gonzalez K, Boswell T, Smulders TV. Functional Differentiation along the Rostro-Caudal Axis of the Avian Hippocampal Formation. BRAIN, BEHAVIOR AND EVOLUTION 2024:1-13. [PMID: 39501623 DOI: 10.1159/000542207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/19/2024] [Indexed: 12/12/2024]
Abstract
INTRODUCTION Different functional domains can be identified along the longitudinal axis of the mammalian hippocampus. We have recently hypothesized that a similar functional gradient may exist along the longitudinal axis of the avian hippocampal formation (HF) as well. If the 2 gradients are homologous, we would expect the caudal HF to be more responsive to acute stress than the rostral HF. METHODS We restrained 8 adult Dekalb White hens in a bag for 30 min under red-light conditions and compared FOS-immunoreactive (FOS-ir) cell densities in different hippocampal subdivisions to control hens. RESULTS Although we could find no evidence of an activated stress response in the hypothalamic-pituitary-adrenal axis of the restrained birds, we did find a significant increase in FOS-ir cell densities in the rostral HF of the restrained birds compared to controls. CONCLUSION We speculate that the HF response is not due to an acute stress response, but instead, it is related to the change in spatial context that was part of taking the birds and restraining them in a different room. We see no activation in the caudal HF. This would be consistent with our hypothesis that the longitudinal axis of the avian HF is homologous to the long axis of the mammalian hippocampus.
Collapse
Affiliation(s)
- Karina Santiago Gonzalez
- Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Timothy Boswell
- Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, UK
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Tom Victor Smulders
- Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, UK
- School of Psychology, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
4
|
Behroozi M, Lorenzi E, Tabrik S, Tegenthoff M, Gozzi A, Güntürkün O, Vallortigara G. Functional MRI of imprinting memory in awake newborn domestic chicks. Commun Biol 2024; 7:1326. [PMID: 39406830 PMCID: PMC11480507 DOI: 10.1038/s42003-024-06991-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Filial imprinting, a crucial ethological paradigm, provides insights into the neurobiology of early learning and its long-term impact on behaviour. To date, invasive techniques like autoradiography or lesions have been used to study it, limiting the exploration of whole brain networks. Recent advances in fMRI for avian brains now open new windows to explore bird's brain functions at the network level. We developed an fMRI technique for awake, newly hatched chicks, capturing BOLD signal changes during imprinting experiments. While early memory acquisition phases are understood, long-term storage and retrieval remain unclear. Our findings identified potential long-term storage of imprinting memories across a neural network, including the hippocampal formation, the medial striatum, the arcopallium, and the prefrontal-like nidopallium caudolaterale. This paradigm opens up new avenues for exploring the broader landscape of learning and memory in neonatal vertebrates, enhancing our understanding of behaviour and brain networks.
Collapse
Affiliation(s)
- Mehdi Behroozi
- Institute of Cognitive Neuroscience, Department of Biopsychology, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, Bochum, Germany.
| | - Elena Lorenzi
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, Rovereto, TN, Italy.
| | - Sepideh Tabrik
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, Bochum, Germany
| | - Alessandro Gozzi
- Functional neuroimaging laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Onur Güntürkün
- Institute of Cognitive Neuroscience, Department of Biopsychology, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, Bochum, Germany
- Research Center One Health Ruhr, University Research Alliance Ruhr, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Giorgio Vallortigara
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, Rovereto, TN, Italy
| |
Collapse
|
5
|
Madison FN, Bingman VP, Smulders TV, Lattin CR. A bird's eye view of the hippocampus beyond space: Behavioral, neuroanatomical, and neuroendocrine perspectives. Horm Behav 2024; 157:105451. [PMID: 37977022 DOI: 10.1016/j.yhbeh.2023.105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Although the hippocampus is one of the most-studied brain regions in mammals, research on the avian hippocampus has been more limited in scope. It is generally agreed that the hippocampus is an ancient feature of the amniote brain, and therefore homologous between the two lineages. Because birds and mammals are evolutionarily not very closely related, any shared anatomy is likely to be crucial for shared functions of their hippocampi. These functions, in turn, are likely to be essential if they have been conserved for over 300 million years. Therefore, research on the avian hippocampus can help us understand how this brain region evolved and how it has changed over evolutionary time. Further, there is a strong research foundation in birds on hippocampal-supported behaviors such as spatial navigation, food caching, and brood parasitism that scientists can build upon to better understand how hippocampal anatomy, network circuitry, endocrinology, and physiology can help control these behaviors. In this review, we summarize our current understanding of the avian hippocampus in spatial cognition as well as in regulating anxiety, approach-avoidance behavior, and stress responses. Although there are still some questions about the exact number of subdivisions in the avian hippocampus and how that might vary in different avian families, there is intriguing evidence that the avian hippocampus might have complementary functional profiles along the rostral-caudal axis similar to the dorsal-ventral axis of the rodent hippocampus, where the rostral/dorsal hippocampus is more involved in cognitive processes like spatial learning and the caudal/ventral hippocampus regulates emotional states, anxiety, and the stress response. Future research should focus on elucidating the cellular and molecular mechanisms - including endocrinological - in the avian hippocampus that underlie behaviors such as spatial navigation, spatial memory, and anxiety-related behaviors, and in so doing, resolve outstanding questions about avian hippocampal function and organization.
Collapse
Affiliation(s)
- Farrah N Madison
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Verner P Bingman
- Department of Psychology, J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Tom V Smulders
- Centre for Behaviour and Evolution, School of Psychology, Newcastle University, Newcastle upon Tyne NE2 4DR, UK
| | - Christine R Lattin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70808, USA.
| |
Collapse
|
6
|
Fujita T, Aoki N, Mori C, Homma KJ, Yamaguchi S. Molecular biology of serotonergic systems in avian brains. Front Mol Neurosci 2023; 16:1226645. [PMID: 37538316 PMCID: PMC10394247 DOI: 10.3389/fnmol.2023.1226645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a phylogenetically conserved neurotransmitter and modulator. Neurons utilizing serotonin have been identified in the central nervous systems of all vertebrates. In the central serotonergic system of vertebrate species examined so far, serotonergic neurons have been confirmed to exist in clusters in the brainstem. Although many serotonin-regulated cognitive, behavioral, and emotional functions have been elucidated in mammals, equivalents remain poorly understood in non-mammalian vertebrates. The purpose of this review is to summarize current knowledge of the anatomical organization and molecular features of the avian central serotonergic system. In addition, selected key functions of serotonin are briefly reviewed. Gene association studies between serotonergic system related genes and behaviors in birds have elucidated that the serotonergic system is involved in the regulation of behavior in birds similar to that observed in mammals. The widespread distribution of serotonergic modulation in the central nervous system and the evolutionary conservation of the serotonergic system provide a strong foundation for understanding and comparing the evolutionary continuity of neural circuits controlling corresponding brain functions within vertebrates. The main focus of this review is the chicken brain, with this type of poultry used as a model bird. The chicken is widely used not only as a model for answering questions in developmental biology and as a model for agriculturally useful breeding, but also in research relating to cognitive, behavioral, and emotional processes. In addition to a wealth of prior research on the projection relationships of avian brain regions, detailed subdivision similarities between avian and mammalian brains have recently been identified. Therefore, identifying the neural circuits modulated by the serotonergic system in avian brains may provide an interesting opportunity for detailed comparative studies of the function of serotonergic systems in mammals.
Collapse
Affiliation(s)
- Toshiyuki Fujita
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Naoya Aoki
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Chihiro Mori
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Koichi J. Homma
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Shinji Yamaguchi
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| |
Collapse
|
7
|
Rook N, Stacho M, Schwarz A, Bingman VP, Güntürkün O. Neuronal circuits within the homing pigeon hippocampal formation. J Comp Neurol 2023; 531:790-813. [PMID: 36808394 DOI: 10.1002/cne.25462] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/20/2023]
Abstract
The current study aimed to reveal in detail patterns of intrahippocampal connectivity in homing pigeons (Columba livia). In light of recent physiological evidence suggesting differences between dorsomedial and ventrolateral hippocampal regions and a hitherto unknown laminar organization along the transverse axis, we also aimed to gain a higher-resolution understanding of the proposed pathway segregation. Both in vivo and high-resolution in vitro tracing techniques were employed and revealed a complex connectivity pattern along the subdivisions of the avian hippocampus. We uncovered connectivity pathways along the transverse axis that started in the dorsolateral hippocampus and continued to the dorsomedial subdivision, from where information was relayed to the triangular region either directly or indirectly via the V-shaped layers. The often-reciprocal connectivity along these subdivisions displayed an intriguing topographical arrangement such that two parallel pathways could be discerned along the ventrolateral (deep) and dorsomedial (superficial) aspects of the avian hippocampus. The segregation along the transverse axis was further supported by expression patterns of the glial fibrillary acidic protein and calbindin. Moreover, we found strong expression of Ca2+ /calmodulin-dependent kinase IIα and doublecortin in the lateral but not medial V-shape layer, indicating a difference between the two V-shaped layers. Overall, our findings provide an unprecedented, detailed description of avian intrahippocampal pathway connectivity, and confirm the recently proposed segregation of the avian hippocampus along the transverse axis. We also provide further support for the hypothesized homology of the lateral V-shape layer and the dorsomedial hippocampus with the dentate gyrus and Ammon's horn of mammals, respectively.
Collapse
Affiliation(s)
- Noemi Rook
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Martin Stacho
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Ariane Schwarz
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Verner P Bingman
- Department of Psychology, Bowling Green State University, Bowling Green, Ohio, USA
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, Ohio, USA
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
8
|
Morandi-Raikova A, Mayer U. Spatial cognition and the avian hippocampus: Research in domestic chicks. Front Psychol 2022; 13:1005726. [PMID: 36211859 PMCID: PMC9539314 DOI: 10.3389/fpsyg.2022.1005726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
In this review, we discuss the functional equivalence of the avian and mammalian hippocampus, based mostly on our own research in domestic chicks, which provide an important developmental model (most research on spatial cognition in other birds relies on adult animals). In birds, like in mammals, the hippocampus plays a central role in processing spatial information. However, the structure of this homolog area shows remarkable differences between birds and mammals. To understand the evolutionary origin of the neural mechanisms for spatial navigation, it is important to test how far theories developed for the mammalian hippocampus can also be applied to the avian hippocampal formation. To address this issue, we present a brief overview of studies carried out in domestic chicks, investigating the direct involvement of chicks' hippocampus homolog in spatial navigation.
Collapse
Affiliation(s)
| | - Uwe Mayer
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| |
Collapse
|
9
|
Morphology, biochemistry and connectivity of Cluster N and the hippocampal formation in a migratory bird. Brain Struct Funct 2022; 227:2731-2749. [DOI: 10.1007/s00429-022-02566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/05/2022] [Indexed: 11/02/2022]
Abstract
AbstractThe exceptional navigational capabilities of migrating birds are based on the perception and integration of a variety of natural orientation cues. The “Wulst” in the forebrain of night-migratory songbirds contains a brain area named “Cluster N”, which is involved in processing directional navigational information derived from the Earth´s magnetic field. Cluster N is medially joined by the hippocampal formation, known to retrieve and utilise navigational information. To investigate the connectivity and neurochemical characteristics of Cluster N and the hippocampal formation of migratory birds, we performed morphological and histochemical analyses based on the expression of calbindin, calretinin, parvalbumin, glutamate receptor type 1 and early growth response protein-1 in the night-migratory Garden warbler (Sylvia borin) and mapped their mutual connections using neuronal tract tracing. The resulting expression patterns revealed regionally restricted neurochemical features, which mapped well onto the hippocampal and hyperpallial substructures known from other avian species. Magnetic field-induced neuronal activation covered caudal parts of the hyperpallium and the medially adjacent hippocampal dorsomedial/dorsolateral subdivisions. Neuronal tract tracings revealed connections between Cluster N and the hippocampal formation with the vast majority originating from the densocellular hyperpallium, either directly or indirectly via the area corticoidea dorsolateralis. Our data indicate that the densocellular hyperpallium could represent a central relay for the transmission of magnetic compass information to the hippocampal formation where it might be integrated with other navigational cues in night-migratory songbirds.
Collapse
|
10
|
Mehlhorn J, Niski N, Liu K, Caspers S, Amunts K, Herold C. Regional Patterning of Adult Neurogenesis in the Homing Pigeon’s Brain. Front Psychol 2022; 13:889001. [PMID: 35898980 PMCID: PMC9311432 DOI: 10.3389/fpsyg.2022.889001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
In the avian brain, adult neurogenesis has been reported in the telencephalon of several species, but the functional significance of this trait is still ambiguous. Homing pigeons (Columba livia f.d.) are well-known for their navigational skills. Their brains are functionally adapted to homing with, e.g., larger hippocampi. So far, no comprehensive mapping of adult neuro- and gliogenesis or studies of different developmental neuronal stages in the telencephalon of homing pigeons exists, although comprehensive analyses in various species surely will result in a higher understanding of the functional significance of adult neurogenesis. Here, adult, free flying homing pigeons were treated with 5-bromo-deoxyuridine (BrdU) to label adult newborn cells. Brains were dissected and immunohistochemically processed with several markers (GFAP, Sox2, S100ß, Tbr2, DCX, Prox1, Ki67, NeuN, Calbindin, Calretinin) to study different stages of adult neurogenesis in a quantitative and qualitative way. Therefore, immature and adult newborn neurons and glial cells were analyzed along the anterior–posterior axis. The analysis proved the existence of different neuronal maturation stages and showed that immature cells, migrating neurons and adult newborn neurons and glia were widely and regionally unequally distributed. Double- and triple-labelling with developmental markers allowed a stage classification of adult neurogenesis in the pigeon brain (1: continuity of stem cells/proliferation, 2: fate specification, 3: differentiation/maturation, 4: integration). The most adult newborn neurons and glia were found in the intercalated hyperpallium (HI) and the hippocampal formation (HF). The highest numbers of immature (DCX+) cells were detected in the nidopallium (N). Generally, the number of newborn glial cells exceeded the number of newborn neurons. Individual structures (e.g., HI, N, and HF) showed further variations along the anterior–posterior axis. Our qualitative classification and the distribution of maturing cells in the forebrain support the idea that there is a functional specialization, respectively, that there is a link between brain-structure and function, species-specific requirements and adult neurogenesis. The high number of immature neurons also suggests a high level of plasticity, which points to the ability for rapid adaption to environmental changes through additive mechanisms. Furthermore, we discuss a possible influence of adult neurogenesis on spatial cognition.
Collapse
Affiliation(s)
- Julia Mehlhorn
- Institute for Anatomy I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- *Correspondence: Julia Mehlhorn,
| | - Nelson Niski
- C. and O. Vogt-Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ke Liu
- Institute for Anatomy I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Svenja Caspers
- Institute for Anatomy I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Katrin Amunts
- C. and O. Vogt-Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Christina Herold
- C. and O. Vogt-Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
11
|
Herold C, Ockermann PN, Amunts K. Behavioral Training Related Neurotransmitter Receptor Expression Dynamics in the Nidopallium Caudolaterale and the Hippocampal Formation of Pigeons. Front Physiol 2022; 13:883029. [PMID: 35600306 PMCID: PMC9114877 DOI: 10.3389/fphys.2022.883029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Learning and memory are linked to dynamic changes at the level of synapses in brain areas that are involved in cognitive tasks. For example, changes in neurotransmitter receptors are prerequisite for tuning signals along local circuits and long-range networks. However, it is still unclear how a series of learning events promotes plasticity within the system of neurotransmitter receptors and their subunits to shape information processing at the neuronal level. Therefore, we investigated the expression of different glutamatergic NMDA (GRIN) and AMPA (GRIA) receptor subunits, the GABAergic GABARG2 subunit, dopaminergic DRD1, serotonergic 5HTR1A and noradrenergic ADRA1A receptors in the pigeon's brain. We studied the nidopallium caudolaterale, the avian analogue of the prefrontal cortex, and the hippocampal formation, after training the birds in a rewarded stimulus-response association (SR) task and in a simultaneous-matching-to-sample (SMTS) task. The results show that receptor expression changed differentially after behavioral training compared to an untrained control group. In the nidopallium caudolaterale, GRIN2B, GRIA3, GRIA4, DRD1D, and ADRA1A receptor expression was altered after SR training and remained constantly decreased after the SMTS training protocol, while GRIA2 and DRD1A decreased only under the SR condition. In the hippocampal formation, GRIN2B decreased and GABARG2 receptor expression increased after SR training. After SMTS sessions, GRIN2B remained decreased, GABARG2 remained increased if compared to the control group. None of the investigated receptors differed directly between both conditions, although differentially altered. The changes in both regions mostly occur in favor of the stimulus response task. Thus, the present data provide evidence that neurotransmitter receptor expression dynamics play a role in the avian prefrontal cortex and the hippocampal formation for behavioral training and is uniquely, regionally and functionally associated to cognitive processes including learning and memory.
Collapse
Affiliation(s)
- Christina Herold
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Hospital and Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp N. Ockermann
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Hospital and Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Hospital and Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine INM-1, Research Center Jülich, Jülich, Germany
| |
Collapse
|
12
|
Hough GE. Neural Substrates of Homing Pigeon Spatial Navigation: Results From Electrophysiology Studies. Front Psychol 2022; 13:867939. [PMID: 35465504 PMCID: PMC9020565 DOI: 10.3389/fpsyg.2022.867939] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/28/2022] [Indexed: 12/25/2022] Open
Abstract
Over many centuries, the homing pigeon has been selectively bred for returning home from a distant location. As a result of this strong selective pressure, homing pigeons have developed an excellent spatial navigation system. This system passes through the hippocampal formation (HF), which shares many striking similarities to the mammalian hippocampus; there are a host of shared neuropeptides, interconnections, and its role in the storage and manipulation of spatial maps. There are some notable differences as well: there are unique connectivity patterns and spatial encoding strategies. This review summarizes the comparisons between the avian and mammalian hippocampal systems, and the responses of single neurons in several general categories: (1) location and place cells responding in specific areas, (2) path and goal cells responding between goal locations, (3) context-dependent cells that respond before or during a task, and (4) pattern, grid, and boundary cells that increase firing at stable intervals. Head-direction cells, responding to a specific compass direction, are found in mammals and other birds but not to date in pigeons. By studying an animal that evolved under significant adaptive pressure to quickly develop a complex and efficient spatial memory system, we may better understand the comparative neurology of neurospatial systems, and plot new and potentially fruitful avenues of comparative research in the future.
Collapse
Affiliation(s)
- Gerald E Hough
- Department of Biological Sciences, Rowan University, Glassboro, NJ, United States.,Department of Psychology, Rowan University, Glassboro, NJ, United States
| |
Collapse
|
13
|
Fujita T, Aoki N, Mori C, Fujita E, Matsushima T, Homma KJ, Yamaguchi S. Chick Hippocampal Formation Displays Subdivision- and Layer-Selective Expression Patterns of Serotonin Receptor Subfamily Genes. Front Physiol 2022; 13:882633. [PMID: 35464081 PMCID: PMC9024137 DOI: 10.3389/fphys.2022.882633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/24/2022] [Indexed: 12/23/2022] Open
Abstract
Hippocampal formation (HF) plays a key role in cognitive and emotional processing in mammals. In HF neural circuits, serotonin receptors (5-HTRs) modulate functions related to cognition and emotion. To understand the phylogenetic continuity of the neural basis for cognition and emotion, it is important to identify the neural circuits that regulate cognitive and emotional processing in animals. In birds, HF has been shown to be related to cognitive functions and emotion-related behaviors. However, details regarding the distribution of 5-HTRs in the avian brain are very sparse, and 5-HTRs, which are potentially involved in cognitive functions and emotion-related behaviors, are poorly understood. Previously, we showed that 5-HTR1B and 5-HTR3A were expressed in chick HF. To identify additional 5-HTRs that are potentially involved in cognitive and emotional functions in avian HF, we selected the chick orthologs of 5-HTR1D, 5-HTR1E, 5-HTR1F, 5-HTR2B, 5-HTR5A, and 5-HTR7 and performed in situ hybridization in the chick telencephalon. We found that 5-HTR1D, 5-HTR1E, 5-HTR5A, and 5-HTR7 were expressed in the chick HF, especially 5-HTR1D and 5-HTR1E, which showed subdivision- and layer-selective expression patterns, suggesting that the characteristic 5-HT regulation is involved in cognitive functions and emotion-related behaviors in these HF regions. These findings can facilitate the understanding of serotonin regulation in avian HF and the correspondence between the HF subdivisions of birds and mammals.
Collapse
Affiliation(s)
- Toshiyuki Fujita
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Naoya Aoki
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Chihiro Mori
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Eiko Fujita
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Toshiya Matsushima
- Department of Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Koichi J. Homma
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Shinji Yamaguchi
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
- *Correspondence: Shinji Yamaguchi,
| |
Collapse
|
14
|
Robinson JL, Zhou X, Bird RT, Leavitt MJ, Nichols SJ, Blaine SK, Deshpande G. Neurofunctional Segmentation Shifts in the Hippocampus. Front Hum Neurosci 2021; 15:729836. [PMID: 34790106 PMCID: PMC8592061 DOI: 10.3389/fnhum.2021.729836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022] Open
Abstract
The hippocampus is one of the most phylogenetically preserved structures in the mammalian brain. Engaged in a host of diverse cognitive processes, there has been increasing interest in understanding how the hippocampus dynamically supports these functions. One of the lingering questions is how to reconcile the seemingly disparate cytoarchitectonic organization, which favors a dorsal-ventral layering, with the neurofunctional topography, which has strong support for longitudinal axis (anterior-posterior) and medial-lateral orientation. More recently, meta-analytically driven (e.g., big data) approaches have been employed, however, the question remains whether they are sensitive to important task-specific features such as context, cognitive processes recruited, or the type of stimulus being presented. Here, we used hierarchical clustering on functional magnetic resonance imaging (fMRI) data acquired from healthy individuals at 7T using a battery of tasks that engage the hippocampus to determine whether stimulus or task features influence cluster profiles in the left and right hippocampus. Our data suggest that resting state clustering appears to favor the cytoarchitectonic organization, while task-based clustering favors the neurofunctional clustering. Furthermore, encoding tasks were more sensitive to stimulus type than were recognition tasks. Interestingly, a face-name paired associate task had nearly identical clustering profiles for both the encoding and recognition conditions of the task, which were qualitatively morphometrically different than simple encoding of words or faces. Finally, corroborating previous research, the left hippocampus had more stable cluster profiles compared to the right hippocampus. Together, our data suggest that task-based and resting state cluster profiles are different and may account for the disparity or inconsistency in results across studies.
Collapse
Affiliation(s)
- Jennifer L Robinson
- Department of Psychological Sciences, Auburn University, Auburn, AL, United States.,Department of Electrical and Computer Engineering, Auburn University Magnetic Resonance Imaging Research Center, Auburn University, Auburn, AL, United States.,Center for Neuroscience Initiative, Auburn University, Auburn, AL, United States.,Alabama Advanced Imaging Consortium, Birmingham, AL, United States
| | - Xinyu Zhou
- Department of Electrical and Computer Engineering, Auburn University Magnetic Resonance Imaging Research Center, Auburn University, Auburn, AL, United States.,Quora Inc., Mountain View, CA, United States
| | - Ryan T Bird
- Department of Psychological Sciences, Auburn University, Auburn, AL, United States
| | - Mackenzie J Leavitt
- Department of Psychological Sciences, Auburn University, Auburn, AL, United States
| | - Steven J Nichols
- Department of Psychological Sciences, Auburn University, Auburn, AL, United States
| | - Sara K Blaine
- Department of Psychological Sciences, Auburn University, Auburn, AL, United States.,Center for Neuroscience Initiative, Auburn University, Auburn, AL, United States.,Alabama Advanced Imaging Consortium, Birmingham, AL, United States
| | - Gopikrishna Deshpande
- Department of Psychological Sciences, Auburn University, Auburn, AL, United States.,Department of Electrical and Computer Engineering, Auburn University Magnetic Resonance Imaging Research Center, Auburn University, Auburn, AL, United States.,Center for Neuroscience Initiative, Auburn University, Auburn, AL, United States.,Alabama Advanced Imaging Consortium, Birmingham, AL, United States.,Key Lab for Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China.,Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India.,Center for Brain Research, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
15
|
Li MM, Fan JT, Cheng SG, Yang LF, Yang L, Wang LF, Shang ZG, Wan H. Enhanced Hippocampus-Nidopallium Caudolaterale Connectivity during Route Formation in Goal-Directed Spatial Learning of Pigeons. Animals (Basel) 2021; 11:ani11072003. [PMID: 34359131 PMCID: PMC8300203 DOI: 10.3390/ani11072003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
Goal-directed spatial learning is crucial for the survival of animals, in which the formation of the route from the current location to the goal is one of the central problems. A distributed brain network comprising the hippocampus and prefrontal cortex has been shown to support such capacity, yet it is not fully understood how the most similar brain regions in birds, the hippocampus (Hp) and nidopallium caudolaterale (NCL), cooperate during route formation in goal-directed spatial learning. Hence, we examined neural activity in the Hp-NCL network of pigeons and explored the connectivity dynamics during route formation in a goal-directed spatial task. We found that behavioral changes in spatial learning during route formation are accompanied by modifications in neural patterns in the Hp-NCL network. Specifically, as pigeons learned to solve the task, the spectral power in both regions gradually decreased. Meanwhile, elevated hippocampal theta (5 to 12 Hz) connectivity and depressed connectivity in NCL were also observed. Lastly, the interregional functional connectivity was found to increase with learning, specifically in the theta frequency band during route formation. These results provide insight into the dynamics of the Hp-NCL network during spatial learning, serving to reveal the potential mechanism of avian spatial navigation.
Collapse
Affiliation(s)
- Meng-Meng Li
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.-M.L.); (J.-T.F.); (S.-G.C.); (L.-F.Y.); (L.Y.); (L.-F.W.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Jian-Tao Fan
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.-M.L.); (J.-T.F.); (S.-G.C.); (L.-F.Y.); (L.Y.); (L.-F.W.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Shu-Guan Cheng
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.-M.L.); (J.-T.F.); (S.-G.C.); (L.-F.Y.); (L.Y.); (L.-F.W.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Li-Fang Yang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.-M.L.); (J.-T.F.); (S.-G.C.); (L.-F.Y.); (L.Y.); (L.-F.W.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Long Yang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.-M.L.); (J.-T.F.); (S.-G.C.); (L.-F.Y.); (L.Y.); (L.-F.W.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Liao-Feng Wang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.-M.L.); (J.-T.F.); (S.-G.C.); (L.-F.Y.); (L.Y.); (L.-F.W.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Zhi-Gang Shang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.-M.L.); (J.-T.F.); (S.-G.C.); (L.-F.Y.); (L.Y.); (L.-F.W.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
- Institute of Medical Engineering Technology and Data Mining, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (Z.-G.S.); (H.W.); Tel.: +86-0371-67781417 (Z.-G.S.); +86-0371-67781421 (H.W.)
| | - Hong Wan
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.-M.L.); (J.-T.F.); (S.-G.C.); (L.-F.Y.); (L.Y.); (L.-F.W.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
- Correspondence: (Z.-G.S.); (H.W.); Tel.: +86-0371-67781417 (Z.-G.S.); +86-0371-67781421 (H.W.)
| |
Collapse
|
16
|
Ben-Yishay E, Krivoruchko K, Ron S, Ulanovsky N, Derdikman D, Gutfreund Y. Directional tuning in the hippocampal formation of birds. Curr Biol 2021; 31:2592-2602.e4. [PMID: 33974847 DOI: 10.1016/j.cub.2021.04.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022]
Abstract
Birds strongly rely on spatial memory and navigation. Therefore, it is of utmost interest to reveal how space is represented in the avian brain. Here we used tetrodes to record neurons from the hippocampal formation of Japanese quails-a ground-dwelling species-while the quails roamed in an open-field arena. Whereas spatially modulated cells (place cells, grid cells, border cells) were generally not encountered, the firing rate of about 12% of the neurons was unimodally and significantly modulated by the head azimuth-i.e., these were head-direction cells (HD cells). Typically, HD cells were maximally active at one preferred direction and minimally at the opposite null direction, with preferred directions spanning all 360° across the population. The preferred direction was independent of the animal's position and speed and was stable during the recording session. The HD tuning was broader compared to that of HD cells in rodents, and most cells had non-zero baseline firing in all directions. However, similar to findings in rodents, the HD tuning usually rotated with the rotation of a salient visual cue in the arena. Thus, these findings support the existence of an allocentric HD representation in the quail hippocampal formation and provide the first demonstration of HD cells in birds.
Collapse
Affiliation(s)
- Elhanan Ben-Yishay
- Department of Neurobiology, Rappaport Research Institute and Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron Street, Haifa 3525422, Israel
| | - Ksenia Krivoruchko
- Department of Neurobiology, Rappaport Research Institute and Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron Street, Haifa 3525422, Israel
| | - Shaked Ron
- Department of Neurobiology, Rappaport Research Institute and Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron Street, Haifa 3525422, Israel
| | - Nachum Ulanovsky
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dori Derdikman
- Department of Neurobiology, Rappaport Research Institute and Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron Street, Haifa 3525422, Israel
| | - Yoram Gutfreund
- Department of Neurobiology, Rappaport Research Institute and Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron Street, Haifa 3525422, Israel.
| |
Collapse
|
17
|
Lothmann K, Amunts K, Herold C. The Neurotransmitter Receptor Architecture of the Mouse Olfactory System. Front Neuroanat 2021; 15:632549. [PMID: 33967704 PMCID: PMC8102831 DOI: 10.3389/fnana.2021.632549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
The uptake, transmission and processing of sensory olfactory information is modulated by inhibitory and excitatory receptors in the olfactory system. Previous studies have focused on the function of individual receptors in distinct brain areas, but the receptor architecture of the whole system remains unclear. Here, we analyzed the receptor profiles of the whole olfactory system of adult male mice. We examined the distribution patterns of glutamatergic (AMPA, kainate, mGlu2/3, and NMDA), GABAergic (GABAA, GABAA(BZ), and GABAB), dopaminergic (D1/5) and noradrenergic (α1 and α2) neurotransmitter receptors by quantitative in vitro receptor autoradiography combined with an analysis of the cyto- and myelo-architecture. We observed that each subarea of the olfactory system is characterized by individual densities of distinct neurotransmitter receptor types, leading to a region- and layer-specific receptor profile. Thereby, the investigated receptors in the respective areas and strata showed a heterogeneous expression. Generally, we detected high densities of mGlu2/3Rs, GABAA(BZ)Rs and GABABRs. Noradrenergic receptors revealed a highly heterogenic distribution, while the dopaminergic receptor D1/5 displayed low concentrations, except in the olfactory tubercle and the dorsal endopiriform nucleus. The similarities and dissimilarities of the area-specific multireceptor profiles were analyzed by a hierarchical cluster analysis. A three-cluster solution was found that divided the areas into the (1) olfactory relay stations (main and accessory olfactory bulb), (2) the olfactory cortex (anterior olfactory cortex, dorsal peduncular cortex, taenia tecta, piriform cortex, endopiriform nucleus, entorhinal cortex, orbitofrontal cortex) and the (3) olfactory tubercle, constituting its own cluster. The multimodal receptor-architectonic analysis of each component of the olfactory system provides new insights into its neurochemical organization and future possibilities for pharmaceutic targeting.
Collapse
Affiliation(s)
- Kimberley Lothmann
- C. & O. Vogt-Institute of Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- C. & O. Vogt-Institute of Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, Jülich, Germany
| | - Christina Herold
- C. & O. Vogt-Institute of Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
18
|
Johnston M, Scarf D, Wilson A, Millar J, Bartonicek A, Colombo M. The effects of hippocampal and area parahippocampalis lesions on the processing and retention of serial-order behavior, autoshaping, and spatial behavior in pigeons. Hippocampus 2020; 31:261-280. [PMID: 33274822 DOI: 10.1002/hipo.23287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/17/2020] [Accepted: 11/08/2020] [Indexed: 11/09/2022]
Abstract
We examined the role of the avian hippocampus and area parahippocampalis in serial-order behavior and a variety of other tasks known to be sensitive to hippocampal damage in mammals. Damage to the hippocampus and area parahippocampalis caused impairments in autoshaping and performance on an analogue of a radial-arm maze task, but had no effect on acquisition of 2-item, 3-item, and 4-item serial-order lists. Additionally, the lesions had no effect on the retention of 3-items lists, or on the ability to perform novel derived lists composed of elements from lists they had previously learned. The impairments in autoshaping and spatial behavior are consistent with the findings in mammals. The absence of impairments on the serial-order task may also be consistent once one considers that damage to the hippocampus in mammals seems to affect more internally-organized rather than externally-organized serial-order tasks. Together, the findings support the view that the avian hippocampal complex serves a function very similar to the mammalian hippocampus, a finding that is interesting given that the architecture of the avian hippocampus differs dramatically from that of the mammalian hippocampus.
Collapse
Affiliation(s)
- Melissa Johnston
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Damian Scarf
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Alysha Wilson
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Jessica Millar
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Adam Bartonicek
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Michael Colombo
- Department of Psychology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
19
|
Shukla V, Rani S, Malik S, Kumar V, Sadananda M. Neuromorphometric changes associated with photostimulated migratory phenotype in the Palaearctic-Indian male redheaded bunting. Exp Brain Res 2020; 238:2245-2256. [PMID: 32719907 DOI: 10.1007/s00221-020-05888-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022]
Abstract
Neural substrates, including brain areas, differential gene expression and neuroendocrine basis, of migration are known. However, very little is known about structural changes in the brain that underlie the development and cessation of migration in long-distance avian migrants. Towards this, we investigated neuromorphological changes in the higher-order associative areas in male redheaded bunting (Emberiza bruniceps), which is a Palaearctic-Indian night migrant with wintering grounds in India. Photosensitive birds (8L:16D; SD) were exposed to stimulatory long days (16L:8D; LD), with controls retained on non-stimulatory short days. LD birds depicted shifts to, and sustained night-time activity as recorded by actograms. LD birds demonstrated increased body mass, fat deposition and testicular volume in keeping with the migratory phenotype. When LD birds had exhibited 10.0 ± 2.4 cycles of Zugunruhe (intense nighttime activity in captives, akin to night migratory flight in the wild), bird brains were fixed by transcardial perfusion, and changes in the neuronal morphometry of pallial, sub-pallial and hypothalamic brain regions studied using rapid Golgi technique with modifications, as used and validated in our laboratory. There were significant differences in both area and perimeter of soma in the visual hyperpallium apicale implicated in migratory orientation and the neuroendocrine control region for timing of migration, the mediobasal hypothalamus. We attribute these neuromorphometric changes in the soma area and perimeter to the photostimulated changes associated with the development of migration and reproductive phenotypes in redheaded buntings. It is suggested that changes in the neuronal plasticity in brain control regions parallel photoperiod-induced physiological responses.
Collapse
Affiliation(s)
- Vidya Shukla
- Brain Research Laboratory, Biotechnology Unit, Department of Biosciences, Mangalore University, Mangalagangothri, 574199, Karnataka, India
| | - Sangeeta Rani
- Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Shalie Malik
- Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Monika Sadananda
- Brain Research Laboratory, Biotechnology Unit, Department of Biosciences, Mangalore University, Mangalagangothri, 574199, Karnataka, India.
| |
Collapse
|
20
|
Lothmann K, Deitersen J, Zilles K, Amunts K, Herold C. New boundaries and dissociation of the mouse hippocampus along the dorsal-ventral axis based on glutamatergic, GABAergic and catecholaminergic receptor densities. Hippocampus 2020; 31:56-78. [PMID: 32986281 DOI: 10.1002/hipo.23262] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 08/31/2020] [Accepted: 09/05/2020] [Indexed: 02/01/2023]
Abstract
In rodents, gene-expression, neuronal tuning, connectivity and neurogenesis studies have postulated that the dorsal, the intermediate and the ventral hippocampal formation (HF) are distinct entities. These findings are underpinned by behavioral studies showing a dissociable role of dorsal and ventral HF in learning, memory, stress and emotional processing. However, up to now, the molecular basis of such differences in relation to discrete boundaries is largely unknown. Therefore, we analyzed binding site densities for glutamatergic AMPA, NMDA, kainate and mGluR2/3 , GABAergic GABAA (including benzodiazepine binding sites), GABAB , dopaminergic D1/5 and noradrenergic α1 and α2 receptors as key modulators for signal transmission in hippocampal functions, using quantitative in vitro receptor autoradiography along the dorsal-ventral axis of the mouse HF. Beside general different receptor profiles of the dentate gyrus (DG) and Cornu Ammonis fields (CA1, CA2, CA3, CA4/hilus), we detected substantial differences between dorsal, intermediate and ventral subdivisions and individual layers for all investigated receptor types, except GABAB . For example, striking higher densities of α2 receptors were detected in the ventral DG, while the dorsal DG possesses higher numbers of kainate, NMDA, GABAA and D1/5 receptors. CA1 dorsal and intermediate subdivisions showed higher AMPA, NMDA, mGluR2/3 , GABAA , D1/5 receptors, while kainate receptors are higher expressed in ventral CA1, and noradrenergic α1 and α2 receptors in the intermediate region of CA1. CA2 dorsal was distinguished by higher kainate, α1 and α2 receptors in the intermediate region, while CA3 showed a more complex dissociation. Our findings resulted not only in a clear segmentation of the mouse hippocampus along the dorsal-ventral axis, but also provides insights into the neurochemical basis and likely associated physiological processes in hippocampal functions. Therein, the presented data has a high impact for future studies modeling and investigating dorsal, intermediate and ventral hippocampal dysfunction in relation to neurodegenerative diseases or psychiatric disorders.
Collapse
Affiliation(s)
- Kimberley Lothmann
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Clinic Düsseldof, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Jana Deitersen
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Clinic Düsseldof, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, 52425, Jülich, Germany
| | - Katrin Amunts
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Clinic Düsseldof, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, 52425, Jülich, Germany
| | - Christina Herold
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Clinic Düsseldof, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
21
|
Neural basis of unfamiliar conspecific recognition in domestic chicks (Gallus Gallus domesticus). Behav Brain Res 2020; 397:112927. [PMID: 32980353 DOI: 10.1016/j.bbr.2020.112927] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 12/27/2022]
Abstract
Domestic chickens are able to distinguish familiar from unfamiliar conspecifics, however the neuronal mechanisms mediating this behaviour are almost unknown. Moreover, the lateralisation of chicks' social recognition has only been investigated at the behavioural level, but not at the neural level. The aim of the present study was to test the hypothesis that exposure to unfamiliar conspecifics will selectively activate septum, hippocampus or nucleus taeniae of the amygdala of young domestic chicks. Moreover we also wanted to test the lateralisation of this response. For this purpose, we used the immediate early gene product c-Fos to map neural activity. Chicks were housed in pairs for one week. At test, either one of the two chicks was exchanged by an unfamiliar individual (experimental 'unfamiliar' group) or the familiar individual was briefly removed and then placed back in its original cage (control 'familiar' group). Analyses of chicks' interactions with the familiar/unfamiliar social companion revealed a higher number of social pecks directed towards unfamiliar individuals, compared to familiar controls. Moreover, in the group exposed to the unfamiliar individual a significantly higher activation was present in the dorsal and ventral septum of the left hemisphere and in the ventral hippocampus of the right hemisphere, compared to the control condition. These effects were neither present in other subareas of hippocampus or septum, nor in the nucleus taeniae of the amygdala. Our study thus indicates selective lateralised involvement of domestic chicks' septal and hippocampal subregions in responses to unfamiliar conspecific.
Collapse
|
22
|
The Role of Hp-NCL Network in Goal-Directed Routing Information Encoding of Bird: A Review. Brain Sci 2020; 10:brainsci10090617. [PMID: 32906650 PMCID: PMC7563516 DOI: 10.3390/brainsci10090617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022] Open
Abstract
Goal-directed navigation is a crucial behavior for the survival of animals, especially for the birds having extraordinary spatial navigation ability. In the studies of the neural mechanism of the goal-directed behavior, especially involving the information encoding mechanism of the route, the hippocampus (Hp) and nidopallium caudalle (NCL) of the avian brain are the famous regions that play important roles. Therefore, they have been widely concerned and a series of studies surrounding them have increased our understandings of the navigation mechanism of birds in recent years. In this paper, we focus on the studies of the information encoding mechanism of the route in the avian goal-directed behavior. We first summarize and introduce the related studies on the role of the Hp and NCL for goal-directed behavior comprehensively. Furthermore, we review the related cooperative interaction studies about the Hp-NCL local network and other relevant brain regions supporting the goal-directed routing information encoding. Finally, we summarize the current situation and prospect the existing important questions in this field. We hope this paper can spark fresh thinking for the following research on routing information encoding mechanism of birds.
Collapse
|
23
|
Arias JA, Williams C, Raghvani R, Aghajani M, Baez S, Belzung C, Booij L, Busatto G, Chiarella J, Fu CH, Ibanez A, Liddell BJ, Lowe L, Penninx BWJH, Rosa P, Kemp AH. The neuroscience of sadness: A multidisciplinary synthesis and collaborative review. Neurosci Biobehav Rev 2020; 111:199-228. [PMID: 32001274 DOI: 10.1016/j.neubiorev.2020.01.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/17/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023]
Abstract
Sadness is typically characterized by raised inner eyebrows, lowered corners of the mouth, reduced walking speed, and slumped posture. Ancient subcortical circuitry provides a neuroanatomical foundation, extending from dorsal periaqueductal grey to subgenual anterior cingulate, the latter of which is now a treatment target in disorders of sadness. Electrophysiological studies further emphasize a role for reduced left relative to right frontal asymmetry in sadness, underpinning interest in the transcranial stimulation of left dorsolateral prefrontal cortex as an antidepressant target. Neuroimaging studies - including meta-analyses - indicate that sadness is associated with reduced cortical activation, which may contribute to reduced parasympathetic inhibitory control over medullary cardioacceleratory circuits. Reduced cardiac control may - in part - contribute to epidemiological reports of reduced life expectancy in affective disorders, effects equivalent to heavy smoking. We suggest that the field may be moving toward a theoretical consensus, in which different models relating to basic emotion theory and psychological constructionism may be considered as complementary, working at different levels of the phylogenetic hierarchy.
Collapse
Affiliation(s)
- Juan A Arias
- Department of Psychology, Swansea University, United Kingdom; Department of Statistics, Mathematical Analysis, and Operational Research, Universidade de Santiago de Compostela, Spain
| | - Claire Williams
- Department of Psychology, Swansea University, United Kingdom
| | - Rashmi Raghvani
- Department of Psychology, Swansea University, United Kingdom
| | - Moji Aghajani
- Department of Psychiatry, Amsterdam UMC, Location VUMC, GGZ InGeest Research & Innovation, Amsterdam Neuroscience, the Netherlands
| | | | | | - Linda Booij
- Department of Psychology, Concordia University Montreal, Canada; CHU Sainte-Justine, University of Montreal, Montreal, Canada
| | | | - Julian Chiarella
- Department of Psychology, Concordia University Montreal, Canada; CHU Sainte-Justine, University of Montreal, Montreal, Canada
| | - Cynthia Hy Fu
- School of Psychology, University of East London, United Kingdom; Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Agustin Ibanez
- Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile; Universidad Autonoma del Caribe, Barranquilla, Colombia; Centre of Excellence in Cognition and its Disorders, Australian Research Council (ARC), New South Wales, Australia
| | | | - Leroy Lowe
- Neuroqualia (NGO), Turo, Nova Scotia, Canada
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam UMC, Location VUMC, GGZ InGeest Research & Innovation, Amsterdam Neuroscience, the Netherlands
| | - Pedro Rosa
- Department of Psychiatry, University of Sao Paulo, Brazil
| | - Andrew H Kemp
- Department of Psychology, Swansea University, United Kingdom; Department of Psychiatry, University of Sao Paulo, Brazil; Discipline of Psychiatry, and School of Psychology, University of Sydney, Sydney, Australia.
| |
Collapse
|
24
|
van der Meij J, Rattenborg NC, Beckers GJL. Divergent neuronal activity patterns in the avian hippocampus and nidopallium. Eur J Neurosci 2020; 52:3124-3139. [PMID: 31944434 DOI: 10.1111/ejn.14675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/27/2019] [Indexed: 02/05/2023]
Abstract
Sleep-related brain activity occurring during non-rapid eye-movement (NREM) sleep is proposed to play a role in processing information acquired during wakefulness. During mammalian NREM sleep, the transfer of information from the hippocampus to the neocortex is thought to be mediated by neocortical slow-waves and their interaction with thalamocortical spindles and hippocampal sharp-wave ripples (SWRs). In birds, brain regions composed of pallial neurons homologous to neocortical (pallial) neurons also generate slow-waves during NREM sleep, but little is known about sleep-related activity in the hippocampus and its possible relationship to activity in other pallial regions. We recorded local field potentials (LFP) and analogue multiunit activity (AMUA) using a 64-channel silicon multi-electrode probe simultaneously inserted into the hippocampus and medial part of the nidopallium (i.e., caudal medial nidopallium; NCM) or separately into the caudolateral nidopallium (NCL) of adult female zebra finches (Taeniopygia guttata) anesthetized with isoflurane, an anesthetic known to induce NREM sleep-like slow-waves. We show that slow-waves in NCM and NCL propagate as waves of neuronal activity. In contrast, the hippocampus does not show slow-waves, nor sharp-wave ripples, but instead displays localized gamma activity. In conclusion, neuronal activity in the avian hippocampus differs from that described in mammals during NREM sleep, suggesting that hippocampal memories are processed differently during sleep in birds and mammals.
Collapse
Affiliation(s)
| | - Niels C Rattenborg
- Avian Sleep Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Gabriël J L Beckers
- Cognitive Neurobiology and Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
25
|
Nordmann GC, Malkemper EP, Landler L, Ushakova L, Nimpf S, Heinen R, Schuechner S, Ogris E, Keays DA. A high sensitivity ZENK monoclonal antibody to map neuronal activity in Aves. Sci Rep 2020; 10:915. [PMID: 31969617 PMCID: PMC6976653 DOI: 10.1038/s41598-020-57757-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/20/2019] [Indexed: 01/04/2023] Open
Abstract
The transcription factor ZENK is an immediate early gene that has been employed as a surrogate marker to map neuronal activity in the brain. It has been used in a wide variety of species, however, commercially available antibodies have limited immunoreactivity in birds. To address this issue we generated a new mouse monoclonal antibody, 7B7-A3, raised against ZENK from the rock pigeon (Columba livia). We show that 7B7-A3 labels clZENK in both immunoblots and histological stainings with high sensitivity and selectivity for its target. Using a sound stimulation paradigm we demonstrate that 7B7-A3 can detect activity-dependent ZENK expression at key stations of the central auditory pathway of the pigeon. Finally, we compare staining efficiency across three avian species and confirm that 7B7-A3 is compatible with immunohistochemical detection of ZENK in the rock pigeon, zebra finch, and domestic chicken. Taken together, 7B7-A3 represents a useful tool for the avian neuroscience community to map functional activity in the brain.
Collapse
Affiliation(s)
- Gregory Charles Nordmann
- Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Erich Pascal Malkemper
- Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Lukas Landler
- Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Lyubov Ushakova
- Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Simon Nimpf
- Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Robert Heinen
- Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Stefan Schuechner
- Monoclonal Antibody Facility, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030, Vienna, Austria
| | - Egon Ogris
- Monoclonal Antibody Facility, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030, Vienna, Austria
| | - David Anthony Keays
- Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria.
| |
Collapse
|
26
|
Lormant F, Cornilleau F, Constantin P, Meurisse M, Lansade L, Leterrier C, Lévy F, Calandreau L. Research Note: Role of the hippocampus in spatial memory in Japanese quail. Poult Sci 2019; 99:61-66. [PMID: 32416848 PMCID: PMC7587872 DOI: 10.3382/ps/pez507] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
The Japanese quail is a powerful model to characterize behavioral, physiological, and neurobiological processes in Galliformes. Behavioral tests have already been adapted for quail to assess memory systems, but despite the pivotal role of the hippocampus in this cognitive process, its involvement in spatial memory has not been demonstrated in this species. In this study, lesions were created in the hippocampus of Japanese quail, and both lesioned and control quail were tested for spatial and cue-based learning performances. These hippocampal lesions specifically impacted spatial learning performance, but spared learning performance when birds could solve the task using their cue-based memory. These findings, thus, highlight that the hippocampus plays a crucial role and is essential for spatial declarative memory. Future studies could aim to elucidate the cellular or molecular mechanisms involved in this form of memory.
Collapse
Affiliation(s)
- Flore Lormant
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS, UMR 7247, F-37380 Nouzilly, France Université François Rabelais, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - Fabien Cornilleau
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS, UMR 7247, F-37380 Nouzilly, France Université François Rabelais, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - Paul Constantin
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS, UMR 7247, F-37380 Nouzilly, France Université François Rabelais, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - Maryse Meurisse
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS, UMR 7247, F-37380 Nouzilly, France Université François Rabelais, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - Léa Lansade
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS, UMR 7247, F-37380 Nouzilly, France Université François Rabelais, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - Christine Leterrier
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS, UMR 7247, F-37380 Nouzilly, France Université François Rabelais, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - Frédéric Lévy
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS, UMR 7247, F-37380 Nouzilly, France Université François Rabelais, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - Ludovic Calandreau
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS, UMR 7247, F-37380 Nouzilly, France Université François Rabelais, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France.
| |
Collapse
|
27
|
Coppola VJ, Bingman VP. c-Fos revealed lower hippocampal participation in older homing pigeons when challenged with a spatial memory task. Neurobiol Aging 2019; 87:98-107. [PMID: 31889558 DOI: 10.1016/j.neurobiolaging.2019.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 01/12/2023]
Abstract
Homing pigeons experience age-related spatial-cognitive decline similar to that seen in mammals. In contrast to mammals, however, previous studies have shown the hippocampal formation (HF) of old, cognitively impaired pigeons to be greater in volume and neuron number compared with young pigeons. As a partial explanation of the cognitive decline in older birds, it was hypothesized that older pigeons have reduced HF activation during spatial learning. The present study compared HF activation (via the activity-dependent expression of the immediate early gene c-Fos) between younger and older pigeons during learning of a spatial, delayed nonmatch-to-sample task. On the last day of training, c-Fos activation significantly correlated with behavioral performance in the young, but not old, pigeons suggesting more HF engagement by the young pigeons in solving the task. The behavioral correlation was additionally associated with consistently higher, but insignificant c-Fos activation across practically every HF subdivision in the young compared with the old pigeons. In sum, the results of the present study are consistent with the hypothesis that age-related decline in the spatial cognitive ability of homing pigeons is in part a result of an older HF being less responsive to the processing of spatial information. However, alternative interpretations of the data are discussed.
Collapse
Affiliation(s)
- Vincent J Coppola
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA; J.P. Scott Center for Neuroscience, Mind, & Behavior, Bowling Green, OH, USA.
| | - Verner P Bingman
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA; J.P. Scott Center for Neuroscience, Mind, & Behavior, Bowling Green, OH, USA
| |
Collapse
|
28
|
Zhao K, Nie J, Yang L, Liu X, Shang Z, Wan H. Hippocampus-nidopallium caudolaterale interactions exist in the goal-directed behavior of pigeon. Brain Res Bull 2019; 153:257-265. [PMID: 31541677 DOI: 10.1016/j.brainresbull.2019.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 01/19/2023]
Abstract
Avian hippocampus (Hp) and nidopallium caudolaterale (NCL) are believed to play key roles in goal-directed behavior. However, it is still unclear whether there are interactions between the two brain regions in the goal-directed behavior of pigeons. To investigate the interactions between the Hp and the NCL in the goal-directed behavior, we recorded local field potential (LFP) signals from the two regions simultaneously when the pigeons performed a goal-directed decision-making task. Amplitude-amplitude coupling analysis revealed that the coupling value between the LFP recorded from the Hp and that from the NCL increased significantly (P < 0.05) in slow gamma-band (40-60 Hz) during the turning area. In addition, the LFP functional network analysis demonstrated the LFP functional connections between the Hp and the NCL increased significantly (P < 0.05) in the turning area. The result of partial directed coherence (PDC) analysis showed that the predominant direction of information flow is thought to be from the Hp to the NCL. These findings suggest that there are causal functional interactions between the Hp and the NCL by which information is transmitted between the two regions relevant to goal-directed behavior.
Collapse
Affiliation(s)
- Kun Zhao
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450000, China; Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou University, Zhengzhou, 450000, China
| | - Jiejie Nie
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450000, China; Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou University, Zhengzhou, 450000, China
| | - Lifang Yang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450000, China; Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou University, Zhengzhou, 450000, China
| | - Xinyu Liu
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450000, China; Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou University, Zhengzhou, 450000, China; School of Intelligent Manufacturing, Huanghuai University, Zhumadian, 463000, China
| | - Zhigang Shang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450000, China; Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou University, Zhengzhou, 450000, China.
| | - Hong Wan
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450000, China; Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
29
|
Herold C, Schlömer P, Mafoppa-Fomat I, Mehlhorn J, Amunts K, Axer M. The hippocampus of birds in a view of evolutionary connectomics. Cortex 2019; 118:165-187. [DOI: 10.1016/j.cortex.2018.09.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022]
|
30
|
Gao M, Pusch R, Güntürkün O. Blocking NMDA-Receptors in the Pigeon’s Medial Striatum Impairs Extinction Acquisition and Induces a Motoric Disinhibition in an Appetitive Classical Conditioning Paradigm. Front Behav Neurosci 2019; 13:153. [PMID: 31354445 PMCID: PMC6630161 DOI: 10.3389/fnbeh.2019.00153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/21/2019] [Indexed: 11/13/2022] Open
|
31
|
Roth TC, Krochmal AR, LaDage LD. Reptilian Cognition: A More Complex Picture via Integration of Neurological Mechanisms, Behavioral Constraints, and Evolutionary Context. Bioessays 2019; 41:e1900033. [PMID: 31210380 DOI: 10.1002/bies.201900033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/10/2019] [Indexed: 12/16/2022]
Abstract
Unlike birds and mammals, reptiles are commonly thought to possess only the most rudimentary means of interacting with their environments, reflexively responding to sensory information to the near exclusion of higher cognitive function. However, reptilian brains, though structurally somewhat different from those of mammals and birds, use many of the same cellular and molecular processes to support complex behaviors in homologous brain regions. Here, the neurological mechanisms supporting reptilian cognition are reviewed, focusing specifically on spatial cognition and the hippocampus. These processes are compared to those seen in mammals and birds within an ecologically and evolutionarily relevant context. By viewing reptilian cognition through an integrative framework, a more robust understanding of reptile cognition is gleaned. Doing so yields a broader view of the evolutionarily conserved molecular and cellular mechanisms that underlie cognitive function and a better understanding of the factors that led to the evolution of complex cognition.
Collapse
Affiliation(s)
- Timothy C Roth
- Department of Psychology, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA, 17603, USA
| | - Aaron R Krochmal
- Department of Biology, Washington College, 300 Washington Avenue, Chestertown, MD, 21620, USA
| | - Lara D LaDage
- Division of Mathematics and Natural Sciences, Penn State University Altoona, Altoona, PA, 16601, USA
| |
Collapse
|
32
|
Dheerendra P, Lynch NM, Crutwell J, Cunningham MO, Smulders TV. In vitro characterization of gamma oscillations in the hippocampal formation of the domestic chick. Eur J Neurosci 2018; 48:2807-2815. [PMID: 29120510 PMCID: PMC6220815 DOI: 10.1111/ejn.13773] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/28/2017] [Accepted: 11/02/2017] [Indexed: 11/30/2022]
Abstract
Avian and mammalian brains have evolved independently from each other for about 300 million years. During that time, the hippocampal formation (HF) has diverged in morphology and cytoarchitecture, but seems to have conserved much of its function. It is therefore an open question how seemingly different neural organizations can generate the same function. A prominent feature of the mammalian hippocampus is that it generates different neural oscillations, including the gamma rhythm, which plays an important role in memory processing. In this study, we investigate whether the avian hippocampus also generates gamma oscillations, and whether similar pharmacological mechanisms are involved in this function. We investigated the existence of gamma oscillations in avian HF using in vitro electrophysiology in P0–P12 domestic chick (Gallus gallus domesticus) HF brain slices. Persistent gamma frequency oscillations were induced by the bath application of the cholinergic agonist carbachol, but not by kainate, a glutamate receptor agonist. Similar to other species, carbachol‐evoked gamma oscillations were sensitive to GABAA, AMPA/kainate and muscarinic (M1) receptor antagonism. Therefore, similar to mammalian species, muscarinic receptor‐activated avian HF gamma oscillations may arise via a pyramidal‐interneuron gamma (PING)‐based mechanism. Gamma oscillations are most prominent in the ventromedial area of the hippocampal slices, and gamma power is reduced more laterally and dorsally in the HF. We conclude that similar micro‐circuitry may exist in the avian and mammalian hippocampal formation, and this is likely to relate to the shared function of the two structures.
Collapse
Affiliation(s)
- Pradeep Dheerendra
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Nicholas M Lynch
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.,University of Louisville, Louisville, KY, USA
| | - Joseph Crutwell
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Mark O Cunningham
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Tom V Smulders
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.,Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
33
|
Herold C, Paulitschek C, Palomero-Gallagher N, Güntürkün O, Zilles K. Transmitter receptors reveal segregation of the arcopallium/amygdala complex in pigeons (Columba livia). J Comp Neurol 2017; 526:439-466. [PMID: 29063593 DOI: 10.1002/cne.24344] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/21/2022]
Abstract
At the beginning of the 20th century it was suggested that a complex group of nuclei in the avian posterior ventral telencephalon is comparable to the mammalian amygdala. Subsequent findings, however, revealed that most of these structures share premotor characteristics, while some indeed constitute the avian amygdala. These developments resulted in 2004 in a change of nomenclature of these nuclei, which from then on were named arcopallial or amygdala nuclei and referred to as the arcopallium/amygdala complex. The structural basis for the similarities between avian and mammalian arcopallial and amygdala subregions is poorly understood. Therefore, we analyzed binding site densities for glutamatergic AMPA, NMDA and kainate, GABAergic GABAA , muscarinic M1 , M2 and nicotinic acetylcholine (nACh; α4 β2 subtype), noradrenergic α1 and α2 , serotonergic 5-HT1A and dopaminergic D1/5 receptors using quantitative in vitro receptor autoradiography combined with a detailed analysis of the cyto- and myelo-architecture. Our approach supports a segregation of the pigeon's arcopallium/amygdala complex into the following subregions: the arcopallium anterius (AA), the arcopallium ventrale (AV), the arcopallium dorsale (AD), the arcopallium intermedium (AI), the arcopallium mediale (AM), the arcopallium posterius (AP), the nucleus posterioris amygdalopallii pars basalis (PoAb) and pars compacta (PoAc), the nucleus taeniae amgygdalae (TnA) and the area subpallialis amygdalae (SpA). Some of these subregions showed further subnuclei and each region of the arcopallium/amygdala complex are characterized by a distinct multi-receptor density expression. Here we provide a new detailed map of the pigeon's arcopallium/amygdala complex and compare the receptor architecture of the subregions to their possible mammalian counterparts.
Collapse
Affiliation(s)
- Christina Herold
- C. and O. Vogt Institute of Brain Research, Medical Faculty, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Christina Paulitschek
- C. and O. Vogt Institute of Brain Research, Medical Faculty, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | | | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine INM-1, Research Center Jülich, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, and JARA - Translational Brain Medicine, Aachen, Germany
| |
Collapse
|
34
|
Representation of environmental shape in the hippocampus of domestic chicks (Gallus gallus). Brain Struct Funct 2017; 223:941-953. [DOI: 10.1007/s00429-017-1537-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/05/2017] [Indexed: 10/18/2022]
|
35
|
Atoji Y, Sarkar S, Wild JM. Differential projections of the densocellular and intermediate parts of the hyperpallium in the pigeon (Columba livia). J Comp Neurol 2017; 526:146-165. [PMID: 28891049 DOI: 10.1002/cne.24328] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/25/2017] [Accepted: 08/27/2017] [Indexed: 12/24/2022]
Abstract
The visual Wulst in birds shows a four-layered structure: apical part of the hyperpallium (HA), interstitial part of HA (IHA), intercalated part of hyperpallium (HI), and densocellular part of hyperpallium (HD). HD also connects with the hippocampus and olfactory system. Because HD is subjacent to HI, the two have been treated as one structure in many studies, and the fiber connections of HD have been examined by afferents and efferents originating outside HD. However, to clarify the difference between these two layers, they need to be treated separately. In the present study, the fiber connections of HD and HI were analyzed with tract-tracing techniques using a combination of injections of cholera toxin subunit B (CTB) for retrograde tracing and biotinylated dextran amine (BDA) for anterograde tracing. When the two tracers were bilaterally injected in HD, a major reciprocal connection was seen with the dorsolateral subdivision (DL) of the hippocampal formation. When CTB and BDA were bilaterally injected in HI, strong reciprocal connections were found between HI and HA. Next, projection neurons in HD and HI were examined by double staining for CTB combined with vesicular glutamate transporter 2 (vGluT2) mRNA in situ hybridization. After CTB was injected in DL or HA, many neurons revealed CTB+/vGluT2+ in HD or HI, respectively. Furthermore, in situ hybridization showed that DL and HA contained neurons expressing various subunits of ionotropic glutamate receptors: AMPA, kainate, and NMDA types. These results suggest that glutamatergic neurons in HD and HI project primarily to DL and HA, respectively.
Collapse
Affiliation(s)
- Yasuro Atoji
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Sonjoy Sarkar
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - J Martin Wild
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
36
|
Atoji Y, Sarkar S, Wild JM. Proposed homology of the dorsomedial subdivision and V-shaped layer of the avian hippocampus to Ammon's horn and dentate gyrus, respectively. Hippocampus 2016; 26:1608-1617. [DOI: 10.1002/hipo.22660] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Yasuro Atoji
- Laboratory of Veterinary Anatomy Faculty of Applied Biological Sciences; Gifu University; Gifu Japan
| | - Sonjoy Sarkar
- Laboratory of Veterinary Anatomy Faculty of Applied Biological Sciences; Gifu University; Gifu Japan
| | - J. Martin Wild
- Department of Anatomy and Medical Imaging Faculty of Medical and Health Sciences; University of Auckland; Auckland New Zealand
| |
Collapse
|
37
|
Guigueno MF, MacDougall-Shackleton SA, Sherry DF. Sex and seasonal differences in hippocampal volume and neurogenesis in brood-parasitic brown-headed cowbirds (Molothrus ater). Dev Neurobiol 2016; 76:1275-1290. [PMID: 27455512 DOI: 10.1002/dneu.22421] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 07/14/2016] [Accepted: 07/22/2016] [Indexed: 12/22/2022]
Abstract
Brown-headed cowbirds (Molothrus ater) are one of few species in which females show more complex space use than males. Female cowbirds search for, revisit, and parasitize host nests and, in a previous study, outperformed males on an open field spatial search task. Previous research reported a female-biased sex difference in the volume of the hippocampus, a region of the brain involved in spatial memory. Neurons produced by adult neurogenesis may be involved in the formation of new memories and replace older neurons that could cause interference in memory. We tested for sex and seasonal differences in hippocampal volume and neurogenesis of brood-parasitic brown-headed cowbirds and the closely related non-brood-parasitic red-winged blackbird (Agelaius phoeniceus) to determine whether there were differences in the hippocampus that reflected space use in the wild. Females had a larger hippocampus than males in both species, but hippocampal neurogenesis, measured by doublecortin immunoreactivity (DCX+), was greater in female than in male cowbirds in the absence of any sex difference in blackbirds, supporting the hypothesis of hippocampal specialization in female cowbirds. Cowbirds of both sexes had a larger hippocampus with greater hippocampal DCX+ than blackbirds. Hippocampus volume remained stable between breeding conditions, but DCX+ was greater post-breeding, indicating that old memories may be lost through hippocampal reorganization following breeding. Our results support, in part, the hypothesis that the hippocampus of cowbirds is specialized for brood parasitism. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1275-1290, 2016.
Collapse
Affiliation(s)
- Mélanie F Guigueno
- Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada. .,Department of Biology, University of Western Ontario, London, Ontario, Canada.
| | - Scott A MacDougall-Shackleton
- Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada.,Department of Biology, University of Western Ontario, London, Ontario, Canada.,Department of Psychology, University of Western Ontario, London, Ontario, Canada
| | - David F Sherry
- Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada.,Department of Biology, University of Western Ontario, London, Ontario, Canada.,Department of Psychology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
38
|
Sexual dimorphisms in swimming behavior, cerebral metabolic activity and adrenoceptors in adult zebrafish (Danio rerio). Behav Brain Res 2016; 312:385-93. [PMID: 27363927 DOI: 10.1016/j.bbr.2016.06.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 06/13/2016] [Accepted: 06/26/2016] [Indexed: 02/06/2023]
Abstract
Sexually dimorphic behaviors and brain sex differences, not only restricted to reproduction, are considered to be evolutionary preserved. Specifically, anxiety related behavioral repertoire is suggested to exhibit sex-specific characteristics in rodents and primates. The present study investigated whether behavioral responses to novelty, have sex-specific characteristics in the neurogenetic model organism zebrafish (Danio rerio), lacking chromosomal sex determination. For this, aspects of anxiety-like behavior (including reduced exploration, increased freezing behavior and erratic movement) of male and female adult zebrafish were tested in a novel tank paradigm and after habituation. Male and female zebrafish showed significant differences in their swimming activity in response to novelty, with females showing less anxiety spending more time in the upper tank level. When fish have habituated, regional cerebral glucose uptake, an index of neuronal activity, and brain adrenoceptors' (ARs) expression (α2-ARs and β-ARs) were determined using in vivo 2-[(14)C]-deoxyglucose methodology and in vitro neurotransmitter receptors quantitative autoradiography, respectively. Intriguingly, females exhibited higher glucose utilization than males in hypothalamic brain areas. Adrenoceptor's expression pattern was dimorphic in zebrafish telencephalic, preoptic, hypothalamic nuclei, central gray, and cerebellum, similarly to birds and mammals. Specifically, the lateral zone of dorsal telencephalon (Dl), an area related to spatial cognition, homologous to the mammalian hippocampus, showed higher α2-AR densities in females. In contrast, male cerebellum included higher densities of β-ARs in comparison to female. Taken together, our data demonstrate a well-defined sex discriminant cerebral metabolic activity and ARs' pattern in zebrafish, possibly contributing to male-female differences in the swimming behavior.
Collapse
|
39
|
Liu Y, Li B, Li M, Yu Y, Wang Z, Chen S. Improvement of cardiac dysfunction by bilateral surgical renal denervation in animals with diabetes induced by high fructose and high fat diet. Diabetes Res Clin Pract 2016; 115:140-9. [PMID: 26997210 DOI: 10.1016/j.diabres.2015.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/28/2015] [Accepted: 12/26/2015] [Indexed: 02/07/2023]
Abstract
AIMS Insulin resistance (IR) and sympathetic over-activation play a critical role in diabetic cardiomyopathy (DCM). Percutaneous renal sympathetic denervation (RDN) was tested to treat refractory hypertension. However, the benefits of RDN for DCM and IR still remain unknown. The present study aimed to investigate the effect and associated mechanisms of bilateral surgical RDN (bsRDN) on cardiac function and glucose metabolism in animals with diabetes. METHODS Thirty-two male New Zealand white rabbits were randomly assigned to Chow (n=8, normal diet) and TEST (n=24, high-fructose fat diet [HFD]) groups. At 48 weeks after HFD feeding, animals in the TEST group were randomized to the Sham, HFD, and RDN subgroups and were fed a HFD for an additional 8 weeks. Repeated measurements of cardiac function, IR, apoptosis/autophagy, and histopathological assessment were performed at 48 and 56 weeks. RESULTS HFD feeding for 56 weeks induced IR and diastolic cardiac dysfunction with hypertrophy in septum but well preserved eject fraction in the animals. Impaired IR further deteriorated over the time in the RDN group, featured by a more profound reduction in GLUT4 mRNA and its translocation to the plasma membrane. Successful denervation was associated with improvement of cardiac function via preventing myocardial fibrosis and over-expression of procollagen III, mammalian target of rapamycin, and cardiac apoptosis. Cardiac autophagy, assessed by either electron microscopy or Western blot, was enhanced by bsRDN. CONCLUSIONS Renal sympathetic denervation led to a significant improvement of HFD-induced cardiac dysfunction by shifting the cardiac apoptosis to autophagy, but worsening IR. Further study is required to identify the clinical benefits of RDN.
Collapse
Affiliation(s)
- YanRong Liu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, China
| | - Bing Li
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, China
| | - MingHui Li
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, China
| | - YiHui Yu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, China
| | - ZhiMei Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, China
| | - ShaoLiang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, China.
| |
Collapse
|
40
|
Naumann RK, Ray S, Prokop S, Las L, Heppner FL, Brecht M. Conserved size and periodicity of pyramidal patches in layer 2 of medial/caudal entorhinal cortex. J Comp Neurol 2016; 524:783-806. [PMID: 26223342 PMCID: PMC5014138 DOI: 10.1002/cne.23865] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/16/2015] [Accepted: 07/17/2015] [Indexed: 11/29/2022]
Abstract
To understand the structural basis of grid cell activity, we compare medial entorhinal cortex architecture in layer 2 across five mammalian species (Etruscan shrews, mice, rats, Egyptian fruit bats, and humans), bridging ∼100 million years of evolutionary diversity. Principal neurons in layer 2 are divided into two distinct cell types, pyramidal and stellate, based on morphology, immunoreactivity, and functional properties. We confirm the existence of patches of calbindin-positive pyramidal cells across these species, arranged periodically according to analyses techniques like spatial autocorrelation, grid scores, and modifiable areal unit analysis. In rodents, which show sustained theta oscillations in entorhinal cortex, cholinergic innervation targeted calbindin patches. In bats and humans, which only show intermittent entorhinal theta activity, cholinergic innervation avoided calbindin patches. The organization of calbindin-negative and calbindin-positive cells showed marked differences in entorhinal subregions of the human brain. Layer 2 of the rodent medial and the human caudal entorhinal cortex were structurally similar in that in both species patches of calbindin-positive pyramidal cells were superimposed on scattered stellate cells. The number of calbindin-positive neurons in a patch increased from ∼80 in Etruscan shrews to ∼800 in humans, only an ∼10-fold over a 20,000-fold difference in brain size. The relatively constant size of calbindin patches differs from cortical modules such as barrels, which scale with brain size. Thus, selective pressure appears to conserve the distribution of stellate and pyramidal cells, periodic arrangement of calbindin patches, and relatively constant neuron number in calbindin patches in medial/caudal entorhinal cortex.
Collapse
Affiliation(s)
- Robert K. Naumann
- Bernstein Center for Computational NeuroscienceHumboldt University of Berlin10115BerlinGermany
- Max‐Planck‐Institute for Brain ResearchMax‐von‐Laue‐Str. 460438Frankfurt am MainGermany
| | - Saikat Ray
- Bernstein Center for Computational NeuroscienceHumboldt University of Berlin10115BerlinGermany
| | - Stefan Prokop
- Neuropathology Institute, Charité Medical School10117BerlinGermany
| | - Liora Las
- Department of NeurobiologyWeizmann Institute of ScienceRehovot76100Israel
| | - Frank L. Heppner
- Neuropathology Institute, Charité Medical School10117BerlinGermany
| | - Michael Brecht
- Bernstein Center for Computational NeuroscienceHumboldt University of Berlin10115BerlinGermany
| |
Collapse
|
41
|
Mouritsen H, Heyers D, Güntürkün O. The Neural Basis of Long-Distance Navigation in Birds. Annu Rev Physiol 2016; 78:133-54. [DOI: 10.1146/annurev-physiol-021115-105054] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Henrik Mouritsen
- Institut für Biologie und Umweltwissenschaften, Carl-von-Ossietzky-Universität Oldenburg, D-26111 Oldenburg, Germany; ,
- Research Center Neurosensory Sciences, University of Oldenburg, D-26111 Oldenburg, Germany
| | - Dominik Heyers
- Institut für Biologie und Umweltwissenschaften, Carl-von-Ossietzky-Universität Oldenburg, D-26111 Oldenburg, Germany; ,
- Research Center Neurosensory Sciences, University of Oldenburg, D-26111 Oldenburg, Germany
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, D-44780 Bochum, Germany;
| |
Collapse
|
42
|
Lee SA, Ferrari A, Vallortigara G, Sovrano VA. Boundary primacy in spatial mapping: Evidence from zebrafish (Danio rerio). Behav Processes 2015; 119:116-22. [DOI: 10.1016/j.beproc.2015.07.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 12/16/2022]
|
43
|
Robinson JL, Barron DS, Kirby LAJ, Bottenhorn KL, Hill AC, Murphy JE, Katz JS, Salibi N, Eickhoff SB, Fox PT. Neurofunctional topography of the human hippocampus. Hum Brain Mapp 2015; 36:5018-37. [PMID: 26350954 DOI: 10.1002/hbm.22987] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 12/12/2022] Open
Abstract
Much of what was assumed about the functional topography of the hippocampus was derived from a single case study over half a century ago. Given advances in the imaging sciences, a new era of discovery is underway, with potential to transform the understanding of healthy processing as well as the ability to treat disorders. Coactivation-based parcellation, a meta-analytic approach, and ultra-high field, high-resolution functional and structural neuroimaging to characterize the neurofunctional topography of the hippocampus was employed. Data revealed strong support for an evolutionarily preserved topography along the long-axis. Specifically, the left hippocampus was segmented into three distinct clusters: an emotional processing cluster supported by structural and functional connectivity to the amygdala and parahippocampal gyrus, a cognitive operations cluster, with functional connectivity to the anterior cingulate and inferior frontal gyrus, and a posterior perceptual cluster with distinct structural connectivity patterns to the occipital lobe coupled with functional connectivity to the precuneus and angular gyrus. The right hippocampal segmentation was more ambiguous, with plausible 2- and 5-cluster solutions. Segmentations shared connectivity with brain regions known to support the correlated processes. This represented the first neurofunctional topographic model of the hippocampus using a robust, bias-free, multimodal approach.
Collapse
Affiliation(s)
- Jennifer L Robinson
- Department of Psychology, Auburn University, 226 Thach Hall, Auburn, Alabama.,Department of Electrical and Computer Engineering, Auburn University, Auburn University Magnetic Resonance Imaging Research Center, 560 Devall Drive, Auburn, Alabama.,Department of Kinesiology, Auburn University, 226 Thach Hall, Auburn, Alabama
| | | | - Lauren A J Kirby
- Department of Psychology, Auburn University, 226 Thach Hall, Auburn, Alabama.,Department of Electrical and Computer Engineering, Auburn University, Auburn University Magnetic Resonance Imaging Research Center, 560 Devall Drive, Auburn, Alabama
| | - Katherine L Bottenhorn
- Department of Psychology, Auburn University, 226 Thach Hall, Auburn, Alabama.,Department of Electrical and Computer Engineering, Auburn University, Auburn University Magnetic Resonance Imaging Research Center, 560 Devall Drive, Auburn, Alabama
| | - Ashley C Hill
- Department of Psychology, Auburn University, 226 Thach Hall, Auburn, Alabama.,Department of Electrical and Computer Engineering, Auburn University, Auburn University Magnetic Resonance Imaging Research Center, 560 Devall Drive, Auburn, Alabama
| | - Jerry E Murphy
- Department of Psychology, Auburn University, 226 Thach Hall, Auburn, Alabama.,Department of Electrical and Computer Engineering, Auburn University, Auburn University Magnetic Resonance Imaging Research Center, 560 Devall Drive, Auburn, Alabama
| | - Jeffrey S Katz
- Department of Psychology, Auburn University, 226 Thach Hall, Auburn, Alabama.,Department of Electrical and Computer Engineering, Auburn University, Auburn University Magnetic Resonance Imaging Research Center, 560 Devall Drive, Auburn, Alabama
| | - Nouha Salibi
- Department of Electrical and Computer Engineering, Auburn University, Auburn University Magnetic Resonance Imaging Research Center, 560 Devall Drive, Auburn, Alabama.,Siemens Healthcare, MR Research & Development, 51 Valley Stream Parkway, Malvern, Pennsylvania
| | - Simon B Eickhoff
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,South Texas Veterans Health Care System, Research Service, 7400 Merton Minter, San Antonio, Texas.,Shenzhen University School of Medicine, Neuroimaging Laboratory, Nanhai Ave 3688, Shenzhen, Guangong, 518060, People's Republic of China
| |
Collapse
|
44
|
Striedter GF. Evolution of the hippocampus in reptiles and birds. J Comp Neurol 2015; 524:496-517. [DOI: 10.1002/cne.23803] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/17/2015] [Accepted: 04/29/2015] [Indexed: 02/04/2023]
Affiliation(s)
- Georg F. Striedter
- Department of Neurobiology & Behavior and Center for the Neurobiology of Learning and Memory; University of California; Irvine Irvine California 92697-4550
| |
Collapse
|
45
|
Herold C, Coppola VJ, Bingman VP. The maturation of research into the avian hippocampal formation: Recent discoveries from one of the nature's foremost navigators. Hippocampus 2015; 25:1193-211. [DOI: 10.1002/hipo.22463] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Christina Herold
- C. & O. Vogt-Institute of Brain Research, University of Düsseldorf; Düsseldorf Germany
| | - Vincent J. Coppola
- Department of Psychology; J. P. Scott Center for Neuroscience, Bowling Green State University; Bowling Green Ohio
| | - Verner P. Bingman
- Department of Psychology; J. P. Scott Center for Neuroscience, Bowling Green State University; Bowling Green Ohio
| |
Collapse
|
46
|
Jonckers E, Güntürkün O, De Groof G, Van der Linden A, Bingman VP. Network structure of functional hippocampal lateralization in birds. Hippocampus 2015; 25:1418-28. [DOI: 10.1002/hipo.22462] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2015] [Indexed: 02/02/2023]
Affiliation(s)
| | - Onur Güntürkün
- Department of Biopsychology; Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum; Bochum Germany
| | - Geert De Groof
- Bio-Imaging Laboratory; University of Antwerp; Antwerp Belgium
| | | | - Verner P. Bingman
- Department of Psychology; Bowling Green State University; Bowling Green Ohio
- J.P. Scott Center for Neuroscience, Mind and Behavior; Bowling Green State University; Bowling Green Ohio
| |
Collapse
|
47
|
Defensive behaviors and prosencephalic neurogenesis in pigeons (Columba livia) are affected by environmental enrichment in adulthood. Brain Struct Funct 2015; 221:2287-301. [DOI: 10.1007/s00429-015-1043-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 04/06/2015] [Indexed: 01/04/2023]
|
48
|
Lazareva OF, Kandray K, Acerbo MJ. Hippocampal lesion and transitive inference: Dissociation of inference-based and reinforcement-based strategies in pigeons. Hippocampus 2014; 25:219-26. [DOI: 10.1002/hipo.22366] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2014] [Indexed: 11/10/2022]
|
49
|
Abellán A, Desfilis E, Medina L. Combinatorial expression of Lef1, Lhx2, Lhx5, Lhx9, Lmo3, Lmo4, and Prox1 helps to identify comparable subdivisions in the developing hippocampal formation of mouse and chicken. Front Neuroanat 2014; 8:59. [PMID: 25071464 PMCID: PMC4082316 DOI: 10.3389/fnana.2014.00059] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 06/12/2014] [Indexed: 11/23/2022] Open
Abstract
We carried out a study of the expression patterns of seven developmental regulatory genes (Lef1, Lhx2, Lhx9, Lhx5, Lmo3, Lmo4, and Prox1), in combination with topological position, to identify the medial pallial derivatives, define its major subdivisions, and compare them between mouse and chicken. In both species, the medial pallium is defined as a pallial sector adjacent to the cortical hem and roof plate/choroid tela, showing moderate to strong ventricular zone expression of Lef1, Lhx2, and Lhx9, but not Lhx5. Based on this, the hippocampal formation (indusium griseum, dentate gyrus, Ammon's horn fields, and subiculum), the medial entorhinal cortex, and part of the amygdalo-hippocampal transition area of mouse appeared to derive from the medial pallium. In the chicken, based on the same position and gene expression profile, we propose that the hippocampus (including the V-shaped area), the parahippocampal area (including its caudolateral part), the entorhinal cortex, and the amygdalo-hippocampal transition area are medial pallial derivatives. Moreover, the combinatorial expression of Lef1, Prox1, Lmo4, and Lmo3 allowed the identification of dentate gyrus/CA3-like, CA1/subicular-like, and medial entorhinal-like comparable sectors in mouse and chicken, and point to the existence of mostly conserved molecular networks involved in hippocampal complex development. Notably, while the mouse medial entorhinal cortex derives from the medial pallium (similarly to the hippocampal formation, both being involved in spatial navigation and spatial memory), the lateral entorhinal cortex (involved in processing non-spatial, contextual information) appears to derive from a distinct dorsolateral caudal pallial sector.
Collapse
Affiliation(s)
| | | | - Loreta Medina
- Laboratory of Brain Development and Evolution, Department of Experimental Medicine, Institute of Biomedical Research of Lleida, University of LleidaLleida, Spain
| |
Collapse
|