1
|
Lee SCS, Wei AJ, Martin PR, Grünert U. Thorny and Tufted Retinal Ganglion Cells Express the Transcription Factor Forkhead Proteins Foxp1 and Foxp2 in Marmoset (Callithrix jacchus). J Comp Neurol 2024; 532:e25663. [PMID: 39235164 DOI: 10.1002/cne.25663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
The transcription factor forkhead/winged-helix domain proteins Foxp1 and Foxp2 have previously been studied in mouse retina, where they are expressed in retinal ganglion cells named F-mini and F-midi. Here we show that both transcription factors are expressed by small subpopulations (on average less than 10%) of retinal ganglion cells in the retina of the marmoset monkey (Callithrix jacchus). The morphology of Foxp1- and Foxp2-expressing cells was revealed by intracellular DiI injections of immunofluorescent cells. Foxp1- and Foxp2-expressing cells comprised multiple types of wide-field ganglion cells, including broad thorny cells, narrow thorny cells, and tufted cells. The large majority of Foxp2-expressing cells were identified as tufted cells. Tufted cells stratify broadly in the middle of the inner plexiform layer. They resemble broad thorny cells but their proximal dendrites are bare of branches and the distal dendrites branch frequently forming dense dendritic tufts. Double labeling with calretinin, a previously established marker for broad thorny and narrow thorny cells, showed that only a small proportion of ganglion cells co-expressed calretinin and Foxp1 or Foxp2 supporting the idea that the two markers are differentially expressed in retinal ganglion cells of marmoset retina.
Collapse
Affiliation(s)
- Sammy C S Lee
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anlai J Wei
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Paul R Martin
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ulrike Grünert
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Pfaller AM, Kaplan L, Carido M, Grassmann F, Díaz-Lezama N, Ghaseminejad F, Wunderlich KA, Glänzer S, Bludau O, Pannicke T, Weber BHF, Koch SF, Bonev B, Hauck SM, Grosche A. The glucocorticoid receptor as a master regulator of the Müller cell response to diabetic conditions in mice. J Neuroinflammation 2024; 21:33. [PMID: 38273366 PMCID: PMC10809506 DOI: 10.1186/s12974-024-03021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
Diabetic retinopathy (DR) is considered a primarily microvascular complication of diabetes. Müller glia cells are at the centre of the retinal neurovascular unit and play a critical role in DR. We therefore investigated Müller cell-specific signalling pathways that are altered in DR to identify novel targets for gene therapy. Using a multi-omics approach on purified Müller cells from diabetic db/db mice, we found the mRNA and protein expression of the glucocorticoid receptor (GR) to be significantly decreased, while its target gene cluster was down-regulated. Further, oPOSSUM TF analysis and ATAC- sequencing identified the GR as a master regulator of Müller cell response to diabetic conditions. Cortisol not only increased GR phosphorylation. It also induced changes in the expression of known GR target genes in retinal explants. Finally, retinal functionality was improved by AAV-mediated overexpression of GR in Müller cells. Our study demonstrates an important role of the glial GR in DR and implies that therapeutic approaches targeting this signalling pathway should be aimed at increasing GR expression rather than the addition of more ligand.
Collapse
Affiliation(s)
- Anna M Pfaller
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Lew Kaplan
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Madalena Carido
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Felix Grassmann
- Institute of Clinical Human Genetics, University Hospital Regensburg, Regensburg, Germany
- Institute for Clinical Research and Systems Medicine, Health and Medical University, Potsdam, Germany
| | - Nundehui Díaz-Lezama
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Farhad Ghaseminejad
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Kirsten A Wunderlich
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Institute for Molecular Medicine, Health and Medical University, Potsdam, Germany
| | - Sarah Glänzer
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Oliver Bludau
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Thomas Pannicke
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Bernhard H F Weber
- Institute of Clinical Human Genetics, University Hospital Regensburg, Regensburg, Germany
- Institute of Human Genetics, University Regensburg, Regensburg, Germany
| | - Susanne F Koch
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Boyan Bonev
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Antje Grosche
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
3
|
Nath A, Grimes WN, Diamond JS. Layers of inhibitory networks shape receptive field properties of AII amacrine cells. Cell Rep 2023; 42:113390. [PMID: 37930888 PMCID: PMC10769003 DOI: 10.1016/j.celrep.2023.113390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/10/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023] Open
Abstract
In the retina, rod and cone pathways mediate visual signals over a billion-fold range in luminance. AII ("A-two") amacrine cells (ACs) receive signals from both pathways via different bipolar cells, enabling AIIs to operate at night and during the day. Previous work has examined luminance-dependent changes in AII gap junction connectivity, but less is known about how surrounding circuitry shapes AII receptive fields across light levels. Here, we report that moderate contrast stimuli elicit surround inhibition in AIIs under all but the dimmest visual conditions, due to actions of horizontal cells and at least two ACs that inhibit presynaptic bipolar cells. Under photopic (daylight) conditions, surround inhibition transforms AII response kinetics, which are inherited by downstream ganglion cells. Ablating neuronal nitric oxide synthase type-1 (nNOS-1) ACs removes AII surround inhibition under mesopic (dusk/dawn), but not photopic, conditions. Our findings demonstrate how multiple layers of neural circuitry interact to encode signals across a wide physiological range.
Collapse
Affiliation(s)
- Amurta Nath
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - William N Grimes
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey S Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Aragona M, Briglia M, Porcino C, Mhalhel K, Cometa M, Germanà PG, Montalbano G, Levanti M, Laurà R, Abbate F, Germanà A, Guerrera MC. Localization of Calretinin, Parvalbumin, and S100 Protein in Nothobranchius guentheri Retina: A Suitable Model for the Retina Aging. Life (Basel) 2023; 13:2050. [PMID: 37895432 PMCID: PMC10608213 DOI: 10.3390/life13102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/05/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Calcium-binding proteins (CaBPs) are members of a heterogeneous family of proteins able to buffer intracellular Ca2+ ion concentration. CaBPs are expressed in the central and peripheral nervous system, including a subpopulation of retinal neurons. Since neurons expressing different CaBPs show different susceptibility to degeneration, it could be hypothesized that they are not just markers of different neuronal subpopulations, but that they might be crucial in survival. CaBPs' ability to buffer Ca2+ cytoplasmatic concentration makes them able to defend against a toxic increase in intracellular calcium that can lead to neurodegenerative processes, including those related to aging. An emergent model for aging studies is the annual killifish belonging to the Nothobranchius genus, thanks to its short lifespan. Members of this genus, such as Nothobranchius guentheri, show a retinal stratigraphy similar to that of other actinopterygian fishes and humans. However, according to our knowledge, CaBPs' occurrence and distribution in the retina of N. guentheri have never been investigated before. Therefore, the present study aimed to localize Calretinin N-18, Parvalbumin, and S100 protein (S100p) in the N. guentheri retina with immunohistochemistry methods. The results of the present investigation demonstrate for the first time the occurrence of Calretinin N-18, Parvalbumin, and S100p in N. guentheri retina and, consequently, the potential key role of these CaBPs in the biology of the retinal cells. Hence, the suitability of N. guentheri as a model to study the changes in CaBPs' expression patterns during neurodegenerative processes affecting the retina related both to disease and aging can be assumed.
Collapse
Affiliation(s)
| | | | - Caterina Porcino
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (M.B.); (K.M.); (M.C.); (P.G.G.); (G.M.); (M.L.); (R.L.); (F.A.); (A.G.); (M.C.G.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Potential Neuroprotective Role of Calretinin-N18 and Calbindin-D28k in the Retina of Adult Zebrafish Exposed to Different Wavelength Lights. Int J Mol Sci 2023; 24:ijms24021087. [PMID: 36674603 PMCID: PMC9862630 DOI: 10.3390/ijms24021087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/26/2022] [Accepted: 12/15/2022] [Indexed: 01/08/2023] Open
Abstract
The incidence rates of light-induced retinopathies have increased significantly in the last decades because of continuous exposure to light from different electronic devices. Recent studies showed that exposure to blue light had been related to the pathogenesis of light-induced retinopathies. However, the pathophysiological mechanisms underlying changes induced by light exposure are not fully known yet. In the present study, the effects of exposure to light at different wavelengths with emission peaks in the blue light range (400-500 nm) on the localization of Calretinin-N18 (CaR-N18) and Calbindin-D28K (CaB-D28K) in adult zebrafish retina are studied using double immunofluorescence with confocal laser microscopy. CaB-D28K and CaR-N18 are two homologous cytosolic calcium-binding proteins (CaBPs) implicated in essential process regulation in central and peripheral nervous systems. CaB-D28K and CaR-N18 distributions are investigated to elucidate their potential role in maintaining retinal homeostasis under distinct light conditions and darkness. The results showed that light influences CaB-D28K and CaR-N18 distribution in the retina of adult zebrafish, suggesting that these CaBPs could be involved in the pathophysiology of retinal damage induced by the short-wavelength visible light spectrum.
Collapse
|
6
|
Contribution of parasol-magnocellular pathway ganglion cells to foveal retina in macaque monkey. Vision Res 2023; 202:108154. [PMID: 36436365 DOI: 10.1016/j.visres.2022.108154] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 11/25/2022]
Abstract
Parasol-magnocellular pathway ganglion cells form an important output stream of the primate retina and make a major contribution to visual motion detection. They are known to comprise ON and OFF type response polarities but the relative numbers of ON and OFF parasol cells, and the overall contribution of parasol cells to high-acuity foveal vision are not well understood. Here we use antibodies against carbonic anhydrase 8 (CA8) and intracellular injections of the liphilic dye DiI to show that CA8 selectively labels OFF parasol cells in macaque retina. By combined labeling with CA8 antibodies and a previously-described marker for parasol cells (GABAA receptor antibodies), we show that ON and OFF parasol cells each comprise ∼ 6% of all ganglion cells in central retina (each peak density ∼ 3000 cells/mm2 at 5 deg.), and each population comprises ∼ 10% of all ganglion cells in peripheral temporal retina. Thus, the spatial density of parasol cells in central retina is greater than reported by previous anatomical studies, and the central-peripheral gradient in parasol cell density is shallower than previously reported. The data nevertheless predict decline in spatial acuity with visual field eccentricity for both midget-parvocellular pathway and parasol-magnocellular pathway mediated visual functions. The spatial resolving power of the OFF parasol array (peak ∼ 7 cpd) falls short of macaque behavioral grating acuity by at least a factor of three throughout the retina.
Collapse
|
7
|
Baldicano AK, Nasir-Ahmad S, Novelli M, Lee SCS, Do MTH, Martin PR, Grünert U. Retinal ganglion cells expressing CaM kinase II in human and nonhuman primates. J Comp Neurol 2022; 530:1470-1493. [PMID: 35029299 PMCID: PMC9010361 DOI: 10.1002/cne.25292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/07/2022]
Abstract
Immunoreactivity for calcium-/calmodulin-dependent protein kinase II (CaMKII) in the primate dorsal lateral geniculate nucleus (dLGN) has been attributed to geniculocortical relay neurons and has also been suggested to arise from terminals of retinal ganglion cells. Here, we combined immunostaining with single-cell injections to investigate the expression of CaMKII in retinal ganglion cells of three primate species: macaque (Macaca fascicularis, M. nemestrina), human, and marmoset (Callithrix jacchus). We found that in all species, about 2%-10% of the total ganglion cell population expressed CaMKII. In all species, CaMKII was expressed by multiple types of wide-field ganglion cell including large sparse, giant sparse (melanopsin-expressing), broad thorny, and narrow thorny cells. Three other ganglion cells types, namely, inner and outer stratifying maze cells in macaque and tufted cells in marmoset were also found. Double labeling experiments showed that CaMKII-expressing cells included inner and outer stratifying melanopsin cells. Nearly all CaMKII-expressing ganglion cell types identified here are known to project to the koniocellular layers of the dLGN as well as to the superior colliculus. The best characterized koniocellular projecting cell type-the small bistratified (blue ON/yellow OFF) cell-was, however, not CaMKII-positive in any species. Our results indicate that the pattern of CaMKII expression in retinal ganglion cells is largely conserved across different species of primate suggesting a common functional role. But the results also show that CaMKII is not a marker for all koniocellular projecting retinal ganglion cells.
Collapse
Affiliation(s)
- Alyssa K Baldicano
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Subha Nasir-Ahmad
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Mario Novelli
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Sammy C S Lee
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Michael Tri H Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Paul R Martin
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Ulrike Grünert
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, NSW, 2000, Australia
| |
Collapse
|
8
|
Nasir-Ahmad S, Vanstone KA, Novelli M, Lee SCS, Do MTH, Martin PR, Grünert U. Satb1 expression in retinal ganglion cells of marmosets, macaques, and humans. J Comp Neurol 2022; 530:923-940. [PMID: 34622958 PMCID: PMC8831458 DOI: 10.1002/cne.25258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/18/2022]
Abstract
Recent advances in single-cell RNA sequencing have enabled the molecular distinction of ganglion cell populations in mammalian retinas. Here we used antibodies against the transcription factor special AT-rich binding protein 1 (Satb1, a protein which is expressed by on-off direction-selective ganglion cells in mouse retina) to study Satb1 expression in the retina of marmosets (Callithrix jacchus), macaques (Macaca fascicularis), and humans. In all species, Satb1 was exclusively expressed in retinal ganglion cells. The Satb1 cells made up ∼2% of the ganglion cell population in the central retina of all species, rising to a maximum ∼7% in peripheral marmoset retina. Intracellular injections in marmoset and macaque retinas revealed that most Satb1 expressing ganglion cells are widefield ganglion cells. In marmoset, Satb1 cells have a densely branching dendritic tree and include broad and narrow thorny, recursive bistratified, and parasol cells, all of which show some costratification with the outer or inner cholinergic amacrine cells. The recursive bistratified cells showed the strongest costratification but did not show extensive cofasciculation as reported for on-off direction-selective ganglion cells in rabbit and rodent retinas. In macaque, Satb1 was not expressed in recursive bistratified cells, but in large sparsely branching cells. Our findings further support the idea that the expression of transcription factors in retinal ganglion cells is not conserved across Old World (human and macaque) and New World (marmoset) primates and provides a further step to link a molecular marker with specific cell types.
Collapse
Affiliation(s)
- Subha Nasir-Ahmad
- Faculty of Medicine and Health, Save Sight Institute, and Discipline of Ophthalmology, The University of Sydney, Sydney, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, Australia
| | - Kurt A Vanstone
- Faculty of Medicine and Health, Save Sight Institute, and Discipline of Ophthalmology, The University of Sydney, Sydney, Australia
| | - Mario Novelli
- Faculty of Medicine and Health, Save Sight Institute, and Discipline of Ophthalmology, The University of Sydney, Sydney, Australia
| | - Sammy C S Lee
- Faculty of Medicine and Health, Save Sight Institute, and Discipline of Ophthalmology, The University of Sydney, Sydney, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, Australia
| | - Michael Tri H Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Paul R Martin
- Faculty of Medicine and Health, Save Sight Institute, and Discipline of Ophthalmology, The University of Sydney, Sydney, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, Australia
| | - Ulrike Grünert
- Faculty of Medicine and Health, Save Sight Institute, and Discipline of Ophthalmology, The University of Sydney, Sydney, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, Australia
| |
Collapse
|
9
|
Sundberg CA, Lakk M, Paul S, Figueroa KP, Scoles DR, Pulst SM, Križaj D. The RNA-binding protein and stress granule component ATAXIN-2 is expressed in mouse and human tissues associated with glaucoma pathogenesis. J Comp Neurol 2022; 530:537-552. [PMID: 34350994 PMCID: PMC8716417 DOI: 10.1002/cne.25228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/06/2021] [Indexed: 02/03/2023]
Abstract
Polyglutamine repeat expansions in the Ataxin-2 (ATXN2) gene were first implicated in Spinocerebellar Ataxia Type 2, a disease associated with degeneration of motor neurons and Purkinje cells. Recent studies linked single nucleotide polymorphisms in the gene to elevated intraocular pressure in primary open angle glaucoma (POAG); yet, the localization of ATXN2 across glaucoma-relevant tissues of the vertebrate eye has not been thoroughly examined. This study characterizes ATXN2 expression in the mouse and human retina, and anterior eye, using an antibody validated in ATXN2-/- retinas. ATXN2-ir was localized to cytosolic sub compartments in retinal ganglion cell (RGC) somata and proximal dendrites in addition to GABAergic, glycinergic, and cholinergic amacrine cells in the inner plexiform layer (IPL) and displaced amacrine cells. Human, but not mouse retinas showed modest immunolabeling of bipolar cells. ATXN2 immunofluorescence was prominent in the trabecular meshwork and pigmented and nonpigmented cells of the ciliary body, with analyses of primary human trabecular meshwork cells confirming the finding. The expression of ATXN2 in key POAG-relevant ocular tissues supports the potential role in autophagy and stress granule formation in response to ocular hypertension.
Collapse
Affiliation(s)
- Chad A. Sundberg
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, USA
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Karla P. Figueroa
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Daniel R. Scoles
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Stefan M. Pulst
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, USA
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA
- Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
10
|
Grünert U, Martin PR. Morphology, Molecular Characterization, and Connections of Ganglion Cells in Primate Retina. Annu Rev Vis Sci 2021; 7:73-103. [PMID: 34524877 DOI: 10.1146/annurev-vision-100419-115801] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The eye sends information about the visual world to the brain on over 20 parallel signal pathways, each specialized to signal features such as spectral reflection (color), edges, and motion of objects in the environment. Each pathway is formed by the axons of a separate type of retinal output neuron (retinal ganglion cell). In this review, we summarize what is known about the excitatory retinal inputs, brain targets, and gene expression patterns of ganglion cells in humans and nonhuman primates. We describe how most ganglion cell types receive their input from only one or two of the 11 types of cone bipolar cell and project selectively to only one or two target regions in the brain. We also highlight how genetic methods are providing tools to characterize ganglion cells and establish cross-species homologies.
Collapse
Affiliation(s)
- Ulrike Grünert
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney NSW 2000, Australia; , .,Sydney Node, Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney NSW 2000, Australia
| | - Paul R Martin
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney NSW 2000, Australia; , .,Sydney Node, Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney NSW 2000, Australia
| |
Collapse
|
11
|
Masri RA, Weltzien F, Purushothuman S, Lee SCS, Martin PR, Grünert U. Composition of the Inner Nuclear Layer in Human Retina. Invest Ophthalmol Vis Sci 2021; 62:22. [PMID: 34259817 PMCID: PMC8288061 DOI: 10.1167/iovs.62.9.22] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to measure the composition of the inner nuclear layer (INL) in the central and peripheral human retina as foundation data for interpreting INL function and dysfunction. Methods Six postmortem human donor retinas (male and female, aged 31–56 years) were sectioned along the temporal horizontal meridian. Sections were processed with immunofluorescent markers and imaged using high-resolution, multichannel fluorescence microscopy. The density of horizontal, bipolar, amacrine, and Müller cells was quantified between 1 and 12 mm eccentricity with appropriate adjustments for postreceptoral spatial displacements near the fovea. Results Cone bipolar cells dominate the INL a with density near 50,000 cells/mm2 at 1 mm eccentricity and integrated total ∼10 million cells up to 10 mm eccentricity. Outside central retina the spatial density of all cell populations falls but the neuronal makeup of the INL remains relatively constant: a decrease in the proportion of cone bipolar cells (from 52% at 1 mm to 37% at 10 mm) is balanced by an increasing proportion of rod bipolar cells (from 9% to 15%). The proportion of Müller cells near the fovea (17%) is lower than in the peripheral retina (27%). Conclusions Despite large changes in the absolute density of INL cell populations across the retina, their proportions remain relatively constant. These data may have relevance for interpreting diagnostic signals such as the electroretinogram and optical coherence tomogram.
Collapse
Affiliation(s)
- Rania A Masri
- The University of Sydney, Faculty of Medicine and Health, Save Sight Institute and Discipline of Clinical Ophthalmology, Sydney, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, Australia
| | - Felix Weltzien
- The University of Sydney, Faculty of Medicine and Health, Save Sight Institute and Discipline of Clinical Ophthalmology, Sydney, Australia
| | - Sivaraman Purushothuman
- The University of Sydney, Faculty of Medicine and Health, Save Sight Institute and Discipline of Clinical Ophthalmology, Sydney, Australia
| | - Sammy C S Lee
- The University of Sydney, Faculty of Medicine and Health, Save Sight Institute and Discipline of Clinical Ophthalmology, Sydney, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, Australia
| | - Paul R Martin
- The University of Sydney, Faculty of Medicine and Health, Save Sight Institute and Discipline of Clinical Ophthalmology, Sydney, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, Australia
| | - Ulrike Grünert
- The University of Sydney, Faculty of Medicine and Health, Save Sight Institute and Discipline of Clinical Ophthalmology, Sydney, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, Australia
| |
Collapse
|
12
|
Fiuza FP, Queiroz JPG, Aquino ACQ, Câmara DA, Brandão LEM, Lima RH, Cavalcanti JRLP, Engelberth RCGJ, Cavalcante JS. Aging Alters Daily and Regional Calretinin Neuronal Expression in the Rat Non-image Forming Visual Thalamus. Front Aging Neurosci 2021; 13:613305. [PMID: 33716710 PMCID: PMC7943479 DOI: 10.3389/fnagi.2021.613305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/01/2021] [Indexed: 11/29/2022] Open
Abstract
Aging affects the overall physiology, including the image-forming and non-image forming visual systems. Among the components of the latter, the thalamic retinorecipient inter-geniculate leaflet (IGL) and ventral lateral geniculate (vLGN) nucleus conveys light information to subcortical regions, adjusting visuomotor, and circadian functions. It is noteworthy that several visual related cells, such as neuronal subpopulations in the IGL and vLGN are neurochemically characterized by the presence of calcium binding proteins. Calretinin (CR), a representative of such proteins, denotes region-specificity in a temporal manner by variable day–night expression. In parallel, age-related brain dysfunction and neurodegeneration are associated with abnormal intracellular concentrations of calcium. Here, we investigated whether daily changes in the number of CR neurons are a feature of the aged IGL and vLGN in rats. To this end, we perfused rats, ranging from 3 to 24 months of age, within distinct phases of the day, namely zeitgeber times (ZTs). Then, we evaluated CR immunolabeling through design-based stereological cell estimation. We observed distinct daily rhythms of CR expression in the IGL and in both the retinorecipient (vLGNe) and non-retinorecipient (vLGNi) portions of the vLGN. In the ZT 6, the middle of the light phase, the CR cells are reduced with aging in the IGL and vLGNe. In the ZT 12, the transition between light to dark, an age-related CR loss was found in all nuclei. While CR expression predominates in specific spatial domains of vLGN, age-related changes appear not to be restricted at particular portions. No alterations were found in the dark/light transition or in the middle of the dark phase, ZTs 0, and 18, respectively. These results are relevant in the understanding of how aging shifts the phenotype of visual related cells at topographically organized channels of visuomotor and circadian processing.
Collapse
Affiliation(s)
- Felipe P Fiuza
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - José Pablo G Queiroz
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Antônio Carlos Q Aquino
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Diego A Câmara
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Luiz Eduardo M Brandão
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ramon H Lima
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - José Rodolfo L P Cavalcanti
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Health Science Center, University of State of Rio Grande do Norte, Mossoró, Brazil
| | - Rovena Clara G J Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jeferson S Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
13
|
Nasir-Ahmad S, Lee SCS, Martin PR, Grünert U. Identification of retinal ganglion cell types expressing the transcription factor Satb2 in three primate species. J Comp Neurol 2021; 529:2727-2749. [PMID: 33527361 DOI: 10.1002/cne.25120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/31/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022]
Abstract
In primates, the retinal ganglion cells contributing to high acuity spatial vision (midget cells and parasol cells), and blue-yellow color vision (small bistratified cells) are well understood. Many other ganglion cell types with large dendritic fields (named wide-field ganglion cells) have been identified, but their spatial density and distribution are largely unknown. Here we took advantage of the recently established molecular diversity of ganglion cells to study wide-field ganglion cell populations in three primate species. We used antibodies against the transcription factor Special AT-rich binding protein 2 (Satb2) to explore its expression in macaque (Macaca fascicularis, M. nemestrina), human and marmoset (Callithrix jacchus) retinas. In all three species, Satb2 cells make up a low proportion (1.5-4%) of the ganglion cell population, with a slight increase from central to peripheral retina. Intracellular dye injections revealed that in macaque and human retinas, the large majority (over 80%) of Satb2 cells are inner and outer stratifying large sparse cells. By contrast, in marmoset retina the majority (over 60%) of Satb2 expressing cells were broad thorny cells, with smaller proportions of recursive bistratified (putative direction-selective), large bistratified, and outer stratifying narrow thorny cells. Our findings imply that Satb2 expression has undergone rapid species specific adaptations during primate evolution, because expression is not conserved across Old World (macaque, human) and New World (marmoset) suborders.
Collapse
Affiliation(s)
- Subha Nasir-Ahmad
- Faculty of Medicine and Health, Save Sight Institute and Discipline of Ophthalmology, The University of Sydney, Sydney, New South Wales, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, Australia
| | - Sammy C S Lee
- Faculty of Medicine and Health, Save Sight Institute and Discipline of Ophthalmology, The University of Sydney, Sydney, New South Wales, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, Australia
| | - Paul R Martin
- Faculty of Medicine and Health, Save Sight Institute and Discipline of Ophthalmology, The University of Sydney, Sydney, New South Wales, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, Australia
| | - Ulrike Grünert
- Faculty of Medicine and Health, Save Sight Institute and Discipline of Ophthalmology, The University of Sydney, Sydney, New South Wales, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Ortuño-Lizarán I, Sánchez-Sáez X, Lax P, Serrano GE, Beach TG, Adler CH, Cuenca N. Dopaminergic Retinal Cell Loss and Visual Dysfunction in Parkinson Disease. Ann Neurol 2020; 88:893-906. [PMID: 32881029 PMCID: PMC10005860 DOI: 10.1002/ana.25897] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Considering the demonstrated implication of the retina in Parkinson disease (PD) pathology and the importance of dopaminergic cells in this tissue, we aimed to analyze the state of the dopaminergic amacrine cells and some of their main postsynaptic neurons in the retina of PD. METHODS Using immunohistochemistry and confocal microscopy, we evaluated morphology, number, and synaptic connections of dopaminergic cells and their postsynaptic cells, AII amacrine and melanopsin-containing retinal ganglion cells, in control and PD eyes from human donors. RESULTS In PD, dopaminergic amacrine cell number was reduced between 58% and 26% in different retinal regions, involving a decline in the number of synaptic contacts with AII amacrine cells (by 60%) and melanopsin cells (by 35%). Despite losing their main synaptic input, AII cells were not reduced in number, but they showed cellular alterations compromising their adequate function: (1) a loss of mitochondria inside their lobular appendages, which may indicate an energetic failure; and (2) a loss of connexin 36, suggesting alterations in the AII coupling and in visual signal transmission from the rod pathway. INTERPRETATION The dopaminergic system impairment and the affection of the rod pathway through the AII cells may explain and be partially responsible for the reduced contrast sensitivity or electroretinographic response described in PD. Also, dopamine reduction and the loss of synaptic contacts with melanopsin cells may contribute to the melanopsin retinal ganglion cell loss previously described and to the disturbances in circadian rhythm and sleep reported in PD patients. These data support the idea that the retina reproduces brain neurodegeneration and is highly involved in PD pathology. ANN NEUROL 2020;88:893-906.
Collapse
Affiliation(s)
- Isabel Ortuño-Lizarán
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Xavier Sánchez-Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | | | | | | | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
- Institute Ramón Margalef, University of Alicante, Alicante, Spain
| |
Collapse
|
15
|
Zhang R, Zhang X, Hu F, Wu J. Fine structure of the human retina defined by confocal microscopic immunohistochemistry. Br J Biomed Sci 2020; 78:28-34. [PMID: 32498649 DOI: 10.1080/09674845.2020.1776586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Research in to the pathophysiology of the complex layers of retinal and sub-retinal cells is hampered by inadequate recognition of particular cells and tissues. A comprehensive panel of antibodies recognising retinal tissues is lacking. Our purpose was to determine the value of a panel of antibodies labelling various cells in the human retina. METHOD Five groups of antibodies labelled frozen sections of retinas: (1) protein kinase C-α, Glutamine Synthetase (GS) and ionized calcium-binding adapter molecule 1 (Iba1); (2) Parvalbumin, Calretinin and glial fibrillary acidic protein (GFAP); (3) Thy1, GS and Iba1; (4) Rhodopsin, GS and Iba1; and (5) Brn3a, Rhodopsin and protein kinase C-α. The distribution of these antigens were determined by confocal microscopy and calculated grey value of each antibody in each layer of the retina by Image J. RESULTS Different antibodies determined certain retinal layers. Thy 1 is a good determinant of the ganglion cell layer, whilst GS is present in all layers except the photoreceptor layer. Brn3a is specific for the ganglion cell layer whilst parvalbumin marks the ganglion cell layer and the outer plexiform layer. Rhodopsin strongly marks the photoreceptor layer, but this is also marked weakly by GFAP. CONCLUSION The multiple labelling of human retinal cells brings further understanding of the biological characteristics and functions of these cells, and provides a theoretical basis for their possible role in diseases. In the growing field of human retina research, our data may provide a point of reference for future studies of the human retina.
Collapse
Affiliation(s)
- R Zhang
- Eye & ENT Hospital, College of Medicine, Fudan University , Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University , Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences , Shanghai, China
| | - X Zhang
- Eye & ENT Hospital, College of Medicine, Fudan University , Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University , Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences , Shanghai, China
| | - F Hu
- Eye & ENT Hospital, College of Medicine, Fudan University , Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University , Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences , Shanghai, China
| | - J Wu
- Eye & ENT Hospital, College of Medicine, Fudan University , Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University , Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences , Shanghai, China
| |
Collapse
|
16
|
Grünert U, Martin PR. Cell types and cell circuits in human and non-human primate retina. Prog Retin Eye Res 2020; 78:100844. [PMID: 32032773 DOI: 10.1016/j.preteyeres.2020.100844] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
This review summarizes our current knowledge of primate including human retina focusing on bipolar, amacrine and ganglion cells and their connectivity. We have two main motivations in writing. Firstly, recent progress in non-invasive imaging methods to study retinal diseases mean that better understanding of the primate retina is becoming an important goal both for basic and for clinical sciences. Secondly, genetically modified mice are increasingly used as animal models for human retinal diseases. Thus, it is important to understand to which extent the retinas of primates and rodents are comparable. We first compare cell populations in primate and rodent retinas, with emphasis on how the fovea (despite its small size) dominates the neural landscape of primate retina. We next summarise what is known, and what is not known, about the postreceptoral neurone populations in primate retina. The inventories of bipolar and ganglion cells in primates are now nearing completion, comprising ~12 types of bipolar cell and at least 17 types of ganglion cell. Primate ganglion cells show clear differences in dendritic field size across the retina, and their morphology differs clearly from that of mouse retinal ganglion cells. Compared to bipolar and ganglion cells, amacrine cells show even higher morphological diversity: they could comprise over 40 types. Many amacrine types appear conserved between primates and mice, but functions of only a few types are understood in any primate or non-primate retina. Amacrine cells appear as the final frontier for retinal research in monkeys and mice alike.
Collapse
Affiliation(s)
- Ulrike Grünert
- The University of Sydney, Save Sight Institute, Faculty of Medicine and Health, Sydney, NSW, 2000, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, NSW, 2000, Australia.
| | - Paul R Martin
- The University of Sydney, Save Sight Institute, Faculty of Medicine and Health, Sydney, NSW, 2000, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, NSW, 2000, Australia
| |
Collapse
|
17
|
Lee SCS, Martin PR, Grünert U. Topography of Neurons in the Rod Pathway of Human Retina. Invest Ophthalmol Vis Sci 2019; 60:2848-2859. [PMID: 31260035 DOI: 10.1167/iovs.19-27217] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The objective of this study was to map the distribution and density of the three major components of the classical scotopic "night vision" pathway (rods, rod bipolar, and AII amacrine cells) in postmortem human retinas. Methods Four postmortem donor eyes (male and female, aged 44-56 years) were used to cut vertical sections through the temporal horizontal meridian. The sections were processed for immunohistochemistry and imaged using high-resolution multichannel confocal microscopy. Rods, rod bipolar, and AII amacrine cells were counted along the temporal horizontal meridian. Two additional retinas were used for intracellular injections. Results Rod peak density is close to 150,000 cells/mm2 at 4 to 5 mm (15° to 20°) eccentricity, declining to below 70,000 cells/mm2 in peripheral retina. Rod bipolar density is lower but follows a similar distribution with peak density near 10,000 cells/mm2 between 2 and 4 mm (7° to 15°) eccentricity declining to below 4000 cells/mm2 in peripheral retina. The peak density of AII amacrine cells (near 4000 cells/mm2) is located close to the fovea, at 0.5- to 2 mm-eccentricity (2° to 7°) and declines to below 1000 cells/mm2 in the periphery. Thus, convergence between rods and AII cells increases from central to peripheral retina. Conclusions Comparison with human psychophysics and ganglion cell density indicates that the spatial resolution of scotopic vision is limited by the AII mosaic at eccentricities below 15° and by the midget ganglion cell mosaic at eccentricities above 15°.
Collapse
Affiliation(s)
- Sammy C S Lee
- The University of Sydney, Faculty of Medicine and Health, Save Sight Institute and Discipline of Clinical Ophthalmology, Sydney, New South Wales, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, Australia
| | - Paul R Martin
- The University of Sydney, Faculty of Medicine and Health, Save Sight Institute and Discipline of Clinical Ophthalmology, Sydney, New South Wales, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, Australia
| | - Ulrike Grünert
- The University of Sydney, Faculty of Medicine and Health, Save Sight Institute and Discipline of Clinical Ophthalmology, Sydney, New South Wales, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Singh RK, Occelli LM, Binette F, Petersen-Jones SM, Nasonkin IO. Transplantation of Human Embryonic Stem Cell-Derived Retinal Tissue in the Subretinal Space of the Cat Eye. Stem Cells Dev 2019; 28:1151-1166. [PMID: 31210100 PMCID: PMC6708274 DOI: 10.1089/scd.2019.0090] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To develop biological approaches to restore vision, we developed a method of transplanting stem cell-derived retinal tissue into the subretinal space of a large-eye animal model (cat). Human embryonic stem cells (hESC) were differentiated to retinal organoids in a dish. hESC-derived retinal tissue was introduced into the subretinal space of wild-type cats following a pars plana vitrectomy. The cats were systemically immunosuppressed with either prednisolone or prednisolone plus cyclosporine A. The eyes were examined by fundoscopy and spectral-domain optical coherence tomography imaging for adverse effects due to the presence of the subretinal grafts. Immunohistochemistry was done with antibodies to retinal and human markers to delineate graft survival, differentiation, and integration into cat retina. We successfully delivered hESC-derived retinal tissue into the subretinal space of the cat eye. We observed strong infiltration of immune cells in the graft and surrounding tissue in the cats treated with prednisolone. In contrast, we showed better survival and low immune response to the graft in cats treated with prednisolone plus cyclosporine A. Immunohistochemistry with antibodies (STEM121, CALB2, DCX, and SMI-312) revealed large number of graft-derived fibers connecting the graft and the host. We also show presence of human-specific synaptophysin puncta in the cat retina. This work demonstrates feasibility of engrafting hESC-derived retinal tissue into the subretinal space of large-eye animal models. Transplanting retinal tissue in degenerating cat retina will enable rapid development of preclinical in vivo work focused on vision restoration.
Collapse
Affiliation(s)
- Ratnesh K Singh
- Lineage Cell Therapeutics, Inc. (formerly BioTime Inc.), Carlsbad, California
| | - Laurence M Occelli
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lasing, Michigan
| | - Francois Binette
- Lineage Cell Therapeutics, Inc. (formerly BioTime Inc.), Carlsbad, California
| | - Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lasing, Michigan
| | - Igor O Nasonkin
- Lineage Cell Therapeutics, Inc. (formerly BioTime Inc.), Carlsbad, California
| |
Collapse
|
19
|
Telkes I, Kóbor P, Orbán J, Kovács-Öller T, Völgyi B, Buzás P. Connexin-36 distribution and layer-specific topography in the cat retina. Brain Struct Funct 2019; 224:2183-2197. [PMID: 31172263 PMCID: PMC6591202 DOI: 10.1007/s00429-019-01876-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/11/2019] [Indexed: 11/29/2022]
Abstract
Connexin-36 (Cx36) is the major constituent of mammalian retinal gap junctions positioned in key signal pathways. Here, we examined the laminar and large-scale topographical distribution of Cx36 punctate immunolabels in the retina of the cat, a classical model of the mammalian visual system. Calretinin-immunoreactive (CaR-IR) cell populations served to outline the nuclear and plexiform layers and to stain specific neuronal populations. CaR-IR cells included horizontal cells in the outer retina, numerous amacrine cells, and scattered cells in the ganglion cell layer. Cx36-IR plaques were found among horizontal cell dendrites albeit without systematic colocalization of the two labels. Diffuse Cx36 immunoreactivity was found in the cytoplasm of AII amacrine cells, but no colocalization of Cx36 plaques was observed with either the perikarya or the long varicose dendrites of the CaR-IR non-AII amacrine cells. Cx36 puncta were seen throughout the entire inner plexiform layer showing their highest density in the ON sublamina. The densities of AII amacrine cell bodies and Cx36 plaques in the ON sublamina were strongly correlated across a wide range of eccentricities suggesting their anatomical association. However, the high number of plaques per AII cell suggests that a considerable fraction of Cx36 gap junctions in the ON sublamina is formed by other cell types than AII amacrine cells drawing attention to extensive but less studied electrically coupled networks.
Collapse
Affiliation(s)
- Ildikó Telkes
- Institute of Physiology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, 7624, Hungary
| | - Péter Kóbor
- Institute of Physiology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, 7624, Hungary
| | - József Orbán
- Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
- Department of Biophysics, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Tamás Kovács-Öller
- Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, 7624, Hungary
- Retinal Electrical Synapses Research Group, MTA-PTE NAP-2, University of Pécs, Pécs, 7624, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, 7624, Hungary
| | - Béla Völgyi
- Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, 7624, Hungary
- Retinal Electrical Synapses Research Group, MTA-PTE NAP-2, University of Pécs, Pécs, 7624, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, 7624, Hungary
| | - Péter Buzás
- Institute of Physiology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary.
- Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary.
- Centre for Neuroscience, University of Pécs, Pécs, 7624, Hungary.
| |
Collapse
|
20
|
Abstract
In primate retina, the calcium-binding protein calbindin is expressed by a variety of neurons including cones, bipolar cells, and amacrine cells but it is not known which type(s) of cell express calbindin in the ganglion cell layer. The present study aimed to identify calbindin-positive cell type(s) in the amacrine and ganglion cell layer of human and marmoset retina using immunohistochemical markers for ganglion cells (RBPMS and melanopsin) and cholinergic amacrine (ChAT) cells. Intracellular injections following immunolabeling was used to reveal the morphology of calbindin-positive cells. In human retina, calbindin-labeled cells in the ganglion cell layer were identified as inner and outer stratifying melanopsin-expressing ganglion cells, and ON ChAT (starburst amacrine) cells. In marmoset, calbindin immunoreactivity in the ganglion cell layer was absent from ganglion cells but present in ON ChAT cells. In the inner nuclear layer of human retina, calbindin was found in melanopsin-expressing displaced ganglion cells and in at least two populations of amacrine cells including about a quarter of the OFF ChAT cells. In marmoset, a very low proportion of OFF ChAT cells was calbindin-positive. These results suggest that in both species there may be two types of OFF ChAT cells. Consistent with previous studies, the ratio of ON to OFF ChAT cells was about 70 to 30 in human and 30 to 70 in marmoset. Our results show that there are species-related differences between different primates with respect to the expression of calbindin.
Collapse
|
21
|
Fairless R, Williams SK, Diem R. Calcium-Binding Proteins as Determinants of Central Nervous System Neuronal Vulnerability to Disease. Int J Mol Sci 2019; 20:ijms20092146. [PMID: 31052285 PMCID: PMC6539299 DOI: 10.3390/ijms20092146] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 12/14/2022] Open
Abstract
Neuronal subpopulations display differential vulnerabilities to disease, but the factors that determine their susceptibility are poorly understood. Toxic increases in intracellular calcium are a key factor in several neurodegenerative processes, with calcium-binding proteins providing an important first line of defense through their ability to buffer incoming calcium, allowing the neuron to quickly achieve homeostasis. Since neurons expressing different calcium-binding proteins have been reported to be differentially susceptible to degeneration, it can be hypothesized that rather than just serving as markers of different neuronal subpopulations, they might actually be a key determinant of survival. In this review, we will summarize some of the evidence that expression of the EF-hand calcium-binding proteins, calbindin, calretinin and parvalbumin, may influence the susceptibility of distinct neuronal subpopulations to disease processes.
Collapse
Affiliation(s)
- Richard Fairless
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany.
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany.
| | - Sarah K Williams
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany.
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany.
| | - Ricarda Diem
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany.
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany.
| |
Collapse
|
22
|
Masri RA, Lee SCS, Madigan MC, Grünert U. Particle-Mediated Gene Transfection and Organotypic Culture of Postmortem Human Retina. Transl Vis Sci Technol 2019; 8:7. [PMID: 30941264 PMCID: PMC6438245 DOI: 10.1167/tvst.8.2.7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/07/2019] [Indexed: 12/25/2022] Open
Abstract
Purpose Particle-mediated gene transfer has been used in animal models to study the morphology and connectivity of retinal ganglion cells. The aim of the present study was to apply this method to transfect ganglion cells in postmortem human retina. Methods Postmortem human eyes from male and female donors aged 40 to 76 years old were obtained within 15 hours after death. In addition, two marmoset retinas were obtained immediately after death. Ganglion cells were transfected with an expression plasmid for the postsynaptic density 95 protein conjugated to green or yellow fluorescent protein. Retinas were cultured for 3 days, fixed and then processed with immunohistochemical markers to reveal their stratification in the inner plexiform layer. Results The retinas maintained their morphology and immunohistochemical properties for at least 3 days in culture. Bipolar and ganglion cell morphology was comparable to that observed in noncultured tissue. The quality of transfected cells in human retina was similar to that in freshly enucleated marmoset eyes. Based on dendritic field size and stratification, at least 11 morphological types of retinal ganglion cell were distinguished. Conclusions Particle-mediated gene transfer allows efficient targeting of retinal ganglion cells in cultured postmortem human retina. Translational Relevance The translational value of this methodology lies in the provision of an in vitro platform to study structural and connectivity changes in human eye diseases that affect the integrity and organization of cells in the retina.
Collapse
Affiliation(s)
- Rania A Masri
- The University of Sydney, Faculty of Medicine and Health, Save Sight Institute and Discipline of Ophthalmology, Sydney, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, Australia
| | - Sammy C S Lee
- The University of Sydney, Faculty of Medicine and Health, Save Sight Institute and Discipline of Ophthalmology, Sydney, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, Australia
| | - Michele C Madigan
- The University of Sydney, Faculty of Medicine and Health, Save Sight Institute and Discipline of Ophthalmology, Sydney, Australia.,School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Ulrike Grünert
- The University of Sydney, Faculty of Medicine and Health, Save Sight Institute and Discipline of Ophthalmology, Sydney, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, Australia
| |
Collapse
|
23
|
Strettoi E, Masri RA, Grünert U. AII amacrine cells in the primate fovea contribute to photopic vision. Sci Rep 2018; 8:16429. [PMID: 30401922 PMCID: PMC6219554 DOI: 10.1038/s41598-018-34621-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/19/2018] [Indexed: 11/20/2022] Open
Abstract
The AII amacrine cell is known as a key interneuron in the scotopic (night-vision) pathway in the retina. Under scotopic conditions, rod signals are transmitted via rod bipolar cells to AII amacrine cells, which split the rod signal into the OFF (via glycinergic synapses) and the ON pathway (via gap junctions). But the AII amacrine cell also has a “day job”: at high light levels when cones are active, AII connections with ON cone bipolar cells provide crossover inhibition to extend the response range of OFF cone bipolar cells. The question whether AII cells contribute to crossover inhibition in primate fovea (where rods and rod bipolar cells are rare or absent) has not been answered. Here, immunohistochemistry and three-dimensional reconstruction show that calretinin positive cells in the fovea of macaque monkeys and humans have AII morphology and connect to cone bipolar cells. The pattern of AII connections to cone bipolar cells is quantitatively similar to that of AII cells outside the fovea. Our results support the view that in mammalian retina AII cells first evolved to serve cone circuits, then later were co-opted to process scotopic signals subsequent to the evolution of rod bipolar cells.
Collapse
Affiliation(s)
| | - Rania A Masri
- Save Sight Institute, Discipline of Clinical Ophthalmology, The University of Sydney, Sydney, NSW, 2000, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Ulrike Grünert
- Save Sight Institute, Discipline of Clinical Ophthalmology, The University of Sydney, Sydney, NSW, 2000, Australia. .,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, NSW, 2000, Australia. .,Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
| |
Collapse
|
24
|
Molecular Fingerprinting of On-Off Direction-Selective Retinal Ganglion Cells Across Species and Relevance to Primate Visual Circuits. J Neurosci 2018; 39:78-95. [PMID: 30377226 DOI: 10.1523/jneurosci.1784-18.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/08/2018] [Accepted: 10/23/2018] [Indexed: 12/27/2022] Open
Abstract
The ability to detect moving objects is an ethologically salient function. Direction-selective neurons have been identified in the retina, thalamus, and cortex of many species, but their homology has remained unclear. For instance, it is unknown whether direction-selective retinal ganglion cells (DSGCs) exist in primates and, if so, whether they are the equivalent to mouse and rabbit DSGCs. Here, we used a molecular/circuit approach in both sexes to address these issues. In mice, we identify the transcription factor Satb2 (special AT-rich sequence-binding protein 2) as a selective marker for three RGC types: On-Off DSGCs encoding motion in either the anterior or posterior direction, a newly identified type of Off-DSGC, and an Off-sustained RGC type. In rabbits, we find that expression of Satb2 is conserved in On-Off DSGCs; however, it has evolved to include On-Off DSGCs encoding upward and downward motion in addition to anterior and posterior motion. Next, we show that macaque RGCs express Satb2 most likely in a single type. We used rabies virus-based circuit-mapping tools to reveal the identity of macaque Satb2-RGCs and discovered that their dendritic arbors are relatively large and monostratified. Together, these data indicate Satb2-expressing On-Off DSGCs are likely not present in the primate retina. Moreover, if DSGCs are present in the primate retina, it is unlikely that they express Satb2.SIGNIFICANCE STATEMENT The ability to detect object motion is a fundamental feature of almost all visual systems. Here, we identify a novel marker for retinal ganglion cells encoding directional motion that is evolutionarily conserved in mice and rabbits, but not in primates. We show in macaque monkeys that retinal ganglion cells (RGCs) that express this marker comprise a single type and are morphologically distinct from mouse and rabbit direction-selective RGCs. Our findings indicate that On-Off direction-selective retinal neurons may have evolutionarily diverged in primates and more generally provide novel insight into the identity and organization of primate parallel visual pathways.
Collapse
|
25
|
Rabesandratana O, Goureau O, Orieux G. Pluripotent Stem Cell-Based Approaches to Explore and Treat Optic Neuropathies. Front Neurosci 2018; 12:651. [PMID: 30294255 PMCID: PMC6158340 DOI: 10.3389/fnins.2018.00651] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Sight is a major sense for human and visual impairment profoundly affects quality of life, especially retinal degenerative diseases which are the leading cause of irreversible blindness worldwide. As for other neurodegenerative disorders, almost all retinal dystrophies are characterized by the specific loss of one or two cell types, such as retinal ganglion cells, photoreceptor cells, or retinal pigmented epithelial cells. This feature is a critical point when dealing with cell replacement strategies considering that the preservation of other cell types and retinal circuitry is a prerequisite. Retinal ganglion cells are particularly vulnerable to degenerative process and glaucoma, the most common optic neuropathy, is a frequent retinal dystrophy. Cell replacement has been proposed as a potential approach to take on the challenge of visual restoration, but its application to optic neuropathies is particularly challenging. Many obstacles need to be overcome before any clinical application. Beyond their survival and differentiation, engrafted cells have to reconnect with both upstream synaptic retinal cell partners and specific targets in the brain. To date, reconnection of retinal ganglion cells with distal central targets appears unrealistic since central nervous system is refractory to regenerative processes. Significant progress on the understanding of molecular mechanisms that prevent central nervous system regeneration offer hope to overcome this obstacle in the future. At the same time, emergence of reprogramming of human somatic cells into pluripotent stem cells has facilitated both the generation of new source of cells with therapeutic potential and the development of innovative methods for the generation of transplantable cells. In this review, we discuss the feasibility of stem cell-based strategies applied to retinal ganglion cells and optic nerve impairment. We present the different strategies for the generation, characterization and the delivery of transplantable retinal ganglion cells derived from pluripotent stem cells. The relevance of pluripotent stem cell-derived retinal organoid and retinal ganglion cells for disease modeling or drug screening will be also introduced in the context of optic neuropathies.
Collapse
Affiliation(s)
| | - Olivier Goureau
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Gaël Orieux
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
26
|
Roski C, Langrock C, Körber N, Habermann G, Buse E, Reichenbach A, Pannicke T, Francke M. Comparison of cellular localisation of the Ca2+
-binding proteins calbindin, calretinin and parvalbumin in the retina of four different Macaca
species. Anat Histol Embryol 2018; 47:573-582. [DOI: 10.1111/ahe.12399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/18/2018] [Accepted: 08/02/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Christian Roski
- Paul-Flechsig-Institut für Hirnforschung; Universität Leipzig; Leipzig Germany
| | - Christiane Langrock
- Paul-Flechsig-Institut für Hirnforschung; Universität Leipzig; Leipzig Germany
| | - Nicole Körber
- Paul-Flechsig-Institut für Hirnforschung; Universität Leipzig; Leipzig Germany
- Sächsischer Inkubator für klinische Translation (SIKT); Universität Leipzig; Leipzig Germany
| | | | | | - Andreas Reichenbach
- Paul-Flechsig-Institut für Hirnforschung; Universität Leipzig; Leipzig Germany
| | - Thomas Pannicke
- Paul-Flechsig-Institut für Hirnforschung; Universität Leipzig; Leipzig Germany
| | - Mike Francke
- Paul-Flechsig-Institut für Hirnforschung; Universität Leipzig; Leipzig Germany
- Sächsischer Inkubator für klinische Translation (SIKT); Universität Leipzig; Leipzig Germany
| |
Collapse
|
27
|
Christiansen AT, Kiilgaard JF, Klemp K, Woldbye DPD, Hannibal J. Localization, distribution, and connectivity of neuropeptide Y in the human and porcine retinas-A comparative study. J Comp Neurol 2018; 526:1877-1895. [DOI: 10.1002/cne.24455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/24/2022]
Affiliation(s)
| | - Jens Folke Kiilgaard
- Department of Ophthalmology; Copenhagen University Hospital, Rigshospitalet; Denmark
| | - Kristian Klemp
- Department of Ophthalmology; Copenhagen University Hospital, Rigshospitalet; Denmark
| | - David Paul Drucker Woldbye
- Laboratory of Neural Plasticity; Center for Neuroscience, Faculty of Health Sciences, University of Copenhagen; Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry; Copenhagen University Hospital, Bispebjerg Hospital; Copenhagen Denmark
| |
Collapse
|
28
|
Park SJH, Pottackal J, Ke JB, Jun NY, Rahmani P, Kim IJ, Singer JH, Demb JB. Convergence and Divergence of CRH Amacrine Cells in Mouse Retinal Circuitry. J Neurosci 2018; 38:3753-3766. [PMID: 29572434 PMCID: PMC5895998 DOI: 10.1523/jneurosci.2518-17.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/01/2018] [Accepted: 03/07/2018] [Indexed: 11/21/2022] Open
Abstract
Inhibitory interneurons sculpt the outputs of excitatory circuits to expand the dynamic range of information processing. In mammalian retina, >30 types of amacrine cells provide lateral inhibition to vertical, excitatory bipolar cell circuits, but functional roles for only a few amacrine cells are well established. Here, we elucidate the function of corticotropin-releasing hormone (CRH)-expressing amacrine cells labeled in Cre-transgenic mice of either sex. CRH cells costratify with the ON alpha ganglion cell, a neuron highly sensitive to positive contrast. Electrophysiological and optogenetic analyses demonstrate that two CRH types (CRH-1 and CRH-3) make GABAergic synapses with ON alpha cells. CRH-1 cells signal via graded membrane potential changes, whereas CRH-3 cells fire action potentials. Both types show sustained ON-type responses to positive contrast over a range of stimulus conditions. Optogenetic control of transmission at CRH-1 synapses demonstrates that these synapses are tuned to low temporal frequencies, maintaining GABA release during fast hyperpolarizations during brief periods of negative contrast. CRH amacrine cell output is suppressed by prolonged negative contrast, when ON alpha ganglion cells continue to receive inhibitory input from converging OFF-pathway amacrine cells; the converging ON- and OFF-pathway inhibition balances tonic excitatory drive to ON alpha cells. Previously, it was demonstrated that CRH-1 cells inhibit firing by suppressed-by-contrast (SbC) ganglion cells during positive contrast. Therefore, divergent outputs of CRH-1 cells inhibit two ganglion cell types with opposite responses to positive contrast. The opposing responses of ON alpha and SbC ganglion cells are explained by differing excitation/inhibition balance in the two circuits.SIGNIFICANCE STATEMENT A goal of neuroscience research is to explain the function of neural circuits at the level of specific cell types. Here, we studied the function of specific types of inhibitory interneurons, corticotropin-releasing hormone (CRH) amacrine cells, in the mouse retina. Genetic tools were used to identify and manipulate CRH cells, which make GABAergic synapses with a well studied ganglion cell type, the ON alpha cell. CRH cells converge with other types of amacrine cells to tonically inhibit ON alpha cells and balance their high level of excitation. CRH cells diverge to different types of ganglion cell, the unique properties of which depend on their balance of excitation and inhibition.
Collapse
Affiliation(s)
| | | | - Jiang-Bin Ke
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | | | | | - In-Jung Kim
- Department of Ophthalmology and Visual Science
- Interdepartmental Neuroscience Program
- Department of Neuroscience
| | - Joshua H Singer
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Jonathan B Demb
- Department of Ophthalmology and Visual Science,
- Interdepartmental Neuroscience Program
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut 06511, and
| |
Collapse
|
29
|
Kwan WC, Mundinano IC, de Souza MJ, Lee SCS, Martin PR, Grünert U, Bourne JA. Unravelling the subcortical and retinal circuitry of the primate inferior pulvinar. J Comp Neurol 2018; 527:558-576. [PMID: 29292493 DOI: 10.1002/cne.24387] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/14/2017] [Accepted: 12/21/2017] [Indexed: 12/21/2022]
Abstract
The primate visual brain possesses a myriad of pathways, whereby visual information originating at the retina is transmitted to multiple subcortical areas in parallel, before being relayed onto the visual cortex. The dominant retinogeniculostriate pathway has been an area of extensive study, and Vivien Casagrande's work in examining the once overlooked koniocellular pathway of the lateral geniculate nucleus has generated interest in how alternate subcortical pathways can contribute to visual perception. Another subcortical visual relay center is the inferior pulvinar (PI), which has four subdivisions and numerous connections with other subcortical and cortical areas and is directly recipient of retinal afferents. The complexity of subcortical connections associated with the PI subdivisions has led to differing results from various groups. A particular challenge in determining the exact connectivity pattern has been in accurately targeting the subdivisions of the PI with neural tracers. Therefore, in the present study, we used a magnetic resonance imaging (MRI)-guided stereotaxic injection system to inject bidirectional tracers in the separate subdivisions of the PI, the superior layers of the superior colliculus, the retina, and the lateral geniculate nucleus. Our results have determined for the first time that the medial inferior pulvinar (PIm) is innervated by widefield retinal ganglion cells (RGCs), and this pathway is not a collateral branch of the geniculate and collicular projecting RGCs. Furthermore, our tracing data shows no evidence of collicular terminations in the PIm, which are confined to the centromedial and posterior PI.
Collapse
Affiliation(s)
- William C Kwan
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Inaki-Carril Mundinano
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Mitchell J de Souza
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Sammy C S Lee
- Save Sight Institute and Department of Clinical Ophthalmology, The University of Sydney, Sydney, New South Wales, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, New South Wales, Australia
| | - Paul R Martin
- Save Sight Institute and Department of Clinical Ophthalmology, The University of Sydney, Sydney, New South Wales, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, New South Wales, Australia.,School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Ulrike Grünert
- Save Sight Institute and Department of Clinical Ophthalmology, The University of Sydney, Sydney, New South Wales, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, New South Wales, Australia.,School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
30
|
Chandra AJ, Lee SCS, Grünert U. Thorny ganglion cells in marmoset retina: Morphological and neurochemical characterization with antibodies against calretinin. J Comp Neurol 2017; 525:3962-3974. [PMID: 28875500 DOI: 10.1002/cne.24319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/18/2017] [Accepted: 08/26/2017] [Indexed: 11/06/2022]
Abstract
In primates, over 17 morphological types of retinal ganglion cell have been distinguished by their dendritic morphology and stratification, but reliable markers for specific ganglion cell populations are still rare. The calcium binding protein calretinin is known to be expressed in the inner nuclear and the ganglion cell layer of marmoset retina, however, the specific cell type(s) expressing calretinin in the ganglion cell layer are yet to be determined. Here, we identified calretinin positive retinal ganglion cells in the common marmoset Callithrix jacchus. Double labeling with the ganglion cell marker RBPMS demonstrated that the large majority (80%) of the calretinin positive cells in the ganglion cell layer are ganglion cells, and 20% are displaced amacrine cells. The calretinin positive ganglion cells made up on average 12% of the total ganglion cell population outside of the foveal region and their proportion increased with eccentricity. Prelabeling with antibodies against calretinin and subsequent intracellular injection with DiI revealed that the large majority of the injected cells (n = 74) were either narrow thorny or broad thorny ganglion cells, 14 cells were displaced amacrine cells. Narrow thorny cells were further distinguished into outer and inner stratifying cells. In addition, weakly labeled cells with a large soma were identified as parasol ganglion cells. Our results show that three types of thorny ganglion cells in marmoset retina can be identified with antibodies against calretinin. Our findings are also consistent with the idea that the proportion of wide-field ganglion cell types increases in peripheral retina.
Collapse
Affiliation(s)
- Ashleigh J Chandra
- Department of Clinical Ophthalmology, Save Sight Institute, The University of Sydney, Sydney, New South Wales, 2000, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - Sammy C S Lee
- Department of Clinical Ophthalmology, Save Sight Institute, The University of Sydney, Sydney, New South Wales, 2000, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - Ulrike Grünert
- Department of Clinical Ophthalmology, Save Sight Institute, The University of Sydney, Sydney, New South Wales, 2000, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, New South Wales, 2000, Australia.,Discipline of Anatomy & Histology, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, 2000, Australia
| |
Collapse
|
31
|
Kántor O, Varga A, Nitschke R, Naumann A, Énzsöly A, Lukáts Á, Szabó A, Németh J, Völgyi B. Bipolar cell gap junctions serve major signaling pathways in the human retina. Brain Struct Funct 2017; 222:2603-2624. [PMID: 28070649 DOI: 10.1007/s00429-016-1360-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/22/2016] [Indexed: 11/26/2022]
Abstract
Connexin36 (Cx36) constituent gap junctions (GJ) throughout the brain connect neurons into functional syncytia. In the retina they underlie the transmission, averaging and correlation of signals prior conveying visual information to the brain. This is the first study that describes retinal bipolar cell (BC) GJs in the human inner retina, whose function is enigmatic even in the examined animal models. Furthermore, a number of unique features (e.g. fovea, trichromacy, midget system) necessitate a reexamination of the animal model results in the human retina. Well-preserved postmortem human samples of this study are allowed to identify Cx36 expressing BCs neurochemically. Results reveal that both rod and cone pathway interneurons display strong Cx36 expression. Rod BC inputs to AII amacrine cells (AC) appear in juxtaposition to AII GJs, thus suggesting a strategic AII cell targeting by rod BCs. Cone BCs serving midget, parasol or koniocellular signaling pathways display a wealth of Cx36 expression to form homologously coupled arrays. In addition, they also establish heterologous GJ contacts to serve an exchange of information between parallel signaling streams. Interestingly, a prominent Cx36 expression was exhibited by midget system BCs that appear to maintain intimate contacts with bistratified BCs serving other pathways. These findings suggest that BC GJs in parallel signaling streams serve both an intra- and inter-pathway exchange of signals in the human retina.
Collapse
Affiliation(s)
- Orsolya Kántor
- Department of Neuroanatomy, Faculty of Medicine, Institute for Anatomy and Cell Biology, University of Freiburg, 79104, Freiburg, Germany
- MTA-PTE NAP B Retinal Electrical Synapses Research Group, Pécs, 7624, Hungary
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Alexandra Varga
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Roland Nitschke
- Life Imaging Center, Center for Biological Systems Analysis, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Angela Naumann
- Life Imaging Center, Center for Biological Systems Analysis, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Anna Énzsöly
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
- Department of Ophthalmology, Semmelweis University, Budapest, 1085, Hungary
| | - Ákos Lukáts
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Arnold Szabó
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - János Németh
- Department of Ophthalmology, Semmelweis University, Budapest, 1085, Hungary
| | - Béla Völgyi
- MTA-PTE NAP B Retinal Electrical Synapses Research Group, Pécs, 7624, Hungary.
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, 7624, Hungary.
- János Szentágothai Research Center, University of Pécs, Ifjúság street 20, Pécs, 7624, Hungary.
- Department of Ophthalmology, New York University Langone Medical Center, New York, NY, 10016, USA.
| |
Collapse
|
32
|
Pérez de Sevilla Müller L, Azar SS, de Los Santos J, Brecha NC. Prox1 Is a Marker for AII Amacrine Cells in the Mouse Retina. Front Neuroanat 2017; 11:39. [PMID: 28529477 PMCID: PMC5418924 DOI: 10.3389/fnana.2017.00039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/18/2017] [Indexed: 12/18/2022] Open
Abstract
The transcription factor Prox1 is expressed in multiple cells in the retina during eye development. This study has focused on neuronal Prox1 expression in the inner nuclear layer (INL) of the adult mouse retina. Prox1 immunostaining was evaluated in vertical retinal sections and whole mount preparations using a specific antibody directed to the C-terminus of Prox1. Strong immunostaining was observed in numerous amacrine cell bodies and in all horizontal cell bodies in the proximal and distal INL, respectively. Some bipolar cells were also weakly immunostained. Prox1-immunoreactive amacrine cells expressed glycine, and they formed 35 ± 3% of all glycinergic amacrine cells. Intracellular Neurobiotin injections into AII amacrine cells showed that all gap junction-coupled AII amacrine cells express Prox1, and no other Prox1-immunostained amacrine cells were in the immediate area surrounding the injected AII amacrine cell. Prox1-immunoreactive amacrine cell bodies were distributed across the retina, with their highest density (3887 ± 160 cells/mm2) in the central retina, 0.5 mm from the optic nerve head, and their lowest density (3133 ± 350 cells/mm2) in the mid-peripheral retina, 2 mm from the optic nerve head. Prox1-immunoreactive amacrine cell bodies comprised ~9.8% of the total amacrine cell population, and they formed a non-random mosaic with a regularity index (RI) of 3.4, similar to AII amacrine cells in the retinas of other mammals. Together, these findings indicate that AII amacrine cells are the predominant and likely only amacrine cell type strongly expressing Prox1 in the adult mouse retina, and establish Prox1 as a marker of AII amacrine cells.
Collapse
Affiliation(s)
- Luis Pérez de Sevilla Müller
- Departments of Neurobiology, Medicine and Ophthalmology, David Geffen School of Medicine at Los Angeles, University of California, Los AngelesLos Angeles, CA, USA
| | - Shaghauyegh S Azar
- Departments of Neurobiology, Medicine and Ophthalmology, David Geffen School of Medicine at Los Angeles, University of California, Los AngelesLos Angeles, CA, USA
| | - Janira de Los Santos
- Departments of Neurobiology, Medicine and Ophthalmology, David Geffen School of Medicine at Los Angeles, University of California, Los AngelesLos Angeles, CA, USA
| | - Nicholas C Brecha
- Departments of Neurobiology, Medicine and Ophthalmology, David Geffen School of Medicine at Los Angeles, University of California, Los AngelesLos Angeles, CA, USA.,Stein Eye Institute, David Geffen School of Medicine at Los Angeles, University of California, Los AngelesLos Angeles, CA, USA.,CURE Digestive Diseases Research Center, David Geffen School of Medicine at Los Angeles, University of California, Los AngelesLos Angeles, CA, USA.,Veterans Administration Greater Los Angeles Health SystemLos Angeles, CA, USA
| |
Collapse
|
33
|
Hannibal J, Christiansen AT, Heegaard S, Fahrenkrug J, Kiilgaard JF. Melanopsin expressing human retinal ganglion cells: Subtypes, distribution, and intraretinal connectivity. J Comp Neurol 2017; 525:1934-1961. [PMID: 28160289 DOI: 10.1002/cne.24181] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/15/2022]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin belong to a heterogenic population of RGCs which regulate the circadian clock, masking behavior, melatonin suppression, the pupillary light reflex, and sleep/wake cycles. The different functions seem to be associated to different subtypes of melanopsin cells. In rodents, subtype classification has associated subtypes to function. In primate and human retina such classification has so far, not been applied. In the present study using antibodies against N- and C-terminal parts of human melanopsin, confocal microscopy and 3D reconstruction of melanopsin immunoreactive (-ir) RGCs, we applied the criteria used in mouse on human melanopsin-ir RGCs. We identified M1, displaced M1, M2, and M4 cells. We found two other subtypes of melanopsin-ir RGCs, which were named "gigantic M1 (GM1)" and "gigantic displaced M1 (GDM1)." Few M3 cells and no M5 subtypes were labeled. Total cell counts from one male and one female retina revealed that the human retina contains 7283 ± 237 melanopsin-ir (0.63-0.75% of the total number of RGCs). The melanopsin subtypes were unevenly distributed. Most significant was the highest density of M4 cells in the nasal retina. We identified input to the melanopsin-ir RGCs from AII amacrine cells and directly from rod bipolar cells via ribbon synapses in the innermost ON layer of the inner plexiform layer (IPL) and from dopaminergic amacrine cells and GABAergic processes in the outermost OFF layer of the IPL. The study characterizes a heterogenic population of human melanopsin-ir RGCs, which most likely are involved in different functions.
Collapse
Affiliation(s)
- Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Steffen Heegaard
- Department of Ophalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jan Fahrenkrug
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens Folke Kiilgaard
- Department of Ophalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Nasir-Ahmad S, Lee SCS, Martin PR, Grünert U. Melanopsin-expressing ganglion cells in human retina: Morphology, distribution, and synaptic connections. J Comp Neurol 2017; 527:312-327. [PMID: 28097654 DOI: 10.1002/cne.24176] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 11/05/2022]
Abstract
Melanopsin-expressing retinal ganglion cells are intrinsically photosensitive cells that are involved in non-image forming visual processes such as the pupillary light reflex and circadian entrainment but also contribute to visual perception. Here we used immunohistochemistry to study the morphology, density, distribution, and synaptic connectivity of melanopsin-expressing ganglion cells in four post mortem human donor retinas. Two types of melanopsin-expressing ganglion cells were distinguished based on their dendritic stratification near either the outer or the inner border of the inner plexiform layer. Outer stratifying cells make up on average 60% of the melanopsin-expressing cells. About half of the melanopsin-expressing cells (or 80% of the outer stratifying cells) have their soma displaced to the inner nuclear layer. Inner stratifying cells have their soma exclusively in the ganglion cell layer and include a small proportion of bistratified cells. The dendritic field diameter of melanopsin-expressing cells ranges from 250 (near the fovea) to 1,000 µm in peripheral retina. The dendritic trees of outer stratifying cells cover the retina independent of soma location. The dendritic fields of both outer and inner stratifying cells show a high degree of overlap with a coverage factor of approximately two. Melanopsin-expressing cells occur at an average peak density of between ∼20 and ∼40 cells/mm2 at about 2 mm eccentricity, the density drops to below ∼10 cells/mm2 at about 8 mm eccentricity. Both the outer and inner stratifying dendrites express postsynaptic density (PSD95) immunoreactive puncta suggesting that they receive synaptic input from bipolar cells.
Collapse
Affiliation(s)
- Subha Nasir-Ahmad
- Save Sight Institute and Department of Clinical Ophthalmology, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - Sammy C S Lee
- Save Sight Institute and Department of Clinical Ophthalmology, The University of Sydney, Sydney, New South Wales, 2000, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - Paul R Martin
- Save Sight Institute and Department of Clinical Ophthalmology, The University of Sydney, Sydney, New South Wales, 2000, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, 2000, Australia.,School of Medical Sciences, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - Ulrike Grünert
- Save Sight Institute and Department of Clinical Ophthalmology, The University of Sydney, Sydney, New South Wales, 2000, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, 2000, Australia.,School of Medical Sciences, The University of Sydney, Sydney, New South Wales, 2000, Australia
| |
Collapse
|
35
|
Kovács-Öller T, Debertin G, Balogh M, Ganczer A, Orbán J, Nyitrai M, Balogh L, Kántor O, Völgyi B. Connexin36 Expression in the Mammalian Retina: A Multiple-Species Comparison. Front Cell Neurosci 2017; 11:65. [PMID: 28337128 PMCID: PMC5343066 DOI: 10.3389/fncel.2017.00065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/23/2017] [Indexed: 11/23/2022] Open
Abstract
Much knowledge about interconnection of human retinal neurons is inferred from results on animal models. Likewise, there is a lack of information on human retinal electrical synapses/gap junctions (GJ). Connexin36 (Cx36) forms GJs in both the inner and outer plexiform layers (IPL and OPL) in most species including humans. However, a comparison of Cx36 GJ distribution in retinas of humans and popular animal models has not been presented. To this end a multiple-species comparison was performed in retinas of 12 mammals including humans to survey the Cx36 distribution. Areas of retinal specializations were avoided (e.g., fovea, visual streak, area centralis), thus observed Cx36 distribution differences were not attributed to these species-specific architecture of central retinal areas. Cx36 was expressed in both synaptic layers in all examined retinas. Cx36 plaques displayed an inhomogenous IPL distribution favoring the ON sublamina, however, this feature was more pronounced in the human, swine and guinea pig while it was less obvious in the rabbit, squirrel monkey, and ferret retinas. In contrast to the relative conservative Cx36 distribution in the IPL, the labels in the OPL varied considerably among mammals. In general, OPL plaques were rare and rather small in rod dominant carnivores and rodents, whereas the human and the cone rich guinea pig retinas displayed robust Cx36 labels. This survey presented that the human retina displayed two characteristic features, a pronounced ON dominance of Cx36 plaques in the IPL and prevalent Cx36 plaque conglomerates in the OPL. While many species showed either of these features, only the guinea pig retina shared both. The observed similarities and subtle differences in Cx36 plaque distribution across mammals do not correspond to evolutionary distances but may reflect accomodation to lifestyles of examined species.
Collapse
Affiliation(s)
- Tamás Kovács-Öller
- Department of Experimental Zoology and Neurobiology, University of PécsPécs, Hungary; János Szentágothai Research CenterPécs, Hungary; Retinal Electrical Synapses Research Group, Hungarian Academy of Sciences (MTA-PTE NAP B)Pécs, Hungary
| | - Gábor Debertin
- Department of Experimental Zoology and Neurobiology, University of PécsPécs, Hungary; János Szentágothai Research CenterPécs, Hungary; Retinal Electrical Synapses Research Group, Hungarian Academy of Sciences (MTA-PTE NAP B)Pécs, Hungary
| | - Márton Balogh
- Department of Experimental Zoology and Neurobiology, University of PécsPécs, Hungary; János Szentágothai Research CenterPécs, Hungary; Retinal Electrical Synapses Research Group, Hungarian Academy of Sciences (MTA-PTE NAP B)Pécs, Hungary
| | - Alma Ganczer
- Department of Experimental Zoology and Neurobiology, University of PécsPécs, Hungary; János Szentágothai Research CenterPécs, Hungary; Retinal Electrical Synapses Research Group, Hungarian Academy of Sciences (MTA-PTE NAP B)Pécs, Hungary
| | - József Orbán
- János Szentágothai Research CenterPécs, Hungary; Department of Biophysics, University of PécsPécs, Hungary; High-Field Terahertz Research Group, Hungarian Academy of Sciences (MTA-PTE)Pécs, Hungary
| | - Miklós Nyitrai
- János Szentágothai Research CenterPécs, Hungary; Department of Biophysics, University of PécsPécs, Hungary; Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences (MTA-PTE)Pécs, Hungary
| | - Lajos Balogh
- National Research Institute for Radiobiology and Radiohygiene Budapest, Hungary
| | - Orsolya Kántor
- Retinal Electrical Synapses Research Group, Hungarian Academy of Sciences (MTA-PTE NAP B)Pécs, Hungary; Department of Anatomy, Histology and Embryology, Semmelweis UniversityBudapest, Hungary; Department of Neuroanatomy, Institute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgFreiburg, Germany
| | - Béla Völgyi
- Department of Experimental Zoology and Neurobiology, University of PécsPécs, Hungary; János Szentágothai Research CenterPécs, Hungary; Retinal Electrical Synapses Research Group, Hungarian Academy of Sciences (MTA-PTE NAP B)Pécs, Hungary; Department of Ophthalmology, New York University Langone Medical Center, New YorkNY, USA
| |
Collapse
|
36
|
Esquiva G, Avivi A, Hannibal J. Non-image Forming Light Detection by Melanopsin, Rhodopsin, and Long-Middlewave (L/W) Cone Opsin in the Subterranean Blind Mole Rat, Spalax Ehrenbergi: Immunohistochemical Characterization, Distribution, and Connectivity. Front Neuroanat 2016; 10:61. [PMID: 27375437 PMCID: PMC4899448 DOI: 10.3389/fnana.2016.00061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/24/2016] [Indexed: 01/06/2023] Open
Abstract
The blind mole rat, Spalax ehrenbergi, can, despite severely degenerated eyes covered by fur, entrain to the daily light/dark cycle and adapt to seasonal changes due to an intact circadian timing system. The present study demonstrates that the Spalax retina contains a photoreceptor layer, an outer nuclear layer (ONL), an outer plexiform layer (OPL), an inner nuclear layer (INL), an inner plexiform layer (IPL), and a ganglion cell layer (GCL). By immunohistochemistry, the number of melanopsin (mRGCs) and non-melanopsin bearing retinal ganglion cells was analyzed in detail. Using the ganglion cell marker RNA-binding protein with multiple splicing (RBPMS) it was shown that the Spalax eye contains 890 ± 62 RGCs. Of these, 87% (752 ± 40) contain melanopsin (cell density 788 melanopsin RGCs/mm2). The remaining RGCs were shown to co-store Brn3a and calretinin. The melanopsin cells were located mainly in the GCL with projections forming two dendritic plexuses located in the inner part of the IPL and in the OPL. Few melanopsin dendrites were also found in the ONL. The Spalax retina is rich in rhodopsin and long/middle wave (L/M) cone opsin bearing photoreceptor cells. By using Ctbp2 as a marker for ribbon synapses, both rods and L/M cone ribbons containing pedicles in the OPL were found in close apposition with melanopsin dendrites in the outer plexus suggesting direct synaptic contact. A subset of cone bipolar cells and all photoreceptor cells contain recoverin while a subset of bipolar and amacrine cells contain calretinin. The calretinin expressing amacrine cells seemed to form synaptic contacts with rhodopsin containing photoreceptor cells in the OPL and contacts with melanopsin cell bodies and dendrites in the IPL. The study demonstrates the complex retinal circuitry used by the Spalax to detect light, and provides evidence for both melanopsin and non-melanopsin projecting pathways to the brain.
Collapse
Affiliation(s)
- Gema Esquiva
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of CopenhagenCopenhagen, Denmark; Department of Physiology, Genetics and Microbiology, University of AlicanteAlicante, Spain
| | - Aaron Avivi
- Laboratory of Biology of Subterranean Mammals, Institute of Evolution, University of Haifa Haifa, Israel
| | - Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
37
|
Calcium buffer proteins are specific markers of human retinal neurons. Cell Tissue Res 2016; 365:29-50. [PMID: 26899253 DOI: 10.1007/s00441-016-2376-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 02/04/2016] [Indexed: 10/22/2022]
Abstract
Ca(2+)-buffer proteins (CaBPs) modulate the temporal and spatial characteristics of transient intracellular Ca(2+)-concentration changes in neurons in order to fine-tune the strength and duration of the output signal. CaBPs have been used as neurochemical markers to identify and trace neurons of several brain loci including the mammalian retina. The CaBP content of retinal neurons, however, varies between species and, thus, the results inferred from animal models cannot be utilised directly by clinical ophthalmologists. Moreover, the shortage of well-preserved human samples greatly impedes human retina studies at the cellular and network level. Our purpose has therefore been to examine the distribution of major CaBPs, including calretinin, calbindin-D28, parvalbumin and the recently discovered secretagogin in exceptionally well-preserved human retinal samples. Based on a combination of immunohistochemistry, Neurolucida tracing and Lucifer yellow injections, we have established a database in which the CaBP marker composition can be defined for morphologically identified cell types of the human retina. Hence, we describe the full CaBP make-up for a number of human retinal neurons, including HII horizontal cells, AII amacrine cells, type-1 tyrosine-hydroxylase-expressing amacrine cells and other lesser known neurons. We have also found a number of unidentified cells whose morphology remains to be characterised. We present several examples of the colocalisation of two or three CaBPs with slightly different subcellular distributions in the same cell strongly suggesting a compartment-specific division of labour of Ca(2+)-buffering by CaBPs. Our work thus provides a neurochemical framework for future ophthalmological studies and renders new information concerning the cellular and subcellular distribution of CaBPs for experimental neuroscience.
Collapse
|