1
|
Liu H, Caballero-Florán RN, Hergenreder T, Yang T, Hull JM, Pan G, Li R, Veling MW, Isom LL, Kwan KY, Huang ZJ, Fuerst PG, Jenkins PM, Ye B. DSCAM gene triplication causes excessive GABAergic synapses in the neocortex in Down syndrome mouse models. PLoS Biol 2023; 21:e3002078. [PMID: 37079499 PMCID: PMC10118173 DOI: 10.1371/journal.pbio.3002078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/14/2023] [Indexed: 04/21/2023] Open
Abstract
Down syndrome (DS) is caused by the trisomy of human chromosome 21 (HSA21). A major challenge in DS research is to identify the HSA21 genes that cause specific symptoms. Down syndrome cell adhesion molecule (DSCAM) is encoded by a HSA21 gene. Previous studies have shown that the protein level of the Drosophila homolog of DSCAM determines the size of presynaptic terminals. However, whether the triplication of DSCAM contributes to presynaptic development in DS remains unknown. Here, we show that DSCAM levels regulate GABAergic synapses formed on neocortical pyramidal neurons (PyNs). In the Ts65Dn mouse model for DS, where DSCAM is overexpressed due to DSCAM triplication, GABAergic innervation of PyNs by basket and chandelier interneurons is increased. Genetic normalization of DSCAM expression rescues the excessive GABAergic innervations and the increased inhibition of PyNs. Conversely, loss of DSCAM impairs GABAergic synapse development and function. These findings demonstrate excessive GABAergic innervation and synaptic transmission in the neocortex of DS mouse models and identify DSCAM overexpression as the cause. They also implicate dysregulated DSCAM levels as a potential pathogenic driver in related neurological disorders.
Collapse
Affiliation(s)
- Hao Liu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - René N. Caballero-Florán
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Ty Hergenreder
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Tao Yang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jacob M. Hull
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Geng Pan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ruonan Li
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Macy W. Veling
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lori L. Isom
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Kenneth Y. Kwan
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Z. Josh Huang
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, North Carolina, United States of America
| | - Peter G. Fuerst
- University of Idaho, Department of Biological Sciences, Moscow, Idaho, United States of America
| | - Paul M. Jenkins
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Bing Ye
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
2
|
Yang T, Veling MW, Zhao XF, Prin NP, Zhu L, Hergenreder T, Liu H, Liu L, Rane ZS, Savelieff MG, Fuerst PG, Li Q, Kwan KY, Giger RJ, Wang Y, Ye B. Migrating Pyramidal Neurons Require DSCAM to Bypass the Border of the Developing Cortical Plate. J Neurosci 2022; 42:5510-5521. [PMID: 35672151 PMCID: PMC9295838 DOI: 10.1523/jneurosci.0997-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 01/16/2023] Open
Abstract
During mammalian neocortex development, nascent pyramidal neurons migrate along radial glial cells and overtake earlier-born neurons to terminate at the front of the developing cortical plate (CP), leading to the outward expansion of the CP border. While much has been learned about the cellular and molecular mechanisms that underlie the migration of pyramidal neurons, how migrating neurons bypass the preceding neurons at the end of migration to reach their final positions remains poorly understood. Here, we report that Down syndrome cell adhesion molecule (DSCAM) is required for migrating neurons to bypass their postmigratory predecessors during the expansion of the upper cortical layers. DSCAM is a type I transmembrane cell adhesion molecule. It has been linked to Down syndrome through its location on Chromosome 21 trisomy and to autism spectrum disorders through loss-of-function mutations. Ex vivo time-lapse imaging demonstrates that DSCAM is required for migrating neurons to bypass their postmigratory predecessors, crossing the CP border to expand the upper cortical layers. In DSCAM-deficient cortices, migrating neurons stop prematurely under the CP border, leading to thinner upper cortical layers with higher neuronal density. We further show that DSCAM weakens cell adhesion mediated by N-cadherin in the upper cortical plate, allowing migrating neurons to traverse the CP border and expand the CP. These findings suggest that DSCAM is required for proper migratory termination and final positioning of nascent pyramidal neurons, which may provide insight into brain disorders that exhibit thinner upper layers of the cerebral cortex without neuronal loss.SIGNIFICANCE STATEMENT Newly born neurons in the developing mammalian neocortex migrate outward toward the cortical surface, bypassing earlier born neurons to expand the developing cortex. How migrating neurons bypass the preceding neurons and terminate at the front of the expanding cortex remains poorly understood. We demonstrate that Down syndrome cell adhesion molecule (DSCAM), linked to Down syndrome and autism spectrum disorder, is required by migrating neurons to bypass their postmigratory predecessors and terminate migration in the outwardly expanding cortical layer. Migrating neurons deficient in DSCAM stop prematurely, failing to expand the cortex. We further show that DSCAM likely mediates migratory termination by weakening cell adhesion mediated by N-cadherin.
Collapse
Affiliation(s)
- Tao Yang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| | - Macy W Veling
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Xiao-Feng Zhao
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Nicholas P Prin
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Limei Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Ty Hergenreder
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Hao Liu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Lu Liu
- Internal Medicine, Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109
| | - Zachary S Rane
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Masha G Savelieff
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Peter G Fuerst
- Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844
| | - Qing Li
- Internal Medicine, Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109
| | - Kenneth Y Kwan
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Yu Wang
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| | - Bing Ye
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
3
|
Hu Y, Liu F, Peng W, Song S, Zhang C, Meng X. Overexpression of miR-99a in hippocampus leads to impairment of reversal learning in mice. Behav Brain Res 2022; 416:113542. [PMID: 34425183 DOI: 10.1016/j.bbr.2021.113542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 11/28/2022]
Abstract
As one of the most common human genetic disorders, Down syndrome (DS) is characterized by a mild-to-moderate cognitive disability, which mainly results from genes overexpression on chromosome 21. The expression of miR-99a, a gene harboring on chromosome 21, is increased by 50 folds in DS brain samples. This study aims to investigate the effect of miR-99a overexpression in the hippocampus on mouse behaviors and explore the underlying mechanisms. Lentivirus vectors were delivered into the hippocampus for focal miR-99a overexpression in mice. Then behaviors were observed by an open field, elevated plus maze, rotarod motor test, and Morris water maze. The genes affected by miR-99a were identified by RNA sequencing (RNA-seq) and confirmed by quantitative RT-PCR (qRT-PCR) in samples isolated from the hippocampus injected with lentivirus-GFP-miR-99a or lentivirus-GFP vectors. It was found that the expression of miR-99a with intrahippocampal delivery of lentivirus-GFP-miR-99a resulted in reversal learning impairment in mice although it had no influence on motor function and anxiety. Meanwhile, RNA-seq results showed that 92 genes including mRNAs and microRNAs were significantly regulated by miR-99a, consistent with qRT-PCR consequence. Moreover, dual-luciferase reporter assay showed that miR-99a could directly bind to the 3'-untranslated regions (3'UTR) of target genes (Clic6 and Kcnj13) with an inhibitory effect on their activity. Furthermore, we also found that miR-99a overexpression affected different biological processes by bioinformatic analyses. Our study showed that miR-99a overexpression in the hippocampus leads to cognitive impairment through regulating the expressions of various genes, which reveals a novel function of miR-99a and provides new insights into understanding the pathophysiologic process of DS.
Collapse
Affiliation(s)
- Yue Hu
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenpeng Peng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuxin Song
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xianfang Meng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Camerino MJ, Engerbretson IJ, Fife PA, Reynolds NB, Berria MH, Doyle JR, Clemons MR, Gencarella MD, Borghuis BG, Fuerst PG. OFF bipolar cell density varies by subtype, eccentricity, and along the dorsal ventral axis in the mouse retina. J Comp Neurol 2021; 529:1911-1925. [PMID: 33135176 PMCID: PMC8009814 DOI: 10.1002/cne.25064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/25/2022]
Abstract
The neural retina is organized along central-peripheral, dorsal-ventral, and laminar planes. Cellular density and distributions vary along the central-peripheral and dorsal-ventral axis in species including primates, mice, fish, and birds. Differential distribution of cell types within the retina is associated with sensitivity to different types of damage that underpin major retinal diseases, including macular degeneration and glaucoma. Normal variation in retinal distribution remains unreported for multiple cell types in widely used research models, including mouse. Here we map the distribution of all known OFF bipolar cell (BC) populations and horizontal cells. We report significant variation in the distribution of OFF BC populations and horizontal cells along the dorsal-ventral and central-peripheral axes of the retina. Distribution patterns are much more pronounced for some populations of OFF BC cells than others and may correspond to the cell type's specialized functions.
Collapse
Affiliation(s)
- Michael J Camerino
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Ian J Engerbretson
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Parker A Fife
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Nathan B Reynolds
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Mikel H Berria
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Jamie R Doyle
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Mellisa R Clemons
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Michael D Gencarella
- WWAMI Medical Education Program, University of Washington School of Medicine, Moscow, Idaho, USA
| | - Bart G Borghuis
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisille, Kentuky, USA
| | - Peter G Fuerst
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- WWAMI Medical Education Program, University of Washington School of Medicine, Moscow, Idaho, USA
| |
Collapse
|
5
|
Simmons AB, Camerino MJ, Clemons MR, Sukeena JM, Bloomsburg S, Borghuis BG, Fuerst PG. Increased density and age-related sharing of synapses at the cone to OFF bipolar cell synapse in the mouse retina. J Comp Neurol 2019; 528:1140-1156. [PMID: 31721194 DOI: 10.1002/cne.24810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 11/09/2022]
Abstract
Neural circuits in the adult nervous system are characterized by stable, cell type-specific patterns of synaptic connectivity. In many parts of the nervous system these patterns are established during development through initial over-innervation by multiple pre- or postsynaptic targets, followed by a process of refinement that takes place during development and is in many instances activity dependent. Here we report on an identified synapse in the mouse retina, the cone photoreceptor➔type 4 bipolar cell (BC4) synapse, and show that its development is distinctly different from the common motif of over-innervation followed by refinement. Indeed, the majority of cones are contacted by single BC4 throughout development, but are contacted by multiple BC4s through ongoing dendritic elaboration between 1 and 6 months of age-well into maturity. We demonstrate that cell density drives contact patterns downstream of single cones in Bax null mice and may serve to maintain constancy in both the dendritic and axonal projective field.
Collapse
Affiliation(s)
- Aaron B Simmons
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
| | | | - Mellisa R Clemons
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
| | - Joshua M Sukeena
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
| | - Samuel Bloomsburg
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
| | - Bart G Borghuis
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville
| | - Peter G Fuerst
- Department of Biological Sciences, University of Idaho, Moscow, Idaho.,WWAMI Medical Education Program, University of Washington School of Medicine, Moscow, Idaho
| |
Collapse
|
6
|
Garrett AM, Khalil A, Walton DO, Burgess RW. DSCAM promotes self-avoidance in the developing mouse retina by masking the functions of cadherin superfamily members. Proc Natl Acad Sci U S A 2018; 115:E10216-E10224. [PMID: 30297418 PMCID: PMC6205498 DOI: 10.1073/pnas.1809430115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
During neural development, self-avoidance ensures that a neuron's processes arborize to evenly fill a particular spatial domain. At the individual cell level, self-avoidance is promoted by genes encoding cell-surface molecules capable of generating thousands of diverse isoforms, such as Dscam1 (Down syndrome cell adhesion molecule 1) in Drosophila Isoform choice differs between neighboring cells, allowing neurons to distinguish "self" from "nonself". In the mouse retina, Dscam promotes self-avoidance at the level of cell types, but without extreme isoform diversity. Therefore, we hypothesize that DSCAM is a general self-avoidance cue that "masks" other cell type-specific adhesion systems to prevent overly exuberant adhesion. Here, we provide in vivo and in vitro evidence that DSCAM masks the functions of members of the cadherin superfamily, supporting this hypothesis. Thus, unlike the isoform-rich molecules tasked with self-avoidance at the individual cell level, here the diversity resides on the adhesive side, positioning DSCAM as a generalized modulator of cell adhesion during neural development.
Collapse
Affiliation(s)
| | - Andre Khalil
- CompuMAINE Laboratory, Department of Biomedical Engineering, University of Maine, Orono, ME 04469
| | | | | |
Collapse
|
7
|
Julien DP, Chan AW, Barrios J, Mathiaparanam J, Douglass A, Wolman MA, Sagasti A. Zebrafish expression reporters and mutants reveal that the IgSF cell adhesion molecule Dscamb is required for feeding and survival. J Neurogenet 2018; 32:336-352. [PMID: 30204029 DOI: 10.1080/01677063.2018.1493479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Down syndrome cell adhesion molecules (DSCAMs) are broadly expressed in nervous systems and play conserved roles in programmed cell death, neuronal migration, axon guidance, neurite branching and spacing, and synaptic targeting. However, DSCAMs appear to have distinct functions in different vertebrate animals, and little is known about their functions outside the retina. We leveraged the genetic tractability and optical accessibility of larval zebrafish to investigate the expression and function of a DSCAM family member, dscamb. Using targeted genome editing to create transgenic reporters and loss-of-function mutant alleles, we discovered that dscamb is expressed broadly throughout the brain, spinal cord, and peripheral nervous system, but is not required for overall structural organization of the brain. Despite the absence of obvious anatomical defects, homozygous dscamb mutants were deficient in their ability to ingest food and rarely survived to adulthood. Thus, we have discovered a novel function for dscamb in feeding behavior. The mutant and transgenic lines generated in these studies will provide valuable tools for identifying the molecular and cellular bases of these behaviors.
Collapse
Affiliation(s)
- Donald P Julien
- a Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute , University of California , Los Angeles , CA , USA
| | - Alex W Chan
- a Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute , University of California , Los Angeles , CA , USA
| | - Joshua Barrios
- b Department of Neurobiology and Anatomy , University of Utah , Salt Lake City , UT , USA
| | - Jaffna Mathiaparanam
- c Department of Integrative Biology , University of Wisconsin , Madison , WI , USA
| | - Adam Douglass
- b Department of Neurobiology and Anatomy , University of Utah , Salt Lake City , UT , USA
| | - Marc A Wolman
- c Department of Integrative Biology , University of Wisconsin , Madison , WI , USA
| | - Alvaro Sagasti
- a Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute , University of California , Los Angeles , CA , USA
| |
Collapse
|
8
|
Sun C, Galicia C, Stenkamp DL. Transcripts within rod photoreceptors of the Zebrafish retina. BMC Genomics 2018; 19:127. [PMID: 29422031 PMCID: PMC5806438 DOI: 10.1186/s12864-018-4499-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/28/2018] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The purpose of this study was to identify transcripts of retinal rod photoreceptors of the zebrafish. The zebrafish is an important animal model for vision science due to rapid and tractable development, persistent neurogenesis of rods throughout the lifespan, and capacity for functional retinal regeneration. RESULTS Zebrafish rods, and non-rod retinal cells of the xops:eGFP transgenic line, were separated by cell dissociation and fluorescence-activated cell sorting (FACS), followed by RNA-seq. At a false discovery rate of < 0.01, 597 transcripts were upregulated ("enriched") in rods vs. other retinal cells, and 1032 were downregulated ("depleted"). Thirteen thousand three hundred twenty four total transcripts were detected in rods, including many not previously known to be expressed by rods. Forty five transcripts were validated by qPCR in FACS-sorted rods vs. other retinal cells. Transcripts enriched in rods from adult retinas were also enriched in rods from larval and juvenile retinas, and were also enriched in rods sorted from retinas subjected to a neurotoxic lesion and allowed to regenerate. Many transcripts enriched in rods were upregulated in retinas of wildtype retinas vs. those of a zebrafish model for rod degeneration. CONCLUSIONS We report the generation and validation of an RNA-seq dataset describing the rod transcriptome of the zebrafish, which is now available as a resource for further studies of rod photoreceptor biology and comparative transcriptomics.
Collapse
Affiliation(s)
- Chi Sun
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, ID 83844-3051 USA
| | - Carlos Galicia
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, ID 83844-3051 USA
| | - Deborah L. Stenkamp
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, ID 83844-3051 USA
| |
Collapse
|
9
|
Astuti GDN, van den Born LI, Khan MI, Hamel CP, Bocquet B, Manes G, Quinodoz M, Ali M, Toomes C, McKibbin M, El-Asrag ME, Haer-Wigman L, Inglehearn CF, Black GCM, Hoyng CB, Cremers FPM, Roosing S. Identification of Inherited Retinal Disease-Associated Genetic Variants in 11 Candidate Genes. Genes (Basel) 2018; 9:genes9010021. [PMID: 29320387 PMCID: PMC5793174 DOI: 10.3390/genes9010021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/31/2017] [Accepted: 01/03/2018] [Indexed: 01/09/2023] Open
Abstract
Inherited retinal diseases (IRDs) display an enormous genetic heterogeneity. Whole exome sequencing (WES) recently identified genes that were mutated in a small proportion of IRD cases. Consequently, finding a second case or family carrying pathogenic variants in the same candidate gene often is challenging. In this study, we searched for novel candidate IRD gene-associated variants in isolated IRD families, assessed their causality, and searched for novel genotype-phenotype correlations. Whole exome sequencing was performed in 11 probands affected with IRDs. Homozygosity mapping data was available for five cases. Variants with minor allele frequencies ≤ 0.5% in public databases were selected as candidate disease-causing variants. These variants were ranked based on their: (a) presence in a gene that was previously implicated in IRD; (b) minor allele frequency in the Exome Aggregation Consortium database (ExAC); (c) in silico pathogenicity assessment using the combined annotation dependent depletion (CADD) score; and (d) interaction of the corresponding protein with known IRD-associated proteins. Twelve unique variants were found in 11 different genes in 11 IRD probands. Novel autosomal recessive and dominant inheritance patterns were found for variants in Small Nuclear Ribonucleoprotein U5 Subunit 200 (SNRNP200) and Zinc Finger Protein 513 (ZNF513), respectively. Using our pathogenicity assessment, a variant in DEAH-Box Helicase 32 (DHX32) was the top ranked novel candidate gene to be associated with IRDs, followed by eight medium and lower ranked candidate genes. The identification of candidate disease-associated sequence variants in 11 single families underscores the notion that the previously identified IRD-associated genes collectively carry > 90% of the defects implicated in IRDs. To identify multiple patients or families with variants in the same gene and thereby provide extra proof for pathogenicity, worldwide data sharing is needed.
Collapse
Affiliation(s)
- Galuh D. N. Astuti
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (G.D.N.A.); (M.I.K.); (L.H.-W.); (F.P.M.C.)
- Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands
| | | | - M. Imran Khan
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (G.D.N.A.); (M.I.K.); (L.H.-W.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, The Netherlands
| | - Christian P. Hamel
- Institut National de la Santé et de la Recherche Médicale, Institute for Neurosciences of Montpellier, 34080 Montpellier, France; (B.B.); (G.M.)
- University of Montpellier, 34090 Montpellier, France
- CHRU, Genetics of Sensory Diseases, 34295 Montpellier, France
| | - Béatrice Bocquet
- Institut National de la Santé et de la Recherche Médicale, Institute for Neurosciences of Montpellier, 34080 Montpellier, France; (B.B.); (G.M.)
- University of Montpellier, 34090 Montpellier, France
- CHRU, Genetics of Sensory Diseases, 34295 Montpellier, France
| | - Gaël Manes
- Institut National de la Santé et de la Recherche Médicale, Institute for Neurosciences of Montpellier, 34080 Montpellier, France; (B.B.); (G.M.)
- University of Montpellier, 34090 Montpellier, France
| | - Mathieu Quinodoz
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, 1015 Lausanne, Switzerland;
| | - Manir Ali
- Section of Ophthalmology & Neuroscience, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St. James’s University Hospital, LS9 7TF Leeds, UK; (M.A.); (C.T.); (M.E.E.-A.); (C.F.I.)
| | - Carmel Toomes
- Section of Ophthalmology & Neuroscience, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St. James’s University Hospital, LS9 7TF Leeds, UK; (M.A.); (C.T.); (M.E.E.-A.); (C.F.I.)
| | - Martin McKibbin
- Department of Ophthalmology, St. James’s University Hospital, LS9 7TF Leeds, UK;
| | - Mohammed E. El-Asrag
- Section of Ophthalmology & Neuroscience, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St. James’s University Hospital, LS9 7TF Leeds, UK; (M.A.); (C.T.); (M.E.E.-A.); (C.F.I.)
- Department of Zoology, Faculty of Science, Benha University, 13511 Benha, Egypt
| | - Lonneke Haer-Wigman
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (G.D.N.A.); (M.I.K.); (L.H.-W.); (F.P.M.C.)
| | - Chris F. Inglehearn
- Section of Ophthalmology & Neuroscience, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St. James’s University Hospital, LS9 7TF Leeds, UK; (M.A.); (C.T.); (M.E.E.-A.); (C.F.I.)
| | - Graeme C. M. Black
- Centre for Genomic Medicine, St. Mary’s Hospital, Manchester Academic Health Science Centre, University of Manchester, M13 9PL Manchester, UK;
| | - Carel B. Hoyng
- Department of Ophthalmology, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands;
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (G.D.N.A.); (M.I.K.); (L.H.-W.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, The Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (G.D.N.A.); (M.I.K.); (L.H.-W.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, The Netherlands
- Correspondence: ; Tel.: +31-(0)24-365-5266
| |
Collapse
|
10
|
Lowe SA, Hodge JJL, Usowicz MM. A third copy of the Down syndrome cell adhesion molecule (Dscam) causes synaptic and locomotor dysfunction in Drosophila. Neurobiol Dis 2017; 110:93-101. [PMID: 29196216 PMCID: PMC5773243 DOI: 10.1016/j.nbd.2017.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/13/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
Down syndrome (DS) is caused by triplication of chromosome 21 (HSA21). It is characterised by intellectual disability and impaired motor coordination that arise from changes in brain volume, structure and function. However, the contribution of each HSA21 gene to these various phenotypes and to the causal alterations in neuronal and synaptic structure and function are largely unknown. Here we have investigated the effect of overexpression of the HSA21 gene DSCAM (Down syndrome cell adhesion molecule), on glutamatergic synaptic transmission and motor coordination, using Drosophila expressing three copies of Dscam1. Electrophysiological recordings of miniature and evoked excitatory junction potentials at the glutamatergic neuromuscular junction of Drosophila larvae showed that the extra copy of Dscam1 changed the properties of spontaneous and electrically-evoked transmitter release and strengthened short-term synaptic depression during high-frequency firing of the motor nerve. Behavioural analyses uncovered impaired locomotor coordination despite preserved gross motor function. This work identifies DSCAM as a candidate causative gene in DS that is sufficient to modify synaptic transmission and synaptic plasticity and cause a DS behavioural phenotype. Drosophila expressing a third copy of Dscam have altered neuromuscular transmission. Drosophila expressing a third copy of Dscam have deficits in locomotor coordination. Drosophila are a powerful system for studying single-gene effects in Down syndrome.
Collapse
Affiliation(s)
- Simon A Lowe
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - James J L Hodge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | - Maria M Usowicz
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
11
|
Simmons AB, Bloomsburg SJ, Sukeena JM, Miller CJ, Ortega-Burgos Y, Borghuis BG, Fuerst PG. DSCAM-mediated control of dendritic and axonal arbor outgrowth enforces tiling and inhibits synaptic plasticity. Proc Natl Acad Sci U S A 2017; 114:E10224-E10233. [PMID: 29114051 PMCID: PMC5703318 DOI: 10.1073/pnas.1713548114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mature mammalian neurons have a limited ability to extend neurites and make new synaptic connections, but the mechanisms that inhibit such plasticity remain poorly understood. Here, we report that OFF-type retinal bipolar cells in mice are an exception to this rule, as they form new anatomical connections within their tiled dendritic fields well after retinal maturity. The Down syndrome cell-adhesion molecule (Dscam) confines these anatomical rearrangements within the normal tiled fields, as conditional deletion of the gene permits extension of dendrite and axon arbors beyond these borders. Dscam deletion in the mature retina results in expanded dendritic fields and increased cone photoreceptor contacts, demonstrating that DSCAM actively inhibits circuit-level plasticity. Electrophysiological recordings from Dscam-/- OFF bipolar cells showed enlarged visual receptive fields, demonstrating that expanded dendritic territories comprise functional synapses. Our results identify cell-adhesion molecule-mediated inhibition as a regulator of circuit-level neuronal plasticity in the adult retina.
Collapse
Affiliation(s)
- Aaron B Simmons
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844
| | | | - Joshua M Sukeena
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844
| | - Calvin J Miller
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844
| | - Yohaniz Ortega-Burgos
- Department of Chemistry, University of Puerto Rico-Humacao, Humacao Puerto Rico, 00792
| | - Bart G Borghuis
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202;
| | - Peter G Fuerst
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844;
- Washington-Wyoming-Alaska-Montana-Idaho Medical Education Program, University of Washington School of Medicine, Moscow, ID 83844
| |
Collapse
|
12
|
DSCAM promotes axon fasciculation and growth in the developing optic pathway. Proc Natl Acad Sci U S A 2017; 114:1702-1707. [PMID: 28137836 DOI: 10.1073/pnas.1618606114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although many aspects of optic pathway development are beginning to be understood, the mechanisms promoting the growth of retinal ganglion cell (RGC) axons toward visual targets remain largely unknown. Down syndrome cell adhesion molecule (Dscam) is expressed by mouse RGCs shortly after they differentiate at embryonic day 12 and is essential for multiple aspects of postnatal visual system development. Here we show that Dscam is also required during embryonic development for the fasciculation and growth of RGC axons. Dscam is expressed along the developing optic pathway in a pattern consistent with a role in regulating RGC axon outgrowth. In mice carrying spontaneous mutations in Dscam (Dscamdel17 ; Dscam2J), RGC axons pathfind normally, but growth from the chiasm toward their targets is impaired, resulting in a delay in RGC axons reaching the dorsal thalamus compared with that seen in wild-type littermates. Conversely, Dscam gain of function results in exuberant growth into the dorsal thalamus. The growth of ipsilaterally projecting axons is particularly affected. Axon organization in the optic chiasm and tract and RGC growth cone morphologies are also altered in Dscam mutants. In vitro DSCAM promotes RGC axon growth and fasciculation, and can act independently of cell contact. In vitro and in situ DSCAM is required both in the RGC axons and in their environment for the promotion of axon outgrowth, consistent with a homotypic mode of action. These findings identify DSCAM as a permissive signal that promotes the growth and fasciculation of RGC axons, controlling the timing of when RGC axons reach their targets.
Collapse
|
13
|
Simmons AB, Bloomsburg SJ, Billingslea SA, Merrill MM, Li S, Thomas MW, Fuerst PG. Pou4f2 knock-in Cre mouse: A multifaceted genetic tool for vision researchers. Mol Vis 2016; 22:705-17. [PMID: 27390513 PMCID: PMC4919092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 06/21/2016] [Indexed: 11/29/2022] Open
Abstract
PURPOSE A transgenic mouse that expresses Cre recombinase under control of the Pou4f2-promoter (also referred to as Brn-3b and Brn-3.2) was characterized. Pou4f2 expression has been reported in a subset of retinal ganglion cells (RGCs) in the retina, in the midbrain, and in the germline. In this study, we characterize the expression pattern of this Cre-recombinase line and report its utility in targeted deletion, temporal deletion, RGC depletion, and germline targeting, which can be regulated by the sex of the Cre-carrying mouse. METHODS Pou4f2(Cre) was mapped by using a combination of PCR and sequencing of PCR products to better understand the construct and to locate where it was inserted within the Pou4f2 locus. Cre expression patterns were examined by crossing Pou4f2(Cre/+) mice to Cre reporter mice. Immunohistochemistry was used to further define the pattern of Cre expression and Cre-mediated recombination within the retina, brain, and other tissues. RESULTS An internal ribosome entry site (IRES)-Cre cassette was inserted into the Pou4f2 gene disrupting normal gene function, as verified by the depletion of RGCs in mice homozygous for the insert. Pou4f2(Cre) expression was observed in the retina, brain, peripheral neurons, and male germ cells. Germline recombination was observed when the sire carried the Cre and the target for recombination. In all other breeding schemes, recombination was observed within subsets of cells within the retina, brain, intestines, heart, and gonads. In the retina, Cre efficiently targets recombination in neurons within the RGC layer (RGL), the inner nuclear layer (INL), and a small percentage of photoreceptors, activity that has not been previously reported. Unlike most other Cre lines active in the inner retina, recombination in Müller and other glia was not observed in mice carrying Pou4f2(Cre) . Within the visual centers of the brain, Cre targets recombination in about 15% of cells within the superchiasmatic nucleus, lateral geniculate nucleus, and superior colliculus. CONCLUSIONS Pou4f2(Cre) provides multiple uses for the vision researcher's genetic toolkit. First, Pou4f2(Cre) is a knock-in allele that can be used to eliminate Pou4f2, resulting in depletion of RGCs. Second, expression of Cre in male germ cells makes this strain an efficient germline activator of recombination, for example, to target LoxP-flanked sequences in the whole mouse. Third, Pou4f2(Cre) efficiently targets RGCs, amacrine cells, bipolar cells, horizontal cells, and a small number of photoreceptors within the retina, as well as the visual centers in the brain. Unlike other Cre recombinase lines that target retinal neurons, no recombination was observed in Müller or other retinal glia. These properties make this Cre recombinase line a useful tool for vision researchers.
Collapse
Affiliation(s)
- Aaron B. Simmons
- Department of Biological Sciences, University of Idaho, Moscow, ID
| | | | | | | | - Shuai Li
- Department of Biological Sciences, University of Idaho, Moscow, ID
| | | | - Peter G. Fuerst
- Department of Biological Sciences, University of Idaho, Moscow, ID
- WWAMI Medical Education Program, University of Washington School of Medicine, Moscow, ID
| |
Collapse
|
14
|
Simmons AB, Merrill MM, Reed JC, Deans MR, Edwards MM, Fuerst PG. Defective Angiogenesis and Intraretinal Bleeding in Mouse Models With Disrupted Inner Retinal Lamination. Invest Ophthalmol Vis Sci 2016; 57:1563-77. [PMID: 27046121 PMCID: PMC4824390 DOI: 10.1167/iovs.15-18395] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/31/2016] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Abnormal retinal angiogenesis leads to visual impairment and blindness. Understanding how retinal vessels develop normally has dramatically improved treatments for people with retinal vasculopathies, but additional information about development is required. Abnormal neuron patterning in the outer retina has been shown to result in abnormal vessel development and blindness, for example, in people and mouse models with Crumbs homologue 1 (CRB1) mutations. In this study, we report and characterize a mouse model of inner retinal lamination disruption and bleeding, the Down syndrome cell adhesion molecule (Dscam) mutant, and test how neuron-neurite placement within the inner retina guides development of intraretinal vessels. METHODS Bax mutant mice (increased neuron cell number), Dscam mutant mice (increased neuron cell number, disorganized lamination), Fat3 mutant mice (disorganized neuron lamination), and Dscam gain-of-function mice (Dscam(GOF)) (decreased neuron cell number) were used to manipulate neuron placement and number. Immunohistochemistry was used to assay organization of blood vessels, glia, and neurons. In situ hybridization was used to map the expression of angiogenic factors. RESULTS Significant changes in the organization of vessels within mutant retinas were found. Displaced neurons and microglia were associated with the attraction of vessels. Using Fat3 mutant and Dscam(GOF) retinas, we provide experimental evidence that vessel branching is induced at the neuron-neurite interface, but that other factors are required for full plexus layer formation. We further demonstrate that the displacement of neurons results in the mislocalization of angiogenic factors. CONCLUSIONS Inner retina neuron lamination is required for development of intraretinal vessels.
Collapse
Affiliation(s)
- Aaron B. Simmons
- University of Idaho, Department of Biological Sciences, Moscow, Idaho, United States
| | - Morgan M. Merrill
- University of Idaho, Department of Biological Sciences, Moscow, Idaho, United States
| | - Justin C. Reed
- University of Washington School of Medicine, WWAMI Medical Education Program, Moscow, Idaho, United States
| | - Michael R. Deans
- University of Utah School of Medicine, Division of Otolaryngology–Head and Neck Surgery, Salt Lake City, Utah, United States
- University of Utah School of Medicine, Department of Neurobiology and Anatomy, Salt Lake City, Utah, United States
| | - Malia M. Edwards
- Johns Hopkins University School of Medicine, Wilmer Eye Institute, Baltimore, Maryland, United States
| | - Peter G. Fuerst
- University of Idaho, Department of Biological Sciences, Moscow, Idaho, United States
- University of Washington School of Medicine, WWAMI Medical Education Program, Moscow, Idaho, United States
| |
Collapse
|
15
|
Ouyang H, Goldberg JL, Chen S, Li W, Xu GT, Li W, Zhang K, Nussenblatt RB, Liu Y, Xie T, Chan CC, Zack DJ. Ocular Stem Cell Research from Basic Science to Clinical Application: A Report from Zhongshan Ophthalmic Center Ocular Stem Cell Symposium. Int J Mol Sci 2016; 17:415. [PMID: 27102165 PMCID: PMC4813266 DOI: 10.3390/ijms17030415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 12/16/2022] Open
Abstract
Stem cells hold promise for treating a wide variety of diseases, including degenerative disorders of the eye. The eye is an ideal organ for stem cell therapy because of its relative immunological privilege, surgical accessibility, and its being a self-contained system. The eye also has many potential target diseases amenable to stem cell-based treatment, such as corneal limbal stem cell deficiency, glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa (RP). Among them, AMD and glaucoma are the two most common diseases, affecting over 200 million people worldwide. Recent results on the clinical trial of retinal pigment epithelial (RPE) cells from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) in treating dry AMD and Stargardt’s disease in the US, Japan, England, and China have generated great excitement and hope. This marks the beginning of the ocular stem cell therapy era. The recent Zhongshan Ophthalmic Center Ocular Stem Cell Symposium discussed the potential applications of various stem cell types in stem cell-based therapies, drug discoveries and tissue engineering for treating ocular diseases.
Collapse
Affiliation(s)
- Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Jeffrey L Goldberg
- Department of Ophthalmology, Stanford University, Palo Alto, CA 94303, USA.
| | - Shuyi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Wei Li
- Unit on Retinal Neurophysiology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Guo-Tong Xu
- Department of Ophthalmology, Tongji University, Shanghai 200092, China.
| | - Wei Li
- Department of Ophthalmology, Xiamen University, Xiamen 361005, China.
| | - Kang Zhang
- Department of Ophthalmology, University of California San Diego, San Diego, CA 92093, USA.
| | - Robert B Nussenblatt
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Ting Xie
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | - Chi-Chao Chan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Donald J Zack
- Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, MD 21231, USA.
| |
Collapse
|
16
|
Li S, Mitchell J, Briggs DJ, Young JK, Long SS, Fuerst PG. Morphological Diversity of the Rod Spherule: A Study of Serially Reconstructed Electron Micrographs. PLoS One 2016; 11:e0150024. [PMID: 26930660 PMCID: PMC4773090 DOI: 10.1371/journal.pone.0150024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/08/2016] [Indexed: 11/25/2022] Open
Abstract
Purpose Rod spherules are the site of the first synaptic contact in the retina’s rod pathway, linking rods to horizontal and bipolar cells. Rod spherules have been described and characterized through electron micrograph (EM) and other studies, but their morphological diversity related to retinal circuitry and their intracellular structures have not been quantified. Most rod spherules are connected to their soma by an axon, but spherules of rods on the surface of the Mus musculus outer plexiform layer often lack an axon and have a spherule structure that is morphologically distinct from rod spherules connected to their soma by an axon. Retraction of the rod axon and spherule is often observed in disease processes and aging, and the retracted rod spherule superficially resembles rod spherules lacking an axon. We hypothesized that retracted spherules take on an axonless spherule morphology, which may be easier to maintain in a diseased state. To test our hypothesis, we quantified the spatial organization and subcellular structures of rod spherules with and without axons. We then compared them to the retracted spherules in a disease model, mice that overexpress Dscam (Down syndrome cell adhesion molecule), to gain a better understanding of the rod synapse in health and disease. Methods We reconstructed serial EM images of wild type and DscamGoF (gain of function) rod spherules at a resolution of 7 nm in the X-Y axis and 60 nm in the Z axis. Rod spherules with and without axons, and retracted spherules in the DscamGoF retina, were reconstructed. The rod spherule intracellular organelles, the invaginating dendrites of rod bipolar cells and horizontal cell axon tips were also reconstructed for statistical analysis. Results Stereotypical rod (R1) spherules occupy the outer two-thirds of the outer plexiform layer (OPL), where they present as spherical terminals with large mitochondria. This spherule group is highly uniform and composed more than 90% of the rod spherule population. Rod spherules lacking an axon (R2) were also described and characterized. This rod spherule group consists of a specific spatial organization that is strictly located at the apical OPL-facing layer of the Outer Nuclear Layer (ONL). The R2 spherule displays a large bowl-shaped synaptic terminal that hugs the rod soma. Retracted spherules in the DscamGoF retina were also reconstructed to test if they are structurally similar to R2 spherules. The misplaced rod spherules in DscamGoF have a gross morphology that is similar to R2 spherules but have significant disruption in internal synapse organization. Conclusion We described a morphological diversity within Mus musculus rod spherules. This diversity is correlated with rod location in the ONL and contributes to the intracellular differences within spherules. Analysis of the DscamGoF retina indicated that their R2 spherules are not significantly different than wild type R2 spherules, but that their retracted rod spherules have abnormal synaptic organization.
Collapse
Affiliation(s)
- Shuai Li
- University of Idaho, Department of Biological Sciences, Moscow, Idaho, 83844, United States of America
| | - Joe Mitchell
- North Idaho College, Natural Sciences Division, Coeur d’Alene, Idaho, 83814, United States of America
| | - Deidrie J. Briggs
- University of Idaho, Department of Biological Sciences, Moscow, Idaho, 83844, United States of America
| | - Jaime K. Young
- University of Idaho, Department of Biological Sciences, Moscow, Idaho, 83844, United States of America
| | - Samuel S. Long
- Lewis-Clark State College, Department of Computer Sciences, Lewiston, Idaho, 83501, United States of America
| | - Peter G. Fuerst
- University of Idaho, Department of Biological Sciences, Moscow, Idaho, 83844, United States of America
- WWAMI Medical Education Program, Moscow, Idaho, 83844, United States of America
- * E-mail:
| |
Collapse
|
17
|
Li S, Woodfin M, Long SS, Fuerst PG. IPLaminator: an ImageJ plugin for automated binning and quantification of retinal lamination. BMC Bioinformatics 2016; 17:36. [PMID: 26772546 PMCID: PMC4715356 DOI: 10.1186/s12859-016-0876-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/01/2016] [Indexed: 11/30/2022] Open
Abstract
Background Information in the brain is often segregated into spatially organized layers that reflect the function of the embedded circuits. This is perhaps best exemplified in the layering, or lamination, of the retinal inner plexiform layer (IPL). The neurites of the retinal ganglion, amacrine and bipolar cell subtypes that form synapses in the IPL are precisely organized in highly refined strata within the IPL. Studies focused on developmental organization and cell morphology often use this layered stratification to characterize cells and identify the function of genes in development of the retina. A current limitation to such analysis is the lack of standardized tools to quantitatively analyze this complex structure. Most previous work on neuron stratification in the IPL is qualitative and descriptive. Results In this study we report the development of an intuitive platform to rapidly and reproducibly assay IPL lamination. The novel ImageJ based software plugin we developed: IPLaminator, rapidly analyzes neurite stratification patterns in the retina and other neural tissues. A range of user options allows researchers to bin IPL stratification based on fixed points, such as the neurites of cholinergic amacrine cells, or to define a number of bins into which the IPL will be divided. Options to analyze tissues such as cortex were also added. Statistical analysis of the output then allows a quantitative value to be assigned to differences in laminar patterning observed in different models, genotypes or across developmental time. Conclusion IPLaminator is an easy to use software application that will greatly speed and standardize quantification of neuron organization. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-0876-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuai Li
- Department of Biological Sciences, University of Idaho, 145 Life Science South, Moscow, ID, 83844, USA
| | - Michael Woodfin
- Department of Computer Sciences, Lewis-Clark State College, Lewiston, ID, 83501, USA
| | - Seth S Long
- Department of Computer Sciences, Lewis-Clark State College, Lewiston, ID, 83501, USA
| | - Peter G Fuerst
- Department of Biological Sciences, University of Idaho, 145 Life Science South, Moscow, ID, 83844, USA.
| |
Collapse
|
18
|
Fernandes KA, Bloomsburg SJ, Miller CJ, Billingslea SA, Merrill MM, Burgess RW, Libby RT, Fuerst PG. Novel axon projection after stress and degeneration in the Dscam mutant retina. Mol Cell Neurosci 2015; 71:1-12. [PMID: 26691152 DOI: 10.1016/j.mcn.2015.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 11/17/2022] Open
Abstract
The Down syndrome cell adhesion molecule gene (Dscam) is required for normal dendrite patterning and promotes developmental cell death in the mouse retina. Loss-of-function studies indicate that Dscam is required for refinement of retinal ganglion cell (RGC) axons in the lateral geniculate nucleus, and in this study we report and describe a requirement for Dscam in the maintenance of RGC axon projections within the retina. Mouse Dscam loss of function phenotypes related to retinal ganglion cell axon outgrowth and targeting have not been previously reported, despite the abundance of axon phenotypes reported in Drosophila Dscam1 loss and gain of function models. Analysis of the Dscam deficient retina was performed by immunohistochemistry and Western blot analysis during postnatal development of the retina. Conditional targeting of Dscam and Jun was performed to identify factors underlying axon-remodeling phenotypes. A subset of RGC axons were observed to project and branch extensively within the Dscam mutant retina after eye opening. Axon remodeling was preceded by histological signs of RGC stress. These included neurofilament accumulation, axon swelling, axon blebbing and activation of JUN, JNK and AKT. Novel and extensive projection of RGC axons within the retina was observed after upregulation of these markers, and novel axon projections were maintained to at least one year of age. Further analysis of retinas in which Dscam was conditionally targeted with Brn3b or Pax6α Cre indicated that axon stress and remodeling could occur in the absence of hydrocephalus, which frequently occurs in Dscam mutant mice. Analysis of mice mutant for the cell death gene Bax, which executes much of Dscam dependent cell death, identified a similar axon misprojection phenotype. Deleting Jun and Dscam resulted in increased axon remodeling compared to Dscam or Bax mutants. Retinal ganglion cells have a very limited capacity to regenerate after damage in the adult retina, compared to the extensive projections made in the embryo. In this study we find that DSCAM and JUN limit ectopic growth of RGC axons, thereby identifying these proteins as targets for promoting axon regeneration and reconnection.
Collapse
Affiliation(s)
- K A Fernandes
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - S J Bloomsburg
- University of Idaho, Department of Biological Sciences, Moscow, ID 83844, USA
| | - C J Miller
- University of Idaho, Department of Biological Sciences, Moscow, ID 83844, USA
| | - S A Billingslea
- University of Idaho, Department of Biological Sciences, Moscow, ID 83844, USA
| | - M M Merrill
- University of Idaho, Department of Biological Sciences, Moscow, ID 83844, USA
| | - R W Burgess
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - R T Libby
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - P G Fuerst
- University of Idaho, Department of Biological Sciences, Moscow, ID 83844, USA; WWAMI Medical Education Program, Moscow, ID 83844, USA.
| |
Collapse
|
19
|
DSCAM promotes refinement in the mouse retina through cell death and restriction of exploring dendrites. J Neurosci 2015; 35:5640-54. [PMID: 25855178 DOI: 10.1523/jneurosci.2202-14.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In this study we develop and use a gain-of-function mouse allele of the Down syndrome cell adhesion molecule (Dscam) to complement loss-of-function models. We assay the role of Dscam in promoting cell death, spacing, and laminar targeting of neurons in the developing mouse retina. We find that ectopic or overexpression of Dscam is sufficient to drive cell death. Gain-of-function studies indicate that Dscam is not sufficient to increase spatial organization, prevent cell-to-cell pairing, or promote active avoidance in the mouse retina, despite the similarity of the Dscam loss-of-function phenotype in the mouse retina to phenotypes observed in Drosophila Dscam1 mutants. Both gain- and loss-of-function studies support a role for Dscam in targeting neurites; DSCAM is necessary for precise dendrite lamination, and is sufficient to retarget neurites of outer retinal cells after ectopic expression. We further demonstrate that DSCAM guides dendrite targeting in type 2 dopaminergic amacrine cells, by restricting the stratum in which exploring retinal dendrites stabilize, in a Dscam dosage-dependent manner. Based on these results we propose a single model to account for the numerous Dscam gain- and loss-of-function phenotypes reported in the mouse retina whereby DSCAM eliminates inappropriately placed cells and connections.
Collapse
|
20
|
Developmentally dynamic colocalization patterns of DSCAM with adhesion and synaptic proteins in the mouse retina. Mol Vis 2014; 20:1422-33. [PMID: 25352748 PMCID: PMC4191645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 10/08/2014] [Indexed: 10/27/2022] Open
Abstract
PURPOSE The Down syndrome cell adhesion molecule (Dscam) gene is required for normal dendrite arborization and lamination in the mouse retina. In this study, we characterized the developmental localization of the DSCAM protein to better understand the postnatal stages of retinal development during which laminar disorganization occur in the absence of the protein. METHODS Immunohistochemistry and colocalization analysis software were used to assay the localization of the DSCAM protein during development of the retina. RESULTS We found that DSCAM was initially localized diffusely throughout mouse retinal neurites but then adopted a punctate distribution. DSCAM colocalized with catenins in the adult retina but was not detected at the active zone of chemical synapses, electrical synapses, and tight junctions. Further analysis identified a wave of colocalization between DSCAM and numerous synaptic and junction proteins coinciding with synaptogenesis between bipolar and retinal ganglion cells. CONCLUSIONS Research presented in this study expands our understanding of DSCAM function by characterizing its location during the development of the retina and identifies temporally regulated localization patterns as an important consideration in understanding the function of adhesion molecules in neural development.
Collapse
|
21
|
Developmental localization of adhesion and scaffolding proteins at the cone synapse. Gene Expr Patterns 2014; 16:36-50. [PMID: 25176525 DOI: 10.1016/j.gep.2014.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/30/2014] [Accepted: 07/07/2014] [Indexed: 11/22/2022]
Abstract
The cone synapse is a complex signaling hub composed of the cone photoreceptor terminal and the dendrites of bipolar and horizontal cells converging around multiple ribbon synapses. Factors that promote organization of this structure are largely unexplored. In this study we characterize the localization of adhesion and scaffolding proteins that are localized to the cone synapse, including alpha-n-catenin, beta-catenin, gamma-protocadherin, cadherin-8, MAGI2 and CASK. We describe the localization of these proteins during development of the mouse retina and in the adult macaque retina and find that these proteins are concentrated at the cone synapse. The localization of these proteins was then characterized at the cellular and subcellular levels. Alpha-n-catenin, gamma-protocadherin and cadherin-8 were concentrated in the dendrites of bipolar cells that project to the cone synapse but were not detected or stained very dimly in the dendrites of cells projecting to rod synapses. This study adds to our knowledge of cone synapse development by characterizing the developmental localization of these factors and identifies these factors as candidates for functional analysis of cone synapse formation.
Collapse
|
22
|
Reese BE, Keeley PW. Design principles and developmental mechanisms underlying retinal mosaics. Biol Rev Camb Philos Soc 2014; 90:854-76. [PMID: 25109780 DOI: 10.1111/brv.12139] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/24/2014] [Accepted: 07/15/2014] [Indexed: 01/26/2023]
Abstract
Most structures within the central nervous system (CNS) are composed of different types of neuron that vary in both number and morphology, but relatively little is known about the interplay between these two features, i.e. about the population dynamics of a given cell type. How such arrays of neurons are distributed within a structure, and how they differentiate their dendrites relative to each other, are issues that have recently drawn attention in the invertebrate nervous system, where the genetic and molecular underpinnings of these organizing principles are being revealed in exquisite detail. The retina is one of the few locations where these principles have been extensively studied in the vertebrate CNS, indeed, where the design principles of 'mosaic regularity' and 'uniformity of coverage' were first explicitly defined, quantified, and related to each other. Recent studies have revealed a number of genes that influence the formation of these histotypical features in the retina, including homologues of those invertebrate genes, although close inspection reveals that they do not always mediate comparable developmental processes nor elucidate fundamental design principles. The present review considers just how pervasive these features of 'mosaic regularity' and 'uniform dendritic coverage' are within the mammalian retina, discussing the means by which such features can be assessed in the mature and developing nervous system and examining the limitations associated with those assessments. We then address the extent to which these two design principles co-exist within different populations of neurons, and how they are achieved during development. Finally, we consider the neural phenotypes obtained in mutant nervous systems, to address whether a prospective gene of interest underlies those very design principles.
Collapse
Affiliation(s)
- Benjamin E Reese
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106-5060, U.S.A.,Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106-9660, U.S.A
| | - Patrick W Keeley
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106-5060, U.S.A.,Department of Molecular, Cellular & Developmental Biology, University of California, Santa Barbara, CA 93106-9625, U.S.A
| |
Collapse
|