1
|
Ma X, Fernández FM. Advances in mass spectrometry imaging for spatial cancer metabolomics. MASS SPECTROMETRY REVIEWS 2024; 43:235-268. [PMID: 36065601 PMCID: PMC9986357 DOI: 10.1002/mas.21804] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 05/09/2023]
Abstract
Mass spectrometry (MS) has become a central technique in cancer research. The ability to analyze various types of biomolecules in complex biological matrices makes it well suited for understanding biochemical alterations associated with disease progression. Different biological samples, including serum, urine, saliva, and tissues have been successfully analyzed using mass spectrometry. In particular, spatial metabolomics using MS imaging (MSI) allows the direct visualization of metabolite distributions in tissues, thus enabling in-depth understanding of cancer-associated biochemical changes within specific structures. In recent years, MSI studies have been increasingly used to uncover metabolic reprogramming associated with cancer development, enabling the discovery of key biomarkers with potential for cancer diagnostics. In this review, we aim to cover the basic principles of MSI experiments for the nonspecialists, including fundamentals, the sample preparation process, the evolution of the mass spectrometry techniques used, and data analysis strategies. We also review MSI advances associated with cancer research in the last 5 years, including spatial lipidomics and glycomics, the adoption of three-dimensional and multimodal imaging MSI approaches, and the implementation of artificial intelligence/machine learning in MSI-based cancer studies. The adoption of MSI in clinical research and for single-cell metabolomics is also discussed. Spatially resolved studies on other small molecule metabolites such as amino acids, polyamines, and nucleotides/nucleosides will not be discussed in the context.
Collapse
Affiliation(s)
- Xin Ma
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Jha D, Blennow K, Zetterberg H, Savas JN, Hanrieder J. Spatial neurolipidomics-MALDI mass spectrometry imaging of lipids in brain pathologies. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5008. [PMID: 38445816 DOI: 10.1002/jms.5008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/25/2024] [Indexed: 03/07/2024]
Abstract
Given the complexity of nervous tissues, understanding neurochemical pathophysiology puts high demands on bioanalytical techniques with respect to specificity and sensitivity. Mass spectrometry imaging (MSI) has evolved to become an important, biochemical imaging technology for spatial biology in biological and translational research. The technique facilitates comprehensive, sensitive elucidation of the spatial distribution patterns of drugs, lipids, peptides, and small proteins in situ. Matrix-assisted laser desorption ionization (MALDI)-based MSI is the dominating modality due to its broad applicability and fair compromise of selectivity, sensitivity price, throughput, and ease of use. This is particularly relevant for the analysis of spatial lipid patterns, where no other comparable spatial profiling tools are available. Understanding spatial lipid biology in nervous tissue is therefore a key and emerging application area of MSI research. The aim of this review is to give a concise guide through the MSI workflow for lipid imaging in central nervous system (CNS) tissues and essential parameters to consider while developing and optimizing MSI assays. Further, this review provides a broad overview of key developments and applications of MALDI MSI-based spatial neurolipidomics to map lipid dynamics in neuronal structures, ultimately contributing to a better understanding of neurodegenerative disease pathology.
Collapse
Affiliation(s)
- Durga Jha
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, Mölndal, Sweden
- Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, Mölndal, Sweden
- Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, Mölndal, Sweden
- Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
3
|
Khajavinia A, El-Aneed A. Carbon-Based Nanoparticles and Their Surface-Modified Counterparts as MALDI Matrices. Anal Chem 2023; 95:100-114. [PMID: 36625120 DOI: 10.1021/acs.analchem.2c04537] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Amir Khajavinia
- College of Pharmacy and Nutrition, Drug Discovery and Development Research Group, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Anas El-Aneed
- College of Pharmacy and Nutrition, Drug Discovery and Development Research Group, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
4
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
5
|
Morato NM, Brown HM, Garcia D, Middlebrooks EH, Jentoft M, Chaichana K, Quiñones-Hinojosa A, Cooks RG. High-throughput analysis of tissue microarrays using automated desorption electrospray ionization mass spectrometry. Sci Rep 2022; 12:18851. [PMID: 36344609 PMCID: PMC9640715 DOI: 10.1038/s41598-022-22924-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
Tissue microarrays (TMAs) are commonly used for the rapid analysis of large numbers of tissue samples, often in morphological assessments but increasingly in spectroscopic analysis, where specific molecular markers are targeted via immunostaining. Here we report the use of an automated high-throughput system based on desorption electrospray ionization (DESI) mass spectrometry (MS) for the rapid generation and online analysis of high-density (6144 samples/array) TMAs, at rates better than 1 sample/second. Direct open-air analysis of tissue samples (hundreds of nanograms) not subjected to prior preparation, plus the ability to provide molecular characterization by tandem mass spectrometry (MS/MS), make this experiment versatile and applicable to both targeted and untargeted analysis in a label-free manner. These capabilities are demonstrated in a proof-of-concept study of frozen brain tissue biopsies where we showcase (i) a targeted MS/MS application aimed at identification of isocitrate dehydrogenase mutation in glioma samples and (ii) an untargeted MS tissue type classification using lipid profiles and correlation with tumor cell percentage estimates from histopathology. The small sample sizes and large sample numbers accessible with this methodology make for a powerful analytical system that facilitates the identification of molecular markers for later use in intraoperative applications to guide precision surgeries and ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Nicolás M. Morato
- grid.169077.e0000 0004 1937 2197Department of Chemistry, Purdue Center for Cancer Research, and Bindley Bioscience Center, Purdue University, 560 Oval Drive, West Lafayette, IN 47907 USA
| | - Hannah Marie Brown
- grid.169077.e0000 0004 1937 2197Department of Chemistry, Purdue Center for Cancer Research, and Bindley Bioscience Center, Purdue University, 560 Oval Drive, West Lafayette, IN 47907 USA ,grid.4367.60000 0001 2355 7002Present Address: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO USA
| | - Diogo Garcia
- grid.417467.70000 0004 0443 9942Department of Neurosurgery, Mayo Clinic, Jacksonville, FL USA
| | - Erik H. Middlebrooks
- grid.417467.70000 0004 0443 9942Department of Neurosurgery, Mayo Clinic, Jacksonville, FL USA ,grid.417467.70000 0004 0443 9942Department of Radiology, Mayo Clinic, Jacksonville, FL USA
| | - Mark Jentoft
- grid.417467.70000 0004 0443 9942Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL USA
| | - Kaisorn Chaichana
- grid.417467.70000 0004 0443 9942Department of Neurosurgery, Mayo Clinic, Jacksonville, FL USA
| | | | - R. Graham Cooks
- grid.169077.e0000 0004 1937 2197Department of Chemistry, Purdue Center for Cancer Research, and Bindley Bioscience Center, Purdue University, 560 Oval Drive, West Lafayette, IN 47907 USA
| |
Collapse
|
6
|
Müller WH, Verdin A, De Pauw E, Malherbe C, Eppe G. Surface-assisted laser desorption/ionization mass spectrometry imaging: A review. MASS SPECTROMETRY REVIEWS 2022; 41:373-420. [PMID: 33174287 PMCID: PMC9292874 DOI: 10.1002/mas.21670] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 05/04/2023]
Abstract
In the last decades, surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) has attracted increasing interest due to its unique capabilities, achievable through the nanostructured substrates used to promote the analyte desorption/ionization. While the most widely recognized asset of SALDI-MS is the untargeted analysis of small molecules, this technique also offers the possibility of targeted approaches. In particular, the implementation of SALDI-MS imaging (SALDI-MSI), which is the focus of this review, opens up new opportunities. After a brief discussion of the nomenclature and the fundamental mechanisms associated with this technique, which are still highly controversial, the analytical strategies to perform SALDI-MSI are extensively discussed. Emphasis is placed on the sample preparation but also on the selection of the nanosubstrate (in terms of chemical composition and morphology) as well as its functionalization possibilities for the selective analysis of specific compounds in targeted approaches. Subsequently, some selected applications of SALDI-MSI in various fields (i.e., biomedical, biological, environmental, and forensic) are presented. The strengths and the remaining limitations of SALDI-MSI are finally summarized in the conclusion and some perspectives of this technique, which has a bright future, are proposed in this section.
Collapse
Affiliation(s)
- Wendy H. Müller
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| |
Collapse
|
7
|
Liu X, Chen Z, Wang T, Jiang X, Qu X, Duan W, Xi F, He Z, Wu J. Tissue Imprinting on 2D Nanoflakes-Capped Silicon Nanowires for Lipidomic Mass Spectrometry Imaging and Cancer Diagnosis. ACS NANO 2022; 16:6916-6928. [PMID: 35416655 DOI: 10.1021/acsnano.2c02616] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Spatially resolved tissue lipidomics is essential for accurate intraoperative and postoperative cancer diagnosis by revealing molecular information in the tumor microenvironment. Matrix-free laser desorption ionization mass spectrometry imaging (LDI-MSI) is an emerging attractive technology for label-free visualization of metabolites distributions in biological specimens. However, the development of LDI-MSI technology that could conveniently and authentically reveal molecular distribution on tissue samples is still a challenge. Herein, we present a tissue imprinting technology by retaining tissue lipids on 2D nanoflakes-capped silicon nanowires (SiNWs) for further mass spectrometry imaging and cancer diagnosis. The 2D nanoflakes were prepared by liquid exfoliation of molybdenum disulfide (MoS2) with nitrogen-doped graphene quantum dots (NGQDs), which serve as both intercalation agent and dispersant. The obtained NGQD@MoS2 nanoflakes were then decorated on the tip of vertical SiNWs, forming a hybrid NGQD@MoS2/SiNWs nanostructure, which display excellent lipid extraction ability, enhanced LDI efficiency and molecule imaging capability. The peak number and total ion intensity of different lipids species on animal lung tissues obtained by tissue imprinting LDI-MSI on NGQD@MoS2/SiNWs were ∼4-5 times greater than those on SiNWs substrate. As a proof-of-concept demonstration, the NGQD@MoS2/SiNWs nanostructure was further applied to visualize phospholipids on sliced non small cell lung cancer (NSCLC) tissue along with the adjacent normal tissue. On the basis of selected feature lipids and machine learning algorithm, a prediction model was constructed to discriminate NSCLC tissues from the adjacent normal tissues with an accuracy of 100% for the discovery cohort and 91.7% for the independent validation cohort.
Collapse
Affiliation(s)
- Xingyue Liu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhao Chen
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, P. R. China
| | - Tao Wang
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xinrong Jiang
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xuetong Qu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Wei Duan
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Fengna Xi
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Zhengfu He
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, P. R. China
| | - Jianmin Wu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
8
|
Iakab SA, Baquer G, Lafuente M, Pina MP, Ramírez JL, Ràfols P, Correig-Blanchar X, García-Altares M. SALDI-MS and SERS Multimodal Imaging: One Nanostructured Substrate to Rule Them Both. Anal Chem 2022; 94:2785-2793. [PMID: 35102738 PMCID: PMC8851428 DOI: 10.1021/acs.analchem.1c04118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Imaging techniques
based on mass spectrometry or spectroscopy methods
inform in situ about the chemical composition of
biological tissues or organisms, but they are sometimes limited by
their specificity, sensitivity, or spatial resolution. Multimodal
imaging addresses these limitations by combining several imaging modalities;
however, measuring the same sample with the same preparation using
multiple imaging techniques is still uncommon due to the incompatibility
between substrates, sample preparation protocols, and data formats.
We present a multimodal imaging approach that employs a gold-coated
nanostructured silicon substrate to couple surface-assisted laser
desorption/ionization mass spectrometry (SALDI-MS) and surface-enhanced
Raman spectroscopy (SERS). Our approach integrates both imaging modalities
by using the same substrate, sample preparation, and data analysis
software on the same sample, allowing the coregistration of both images.
We transferred molecules from clean fingertips and fingertips covered
with plasticine modeling clay onto our nanostructure and analyzed
their chemical composition and distribution by SALDI-MS and SERS.
Multimodal analysis located the traces of plasticine on fingermarks
and provided chemical information on the composition of the clay.
Our multimodal approach effectively combines the advantages of mass
spectrometry and vibrational spectroscopy with the signal enhancing
abilities of our nanostructured substrate.
Collapse
Affiliation(s)
- Stefania-Alexandra Iakab
- Department of Electronic Engineering, Rovira i Virgili University, Tarragona 43007, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid 28029, Spain
| | - Gerard Baquer
- Department of Electronic Engineering, Rovira i Virgili University, Tarragona 43007, Spain
| | - Marta Lafuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.,Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Universidad de Zaragoza, Campus Río Ebro-Edificio I+D+i, C/Mariano Esquillor s/n, Zaragoza 50018, Spain
| | - Maria Pilar Pina
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.,Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Universidad de Zaragoza, Campus Río Ebro-Edificio I+D+i, C/Mariano Esquillor s/n, Zaragoza 50018, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid 28029, Spain
| | - José Luis Ramírez
- Department of Electronic Engineering, Rovira i Virgili University, Tarragona 43007, Spain
| | - Pere Ràfols
- Department of Electronic Engineering, Rovira i Virgili University, Tarragona 43007, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid 28029, Spain
| | - Xavier Correig-Blanchar
- Department of Electronic Engineering, Rovira i Virgili University, Tarragona 43007, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid 28029, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus 43204, Spain
| | - María García-Altares
- Department of Electronic Engineering, Rovira i Virgili University, Tarragona 43007, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid 28029, Spain
| |
Collapse
|
9
|
Fincher JA, Djambazova KV, Klein DR, Dufresne M, Migas LG, Van de Plas R, Caprioli RM, Spraggins JM. Molecular Mapping of Neutral Lipids Using Silicon Nanopost Arrays and TIMS Imaging Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2519-2527. [PMID: 34435768 DOI: 10.1021/jasms.1c00159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We demonstrate the utility of combining silicon nanopost arrays (NAPA) and trapped ion mobility imaging mass spectrometry (TIMS IMS) for high spatial resolution and specificity mapping of neutral lipid classes in tissue. Ionization of neutral lipid species such as triglycerides (TGs), cholestryl esters (CEs), and hexosylceramides (HexCers) from biological tissues has remained a challenge for imaging applications. NAPA, a matrix-free laser desorption ionization substrate, provides enhanced ionization efficiency for the above-mentioned neutral lipid species, providing complementary lipid coverage to matrix-assisted laser desorption ionization (MALDI). The combination of NAPA and TIMS IMS enables imaging of neutral lipid species at 20 μm spatial resolution while also increasing molecular coverage greater than 2-fold using gas-phase ion mobility separations. This is a significant improvement with respect to sensitivity, specificity, and spatial resolution compared to previously reported imaging studies using NAPA alone. Improved specificity for neutral lipid analysis using TIMS IMS was shown using rat kidney tissue to separate TGs, CEs, HexCers, and phospholipids into distinct ion mobility trendlines. Further, this technology allowed for the separation of isomeric species, including mobility resolved isomers of Cer(d42:2) (m/z 686.585) with distinct spatial localizations measured in rat kidney tissue section.
Collapse
Affiliation(s)
- Jarod A Fincher
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
| | - Katerina V Djambazova
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
| | - Dustin R Klein
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
| | - Martin Dufresne
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
| | - Lukasz G Migas
- Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Raf Van de Plas
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, 442 Robinson Research Building, 2220 Pierce Avenue, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Department of Cell & Developmental Biology, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
| |
Collapse
|
10
|
Dufresne M, Fincher JA, Patterson NH, Schey KL, Norris JL, Caprioli RM, Spraggins JM. α-Cyano-4-hydroxycinnamic Acid and Tri-Potassium Citrate Salt Pre-Coated Silicon Nanopost Array Provides Enhanced Lipid Detection for High Spatial Resolution MALDI Imaging Mass Spectrometry. Anal Chem 2021; 93:12243-12249. [PMID: 34449196 DOI: 10.1021/acs.analchem.1c01560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have developed a pre-coated substrate for matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) that enables high spatial resolution mapping of both phospholipids and neutral lipid classes in positive ion mode as metal cation adducts. The MALDI substrates are constructed by depositing a layer of α-cyano-4-hydroxycinnamic acid (CHCA) and potassium salts onto silicon nanopost arrays (NAPA) prior to tissue mounting. The matrix/salt pre-coated NAPA substrate significantly enhances all detected lipid signals allowing lipids to be detected at lower laser energies than bare NAPA. The improved sensitivity at lower laser energy enabled ion images to be generated at 10 μm spatial resolution from rat retinal tissue. Optimization of matrix pre-coated NAPA consisted of testing lithium, sodium, and potassium salts along with various matrices to investigate the increased sensitivity toward lipids for MALDI IMS experiments. It was determined that pre-coating NAPA with CHCA and potassium salts before thaw-mounting of tissue resulted in a signal intensity increase of at least 5.8 ± 0.1-fold for phospholipids and 2.0 ± 0.1-fold for neutral lipids compared to bare NAPA. Pre-coating NAPA with matrix and salt also reduced the necessary laser power to achieve desorption/ionization by ∼35%. This reduced the effective diameter of the ablation area from 13 ± 2 μm down to 8 ± 1 μm, enabling high spatial resolution MALDI IMS. Using pre-coated NAPA with CHCA and potassium salts offers a MALDI IMS substrate with broad molecular coverage of lipids in a single polarity that eliminates the need for extensive sample preparation after sectioning.
Collapse
Affiliation(s)
- Martin Dufresne
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37205, United States
| | - Jarod A Fincher
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37205, United States
| | - Nathan Heath Patterson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37205, United States
| | - Kevin L Schey
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37205, United States.,Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jeremy L Norris
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37205, United States.,Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37205, United States.,Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37205, United States.,Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Cell & Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
11
|
Müller WH, De Pauw E, Far J, Malherbe C, Eppe G. Imaging lipids in biological samples with surface-assisted laser desorption/ionization mass spectrometry: A concise review of the last decade. Prog Lipid Res 2021; 83:101114. [PMID: 34217733 DOI: 10.1016/j.plipres.2021.101114] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
Knowing the spatial location of the lipid species present in biological samples is of paramount importance for the elucidation of pathological and physiological processes. In this context, mass spectrometry imaging (MSI) has emerged as a powerful technology allowing the visualization of the spatial distributions of biomolecules, including lipids, in complex biological samples. Among the different ionization methods available, the emerging surface-assisted laser desorption/ionization (SALDI) MSI offers unique capabilities for the study of lipids. This review describes the specific advantages of SALDI-MSI for lipid analysis, including the ability to perform analyses in both ionization modes with the same nanosubstrate, the detection of lipids characterized by low ionization efficiency in MALDI-MS, and the possibilities of surface modification to improve the detection of lipids. The complementarity of SALDI and MALDI-MSI is also discussed. Finally, this review presents data processing strategies applied in SALDI-MSI of lipids, as well as examples of applications of SALDI-MSI in biomedical lipidomics.
Collapse
Affiliation(s)
- Wendy H Müller
- Mass Spectrometry Laboratory, MolSys RU, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000 Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys RU, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000 Liège, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, MolSys RU, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000 Liège, Belgium
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys RU, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000 Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys RU, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000 Liège, Belgium.
| |
Collapse
|
12
|
Hasan MM, Eto F, Mamun MA, Sato S, Islam A, Waliullah ASM, Chi DH, Takahashi Y, Kahyo T, Naito Y, Kotani M, Ohmura T, Setou M. Desorption ionization using through-hole alumina membrane offers higher reproducibility than 2,5-dihydroxybenzoic acid, a widely used matrix in Fourier transform ion cyclotron resonance mass spectrometry imaging analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9076. [PMID: 33651445 DOI: 10.1002/rcm.9076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE DIUTHAME (desorption ionization using through-hole alumina membrane), a recently developed matrix-free ionization-assisting substrate, was examined for reproducibility in terms of mass accuracy and intensity using standard lipid and mouse brain sections. The impregnation property of DIUTHAME significantly improved the reproducibility of mass accuracy and intensity compared with 2,5-dihydroxybenzoic acid (DHB). METHODS Frozen tissue sections were mounted on indium tin oxide-coated glass slides. DIUTHAME and DHB were applied to individual sections. Subsequently, a solution of a phosphatidylcholine standard, PC(18:2/18:2), was poured onto the DIUTHAME and matrix. Finally, the samples were subjected to laser desorption ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry. The reproducibility was tested by calculating the mean ± standard deviation values of mass errors and intensities of individual ion species. RESULTS Analysis of the PC(18:2/18:2) standard showed significantly (p < 0.01) lower mass error for DIUTHAME-MS than for MALDI-MS. Endogenous PC(36:4) analysis in mouse brain section also showed significantly (p < 0.05) lower mass errors for DIUTHAME-MS. Furthermore, we investigated the mass error of some abundant lipid ions in brain sections and observed similar results. DIUTHAME-MS displayed lower signal intensity in standard PC analysis. Interestingly, it offered higher signal intensities for all the endogenous lipid ions. Lower fluctuations of both mass accuracies and signal intensities were observed in DIUTHAME-MS. CONCLUSIONS Our results demonstrated that DIUTHAME-MS offers higher reproducibility for mass accuracies and intensities than MALDI-MS in both standard lipid and mouse brain tissue analyses. It can potentially be used instead of conventional MALDI-MS and mass spectrometry imaging analyses to achieve highly reproducible data for mass accuracy and intensity.
Collapse
Affiliation(s)
- Md Mahmudul Hasan
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Fumihiro Eto
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Md Al Mamun
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Shumpei Sato
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Ariful Islam
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - A S M Waliullah
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Do Huu Chi
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yutaka Takahashi
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Tomoaki Kahyo
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yasuhide Naito
- Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu-cho, Nishi-ku, Hamamatsu, Shizuoka, 431-1202, Japan
| | - Masahiro Kotani
- Hamamatsu Photonics KK, 314-5 Shimokanzo, Iwata, Shizuoka, 438-0193, Japan
| | - Takayuki Ohmura
- Hamamatsu Photonics KK, 314-5 Shimokanzo, Iwata, Shizuoka, 438-0193, Japan
| | - Mitsutoshi Setou
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| |
Collapse
|
13
|
Samarah LZ, Tran TH, Stacey G, Vertes A. Mass Spectrometry Imaging of Bio‐oligomer Polydispersity in Plant Tissues by Laser Desorption Ionization from Silicon Nanopost Arrays. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Laith Z. Samarah
- Department of Chemistry George Washington University Washington DC 20052 USA
| | - Tina H. Tran
- Department of Chemistry George Washington University Washington DC 20052 USA
| | - Gary Stacey
- Divisions of Plant Sciences and Biochemistry C. S. Bond Life Sciences Center University of Missouri Columbia MO 65211 USA
| | - Akos Vertes
- Department of Chemistry George Washington University Washington DC 20052 USA
| |
Collapse
|
14
|
Samarah LZ, Tran TH, Stacey G, Vertes A. Mass Spectrometry Imaging of Bio-oligomer Polydispersity in Plant Tissues by Laser Desorption Ionization from Silicon Nanopost Arrays. Angew Chem Int Ed Engl 2021; 60:9071-9077. [PMID: 33529427 DOI: 10.1002/anie.202015251] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/30/2020] [Indexed: 12/17/2023]
Abstract
Mass spectrometry imaging (MSI) enables simultaneous spatial mapping for diverse molecules in biological tissues. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) has been a mainstream MSI method for a wide range of biomolecules. However, MALDI-MSI of biological homopolymers used for energy storage and molecular feedstock is limited by, e.g., preferential ionization for certain molecular classes. Matrix-free nanophotonic ionization from silicon nanopost arrays (NAPAs) is an emerging laser desorption ionization (LDI) platform with ultra-trace sensitivity and molecular imaging capabilities. Here, we show complementary analysis and MSI of polyhydroxybutyric acid (PHB), polyglutamic acid (PGA), and polysaccharide oligomers in soybean root nodule sections by NAPA-LDI and MALDI. For PHB, number and weight average molar mass, polydispersity, and oligomer size distributions across the tissue section and in regions of interest were characterized by NAPA-LDI-MSI.
Collapse
Affiliation(s)
- Laith Z Samarah
- Department of Chemistry, George Washington University, Washington, DC, 20052, USA
| | - Tina H Tran
- Department of Chemistry, George Washington University, Washington, DC, 20052, USA
| | - Gary Stacey
- Divisions of Plant Sciences and Biochemistry, C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Akos Vertes
- Department of Chemistry, George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
15
|
Otsuka Y, Kamihoriuchi B, Takeuchi A, Iwata F, Tortorella S, Matsumoto T. High-Spatial-Resolution Multimodal Imaging by Tapping-Mode Scanning Probe Electrospray Ionization with Feedback Control. Anal Chem 2021; 93:2263-2272. [PMID: 33400515 DOI: 10.1021/acs.analchem.0c04144] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Direct extraction and ionization techniques using minute amounts of solvent can be employed for the rapid analysis of chemical components in a sample without any sample preparation steps. This type of approach is important for mass spectrometry imaging of samples with multiple chemical components that have different spatial distributions (i.e., biological tissues). To improve the spatial resolution of such imaging, it is necessary to reduce the solvent volume for extraction and deliver it to the sample surface. This report describes a feedback control system applied to tapping-mode scanning probe electrospray ionization. By combining the measurement technique of capillary probe vibration with the dynamic distance control system between the probe and the sample, the vibration amplitude of the probe is maintained while the probe scans over uneven samples. This method allows simultaneous high-resolution imaging of molecular distribution, surface topography, and amplitude/phase changes in the probe vibration. Such multimodal imaging is demonstrated on rhodamine B thin films in microwells and on a mouse brain tissue section. This technique can generally be applied to examine the multidimensional molecular distribution and the surface profiles of various objects.
Collapse
Affiliation(s)
- Yoichi Otsuka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Bui Kamihoriuchi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Aya Takeuchi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Futoshi Iwata
- Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Sara Tortorella
- Molecular Horizon Srl, Via Montelino 30, 06084 Bettona, Perugia, Italy
| | - Takuya Matsumoto
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
16
|
Dual-polarity SALDI FT-ICR MS imaging and Kendrick mass defect data filtering for lipid analysis. Anal Bioanal Chem 2020; 413:2821-2830. [PMID: 33125540 DOI: 10.1007/s00216-020-03020-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/30/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022]
Abstract
Lipids are biomolecules of crucial importance involved in critical biological functions. Yet, lipid content determination using mass spectrometry is still challenging due to their rich structural diversity. Preferential ionisation of the different lipid species in the positive or negative polarity is common, especially when using soft ionisation mass spectrometry techniques. Here, we demonstrate the potency of a dual-polarity approach using surface-assisted laser desorption/ionisation coupled to Fourier transform-ion cyclotron resonance (SALDI FT-ICR) mass spectrometry imaging (MSI) combined with Kendrick mass defect data filtering to (i) identify the lipids detected in both polarities from the same tissue section and (ii) show the complementarity of the dual-polarity data, both regarding the lipid coverage and the spatial distributions of the various lipids. For this purpose, we imaged the same mouse brain section in the positive and negative ionisation modes, on alternate pixels, in a SALDI FT-ICR MS imaging approach using gold nanoparticles (AuNPs) as dual-polarity nanosubstrates. Our study demonstrates, for the first time, the feasibility of (i) a dual-polarity SALDI-MSI approach on the same tissue section, (ii) using AuNPs as nanosubstrates combined with a FT-ICR mass analyser and (iii) the Kendrick mass defect data filtering applied to SALDI-MSI data. In particular, we show the complementarity in the lipids detected both in a given ionisation mode and in the two different ionisation modes. Graphical abstract.
Collapse
|
17
|
Samarah LZ, Vertes A. Mass spectrometry imaging based on laser desorption ionization from inorganic and nanophotonic platforms. VIEW 2020. [DOI: 10.1002/viw.20200063] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Laith Z. Samarah
- Department of Chemistry George Washington University Washington DC USA
| | - Akos Vertes
- Department of Chemistry George Washington University Washington DC USA
| |
Collapse
|
18
|
Fincher JA, Korte AR, Dyer JE, Yadavilli S, Morris NJ, Jones DR, Shanmugam VK, Pirlo RK, Vertes A. Mass spectrometry imaging of triglycerides in biological tissues by laser desorption ionization from silicon nanopost arrays. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4443. [PMID: 31524963 DOI: 10.1002/jms.4443] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/31/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Mass spectrometry imaging (MSI) is used increasingly to simultaneously detect a broad range of biomolecules while mapping their spatial distributions within biological tissue sections. Matrix-assisted laser desorption ionization (MALDI) is recognized as the method-of-choice for MSI applications due in part to its broad molecular coverage. In spite of the remarkable advantages offered by MALDI, imaging of neutral lipids, such as triglycerides (TGs), from tissue has remained a significant challenge due to ion suppression of TGs by phospholipids, e.g. phosphatidylcholines (PCs). To help overcome this limitation, silicon nanopost array (NAPA) substrates were introduced to selectively ionize TGs from biological tissue sections. This matrix-free laser desorption ionization (LDI) platform was previously shown to provide enhanced ionization of certain lipid classes, such as hexosylceramides (HexCers) and phosphatidylethanolamines (PEs) from mouse brain tissue. In this work, we present NAPA as an MSI platform offering enhanced ionization efficiency for TGs from biological tissues relative to MALDI, allowing it to serve as a complement to MALDI-MSI. Analysis of a standard lipid mixture containing PC(18:1/18:1) and TG(16:0/16:0/16:0) by LDI from NAPA provided an ~49 and ~227-fold higher signal for TG(16:0/16:0/16:0) relative to MALDI, when analyzed without and with the addition of a sodium acetate, respectively. In contrast, MALDI provided an ~757 and ~295-fold higher signal for PC(18:1/18:1) compared with NAPA, without and with additional Na+ . Averaged signal intensities for TGs from MSI of mouse lung and human skin tissues exhibited an ~105 and ~49-fold increase, respectively, with LDI from NAPA compared with MALDI. With respect to PCs, MALDI provided an ~2 and ~19-fold increase in signal intensity for mouse lung and human skin tissues, respectively, when compared with NAPA. The complementary coverage obtained by the two platforms demonstrates the utility of using both techniques to maximize the information obtained from lipid MS or MSI experiments.
Collapse
Affiliation(s)
- Jarod A Fincher
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Andrew R Korte
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Jacqueline E Dyer
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Sridevi Yadavilli
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, 20010, USA
| | | | - Derek R Jones
- Division of Rheumatology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA
| | - Victoria K Shanmugam
- Division of Rheumatology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA
| | - Russel K Pirlo
- Chemistry Division, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Akos Vertes
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
19
|
Fincher JA, Korte AR, Yadavilli S, Morris NJ, Vertes A. Multimodal imaging of biological tissues using combined MALDI and NAPA-LDI mass spectrometry for enhanced molecular coverage. Analyst 2020; 145:6910-6918. [DOI: 10.1039/d0an00836b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sequential imaging of a tissue section by MALDI and NAPA-LDI mass spectrometry provides enhanced molecular coverage.
Collapse
Affiliation(s)
- Jarod A. Fincher
- Department of Chemistry
- The George Washington University
- Washington
- USA
| | - Andrew R. Korte
- Department of Chemistry
- The George Washington University
- Washington
- USA
| | - Sridevi Yadavilli
- Research Center for Genetic Medicine
- Children's National Medical Center
- Washington
- USA
| | | | - Akos Vertes
- Department of Chemistry
- The George Washington University
- Washington
- USA
| |
Collapse
|
20
|
Yang J, Zhang W, Zhang H, Zhong M, Cao W, Li Z, Huang X, Nie Z, Liu J, Li P, Ma X, Ouyang Z. Polydopamine-Modified Substrates for High-Sensitivity Laser Desorption Ionization Mass Spectrometry Imaging. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46140-46148. [PMID: 31729222 DOI: 10.1021/acsami.9b16260] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mass spectrometry imaging (MSI) serves as a powerful tool for biological research, and laser desorption ionization (LDI) is used as a major sampling ionization method. Study of materials for LDI represents a major field in the MSI research, either for matrices in matrix-assisted LDI (MALDI) or sample substrates allowing matrix-free LDI. In this study, we developed a composite substrate using polydopamine (PDA) film to coat an antireflection (AR) surface for LDI-MSI. The AR material has been previously shown to confine UV energy within the micro-/nanostructures, leading to a highly localized temperature rise to facilitate analyte thermal desorption. PDA coating on the AR material further enhances the light-to-heat conversion and improves the contact between the substrate surface and the biological sample materials. With this substrate, desorption and ionization of lipids from raw human plasma samples and biological tissue sections have been achieved. Matrix-free LDI-MSI of around 30 lipid species in mouse brain sections was achieved with a significantly simplified MSI procedure at a spatial resolution of 50 μm. This method was applied to determine mouse fatty liver disease through monitoring the abundances and distributions of triacylglycerols and glycerophospholipids. Dramatic differences in the lipid profiles were subsequently identified between the liver tissues from the wild-type and obese mice.
Collapse
Affiliation(s)
| | - Wenpeng Zhang
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | | | | | | | | | - Xi Huang
- Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Zongxiu Nie
- Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | | | | | | | - Zheng Ouyang
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
21
|
Mass Spectrometry Imaging of Lipids in Human Skin Disease Model Hidradenitis Suppurativa by Laser Desorption Ionization from Silicon Nanopost Arrays. Sci Rep 2019; 9:17508. [PMID: 31767918 PMCID: PMC6877612 DOI: 10.1038/s41598-019-53938-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/11/2019] [Indexed: 12/20/2022] Open
Abstract
Neutral lipids have been implicated in a host of potentially debilitating human diseases, such as heart disease, type-2 diabetes, and metabolic syndrome. Matrix-assisted laser desorption ionization (MALDI), the method-of-choice for mass spectrometry imaging (MSI), has led to remarkable success in imaging several lipid classes from biological tissue sections. However, due to ion suppression by phospholipids, MALDI has limited ability to efficiently ionize and image neutral lipids, such as triglycerides (TGs). To help overcome this obstacle, we have utilized silicon nanopost arrays (NAPA), a matrix-free laser desorption ionization (LDI) platform. Hidradenitis suppurativa (HS) is a chronic, recurrent inflammatory skin disease of the apocrine sweat glands. The ability of NAPA to efficiently ionize lipids is exploited in the analysis of human skin samples from sufferers of HS. Ionization by LDI from NAPA allows for the detection and imaging of a number of neutral lipid species, including TGs comprised of shorter, odd-chain fatty acids, which strongly suggests an increased bacterial load within the host tissue, as well as hexosylceramides (HexCers) and galabiosyl-/lactosylceramides that appear to be correlated with the presence of HS. Our results demonstrate that NAPA-LDI-MSI is capable of imaging and potentially differentiating healthy and diseased human skin tissues based on changes in detected neutral lipid composition.
Collapse
|
22
|
Martins AMA, Garcia JHP, Eberlin MN. Mass Spectrometry as a Clinical Integrative Tool to Evaluate Hepatocellular Carcinoma: Moving to the Mainstream. Expert Rev Gastroenterol Hepatol 2019; 13:821-825. [PMID: 31382786 DOI: 10.1080/17474124.2019.1651643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Since the pioneering work of J. J. Thomson on magnetic deflection of charged particles, mass spectrometry (MS) has become the most progressive clinical tool by continuously providing new applications in medical research. In hepatocellular carcinoma (HCC), MS can be used from surveillance in early stages of the disease to constant evaluation of effective treatments. Areas covered: This Special Report highlights the groundbreaking possibilities of mass spectrometry clinical application in the mainstream to evaluate HCC development and progression. Expert opinon: MS has been employed to understand a myriad of liver diseases, such as the identification of early biomarkers in cirrhosis and HVB and HVC, as well as metabolic alterations of lipidic imbalance in HCC due to fatty liver disease. In an integrative point-of-view, researchers worldwide are looking for molecular signatures that may represent more faithfully the complex scenario of the onset and progression of HCC. Following the steps of MELD score (Model of End-stage Liver Disease), which evaluates biochemical dysfunction of end-stage liver diseases, the necessity to use innovative attempts to pursue a molecular-MEaLD (mMEaLD - molecular Model for Early Liver Disease), shifting MS to the upstream and from the lab facilities into the mainstream, inside the surgery room.
Collapse
Affiliation(s)
- Aline M A Martins
- Translational Medicine Molecular Pathology, Medicine College, Universidade de Brasilia , Brasilia , Brazil.,Department of Surgery, Universidade Federal do Ceara , Fortaleza , Brazil
| | - J Huygens P Garcia
- Department of Surgery, Universidade Federal do Ceara , Fortaleza , Brazil
| | | |
Collapse
|