1
|
Hofbrucker-MacKenzie SA, Seemann E, Westermann M, Qualmann B, Kessels MM. Long-term depression in neurons involves temporal and ultra-structural dynamics of phosphatidylinositol-4,5-bisphosphate relying on PIP5K, PTEN and PLC. Commun Biol 2023; 6:366. [PMID: 37012315 PMCID: PMC10070498 DOI: 10.1038/s42003-023-04726-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
Synaptic plasticity involves proper establishment and rearrangement of structural and functional microdomains. Yet, visualization of the underlying lipid cues proved challenging. Applying a combination of rapid cryofixation, membrane freeze-fracturing, immunogold labeling and electron microscopy, we visualize and quantitatively determine the changes and the distribution of phosphatidylinositol-4,5-bisphosphate (PIP2) in the plasma membrane of dendritic spines and subareas thereof at ultra-high resolution. These efforts unravel distinct phases of PIP2 signals during induction of long-term depression (LTD). During the first minutes PIP2 rapidly increases in a PIP5K-dependent manner forming nanoclusters. PTEN contributes to a second phase of PIP2 accumulation. The transiently increased PIP2 signals are restricted to upper and middle spine heads. Finally, PLC-dependent PIP2 degradation provides timely termination of PIP2 cues during LTD induction. Together, this work unravels the spatial and temporal cues set by PIP2 during different phases after LTD induction and dissects the molecular mechanisms underlying the observed PIP2 dynamics.
Collapse
Affiliation(s)
- Sarah A Hofbrucker-MacKenzie
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Eric Seemann
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Martin Westermann
- Center for Electron Microscopy, Jena University Hospital - Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, 07743, Jena, Germany.
| | - Michael M Kessels
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, 07743, Jena, Germany.
| |
Collapse
|
2
|
Ventral cochlear nucleus bushy cells encode hyperacusis in guinea pigs. Sci Rep 2020; 10:20594. [PMID: 33244141 PMCID: PMC7693270 DOI: 10.1038/s41598-020-77754-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022] Open
Abstract
Psychophysical studies characterize hyperacusis as increased loudness growth over a wide-frequency range, decreased tolerance to loud sounds and reduced behavioral reaction time latencies to high-intensity sounds. While commonly associated with hearing loss, hyperacusis can also occur without hearing loss, implicating the central nervous system in the generation of hyperacusis. Previous studies suggest that ventral cochlear nucleus bushy cells may be putative neural contributors to hyperacusis. Compared to other ventral cochlear nucleus output neurons, bushy cells show high firing rates as well as lower and less variable first-spike latencies at suprathreshold intensities. Following cochlear damage, bushy cells show increased spontaneous firing rates across a wide-frequency range, suggesting that they might also show increased sound-evoked responses and reduced latencies to higher-intensity sounds. However, no studies have examined bushy cells in relationship to hyperacusis. Herein, we test the hypothesis that bushy cells may contribute to the neural basis of hyperacusis by employing noise-overexposure and single-unit electrophysiology. We find that bushy cells exhibit hyperacusis-like neural firing patterns, which are comprised of enhanced sound-driven firing rates, reduced first-spike latencies and wideband increases in excitability.
Collapse
|
3
|
Yan Y, Yang H, Xie Y, Ding Y, Kong D, Yu H. Research Progress on Alzheimer's Disease and Resveratrol. Neurochem Res 2020; 45:989-1006. [PMID: 32162143 DOI: 10.1007/s11064-020-03007-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD), a common irreversible neurodegenerative disease characterized by amyloid-β plaques, neurofibrillary tangles, and changes in tau phosphorylation, is accompanied by memory loss and symptoms of cognitive dysfunction. Increases in disease incidence due to the ageing of the population have placed a great burden on society. To date, the mechanism of AD and the identities of adequate drugs for AD prevention and treatment have eluded the medical community. It has been confirmed that phytochemicals have certain neuroprotective effects against AD. For example, some progress has been made in research on the use of resveratrol, a natural polyphenolic phytochemical, for the prevention and treatment of AD in recent years. Elucidation of the pathogenesis of AD will create a solid foundation for drug treatment. In addition, research on resveratrol, including its mechanism of action, the roles of signalling pathways and its therapeutic targets, will provide new ideas for AD treatment, which is of great significance. In this review, we discuss the possible relationships between AD and the following factors: synapses, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs), silent information regulator 1 (SIRT1), and estrogens. We also discuss the findings of previous studies regarding these relationships in the context of AD treatment and further summarize research progress related to resveratrol treatment.
Collapse
Affiliation(s)
- Yan Yan
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Huihuang Yang
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Yuxun Xie
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Yuanlin Ding
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Danli Kong
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China.
| | - Haibing Yu
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China.
| |
Collapse
|
4
|
Ultrastructural and molecular features of excitatory and glutamatergic synapses. The auditory nerve synapses. VITAMINS AND HORMONES 2020; 114:23-51. [PMID: 32723545 DOI: 10.1016/bs.vh.2020.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glutamatergic synapses mediate fast synaptic transmission in the central nervous system. New developments highlight the importance of the synapse structural and molecular remodeling during development, aging and in neurological disorders. This chapter summarizes key structural and molecular aspects of the presynaptic and postsynaptic components of glutamatergic synapses in the brain. In addition, this chapter describes how the structure of the postsynaptic density and ionotropic glutamate content contribute to the function of auditory nerve synapses in the lower auditory brainstem.
Collapse
|
5
|
Jakob TF, Illing RB, Rosskothen-Kuhl N. Monaural Neonatal Deafness Induces Inhibition among Bilateral Auditory Networks under Binaural Activation. Neuroscience 2019; 400:1-16. [DOI: 10.1016/j.neuroscience.2018.12.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 11/15/2022]
|
6
|
Nusser Z. Creating diverse synapses from the same molecules. Curr Opin Neurobiol 2018; 51:8-15. [DOI: 10.1016/j.conb.2018.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/02/2018] [Indexed: 12/30/2022]
|
7
|
Criddle MW, Godfrey DA, Kaltenbach JA. Attenuation of noise-induced hyperactivity in the dorsal cochlear nucleus by pre-treatment with MK-801. Brain Res 2018; 1682:71-77. [PMID: 29329983 PMCID: PMC5804344 DOI: 10.1016/j.brainres.2018.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/05/2017] [Accepted: 01/02/2018] [Indexed: 01/06/2023]
Abstract
It has previously been hypothesized that hyperactivity of central auditory neurons following exposure to intense noise is a consequence of synaptic alterations. Recent studies suggest the involvement of NMDA receptors in the induction of this hyperactive state. NMDA receptors can mediate long term changes in the excitability of neurons through their involvement in excitotoxic injury and long term potentiation and depression. In this study, we examined the effect of administering an NMDA receptor blocker on the induction of hyperactivity in the dorsal cochlear nucleus (DCN) following intense sound exposure. Our prediction was that if hyperactivity induced by intense sound exposure is dependent on NMDA receptors, then blocking these receptors by administering an NMDA receptor antagonist just before animals are exposed to intense sound should reduce the degree of hyperactivity that subsequently emerges. We compared the levels of hyperactivity that develop in the DCN after intense sound exposure to activity recorded in control animals that were not sound exposed. One group of animals to be sound exposed received intraperitoneal injection of MK-801 twenty minutes preceding the sound exposure, while the other group received injection of saline. Recordings performed in the DCN 26-28 days post-exposure revealed increased response thresholds and widespread increases in spontaneous activity in the saline-treated animals that had been sound exposed, consistent with earlier studies. The animals treated with MK-801 preceding sound exposure showed similarly elevated thresholds but an attenuation of hyperactivity in the DCN; the attenuation was most robust in the high frequency half of the DCN, but lower levels of hyperactivity were also found in the low frequency half. These findings suggest that NMDA receptors are an important component of the hyperactivity-inducing mechanism following intense sound exposure. They further suggest that blockade of NMDA receptors may offer a useful therapeutic approach to preventing induction of noise-induced hyperactivity-related hearing disorders, such as tinnitus and hyperacusis.
Collapse
Affiliation(s)
- M W Criddle
- Department of Otolaryngology, Wayne State University, Detroit, MI 48201, USA
| | - D A Godfrey
- Department of Neurology and Division of Otolaryngology and Dentistry, Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43610, USA
| | - J A Kaltenbach
- Department of Neurosciences, The Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
8
|
|
9
|
Szoboszlay M, Kirizs T, Nusser Z. Objective quantification of nanoscale protein distributions. Sci Rep 2017; 7:15240. [PMID: 29127366 PMCID: PMC5681686 DOI: 10.1038/s41598-017-15695-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/01/2017] [Indexed: 01/13/2023] Open
Abstract
Nanoscale distribution of molecules within small subcellular compartments of neurons critically influences their functional roles. Although, numerous ways of analyzing the spatial arrangement of proteins have been described, a thorough comparison of their effectiveness is missing. Here we present an open source software, GoldExt, with a plethora of measures for quantification of the nanoscale distribution of proteins in subcellular compartments (e.g. synapses) of nerve cells. First, we compared the ability of five different measures to distinguish artificial uniform and clustered patterns from random point patterns. Then, the performance of a set of clustering algorithms was evaluated on simulated datasets with predefined number of clusters. Finally, we applied the best performing methods to experimental data, and analyzed the nanoscale distribution of different pre- and postsynaptic proteins, revealing random, uniform and clustered sub-synaptic distribution patterns. Our results reveal that application of a single measure is sufficient to distinguish between different distributions.
Collapse
Affiliation(s)
- Miklos Szoboszlay
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Tekla Kirizs
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Zoltan Nusser
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
10
|
The number and distribution of AMPA receptor channels containing fast kinetic GluA3 and GluA4 subunits at auditory nerve synapses depend on the target cells. Brain Struct Funct 2017; 222:3375-3393. [PMID: 28397107 PMCID: PMC5676837 DOI: 10.1007/s00429-017-1408-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
Abstract
The neurotransmitter receptor subtype, number, density, and distribution relative to the location of transmitter release sites are key determinants of signal transmission. AMPA-type ionotropic glutamate receptors (AMPARs) containing GluA3 and GluA4 subunits are prominently expressed in subsets of neurons capable of firing action potentials at high frequencies, such as auditory relay neurons. The auditory nerve (AN) forms glutamatergic synapses on two types of relay neurons, bushy cells (BCs) and fusiform cells (FCs) of the cochlear nucleus. AN-BC and AN-FC synapses have distinct kinetics; thus, we investigated whether the number, density, and localization of GluA3 and GluA4 subunits in these synapses are differentially organized using quantitative freeze-fracture replica immunogold labeling. We identify a positive correlation between the number of AMPARs and the size of AN-BC and AN-FC synapses. Both types of AN synapses have similar numbers of AMPARs; however, the AN-BC have a higher density of AMPARs than AN-FC synapses, because the AN-BC synapses are smaller. A higher number and density of GluA3 subunits are observed at AN-BC synapses, whereas a higher number and density of GluA4 subunits are observed at AN-FC synapses. The intrasynaptic distribution of immunogold labeling revealed that AMPAR subunits, particularly GluA3, are concentrated at the center of the AN-BC synapses. The central distribution of AMPARs is absent in GluA3-knockout mice, and gold particles are evenly distributed along the postsynaptic density. GluA4 gold labeling was homogenously distributed along both synapse types. Thus, GluA3 and GluA4 subunits are distributed at AN synapses in a target-cell-dependent manner.
Collapse
|
11
|
Stefanescu RA, Shore SE. NMDA Receptors Mediate Stimulus-Timing-Dependent Plasticity and Neural Synchrony in the Dorsal Cochlear Nucleus. Front Neural Circuits 2015; 9:75. [PMID: 26622224 PMCID: PMC4653590 DOI: 10.3389/fncir.2015.00075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/30/2015] [Indexed: 12/19/2022] Open
Abstract
Auditory information relayed by auditory nerve fibers and somatosensory information relayed by granule cell parallel fibers converge on the fusiform cells (FCs) of the dorsal cochlear nucleus, the first brain station of the auditory pathway. In vitro, parallel fiber synapses on FCs exhibit spike-timing-dependent plasticity with Hebbian learning rules, partially mediated by the NMDA receptor (NMDAr). Well-timed bimodal auditory-somatosensory stimulation, in vivo equivalent of spike-timing-dependent plasticity, can induce stimulus-timing-dependent plasticity (StTDP) of the FCs spontaneous and tone-evoked firing rates. In healthy guinea pigs, the resulting distribution of StTDP learning rules across a FC neural population is dominated by a Hebbian profile while anti-Hebbian, suppressive and enhancing LRs are less frequent. In this study, we investigate in vivo, the NMDAr contribution to FC baseline activity and long term plasticity. We find that blocking the NMDAr decreases the synchronization of FC- spontaneous activity and mediates differential modulation of FC rate-level functions such that low, and high threshold units are more likely to increase, and decrease, respectively, their maximum amplitudes. Three significant alterations in mean learning-rule profiles were identified: transitions from an initial Hebbian profile towards (1) an anti-Hebbian; (2) a suppressive profile; and (3) transitions from an anti-Hebbian to a Hebbian profile. FC units preserving their learning rules showed instead, NMDAr-dependent plasticity to unimodal acoustic stimulation, with persistent depression of tone-evoked responses changing to persistent enhancement following the NMDAr antagonist. These results reveal a crucial role of the NMDAr in mediating FC baseline activity and long-term plasticity which have important implications for signal processing and auditory pathologies related to maladaptive plasticity of dorsal cochlear nucleus circuitry.
Collapse
Affiliation(s)
- Roxana A Stefanescu
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan Ann Arbor, MI, USA
| | - Susan E Shore
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan Ann Arbor, MI, USA ; Department of Molecular and Integrative Physiology, University of Michigan Medical School Ann Arbor, MI, USA ; Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
12
|
Lu T, Cai W, Qiu W, Sun X, Lu Z. Brainstem and vestibulocochlear nerve involvement in relapsing-remitting anti-NMDAR encephalitis. Neurol Sci 2015; 37:149-151. [PMID: 26410086 DOI: 10.1007/s10072-015-2385-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/18/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Tingting Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, China
| | - Wei Cai
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, China
| | - Xiaobo Sun
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, China
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, China.
| |
Collapse
|
13
|
Yang Y, Xu-Friedman MA. Different pools of glutamate receptors mediate sensitivity to ambient glutamate in the cochlear nucleus. J Neurophysiol 2015; 113:3634-45. [PMID: 25855696 DOI: 10.1152/jn.00693.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 04/08/2015] [Indexed: 01/14/2023] Open
Abstract
Ambient glutamate plays an important role in pathological conditions, such as stroke, but its role during normal activity is not clear. In addition, it is not clear how ambient glutamate acts on glutamate receptors with varying affinities or subcellular localizations. To address this, we studied "endbulb of Held" synapses, which are formed by auditory nerve fibers onto bushy cells (BCs) in the anteroventral cochlear nucleus. When ambient glutamate was increased by applying the glutamate reuptake inhibitor TFB-TBOA, BCs depolarized as a result of activation of N-methyl-D-aspartate receptors (NMDARs) and group I metabotropic glutamate receptors (mGluRs). Application of antagonists against NMDARs (in 0 Mg(2+)) or mGluRs caused hyperpolarization, indicating that these receptors were bound by a tonic source of glutamate. AMPA receptors did not show these effects, consistent with their lower glutamate affinity. We also evaluated the subcellular localization of the receptors activated by ambient glutamate. The mGluRs were not activated by synaptic stimulation and thus appear to be exclusively extrasynaptic. By contrast, NMDARs in both synaptic and extrasynaptic compartments were activated by ambient glutamate, as shown using the use-dependent antagonist MK-801. Levels of ambient glutamate appeared to be regulated in a spike-independent manner, and glia likely play a major role. These low levels of ambient glutamate likely have functional consequences, as even low concentrations of TBOA caused significant increases in BC spiking following synaptic stimulation. These results indicate that normal resting potential appears to be poised in the region of maximal sensitivity to small changes in ambient glutamate.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Matthew A Xu-Friedman
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York
| |
Collapse
|
14
|
Jacob AL, Weinberg RJ. The organization of AMPA receptor subunits at the postsynaptic membrane. Hippocampus 2015; 25:798-812. [PMID: 25524891 DOI: 10.1002/hipo.22404] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2014] [Indexed: 12/21/2022]
Abstract
AMPA receptors are the principal mediators of excitatory synaptic transmission in the mammalian central nervous system. The subunit composition of these tetrameric receptors helps to define their functional properties, and may also influence the synaptic trafficking implicated in long-term synaptic plasticity. However, the organization of AMPAR subunits within the synapse remains unclear. Here, we use postembedding immunogold electron microscopy to study the synaptic organization of AMPAR subunits in stratum radiatum of CA1 hippocampus in the adult rat. We find that GluA1 concentrates away from the center of the synapse, extending at least 25 nm beyond the synaptic specialization; in contrast, GluA3 is uniformly distributed along the synapse, and seldom extends beyond its lateral border. The fraction of extrasynaptic GluA1 is markedly higher in small than in large synapses; no such effect is seen for GluA3. These observations imply that different kinds of AMPARs are differently trafficked to and/or anchored at the synapse.
Collapse
Affiliation(s)
- Amanda L Jacob
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, North Carolina
| | - Richard J Weinberg
- Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|