1
|
Mazengenya P, Manger PR. Nuclear parcellation of pontine catecholaminergic and cholinergic neurons in gray parrots and pied crow brains. Anat Rec (Hoboken) 2024. [PMID: 39440441 DOI: 10.1002/ar.25593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Employing immunohistochemical procedures with antibodies raised against tyrosine hydroxylase (TH) and choline acetyltransferase we identified and mapped the locus coeruleus complex (LoC) and the pontine laterodorsal tegmental (LDT) and pedunculopontine tegmental (PPN) cholinergic nuclei in the brains of a Congo gray parrot, a timneh gray parrot, and a pied crow. The LoC and LDT/PPN are centrally involved in the regulation and generation of different sleep states, and as all birds studied to date show both REM and non-REM sleep states, like mammals, we investigated whether these noradrenergic and cholinergic nuclei in the avian pons shared anatomical features with those in the mammalian pons. The LoC was parcellated into 3 distinct nuclei, including the locus coeruleus (A6), subcoeruleus (A7), and the fifth arcuate nucleus (A5), while distinct LDT and PPN nuclei were revealed. Several similarities that allow the assumption of homology of these nuclei between birds and mammals were revealed, including their location relative to each other and other structures within the pontine region, as well as a specific degree of topographical overlap of the noradrenergic and cholinergic neurons. Despite this, some differences were noted that may be of interest in understanding the differences in sleep between birds and mammals. Further anatomical and physiological studies are needed to determine whether these pontine nuclei in birds play the same role as in mammals, as while the homology is apparent, the functional analogy needs to be revealed.
Collapse
Affiliation(s)
- Pedzisai Mazengenya
- College of Medicine, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
2
|
Zhang N, Zhang Y. Correlation between gyral size, brain size, and head impact risk across mammalian species. Brain Res 2024; 1828:148768. [PMID: 38244756 DOI: 10.1016/j.brainres.2024.148768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
A study on primates has established that gyral size is largely independent of overall brain size. Building on this-and other research suggesting that brain gyrification may mitigate the effects of head impacts-our study aims to explore potential correlations between gyral size and the risk of head impact across a diverse range of mammalian species. Our findings corroborate the idea that gyral sizes are largely independent of brain sizes, especially among species with larger brains, thus extending this observation beyond primates. Preliminary evidence also suggests a correlation between an animal's gyral size and its lifestyle, particularly in terms of head-impact risk. For instance, goats, known for their headbutting behaviors, exhibit smaller gyral sizes. In contrast, species such as manatees and dugongs, which typically face lower risks of head impact, have lissencephalic brains. Additionally, we explore mechanisms that may explain how narrower gyral sizes could offer protective advantages against head impact. Finally, we discuss a possible trade-off associated with gyrencephaly.
Collapse
Affiliation(s)
- Nianqin Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yongjun Zhang
- Science College, Liaoning Technical University, Fuxin 123000, China.
| |
Collapse
|
3
|
Malungo IB, Mokale R, Bertelsen MF, Manger PR. Cholinergic, catecholaminergic, serotonergic, and orexinergic neuronal populations in the brain of the lesser hedgehog tenrec (Echinops telfairi). Anat Rec (Hoboken) 2023; 306:844-878. [PMID: 36179372 DOI: 10.1002/ar.25092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
Abstract
The current study provides an analysis of the cholinergic, catecholaminergic, serotonergic, and orexinergic neuronal populations, or nuclei, in the brain of the lesser hedgehog tenrec, as revealed with immunohistochemical techniques. For all four of these neuromodulatory systems, the nuclear organization was very similar to that observed in other Afrotherian species and is broadly similar to that observed in other mammals. The cholinergic system shows the most variation, with the lesser hedgehog tenrec exhibiting palely immunopositive cholinergic neurons in the ventral portion of the lateral septal nucleus, and the possible absence of cholinergic neurons in the parabigeminal nucleus and the medullary tegmental field. The nuclear complement of the catecholaminergic, serotonergic and orexinergic systems showed no specific variances in the lesser hedgehog tenrec when compared to other Afrotherians, or broadly with other mammals. A striking feature of the lesser hedgehog tenrec brain is a significant mesencephalic flexure that is observed in most members of the Tenrecoidea, as well as the closely related Chrysochlorinae (golden moles), but is not present in the greater otter shrew, a species of the Potomogalidae lineage currently incorporated into the Tenrecoidea. In addition, the cholinergic neurons of the ventral portion of the lateral septal nucleus are observed in the golden moles, but not in the greater otter shrew. This indicates that either complex parallel evolution of these features occurred in the Tenrecoidea and Chrysochlorinae lineages, or that the placement of the Potomogalidae within the Tenrecoidea needs to be re-examined.
Collapse
Affiliation(s)
- Illke B Malungo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Reabetswe Mokale
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
4
|
Oddes D, Ngwenya A, Malungo IB, Burkevica A, Hård T, Bertelsen MF, Spocter MA, Scantlebury DM, Manger PR. Orexinergic neurons in the hypothalami of an Asiatic lion, an African lion, and a Southeast African cheetah. J Comp Neurol 2022; 531:366-389. [PMID: 36354959 PMCID: PMC10099269 DOI: 10.1002/cne.25431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/12/2022]
Abstract
Employing orexin-A immunohistochemistry, we describe the distribution, morphology, and nuclear parcellation of orexinergic neurons within the hypothalami of an Asiatic lion (Panthera leo subsp. persica), an African lion (Panthera leo subsp. melanochaita), and a Southeast African cheetah (Acinonyx jubatus subsp. jubatus). In all three felids, the clustering of large, bipolar, and multipolar hypothalamic orexinergic neurons primarily follows the pattern observed in other mammals. The orexinergic neurons were found, primarily, to form three distinct clusters-the main, zona incerta, and optic tract clusters. In addition, large orexinergic neurons were observed in the ventromedial supraoptic region of the hypothalamus, where they are not typically observed in other species. As has been observed in cetartiodactyls and the African elephant, a cluster of small, multipolar orexinergic neurons, the parvocellular cluster, was observed in the medial zone of the hypothalamus in all three felids, although this parvocellular cluster has not been reported in other carnivores. In both subspecies of lions, but not the cheetah, potential orexin-immunopositive neurons were observed in the paraventricular hypothalamic nucleus, supraoptic nucleus, the lateral part of the retrochiasmatic area, and the inner layer of the median eminence. The distribution and parcellation of orexinergic neurons in the hypothalami of the three felids studied appear to be more complex than observed in many other mammals and for the two subspecies of lion may be even more complex. These findings are discussed in terms of potential technical concerns, phylogenetic variations of this system, and potentially associated functional aspects of the orexinergic system.
Collapse
Affiliation(s)
- Demi Oddes
- School of Anatomical Sciences, Faculty of Health Sciences University of the Witwatersrand Johannesburg South Africa
| | - Ayanda Ngwenya
- School of Anatomical Sciences, Faculty of Health Sciences University of the Witwatersrand Johannesburg South Africa
| | - Illke B. Malungo
- School of Anatomical Sciences, Faculty of Health Sciences University of the Witwatersrand Johannesburg South Africa
| | | | | | - Mads. F. Bertelsen
- Centre for Zoo and Wild Animal Health Copenhagen Zoo Frederiksberg Denmark
| | - Muhammad A. Spocter
- School of Anatomical Sciences, Faculty of Health Sciences University of the Witwatersrand Johannesburg South Africa
- Department of Anatomy Des Moines University Des Moines Iowa USA
| | | | - Paul R. Manger
- School of Anatomical Sciences, Faculty of Health Sciences University of the Witwatersrand Johannesburg South Africa
| |
Collapse
|
5
|
Williams VM, Bhagwandin A, Swiegers J, Bertelsen MF, Hård T, Sherwood CC, Manger PR. Distribution of cholinergic neurons in the brains of a lar gibbon and a chimpanzee. Anat Rec (Hoboken) 2021; 305:1516-1535. [PMID: 34837339 DOI: 10.1002/ar.24844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 11/07/2022]
Abstract
Using choline acetyltransferase immunohistochemistry, we describe the nuclear parcellation of the cholinergic system in the brains of two apes, a lar gibbon (Hylobates lar) and a chimpanzee (Pan troglodytes). The cholinergic nuclei observed in both apes studied are virtually identical to that observed in humans and show very strong similarity to the cholinergic nuclei observed in other primates and mammals more generally. One specific difference between humans and the two apes studied is that, with the specific choline acetyltransferase antibody used, the cholinergic pyramidal neurons observed in human cerebral cortex were not labeled. When comparing the two apes studied and humans to other primates, the presence of a greatly expanded cholinergic medullary tegmental field, and the presence of cholinergic neurons in the intermediate and dorsal horns of the cervical spinal cord are notable variations of the distribution of cholinergic neurons in apes compared to other primates. These neurons may play an important role in the modulation of ascending and descending neural transmissions through the spinal cord and caudal medulla, potentially related to the differing modes of locomotion in apes compared to other primates. Our observations also indicate that the average soma volume of the neurons forming the laterodorsal tegmental nucleus (LDT) is larger than those of the pedunculopontine nucleus (PPT) in both the lar gibbon and chimpanzee. This variability in soma volume appears to be related to the size of the adult derivatives of the alar and basal plate across mammalian species.
Collapse
Affiliation(s)
- Victoria M Williams
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Jordan Swiegers
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | | | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
6
|
The Mammalian Locus Coeruleus Complex-Consistencies and Variances in Nuclear Organization. Brain Sci 2021; 11:brainsci11111486. [PMID: 34827485 PMCID: PMC8615727 DOI: 10.3390/brainsci11111486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 11/17/2022] Open
Abstract
Descriptions of the nuclear parcellation of the locus coeruleus complex have been provided in approximately 80 mammal species spanning the phylogenetic breadth of this class. Within the mammalian rostral hindbrain, noradrenergic neurons (revealed with tyrosine hydroxylase and dopamine-ß-hydroxylase immunohistochemistry) have been observed within the periventricular grey matter (A4 and A6 nuclei) and parvicellular reticular nucleus (A5 and A7 nuclei), with the one exception to date being the tree pangolin, where no A4/A6 neurons are observed. The alphanumeric nomenclature system, developed in laboratory rodent brains, has been adapted to cover the variation observed across species. Cross-species homology is observed regarding the nuclear organization of noradrenergic neurons located in the parvicellular reticular nucleus (A5 and A7). In contrast, significant variations are observed in the organization of the A6 neurons of the locus coeruleus proper. In most mammals, the A6 is comprised of a moderate density of neurons, but in Murid rodents, primates, and megachiropteran bats, the A6 exhibits a very high density of neurons. In primates and megachiropterans, there is an additional moderate density of A6 neurons located rostromedial to the high-density portion. These variations are of importance in understanding the translation of findings in laboratory rodents to humans.
Collapse
|
7
|
Williams VM, Bhagwandin A, Swiegers J, Bertelsen MF, Hård T, Sherwood CC, Manger PR. Nuclear organization of serotonergic neurons in the brainstems of a lar gibbon and a chimpanzee. Anat Rec (Hoboken) 2021; 305:1500-1515. [PMID: 34605203 DOI: 10.1002/ar.24795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/23/2021] [Accepted: 09/07/2021] [Indexed: 11/07/2022]
Abstract
In the current study, we detail, through the analysis of immunohistochemically stained sections, the morphology and nuclear parcellation of the serotonergic neurons present in the brainstem of a lar gibbon and a chimpanzee. In general, the neuronal morphology and nuclear organization of the serotonergic system in the brains of these two species of apes follow that observed in a range of Eutherian mammals and are specifically very similar to that observed in other species of primates. In both of the apes studied, the serotonergic nuclei could be readily divided into two distinct groups, a rostral and a caudal cluster, which are found from the level of the decussation of the superior cerebellar peduncle to the spinomedullary junction. The rostral cluster is comprised of the caudal linear, supralemniscal, and median raphe nuclei, as well as the six divisions of the dorsal raphe nuclear complex. The caudal cluster contains several distinct nuclei and nuclear subdivisions, including the raphe magnus nucleus and associated rostral and caudal ventrolateral (CVL) serotonergic groups, the raphe pallidus, and raphe obscurus nuclei. The one deviation in organization observed in comparison to other primate species is an expansion of both the number and distribution of neurons belonging to the lateral division of the dorsal raphe nucleus in the chimpanzee. It is unclear whether this expansion occurs in humans, thus at present, this expansion sets the chimpanzee apart from other primates studied to date.
Collapse
Affiliation(s)
- Victoria M Williams
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa.,Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Jordan Swiegers
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | | | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
8
|
Azeez IA, Igado OO, Olopade JO. An overview of the orexinergic system in different animal species. Metab Brain Dis 2021; 36:1419-1444. [PMID: 34224065 DOI: 10.1007/s11011-021-00761-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/06/2021] [Indexed: 01/13/2023]
Abstract
Orexin (hypocretin), is a neuropeptide produced by a subset of neurons in the lateral hypothalamus. From the lateral hypothalamus, the orexin-containing neurons project their fibres extensively to other brain structures, and the spinal cord constituting the central orexinergic system. Generally, the term ''orexinergic system'' usually refers to the orexin peptides and their receptors, as well as to the orexin neurons and their projections to different parts of the central nervous system. The extensive networks of orexin axonal fibres and their terminals allow these neuropeptidergic neurons to exert great influence on their target regions. The hypothalamic neurons containing the orexin neuropeptides have been implicated in diverse functions, especially related to the control of a variety of homeostatic functions including feeding behaviour, arousal, wakefulness stability and energy expenditure. The broad range of functions regulated by the orexinergic system has led to its description as ''physiological integrator''. In the last two decades, the orexinergic system has been a topic of great interest to the scientific community with many reports in the public domain. From the documentations, variations exist in the neuroanatomical profile of the orexinergic neuron soma, fibres and their receptors from animal to animal. Hence, this review highlights the distinct variabilities in the morphophysiological aspects of the orexinergic system in the vertebrate animals, mammals and non-mammals, its presence in other brain-related structures, including its involvement in ageing and neurodegenerative diseases. The presence of the neuropeptide in the cerebrospinal fluid and peripheral tissues, as well as its alteration in different animal models and conditions are also reviewed.
Collapse
Affiliation(s)
- Idris A Azeez
- Department of Veterinary Anatomy, University of Jos, Jos, Nigeria
| | - Olumayowa O Igado
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| | - James O Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
9
|
Williams VM, Bhagwandin A, Swiegers J, Bertelsen MF, Hård T, Thannickal TC, Siegel JM, Sherwood CC, Manger PR. Nuclear organization of orexinergic neurons in the hypothalamus of a lar gibbon and a chimpanzee. Anat Rec (Hoboken) 2021; 305:1459-1475. [PMID: 34535040 DOI: 10.1002/ar.24775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/06/2021] [Accepted: 08/17/2021] [Indexed: 11/06/2022]
Abstract
Employing orexin-A immunohistochemical staining we describe the nuclear parcellation of orexinergic neurons in the hypothalami of a lar gibbon and a chimpanzee. The clustering of orexinergic neurons within the hypothalamus and the terminal networks follow the patterns generally observed in other mammals, including laboratory rodents, strepsirrhine primates and humans. The orexinergic neurons were found within three distinct clusters in the ape hypothalamus, which include the main cluster, zona incerta cluster and optic tract cluster. In addition, the orexinergic neurons of the optic tract cluster appear to extend to a more rostral and medial location than observed in other species, being observed in the tuberal region in the anterior ventromedial aspect of the hypothalamus. While orexinergic terminal networks were observed throughout the brain, high density terminal networks were observed within the hypothalamus, medial and intralaminar nuclei of the dorsal thalamus, and within the serotonergic and noradrenergic regions of the midbrain and pons, which is typical for mammals. The expanded distribution of orexinergic neurons into the tuberal region of the ape hypothalamus, is a feature that needs to be investigated in other primate species, but appears to correlate with orexin gene expression in the same region of the human hypothalamus, but these neurons are not revealed with immunohistochemical staining in humans. Thus, it appears that apes have a broader distribution of orexinergic neurons compared to other primate species, but that the neurons within this extension of the optic tract cluster in humans, while expressing the orexin gene, do not produce the neuropeptide.
Collapse
Affiliation(s)
- Victoria M Williams
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa.,Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Jordan Swiegers
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | | | - Thomas C Thannickal
- Department of Psychiatry, School of Medicine, and Brain Research Institute, University of California, Los Angeles, Los Angeles, California, USA.,Brain Research Institute, Neurobiology Research, Sepulveda VA Medical Center, Los Angeles, California, USA
| | - Jerome M Siegel
- Department of Psychiatry, School of Medicine, and Brain Research Institute, University of California, Los Angeles, Los Angeles, California, USA.,Brain Research Institute, Neurobiology Research, Sepulveda VA Medical Center, Los Angeles, California, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
10
|
Marcos P, Coveñas R. Immunohistochemical study of the brainstem cholinergic system in the alpaca (<em>Lama pacos</em>) and colocalization with CGRP. Eur J Histochem 2021; 65. [PMID: 34346665 PMCID: PMC8314389 DOI: 10.4081/ejh.2021.3266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/14/2021] [Indexed: 11/23/2022] Open
Abstract
Several cholinergic regions have been detected in the brainstem of mammals. In general, these regions are constant among different species, and the nuclear complement is maintained in animals belonging to the same order. The cholinergic system of the brainstem has been partially described in Cetartiodactyla, except for the medulla oblongata. In this work carried out in the alpaca, the description of the cholinergic regions in this order is completed by the immunohistochemical detection of the enzyme choline acetyltransferase (ChAT). In addition, using double immunostaining techniques, the relationship between the cholinergic system and the distribution of calcitonin gene-related peptide (CGRP) previously described is analysed. Although these two substances are found in several brainstem regions, the coexistence in the same cell bodies was observed only in the laterodorsal tegmental nucleus, the nucleus ambiguus and the reticular formation. These results suggest that the interaction between ChAT and CGRP may be important in the regulation of voluntary movements, the control of rapid eye movement sleep and states of wakefulness as well as in reward mechanisms. Comparing the present results with others previously obtained by our group regarding the catecholaminergic system in the alpaca brainstem, it seems that CGRP may be more functionally related to the latter system than to the cholinergic system.
Collapse
Affiliation(s)
- Pilar Marcos
- Cellular Neuroanatomy and Molecular Chemistry of Central Nervous System, Faculty of Medicine, University of Castilla-La Mancha, CRIB (Regional Centre of Biomedical Research), Albacete.
| | - Rafael Coveñas
- Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems; Grupo GIR USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca.
| |
Collapse
|
11
|
McGregor R, Thannickal TC, Siegel JM. Pleasure, addiction, and hypocretin (orexin). HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:359-374. [PMID: 34225941 DOI: 10.1016/b978-0-12-820107-7.00022-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The hypocretins/orexins were discovered in 1998. Within 2 years, this led to the discovery of the cause of human narcolepsy, a 90% loss of hypothalamic neurons containing these peptides. Further work demonstrated that these neurons were not simply linked to waking. Rather these neurons were active during pleasurable behaviors in waking and were silenced by aversive stimulation. This was seen in wild-type mice, rats, cats, and dogs. It was also evident in humans, with increased Hcrt release during pleasurable activities and decreased release, to the levels seen in sleep, during pain. We found that human heroin addicts have, on average, an increase of 54% in the number of detectable Hcrt neurons compared to "control" human brains and that these Hcrt neurons are substantially smaller than those in control brains. We found that in mice, chronic morphine administration induced the same changes in Hcrt neuron number and size. Our studies in the mouse allowed us to determine the specificity, dose response relations, time course of the change in the number of Hcrt neurons, and that the increased number of Hcrt neurons after opiates was not due to neurogenesis. Furthermore, we found that it took a month or longer for these anatomical changes in the mouse brain to return to baseline. Human narcoleptics, despite their prescribed use of several commonly addictive drugs, do not show significant evidence of dose escalation or substance use disorder. Similarly, mice in which the peptide has been eliminated are resistant to addiction. These findings are consistent with the concept that an increased number of Hcrt neurons may underlie and maintain opioid or cocaine use disorders.
Collapse
Affiliation(s)
- Ronald McGregor
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, CA, United States; Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Thomas C Thannickal
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, CA, United States; Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Jerome M Siegel
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, CA, United States; Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
12
|
Manger PR, Siegel JM. Do all mammals dream? J Comp Neurol 2020; 528:3198-3204. [PMID: 31960424 PMCID: PMC8211436 DOI: 10.1002/cne.24860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/26/2022]
Abstract
The presence of dreams in human sleep, especially in REM sleep, and the detection of physiologically similar states in mammals has led many to ponder whether animals experience similar sleep mentation. Recent advances in our understanding of the anatomical and physiological correlates of sleep stages, and thus dreaming, allow a better understanding of the possibility of dream mentation in nonhuman mammals. Here, we explore the potential for dream mentation, in both non-REM and REM sleep across mammals. If we take a hard-stance, that dream mentation only occurs during REM sleep, we conclude that it is unlikely that monotremes, cetaceans, and otariid seals while at sea, have the potential to experience dream mentation. Atypical REM sleep in other species, such as African elephants and Arabian oryx, may alter their potential to experience REM dream mentation. Alternatively, evidence that dream mentation occurs during both non-REM and REM sleep, indicates that all mammals have the potential to experience dream mentation. This non-REM dream mentation may be different in the species where non-REM is atypical, such as during unihemispheric sleep in aquatic mammals (cetaceans, sirens, and Otariid seals). In both scenarios, the cetaceans are the least likely mammalian group to experience vivid dream mentation due to the morphophysiological independence of their cerebral hemispheres. The application of techniques revealing dream mentation in humans to other mammals, specifically those that exhibit unusual sleep states, may lead to advances in our understanding of the neural underpinnings of dreams and conscious experiences.
Collapse
Affiliation(s)
- Paul R. Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Jerome M. Siegel
- Department of Psychiatry, School of Medicine, and Brain Research Institute, University of California, Los Angeles, California
- Brain Research Institute, Neurobiology Research, Sepulveda VA Medical Center, Los Angeles, California
| |
Collapse
|
13
|
Chaumeton AS, Gravett N, Bhagwandin A, Manger PR. Tyrosine hydroxylase containing neurons in the thalamic reticular nucleus of male equids. J Chem Neuroanat 2020; 110:101873. [PMID: 33086098 DOI: 10.1016/j.jchemneu.2020.101873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 11/27/2022]
Abstract
Here we report the unusual presence of thalamic reticular neurons immunoreactive for tyrosine hydroxylase in equids. The diencephalons of one adult male of four equid species, domestic donkey (Equus africanus asinus), domestic horse (Equus caballus), Cape mountain zebra (Equus zebra zebra) and plains zebra (Equus quagga), were sectioned in a coronal plane with series of sections stained for Nissl substance, myelin, or immunostained for tyrosine hydroxylase, and the calcium-binding proteins parvalbumin, calbindin and calretinin. In all equid species studied the thalamic reticular nucleus was observed as a sheet of neurons surrounding the rostral, lateral and ventral portions of the nuclear mass of the dorsal thalamus. In addition, these thalamic reticular neurons were immunopositive for parvalbumin, but immunonegative for calbindin and calretinin. Moreover, the thalamic reticular neurons in the equids studied were also immunopositive for tyrosine hydroxylase. Throughout the grey matter of the dorsal thalamus a terminal network also immunoreactive for tyrosine hydroxylase was present. Thus, the equid thalamic reticular neurons appear to provide a direct and novel potentially catecholaminergic innervation of the thalamic relay neurons. This finding is discussed in relation to the function of the thalamic reticular nucleus and the possible effect of a potentially novel catecholaminergic pathway on the neural activity of the thalamocortical loop.
Collapse
Affiliation(s)
- Alexis S Chaumeton
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| | - Nadine Gravett
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa.
| |
Collapse
|
14
|
Mascetti GG. Adaptation and survival: hypotheses about the neural mechanisms of unihemispheric sleep. Laterality 2020; 26:71-93. [PMID: 33054668 DOI: 10.1080/1357650x.2020.1828446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sleep and wakefulness are opposite brain and body conditions that accomplish different but complementary functions. However, these opposing conditions have been combined in some animals by the adoption of a sleep/wake strategy that allows them to survive, while maintaining both an interaction with the environment at the same time as enabling brain and body recovery. They sleep with half of the brain while keeping the other half awake: a state known as unihemispheric sleep (US). Sleep of cetaceans is exclusively in the form of US; therefore, they experience neither bihemispheric sleep (BS) nor REM sleep. US episodes have also been recorded in eared seals and some species of birds. In those animals, US episodes are intermingled with episodes of BS and REM sleep. Studies have reported both a lateralized release of some neurotransmitters and a drop of brain temperature during US. The aims of this article are to formulate hypotheses about the neural mechanisms of unihemispheric sleep(US) based on findings regarding the neural mechanisms of the sleep/wake cycle of mammals. The neural mechanisms of the sleep/wake cycle are largely preserved across species, allowing to hypothesize about those triggering and regulating US.
Collapse
|
15
|
Imam A, Bhagwandin A, Ajao MS, Manger PR. The brain of the tree pangolin (Manis tricuspis). V. The diencephalon and hypothalamus. J Comp Neurol 2019; 527:2413-2439. [PMID: 30592046 DOI: 10.1002/cne.24619] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 02/01/2023]
Abstract
The diencephalon (dorsal thalamus, ventral thalamus, and epithalamus) and the hypothalamus, play central roles in the processing of the majority of neural information within the central nervous system. Given the interactions of the diencephalon and hypothalamus with virtually all portions of the central nervous system, the comparative analysis of these regions lend key insights into potential neural, evolutionary, and behavioral specializations in different species. Here, we continue our analysis of the brain of the tree pangolin by providing a comprehensive description of the organization of the diencephalon and hypothalamus using a range of standard and immunohistochemical staining methods. In general, the diencephalon and hypothalamus of the tree pangolin follow the organization typically observed across mammals. No unusual structural configurations of the ventral thalamus, epithalamus, or hypothalamus were noted. Within the dorsal thalamus, the vast majority of typically identified nuclear groups and component nuclei were observed. The visual portion of the tree pangolin dorsal thalamus appears to be organized in a manner not dissimilar to that seen in most nonprimate and noncarnivore mammals, and lacks certain features that are present in the closely related carnivores. Within the ventral medial geniculate nucleus, a modular organization, revealed with parvalbumin neuropil immunostaining, is suggestive of specialized auditory processing in the tree pangolin. In addition, a potential absence of hypothalamic cholinergic neurons is suggestive of unusual patterns of sleep. These observations are discussed in an evolutionary and functional framework regarding the phylogeny and life history of the pangolins.
Collapse
Affiliation(s)
- Aminu Imam
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa.,Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Moyosore S Ajao
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
16
|
Malungo IB, Gravett N, Bhagwandin A, Davimes JG, Manger PR. A Preliminary Description of the Sleep-Related Neural Systems in the Brain of the Blue Wildebeest, Connochaetes taurinus. Anat Rec (Hoboken) 2019; 303:1977-1997. [PMID: 31513360 DOI: 10.1002/ar.24265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/12/2019] [Accepted: 07/16/2019] [Indexed: 12/18/2022]
Abstract
The current study provides a detailed qualitative description of the organization of the cholinergic, catecholaminergic, serotonergic, orexinergic, and GABAergic sleep-related systems in the brain of the blue wildebeest (Connocheates taurinus), along with a quantitative analysis of the pontine cholinergic and noradrenergic neurons, and the hypothalamic orexinergic neurons. The aim of this study was to compare the nuclear organization of these systems to other mammalian species and specifically that reported for other Cetartiodactyla. In the brain of the blue wildebeest, from the basal forebrain to the pons, the nuclear organization of the cholinergic, catecholaminergic, serotonergic, and orexinergic systems, for the most part, showed a corresponding nuclear organization to that reported in other mammals and more specifically the Cetartiodactyla. Furthermore, the description and distribution of the GABAergic system, which was examined through immunostaining for the calcium binding proteins calbindin, calretinin, and parvalbumin, was also similar to that seen in other mammals. These findings indicate that sleep in the blue wildebeest is likely to show typically mammalian features in terms of the global brain activity of the generally recognized sleep states of mammals, but Cetartiodactyl-specific features of the orexinergic system may act to lower overall daily total sleep time in relation to similar sized non-Cetartiodactyl mammals. Anat Rec, 2019. © 2019 American Association for Anatomy Anat Rec, 303:1977-1997, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Illke B Malungo
- School of Anatomical Sciences, Faulty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nadine Gravett
- School of Anatomical Sciences, Faulty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faulty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Joshua G Davimes
- School of Anatomical Sciences, Faulty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Paul R Manger
- School of Anatomical Sciences, Faulty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
17
|
Pucora E, Schiffmann C, Clauss M. Resting postures in terrestrial mammalian herbivores. J Mammal 2019. [DOI: 10.1093/jmammal/gyz044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Endre Pucora
- Clinic for Zoo Animals, Exotic Pets, and Wildlife, Vetsuisse Faculty, University of Zurich, Winterthurstrasse, Zurich, Switzerland
| | - Christian Schiffmann
- Clinic for Zoo Animals, Exotic Pets, and Wildlife, Vetsuisse Faculty, University of Zurich, Winterthurstrasse, Zurich, Switzerland
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets, and Wildlife, Vetsuisse Faculty, University of Zurich, Winterthurstrasse, Zurich, Switzerland
| |
Collapse
|
18
|
Resende NR, Soares Filho PL, Peixoto PPA, Silva AM, Silva SF, Soares JG, do Nascimento ES, Cavalcante JC, Cavalcante JS, Costa MSMO. Nuclear organization and morphology of cholinergic neurons in the brain of the rock cavy (Kerodon rupestris) (Wied, 1820). J Chem Neuroanat 2018; 94:63-74. [PMID: 30293055 DOI: 10.1016/j.jchemneu.2018.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 11/19/2022]
Abstract
The aim of this study was to conduct cytoarchitectonic studies and choline acetyltransferase (ChAT) immunohistochemical analysis to delimit the cholinergic groups in the encephalon of the rock cavy (Kerodon rupestris), a crepuscular Caviidae rodent native to the Brazilian Northeast. Three young adult animals were anesthetized and transcardially perfused. The encephala were cut in the coronal plane using a cryostat. We obtained 6 series of 30-μm-thick sections. The sections from one series were subjected to Nissl staining. Those from another series were subjected to immunohistochemistry for the enzyme ChAT, which is used in acetylcholine synthesis, to visualize the different cholinergic neural centers of the rock cavy. The slides were analyzed using a light microscope and the results were documented by description and digital photomicrographs. ChAT-immunoreactive neurons were identified in the telencephalon (nucleus accumbens, caudate-putamen, globus pallidus, entopeduncular nucleus and ventral globus pallidus, olfactory tubercle and islands of Calleja, diagonal band of Broca nucleus, nucleus basalis, and medial septal nucleus), diencephalon (ventrolateral preoptic, hypothalamic ventrolateral, and medial habenular nuclei), and brainstem (parabigeminal, laterodorsal tegmental, and pedunculopontine tegmental nuclei). These findings are discussed through both a functional and phylogenetic perspective.
Collapse
Affiliation(s)
- N R Resende
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - P L Soares Filho
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - P P A Peixoto
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - A M Silva
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - S F Silva
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - J G Soares
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - E S do Nascimento
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - J C Cavalcante
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - J S Cavalcante
- Department of Physiology, Laboratory of Neurochemical Studies, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - M S M O Costa
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
19
|
Spocter MA, Fairbanks J, Locey L, Nguyen A, Bitterman K, Dunn R, Sherwood CC, Geletta S, Dell LA, Patzke N, Manger PR. Neuropil Distribution in the Anterior Cingulate and Occipital Cortex of Artiodactyls. Anat Rec (Hoboken) 2018; 301:1871-1881. [DOI: 10.1002/ar.23905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/14/2018] [Accepted: 02/26/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Muhammad A. Spocter
- Department of Anatomy; Des Moines University; Des Moines Iowa
- College of Veterinary Medicine, Biomedical Sciences; Iowa State University; Ames Iowa
- School of Anatomical Sciences; University of the Witwatersrand; Johannesburg Republic of South Africa
| | | | - Lisa Locey
- Department of Anatomy; Des Moines University; Des Moines Iowa
| | - Amy Nguyen
- College of Pharmacy and Health Sciences, Drake University; Des Moines Iowa
| | | | - Rachel Dunn
- Department of Anatomy; Des Moines University; Des Moines Iowa
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology; The George Washington University; Washington Washington, DC
| | - Simon Geletta
- Department of Public Health; Des Moines University; Des Moines Iowa
| | - Leigh-Anne Dell
- School of Anatomical Sciences; University of the Witwatersrand; Johannesburg Republic of South Africa
- Institute of Computational Neuroscience; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Nina Patzke
- School of Anatomical Sciences; University of the Witwatersrand; Johannesburg Republic of South Africa
- Department of Biology; Hokkaido University; Hokkaido Japan
| | - Paul R. Manger
- School of Anatomical Sciences; University of the Witwatersrand; Johannesburg Republic of South Africa
| |
Collapse
|
20
|
Reid GA, Geula C, Darvesh S. The cholinergic system in the basal forebrain of the Atlantic white-sided dolphin (Lagenorhynchus acutus). J Comp Neurol 2018; 526:1910-1926. [PMID: 29700823 DOI: 10.1002/cne.24460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/05/2018] [Accepted: 04/17/2018] [Indexed: 11/12/2022]
Abstract
The basal forebrain (BFB) cholinergic neurotransmitter system is important in a number of brain functions including attention, memory, and the sleep-wake cycle. The size of this region has been linked to the increase in encephalization of the brain in a number of species. Cetaceans, particularly those belonging to the family Delphinidae, have a relatively large brain compared to its body size and it is expected that the cholinergic BFB in the dolphin would be a prominent feature. However, this has not yet been explored in detail. This study examines and maps the neuroanatomy and cholinergic chemoarchitecture of the BFB in the Atlantic white-sided dolphin (Lagenorhynchus acutus). As in some other mammals, the BFB in this species is a prominent structure along the medioventral surface of the brain. The parcellation and distribution of cholinergic neural elements of the dolphin BFB was comparable to that observed in other mammals in that it has a medial septal nucleus, a nucleus of the vertical limb of the diagonal band of Broca, a nucleus of the horizontal limb of the diagonal band of Broca, and a nucleus basalis of Meynert. The observed BFB cholinergic system of this dolphin is consistent with evolutionarily conserved and important functions for survival.
Collapse
Affiliation(s)
- George Andrew Reid
- Department of Medical Neuroscience, Halifax, Dalhousie University, Nova Scotia, Canada.,Marine Animal Response Society, Halifax, Nova Scotia, Canada
| | - Changiz Geula
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Sultan Darvesh
- Department of Medical Neuroscience, Halifax, Dalhousie University, Nova Scotia, Canada.,Department of Medicine (Neurology and Geriatric Medicine), Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
21
|
Abstract
The locus coeruleus (LC) is the largest catecholaminergic nucleus and extensively projects to widespread areas of the brain and spinal cord. The LC is the largest source of noradrenaline in the brain. To date, the only examined Delphinidae species for the LC has been a bottlenose dolphin (Tursiops truncatus). In our experimental series including different Delphinidae species, the LC was composed of five subdivisions: A6d, A6v, A7, A5, and A4. The examined animals had the A4 subdivision, which had not been previously described in the only Delphinidae in which this nucleus was investigated. Moreover, the neurons had a large amount of neuromelanin in the interior of their perikarya, making this nucleus highly similar to that of humans and non-human primates. This report also presents the first description of neuromelanin in the cetaceans’ LC complex, as well as in the cetaceans’ brain.
Collapse
|
22
|
Bhagwandin A, Haagensen M, Manger PR. The Brain of the Black ( Diceros bicornis) and White ( Ceratotherium simum) African Rhinoceroses: Morphology and Volumetrics from Magnetic Resonance Imaging. Front Neuroanat 2017; 11:74. [PMID: 28912691 PMCID: PMC5583206 DOI: 10.3389/fnana.2017.00074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/15/2017] [Indexed: 12/22/2022] Open
Abstract
The morphology and volumetrics of the understudied brains of two iconic large terrestrial African mammals: the black (Diceros bicornis) and white (Ceratotherium simum) rhinoceroses are described. The black rhinoceros is typically solitary whereas the white rhinoceros is social, and both are members of the Perissodactyl order. Here, we provide descriptions of the surface of the brain of each rhinoceros. For both species, we use magnetic resonance images (MRI) to develop a description of the internal anatomy of the rhinoceros brain and to calculate the volume of the amygdala, cerebellum, corpus callosum, hippocampus, and ventricular system as well as to determine the gyrencephalic index. The morphology of both black and white rhinoceros brains is very similar to each other, although certain minor differences, seemingly related to diet, were noted, and both brains evince the general anatomy of the mammalian brain. The rhinoceros brains display no obvious neuroanatomical specializations in comparison to other mammals previously studied. In addition, the volumetric analyses indicate that the size of the various regions of the rhinoceros brain measured, as well as the extent of gyrification, are what would be predicted for a mammal with their brain mass when compared allometrically to previously published data. We conclude that the brains of the black and white rhinoceros exhibit a typically mammalian organization at a superficial level, but histological studies may reveal specializations of interest in relation to rhinoceros behavior.
Collapse
Affiliation(s)
- Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the WitwatersrandJohannesburg, South Africa
| | - Mark Haagensen
- Department of Radiology, Wits Donald Gordon Medical Centre, University of the WitwatersrandJohannesburg, South Africa
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the WitwatersrandJohannesburg, South Africa
| |
Collapse
|
23
|
Regional distribution of cholinergic, catecholaminergic, serotonergic and orexinergic neurons in the brain of two carnivore species: The feliform banded mongoose ( Mungos mungo ) and the caniform domestic ferret ( Mustela putorius furo ). J Chem Neuroanat 2017; 82:12-28. [DOI: 10.1016/j.jchemneu.2017.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 11/24/2022]
|
24
|
Inactivity/sleep in two wild free-roaming African elephant matriarchs - Does large body size make elephants the shortest mammalian sleepers? PLoS One 2017; 12:e0171903. [PMID: 28249035 PMCID: PMC5382951 DOI: 10.1371/journal.pone.0171903] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/28/2017] [Indexed: 01/24/2023] Open
Abstract
The current study provides details of sleep (or inactivity) in two wild, free-roaming African elephant matriarchs studied in their natural habitat with remote monitoring using an actiwatch subcutaneously implanted in the trunk, a standard elephant collar equipped with a GPS system and gyroscope, and a portable weather station. We found that these two elephants were polyphasic sleepers, had an average daily total sleep time of 2 h, mostly between 02:00 and 06:00, and displayed the shortest daily sleep time of any mammal recorded to date. Moreover, these two elephants exhibited both standing and recumbent sleep, but only exhibited recumbent sleep every third or fourth day, potentially limiting their ability to enter REM sleep on a daily basis. In addition, we observed on five occasions that the elephants went without sleep for up to 46 h and traversed around 30 km in 10 h, possibly due to disturbances such as potential predation or poaching events, or a bull elephant in musth. They exhibited no form of sleep rebound following a night without sleep. Environmental conditions, especially ambient air temperature and relative humidity, analysed as wet-bulb globe temperature, reliably predict sleep onset and offset times. The elephants selected novel sleep sites each night and the amount of activity between sleep periods did not affect the amount of sleep. A number of similarities and differences to studies of elephant sleep in captivity are noted, and specific factors shaping sleep architecture in elephants, on various temporal scales, are discussed.
Collapse
|
25
|
Davimes JG, Alagaili AN, Bennett NC, Mohammed OB, Bhagwandin A, Manger PR, Gravett N. Neurochemical organization and morphology of the sleep related nuclei in the brain of the Arabian oryx, Oryx leucoryx. J Chem Neuroanat 2017; 81:53-70. [PMID: 28163217 DOI: 10.1016/j.jchemneu.2017.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 12/01/2022]
Abstract
The Arabian oryx, Oryx leucoryx, is a member of the superorder Cetartiodactyla and is native to the Arabian Desert. The desert environment can be considered extreme in which to sleep, as the ranges of temperatures experienced are beyond what most mammals encounter. The current study describes the nuclear organization and neuronal morphology of the systems that have been implicated in sleep control in other mammals for the Arabian oryx. The nuclei delineated include those revealed immunohistochemically as belonging to the cholinergic, catecholaminergic, serotonergic and orexinergic systems within the basal forebrain, hypothalamus, midbrain and pons. In addition, we examined the GABAergic neurons and their terminal networks surrounding or within these nuclei. The majority of the neuronal systems examined followed the typical mammalian organizational plan, but some differences were observed: (1) the neuronal morphology of the cholinergic laterodorsal tegmental (LDT) and pedunculopontine tegmental (PPT) nuclei, as well as the parvocellular subdivision of the orexinergic main cluster, exhibited Cetartiodactyl-specific features; (2) the dorsal division of the catecholaminergic anterior hypothalamic group (A15d), which has not been reported in any member of the Artiodactyla studied to date, was present in the brain of the Arabian oryx; and (3) the catecholaminergic tuberal cell group (A12) was notably more expansive than previously seen in any other mammal. The A12 nucleus has been associated functionally to osmoregulation in other mammals, and thus its expansion could potentially be a species specific feature of the Arabian oryx given their native desert environment and the need for extreme water conservation.
Collapse
Affiliation(s)
- Joshua G Davimes
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| | - Abdulaziz N Alagaili
- KSU Mammals Research Chair, Department of Zoology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nigel C Bennett
- SARChI Chair for Mammalian Behavioural Ecology and Physiology, Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa
| | - Osama B Mohammed
- KSU Mammals Research Chair, Department of Zoology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| | - Nadine Gravett
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa.
| |
Collapse
|
26
|
Mahady LJ, Perez SE, Emerich DF, Wahlberg LU, Mufson EJ. Cholinergic profiles in the Goettingen miniature pig (Sus scrofa domesticus) brain. J Comp Neurol 2016; 525:553-573. [PMID: 27490949 DOI: 10.1002/cne.24087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 11/10/2022]
Abstract
Central cholinergic structures within the brain of the even-toed hoofed Goettingen miniature domestic pig (Sus scrofa domesticus) were evaluated by immunohistochemical visualization of choline acetyltransferase (ChAT) and the low-affinity neurotrophin receptor, p75NTR . ChAT-immunoreactive (-ir) perikarya were seen in the olfactory tubercle, striatum, medial septal nucleus, vertical and horizontal limbs of the diagonal band of Broca, and the nucleus basalis of Meynert, medial habenular nucleus, zona incerta, neurosecretory arcuate nucleus, cranial motor nuclei III and IV, Edinger-Westphal nucleus, parabigeminal nucleus, pedunculopontine nucleus, and laterodorsal tegmental nucleus. Cholinergic ChAT-ir neurons were also found within transitional cortical areas (insular, cingulate, and piriform cortices) and hippocampus proper. ChAT-ir fibers were seen throughout the dentate gyrus and hippocampus, in the mediodorsal, laterodorsal, anteroventral, and parateanial thalamic nuclei, the fasciculus retroflexus of Meynert, basolateral and basomedial amygdaloid nuclei, anterior pretectal and interpeduncular nuclei, as well as select laminae of the superior colliculus. Double immunofluorescence demonstrated that virtually all ChAT-ir basal forebrain neurons were also p75NTR -positive. The present findings indicate that the central cholinergic system in the miniature pig is similar to other mammalian species. Therefore, the miniature pig may be an appropriate animal model for preclinical studies of neurodegenerative diseases where the cholinergic system is compromised. J. Comp. Neurol. 525:553-573, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laura J Mahady
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona.,Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe, Arizona
| | - Sylvia E Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona
| | | | | | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona
| |
Collapse
|