1
|
Hawkins SJ, Gärtner Y, Offner T, Weiss L, Maiello G, Hassenklöver T, Manzini I. The olfactory network of larval Xenopus laevis regenerates accurately after olfactory nerve transection. Eur J Neurosci 2024; 60:3719-3741. [PMID: 38758670 DOI: 10.1111/ejn.16375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 05/19/2024]
Abstract
Across vertebrate species, the olfactory epithelium (OE) exhibits the uncommon feature of lifelong neuronal turnover. Epithelial stem cells give rise to new neurons that can adequately replace dying olfactory receptor neurons (ORNs) during developmental and adult phases and after lesions. To relay olfactory information from the environment to the brain, the axons of the renewed ORNs must reconnect with the olfactory bulb (OB). In Xenopus laevis larvae, we have previously shown that this process occurs between 3 and 7 weeks after olfactory nerve (ON) transection. In the present study, we show that after 7 weeks of recovery from ON transection, two functionally and spatially distinct glomerular clusters are reformed in the OB, akin to those found in non-transected larvae. We also show that the same odourant response tuning profiles observed in the OB of non-transected larvae are again present after 7 weeks of recovery. Next, we show that characteristic odour-guided behaviour disappears after ON transection but recovers after 7-9 weeks of recovery. Together, our findings demonstrate that the olfactory system of larval X. laevis regenerates with high accuracy after ON transection, leading to the recovery of odour-guided behaviour.
Collapse
Affiliation(s)
- Sara J Hawkins
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Gießen, Gießen, Germany
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Yvonne Gärtner
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Gießen, Gießen, Germany
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Offner
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Gießen, Gießen, Germany
| | - Lukas Weiss
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Gießen, Gießen, Germany
| | - Guido Maiello
- Department of Experimental Psychology, Justus Liebig University Gießen, Gießen, Germany
- School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Thomas Hassenklöver
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Gießen, Gießen, Germany
| | - Ivan Manzini
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Gießen, Gießen, Germany
| |
Collapse
|
2
|
Hirota J. Molecular mechanisms of differentiation and class choice of olfactory sensory neurons. Genesis 2024; 62:e23587. [PMID: 38454646 DOI: 10.1002/dvg.23587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 03/09/2024]
Abstract
The sense of smell is intricately linked to essential animal behaviors necessary for individual survival and species preservation. During vertebrate evolution, odorant receptors (ORs), responsible for detecting odor molecules, have evolved to adapt to changing environments, transitioning from aquatic to terrestrial habitats and accommodating increasing complex chemical environments. These evolutionary pressures have given rise to the largest gene family in vertebrate genomes. Vertebrate ORs are phylogenetically divided into two major classes; class I and class II. Class I OR genes, initially identified in fish and frog, have persisted across vertebrate species. On the other hand, class II OR genes are unique to terrestrial animals, accounting for ~90% of mammalian OR genes. In mice, each olfactory sensory neuron (OSN) expresses a single functional allele of a single OR gene from either the class I or class II OR repertoire. This one neuron-one receptor rule is established through two sequential steps: specification of OR class and subsequent exclusive OR expression from the corresponding OR class. Consequently, OSNs acquire diverse neuronal identities during the process of OSN differentiation, enabling animals to detect a wide array of odor molecules. This review provides an overview of the OSN differentiation process through which OSN diversity is achieved, primarily using the mouse as a model animal.
Collapse
Affiliation(s)
- Junji Hirota
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Center for Integrative Biosciences, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
3
|
Wilson KM, Arquilla AM, Saltzman W. The parental umwelt: Effects of parenthood on sensory processing in rodents. J Neuroendocrinol 2023; 35:e13237. [PMID: 36792373 DOI: 10.1111/jne.13237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
An animal's umwelt, comprising its perception of the sensory environment, which is inherently subjective, can change across the lifespan in accordance with major life events. In mammals, the onset of motherhood, in particular, is associated with a neural and sensory plasticity that alters a mother's detection and use of sensory information such as infant-related sensory stimuli. Although the literature surrounding mammalian mothers is well established, very few studies have addressed the effects of parenthood on sensory plasticity in mammalian fathers. In this review, we summarize the major findings on the effects of parenthood on behavioural and neural responses to sensory stimuli from pups in rodent mothers, with a focus on the olfactory, auditory, and somatosensory systems, as well as multisensory integration. We also review the available literature on sensory plasticity in rodent fathers. Finally, we discuss the importance of sensory plasticity for effective parental care, hormonal modulation of plasticity, and an exploration of temporal, ecological, and life-history considerations of sensory plasticity associated with parenthood. The changes in processing and/or perception of sensory stimuli associated with the onset of parental care may have both transient and long-lasting effects on parental behaviour and cognition in both mothers and fathers; as such, several promising areas of study, such as on the molecular/genetic, neurochemical, and experiential underpinnings of parenthood-related sensory plasticity, as well as determinants of interspecific variation, remain potential avenues for further exploration.
Collapse
Affiliation(s)
- Kerianne M Wilson
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
- Department of Biology, Pomona College, Claremont, CA, USA
| | - April M Arquilla
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
- Neuroscience Graduate Program, University of California, Riverside, CA, USA
| |
Collapse
|
4
|
Humphries JE, Lanctôt CM, Robert J, McCallum HI, Newell DA, Grogan LF. Do immune system changes at metamorphosis predict vulnerability to chytridiomycosis? An update. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104510. [PMID: 35985564 DOI: 10.1016/j.dci.2022.104510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/20/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Amphibians are among the vertebrate groups suffering great losses of biodiversity due to a variety of causes including diseases, such as chytridiomycosis (caused by the fungal pathogens Batrachochytrium dendrobatidis and B. salamandrivorans). The amphibian metamorphic period has been identified as being particularly vulnerable to chytridiomycosis, with dramatic physiological and immunological reorganisation likely contributing to this vulnerability. Here, we overview the processes behind these changes at metamorphosis and then perform a systematic literature review to capture the breadth of empirical research performed over the last two decades on the metamorphic immune response. We found that few studies focused specifically on the immune response during the peri-metamorphic stages of amphibian development and fewer still on the implications of their findings with respect to chytridiomycosis. We recommend future studies consider components of the immune system that are currently under-represented in the literature on amphibian metamorphosis, particularly pathogen recognition pathways. Although logistically challenging, we suggest varying the timing of exposure to Bd across metamorphosis to examine the relative importance of pathogen evasion, suppression or dysregulation of the immune system. We also suggest elucidating the underlying mechanisms of the increased susceptibility to chytridiomycosis at metamorphosis and the associated implications for population persistence. For species that overlap a distribution where Bd/Bsal are now endemic, we recommend a greater focus on management strategies that consider the important peri-metamorphic period.
Collapse
Affiliation(s)
- Josephine E Humphries
- School of Environment and Science, Griffith University, Southport, Queensland, 4222, Australia; Centre for Planetary Health and Food Security, Griffith University, Southport, Queensland, 4222, Australia; Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, 2480, Australia.
| | - Chantal M Lanctôt
- School of Environment and Science, Griffith University, Southport, Queensland, 4222, Australia; Australian Rivers Institute, Griffith University, Southport, Queensland, 4222, Australia
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, 14642, Rochester, NY, United States
| | - Hamish I McCallum
- School of Environment and Science, Griffith University, Southport, Queensland, 4222, Australia; Centre for Planetary Health and Food Security, Griffith University, Southport, Queensland, 4222, Australia
| | - David A Newell
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, 2480, Australia
| | - Laura F Grogan
- School of Environment and Science, Griffith University, Southport, Queensland, 4222, Australia; Centre for Planetary Health and Food Security, Griffith University, Southport, Queensland, 4222, Australia
| |
Collapse
|
5
|
Weiss L, Segoviano Arias P, Offner T, Hawkins SJ, Hassenklöver T, Manzini I. Distinct interhemispheric connectivity at the level of the olfactory bulb emerges during Xenopus laevis metamorphosis. Cell Tissue Res 2021; 386:491-511. [PMID: 34580751 PMCID: PMC8595194 DOI: 10.1007/s00441-021-03527-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022]
Abstract
During metamorphosis, the olfactory system of anuran tadpoles undergoes substantial restructuring. The main olfactory epithelium in the principal nasal cavity of Xenopus laevis tadpoles is associated with aquatic olfaction and transformed into the adult air-nose, while a new adult water-nose emerges in the middle cavity. Impacts of this metamorphic remodeling on odor processing, behavior, and network structure are still unexplored. Here, we used neuronal tracings, calcium imaging, and behavioral experiments to examine the functional connectivity between the epithelium and the main olfactory bulb during metamorphosis. In tadpoles, olfactory receptor neurons in the principal cavity project axons to glomeruli in the ventral main olfactory bulb. These projections are gradually replaced by receptor neuron axons from the newly forming middle cavity epithelium. Despite this reorganization in the ventral bulb, two spatially segregated odor processing streams remain undisrupted and behavioral responses to waterborne odorants are unchanged. Contemporaneously, new receptor neurons in the remodeling principal cavity innervate the emerging dorsal part of the bulb, which displays distinct wiring features. Glomeruli around its midline are innervated from the left and right nasal epithelia. Additionally, postsynaptic projection neurons in the dorsal bulb predominantly connect to multiple glomeruli, while half of projection neurons in the ventral bulb are uni-glomerular. Our results show that the "water system" remains functional despite metamorphic reconstruction. The network differences between the dorsal and ventral olfactory bulb imply a higher degree of odor integration in the dorsal main olfactory bulb. This is possibly connected with the processing of different odorants, airborne vs. waterborne.
Collapse
Affiliation(s)
- Lukas Weiss
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, 35392, Giessen, Germany.
| | - Paola Segoviano Arias
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, 35392, Giessen, Germany
- Max Planck Research Unit for Neurogenetics, 60438, Frankfurt, Germany
| | - Thomas Offner
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Sara Joy Hawkins
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Thomas Hassenklöver
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Ivan Manzini
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| |
Collapse
|
6
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
7
|
Tirindelli R. Coding of pheromones by vomeronasal receptors. Cell Tissue Res 2021; 383:367-386. [PMID: 33433690 DOI: 10.1007/s00441-020-03376-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/02/2020] [Indexed: 01/11/2023]
Abstract
Communication between individuals is critical for species survival, reproduction, and expansion. Most terrestrial species, with the exception of humans who predominantly use vision and phonation to create their social network, rely on the detection and decoding of olfactory signals, which are widely known as pheromones. These chemosensory cues originate from bodily fluids, causing attractive or avoidance behaviors in subjects of the same species. Intraspecific pheromone signaling is then crucial to identify sex, social ranking, individuality, and health status, thus establishing hierarchies and finalizing the most efficient reproductive strategies. Indeed, all these features require fine tuning of the olfactory systems to detect molecules containing this information. To cope with this complexity of signals, tetrapods have developed dedicated olfactory subsystems that refer to distinct peripheral sensory detectors, called the main olfactory and the vomeronasal organ, and two minor structures, namely the septal organ of Masera and the Grueneberg ganglion. Among these, the vomeronasal organ plays the most remarkable role in pheromone coding by mediating several behavioral outcomes that are critical for species conservation and amplification. In rodents, this organ is organized into two segregated neuronal subsets that express different receptor families. To some extent, this dichotomic organization is preserved in higher projection areas of the central nervous system, suggesting, at first glance, distinct functions for these two neuronal pathways. Here, I will specifically focus on this issue and discuss the role of vomeronasal receptors in mediating important innate behavioral effects through the recognition of pheromones and other biological chemosignals.
Collapse
Affiliation(s)
- Roberto Tirindelli
- Department of Medicine and Surgery, University of Parma, Via Volturno, 39, 43125, Parma, Italy.
| |
Collapse
|
8
|
Weiss L, Manzini I, Hassenklöver T. Olfaction across the water-air interface in anuran amphibians. Cell Tissue Res 2021; 383:301-325. [PMID: 33496878 PMCID: PMC7873119 DOI: 10.1007/s00441-020-03377-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Abstract
Extant anuran amphibians originate from an evolutionary intersection eventually leading to fully terrestrial tetrapods. In many ways, they have to deal with exposure to both terrestrial and aquatic environments: (i) phylogenetically, as derivatives of the first tetrapod group that conquered the terrestrial environment in evolution; (ii) ontogenetically, with a development that includes aquatic and terrestrial stages connected via metamorphic remodeling; and (iii) individually, with common changes in habitat during the life cycle. Our knowledge about the structural organization and function of the amphibian olfactory system and its relevance still lags behind findings on mammals. It is a formidable challenge to reveal underlying general principles of circuity-related, cellular, and molecular properties that are beneficial for an optimized sense of smell in water and air. Recent findings in structural organization coupled with behavioral observations could help to understand the importance of the sense of smell in this evolutionarily important animal group. We describe the structure of the peripheral olfactory organ, the olfactory bulb, and higher olfactory centers on a tissue, cellular, and molecular levels. Differences and similarities between the olfactory systems of anurans and other vertebrates are reviewed. Special emphasis lies on adaptations that are connected to the distinct demands of olfaction in water and air environment. These particular adaptations are discussed in light of evolutionary trends, ontogenetic development, and ecological demands.
Collapse
Affiliation(s)
- Lukas Weiss
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 38, 35392, Giessen, Germany
| | - Ivan Manzini
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 38, 35392, Giessen, Germany
| | - Thomas Hassenklöver
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 38, 35392, Giessen, Germany.
| |
Collapse
|
9
|
Olfactory subsystems in the peripheral olfactory organ of anuran amphibians. Cell Tissue Res 2020; 383:289-299. [PMID: 33247771 DOI: 10.1007/s00441-020-03330-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/27/2020] [Indexed: 10/22/2022]
Abstract
Anuran amphibians (frogs and toads) typically have a complex life cycle, involving aquatic larvae that metamorphose to semi-terrestrial juveniles and adults. However, the anuran olfactory system is best known in Xenopus laevis, an animal with secondarily aquatic adults. The larval olfactory organ contains two distinct sensory epithelia: the olfactory epithelium (OE) and vomeronasal organ (VNO). The adult organ contains three: the OE, the VNO, and a "middle cavity" epithelium (MCE), each in its own chamber. The sensory epithelia of Xenopus larvae have overlapping sensory neuron morphology (ciliated or microvillus) and olfactory receptor gene expression. The MCE of adults closely resembles the OE of larvae, and senses waterborne odorants; the adult OE is distinct and senses airborne odorants. Olfactory subsystems in other (non-pipid) anurans are diverse. Many anuran larvae show a patch of olfactory epithelium exposed in the buccal cavity (bOE), associated with a grazing feeding mode. And other anuran adults do not have a sensory MCE, but many have a distinct patch of epithelium adjacent to the OE, the recessus olfactorius (RO), which senses waterborne odorants. Olfaction plays a wide variety of roles in the life of larval and adult anurans, and some progress has been made in identifying relevant odorants, including pheromones and feeding cues. Increased knowledge of the diversity of olfactory structure, of odorant receptor expression patterns, and of factors that affect the access of odorants to sensory epithelia will enable us to better understand the adaptation of the anuran olfactory system to aquatic and terrestrial environments.
Collapse
|
10
|
Heerema J, Bogart S, Helbing C, Pyle G. Olfactory epithelium ontogenesis and function in postembryonic North American Bullfrog (Rana (Lithobates) catesbeiana) tadpoles. CAN J ZOOL 2020. [DOI: 10.1139/cjz-2019-0213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During metamorphosis, the olfactory system remodelling in anuran tadpoles — to transition from detecting waterborne odorants to volatile odorants as frogs — is extensive. How the olfactory system transitions from the larval to frog form is poorly understood, particularly in species that become (semi-)terrestrial. We investigated the ontogeny and function of the olfactory epithelium of North American Bullfrog (Rana (Lithobates) catesbeiana Shaw, 1802) tadpoles at various stages of postembryonic development. Changes in sensory components observable at the epithelial surface were examined by scanning electron microscopy. Functionality of the developing epithelium was tested using a neurophysiological technique (electro-olfactography (EOG)), and behaviourally, using a choice maze to assess tadpole response to olfactory stimuli (algae extract, amino acids). The youngest (premetamorphic) tadpoles responded behaviourally to an amino acid mixture despite having underdeveloped olfactory structures (cilia, olfactory knobs) and no EOG response. The consistent appearance of olfactory structures in older (prometamorphic) tadpoles coincided with reliably obtaining EOG responses to olfactory stimuli. However, as tadpoles aged further, and despite indistinguishable differences in sensory components, behavioural- and EOG-based olfactory responses were drastically reduced, most strongly near metamorphic climax. This work demonstrates a more complex relationship between structure and function of the olfactory system during tadpole life history than originally thought.
Collapse
Affiliation(s)
- J.L. Heerema
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - S.J. Bogart
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - C.C. Helbing
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, Station CSC, Victoria, BC V8W 2Y2, Canada
| | - G.G. Pyle
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
11
|
Kishida T, Go Y, Tatsumoto S, Tatsumi K, Kuraku S, Toda M. Loss of olfaction in sea snakes provides new perspectives on the aquatic adaptation of amniotes. Proc Biol Sci 2019; 286:20191828. [PMID: 31506057 DOI: 10.1098/rspb.2019.1828] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Marine amniotes, a polyphyletic group, provide an excellent opportunity for studying convergent evolution. Their sense of smell tends to degenerate, but this process has not been explored by comparing fully aquatic species with their amphibious relatives in an evolutionary context. Here, we sequenced the genomes of fully aquatic and amphibious sea snakes and identified repertoires of chemosensory receptor genes involved in olfaction. Snakes possess large numbers of the olfactory receptor (OR) genes and the type-2 vomeronasal receptor (V2R) genes, and expression profiling in the olfactory tissues suggests that snakes use the ORs in the main olfactory system (MOS) and the V2Rs in the vomeronasal system (VNS). The number of OR genes has decreased in sea snakes, and fully aquatic species lost MOS which is responsible for detecting airborne odours. By contrast, sea snakes including fully aquatic species retain a number of V2R genes and a well-developed VNS for smelling underwater. This study suggests that the sense of smell also degenerated in sea snakes, particularly in fully aquatic species, but their residual olfactory capability is distinct from that of other fully aquatic amniotes. Amphibious species show an intermediate status between terrestrial and fully aquatic snakes, implying their importance in understanding the process of aquatic adaptation.
Collapse
Affiliation(s)
- Takushi Kishida
- Wildlife Research Center, Kyoto University, 2-24 Tanaka Sekiden-cho, Sakyo, Kyoto 606-8203, Japan
| | - Yasuhiro Go
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan.,National Institute for Physiological Science, Okazaki, Aichi 444-8585, Japan
| | - Shoji Tatsumoto
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan.,National Institute for Physiological Science, Okazaki, Aichi 444-8585, Japan
| | - Kaori Tatsumi
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Shigehiro Kuraku
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Mamoru Toda
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
12
|
Enomoto T, Nishida H, Iwata T, Fujita A, Nakayama K, Kashiwagi T, Hatanaka Y, Kondo H, Kajitani R, Itoh T, Ohmoto M, Matsumoto I, Hirota J. Bcl11b controls odorant receptor class choice in mice. Commun Biol 2019; 2:296. [PMID: 31396576 PMCID: PMC6685970 DOI: 10.1038/s42003-019-0536-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 07/09/2019] [Indexed: 11/24/2022] Open
Abstract
Each olfactory sensory neuron (OSN) expresses a single odorant receptor (OR) gene from the class I or class II repertoire in mice. The mechanisms that regulate OR class choice in OSNs remain unknown. Here, we show that the transcription factor Bcl11b determines the OR class to be expressed in OSNs. Both loss- and gain-of-function analyses demonstrate that class I is a default fate of OSNs and that Bcl11b dictates a class II OR choice by suppressing the effect of the J-element, a class I-OR enhancer. We further demonstrate that OSN-specific genetic manipulations of Bcl11b bias the OR class choice, generating mice with "class I-dominant" and "class II-dominant" noses, which display contrasting innate olfactory behaviors to two distinct aversive odorants. Overall, these findings reveal a unique transcriptional mechanism mediating a binary switch for OR class choice that is crucial to both the anatomical and functional organization of the olfactory system.
Collapse
Affiliation(s)
- Takayuki Enomoto
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Hidefumi Nishida
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Tetsuo Iwata
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Akito Fujita
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Kanako Nakayama
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Takahiro Kashiwagi
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Yasue Hatanaka
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Hiro Kondo
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Rei Kajitani
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Takehiko Itoh
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Makoto Ohmoto
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
- Monell Chemical Senses Center, Philadelphia, PA 19104 USA
| | | | - Junji Hirota
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| |
Collapse
|
13
|
Pinet K, McLaughlin KA. Mechanisms of physiological tissue remodeling in animals: Manipulating tissue, organ, and organism morphology. Dev Biol 2019; 451:134-145. [DOI: 10.1016/j.ydbio.2019.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/21/2022]
|
14
|
Cordeiro IR, Kabashima K, Ochi H, Munakata K, Nishimori C, Laslo M, Hanken J, Tanaka M. Environmental Oxygen Exposure Allows for the Evolution of Interdigital Cell Death in Limb Patterning. Dev Cell 2019; 50:155-166.e4. [PMID: 31204171 DOI: 10.1016/j.devcel.2019.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/01/2019] [Accepted: 05/10/2019] [Indexed: 01/04/2023]
Abstract
Amphibians form fingers without webbing by differential growth between digital and interdigital regions. Amniotes, however, employ interdigital cell death (ICD), an additional mechanism that contributes to a greater variation of limb shapes. Here, we investigate the role of environmental oxygen in the evolution of ICD in tetrapods. While cell death is restricted to the limb margin in amphibians with aquatic tadpoles, Eleutherodactylus coqui, a frog with terrestrial-direct-developing eggs, has cell death in the interdigital region. Chicken requires sufficient oxygen and reactive oxygen species to induce cell death, with the oxygen tension profile itself being distinct between the limbs of chicken and Xenopus laevis frogs. Notably, increasing blood vessel density in X. laevis limbs, as well as incubating tadpoles under high oxygen levels, induces ICD. We propose that the oxygen available to terrestrial eggs was an ecological feature crucial for the evolution of ICD, made possible by conserved autopod-patterning mechanisms.
Collapse
Affiliation(s)
- Ingrid Rosenburg Cordeiro
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Kaori Kabashima
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, Yamagata 990-9585, Japan
| | - Keijiro Munakata
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Chika Nishimori
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Mara Laslo
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - James Hanken
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Mikiko Tanaka
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
15
|
Heerema JL, Jackman KW, Miliano RC, Li L, Zaborniak TSM, Veldhoen N, van Aggelen G, Parker WJ, Pyle GG, Helbing CC. Behavioral and molecular analyses of olfaction-mediated avoidance responses of Rana (Lithobates) catesbeiana tadpoles: Sensitivity to thyroid hormones, estrogen, and treated municipal wastewater effluent. Horm Behav 2018; 101:85-93. [PMID: 28964734 DOI: 10.1016/j.yhbeh.2017.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
Abstract
Olfaction is critical for survival, facilitating predator avoidance and food location. The nature of the olfactory system changes during amphibian metamorphosis as the aquatic herbivorous tadpole transitions to a terrestrial, carnivorous frog. Metamorphosis is principally dependent on the action of thyroid hormones (THs), l-thyroxine (T4) and 3,5,3'-triiodothyronine (T3), yet little is known about their influence on olfaction during this phase of postembryonic development. We exposed Taylor Kollros stage I-XIII Rana (Lithobates) catesbeiana tadpoles to physiological concentrations of T4, T3, or 17-beta-estradiol (E2) for 48h and evaluated a predator cue avoidance response. The avoidance response in T3-exposed tadpoles was abolished while T4- or E2-exposed tadpoles were unaffected compared to control tadpoles. qPCR analyses on classic TH-response gene transcripts (thra, thrb, and thibz) in the olfactory epithelium demonstrated that, while both THs produced molecular responses, T3 elicited greater responses than T4. Municipal wastewater feed stock was spiked with a defined pharmaceutical and personal care product (PPCP) cocktail and treated with an anaerobic membrane bioreactor (AnMBR). Despite substantially reduced PPCP levels, exposure to this effluent abolished avoidance behavior relative to AnMBR effluent whose feed stock was spiked with vehicle. Thibz transcript levels increased upon exposure to either effluent indicating TH mimic activity. The present work is the first to demonstrate differential TH responsiveness of the frog tadpole olfactory system with both behavioral and molecular alterations. A systems-based analysis is warranted to further elucidate the mechanism of action on the olfactory epithelium and identify further molecular bioindicators linked to behavioral response disruption.
Collapse
Affiliation(s)
- Jody L Heerema
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Kevin W Jackman
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Rachel C Miliano
- Environment Canada, Pacific Environmental Science Centre, 2645 Dollarton Highway, North Vancouver, British Columbia V7H 1V2, Canada
| | - Linda Li
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Tristan S M Zaborniak
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nik Veldhoen
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Graham van Aggelen
- Environment Canada, Pacific Environmental Science Centre, 2645 Dollarton Highway, North Vancouver, British Columbia V7H 1V2, Canada
| | - Wayne J Parker
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Gregory G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Caren C Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.
| |
Collapse
|
16
|
Abstract
Steroids play vital roles in animal physiology across species, and the production of specific steroids is associated with particular internal biological functions. The internal functions of steroids are, in most cases, quite clear. However, an important feature of many steroids (their chemical stability) allows these molecules to play secondary, external roles as chemical messengers after their excretion via urine, feces, or other shed substances. The presence of steroids in animal excretions has long been appreciated, but their capacity to serve as chemosignals has not received as much attention. In theory, the blend of steroids excreted by an animal contains a readout of its own biological state. Initial mechanistic evidence for external steroid chemosensation arose from studies of many species of fish. In sea lampreys and ray-finned fishes, bile salts were identified as potent olfactory cues and later found to serve as pheromones. Recently, we and others have discovered that neurons in amphibian and mammalian olfactory systems are also highly sensitive to excreted glucocorticoids, sex steroids, and bile acids, and some of these molecules have been confirmed as mammalian pheromones. Steroid chemosensation in olfactory systems, unlike steroid detection in most tissues, is performed by plasma membrane receptors, but the details remain largely unclear. In this review, we present a broad view of steroid detection by vertebrate olfactory systems, focusing on recent research in fishes, amphibians, and mammals. We review confirmed and hypothesized mechanisms of steroid chemosensation in each group and discuss potential impacts on vertebrate social communication.
Collapse
|
17
|
Hawkins SJ, Weiss L, Offner T, Dittrich K, Hassenklöver T, Manzini I. Functional Reintegration of Sensory Neurons and Transitional Dendritic Reduction of Mitral/Tufted Cells during Injury-Induced Recovery of the Larval Xenopus Olfactory Circuit. Front Cell Neurosci 2017; 11:380. [PMID: 29234276 PMCID: PMC5712363 DOI: 10.3389/fncel.2017.00380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/13/2017] [Indexed: 01/08/2023] Open
Abstract
Understanding the mechanisms involved in maintaining lifelong neurogenesis has a clear biological and clinical interest. In the present study, we performed olfactory nerve transection on larval Xenopus to induce severe damage to the olfactory circuitry. We surveyed the timing of the degeneration, subsequent rewiring and functional regeneration of the olfactory system following injury. A range of structural labeling techniques and functional calcium imaging were performed on both tissue slices and whole brain preparations. Cell death of olfactory receptor neurons and proliferation of stem cells in the olfactory epithelium were immediately increased following lesion. New olfactory receptor neurons repopulated the olfactory epithelium and once again showed functional responses to natural odorants within 1 week after transection. Reinnervation of the olfactory bulb (OB) by newly formed olfactory receptor neuron axons also began at this time. Additionally, we observed a temporary increase in cell death in the OB and a subsequent loss in OB volume. Mitral/tufted cells, the second order neurons of the olfactory system, largely survived, but transiently lost dendritic tuft complexity. The first odorant-induced responses in the OB were observed 3 weeks after nerve transection and the olfactory network showed signs of major recovery, both structurally and functionally, after 7 weeks.
Collapse
Affiliation(s)
- Sara J Hawkins
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Germany
| | - Lukas Weiss
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Germany
| | - Thomas Offner
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Katarina Dittrich
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Germany
| | - Thomas Hassenklöver
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Ivan Manzini
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| |
Collapse
|
18
|
Quinzio SI, Reiss JO. The ontogeny of the olfactory system in ceratophryid frogs (Anura, Ceratophryidae). J Morphol 2017; 279:37-49. [DOI: 10.1002/jmor.20751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/20/2017] [Accepted: 08/10/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Silvia I. Quinzio
- Instituto de Bio y GeoCiencias del NOA (IBIGEO), Centro Científico Tecnológico CONICET ̶ Salta. 9 de Julio 14. 4405. Rosario de Lerma; Salta Argentina
| | - John O. Reiss
- Department of Biological Sciences; Humboldt State University; Arcata California
| |
Collapse
|
19
|
Syed AS, Sansone A, Hassenklöver T, Manzini I, Korsching SI. Coordinated shift of olfactory amino acid responses and V2R expression to an amphibian water nose during metamorphosis. Cell Mol Life Sci 2017; 74:1711-1719. [PMID: 27990576 PMCID: PMC11107701 DOI: 10.1007/s00018-016-2437-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/13/2016] [Accepted: 12/08/2016] [Indexed: 11/28/2022]
Abstract
All olfactory receptors identified in teleost fish are expressed in a single sensory surface, whereas mammalian olfactory receptor gene families segregate into different olfactory organs, chief among them the main olfactory epithelium expressing ORs and TAARs, and the vomeronasal organ expressing V1Rs and V2Rs. A transitional stage is embodied by amphibians, with their vomeronasal organ expressing more 'modern', later diverging V2Rs, whereas more 'ancient', earlier diverging V2Rs are expressed in the main olfactory epithelium. During metamorphosis, the main olfactory epithelium of Xenopus tadpoles transforms into an air-filled cavity (principal cavity, air nose), whereas a newly formed cavity (middle cavity) takes over the function of a water nose. We report here that larval expression of ancient V2Rs is gradually lost from the main olfactory epithelium as it transforms into the air nose. Concomitantly, ancient v2r gene expression begins to appear in the basal layers of the newly forming water nose. We observe the same transition for responses to amino acid odorants, consistent with the hypothesis that amino acid responses may be mediated by V2R receptors.
Collapse
Affiliation(s)
- Adnan S Syed
- Institute of Genetics, Biocenter, University of Cologne, Zülpicher Strasse 47a, 50674, Cologne, Germany
| | - Alfredo Sansone
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Thomas Hassenklöver
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
- Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 38, 35392, Gießen, Germany
| | - Ivan Manzini
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
- Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 38, 35392, Gießen, Germany
| | - Sigrun I Korsching
- Institute of Genetics, Biocenter, University of Cologne, Zülpicher Strasse 47a, 50674, Cologne, Germany.
| |
Collapse
|
20
|
Sansone A, Hassenklöver T, Offner T, Fu X, Holy TE, Manzini I. Dual processing of sulfated steroids in the olfactory system of an anuran amphibian. Front Cell Neurosci 2015; 9:373. [PMID: 26441543 PMCID: PMC4585043 DOI: 10.3389/fncel.2015.00373] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/07/2015] [Indexed: 11/14/2022] Open
Abstract
Chemical communication is widespread in amphibians, but if compared to later diverging tetrapods the available functional data is limited. The existing information on the vomeronasal system of anurans is particularly sparse. Amphibians represent a transitional stage in the evolution of the olfactory system. Most species have anatomically separated main and vomeronasal systems, but recent studies have shown that in anurans their molecular separation is still underway. Sulfated steroids function as migratory pheromones in lamprey and have recently been identified as natural vomeronasal stimuli in rodents. Here we identified sulfated steroids as the first known class of vomeronasal stimuli in the amphibian Xenopus laevis. We show that sulfated steroids are detected and concurrently processed by the two distinct olfactory subsystems of larval Xenopus laevis, the main olfactory system and the vomeronasal system. Our data revealed a similar but partially different processing of steroid-induced responses in the two systems. Differences of detection thresholds suggest that the two information channels are not just redundant, but rather signal different information. Furthermore, we found that larval and adult animals excrete multiple sulfated compounds with physical properties consistent with sulfated steroids. Breeding tadpole and frog water including these compounds activated a large subset of sensory neurons that also responded to synthetic steroids, showing that sulfated steroids are likely to convey intraspecific information. Our findings indicate that sulfated steroids are conserved vomeronasal stimuli functioning in phylogenetically distant classes of tetrapods living in aquatic and terrestrial habitats.
Collapse
Affiliation(s)
- Alfredo Sansone
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen Göttingen, Germany ; Center for Nanoscale Microscopy and Molecular Physiology of the Brain Göttingen, Germany
| | - Thomas Hassenklöver
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen Göttingen, Germany ; Center for Nanoscale Microscopy and Molecular Physiology of the Brain Göttingen, Germany
| | - Thomas Offner
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen Göttingen, Germany ; Center for Nanoscale Microscopy and Molecular Physiology of the Brain Göttingen, Germany
| | - Xiaoyan Fu
- Department of Anatomy and Neurobiology, Washington University School of Medicine St. Louis, MO, USA
| | - Timothy E Holy
- Department of Anatomy and Neurobiology, Washington University School of Medicine St. Louis, MO, USA
| | - Ivan Manzini
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen Göttingen, Germany ; Center for Nanoscale Microscopy and Molecular Physiology of the Brain Göttingen, Germany
| |
Collapse
|