1
|
Steenken F, Pektaş A, Köppl C. Age-related changes in olivocochlear efferent innervation in gerbils. Front Synaptic Neurosci 2024; 16:1422330. [PMID: 38887655 PMCID: PMC11180762 DOI: 10.3389/fnsyn.2024.1422330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Introduction Age-related hearing difficulties have a complex etiology that includes degenerative processes in the sensory cochlea. The cochlea comprises the start of the afferent, ascending auditory pathway, but also receives efferent feedback innervation by two separate populations of brainstem neurons: the medial olivocochlear and lateral olivocochlear pathways, innervating the outer hair cells and auditory-nerve fibers synapsing on inner hair cells, respectively. Efferents are believed to improve hearing under difficult conditions, such as high background noise. Here, we compare olivocochlear efferent innervation density along the tonotopic axis in young-adult and aged gerbils (at ~50% of their maximum lifespan potential), a classic animal model for age-related hearing loss. Methods Efferent synaptic terminals and sensory hair cells were labeled immunohistochemically with anti-synaptotagmin and anti-myosin VIIa, respectively. Numbers of hair cells, numbers of efferent terminals, and the efferent innervation area were quantified at seven tonotopic locations along the organ of Corti. Results The tonotopic distribution of olivocochlear innervation in the gerbil was similar to that previously shown for other species, with a slight apical cochlear bias in presumed lateral olivocochlear innervation (inner-hair-cell region), and a broad mid-cochlear peak for presumed medial olivocochlear innervation (outer-hair-cell region). We found significant, age-related declines in overall efferent innervation to both the inner-hair-cell and the outer-hair-cell region. However, when accounting for the age-related losses in efferent target structures, the innervation density of surviving elements proved unchanged in the inner-hair-cell region. For outer hair cells, a pronounced increase of orphaned outer hair cells, i.e., lacking efferent innervation, was observed. Surviving outer hair cells that were still efferently innervated retained a nearly normal innervation. Discussion A comparison across species suggests a basic aging scenario where outer hair cells, type-I afferents, and the efferents associated with them, steadily die away with advancing age, but leave the surviving cochlear circuitry largely intact until an advanced age, beyond 50% of a species' maximum lifespan potential. In the outer-hair-cell region, MOC degeneration may precede outer-hair-cell death, leaving a putatively transient population of orphaned outer hair cells that are no longer under efferent control.
Collapse
Affiliation(s)
- Friederike Steenken
- Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Cluster of Excellence “Hearing4all”, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Asli Pektaş
- Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Christine Köppl
- Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Cluster of Excellence “Hearing4all”, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Research Centre Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
2
|
Castaño-González K, Köppl C, Pyott SJ. The crucial role of diverse animal models to investigate cochlear aging and hearing loss. Hear Res 2024; 445:108989. [PMID: 38518394 DOI: 10.1016/j.heares.2024.108989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/18/2024] [Accepted: 03/04/2024] [Indexed: 03/24/2024]
Abstract
Age-related hearing loss affects a large and growing segment of the population, with profound impacts on quality of life. Age-related pathology of the cochlea-the mammalian hearing organ-underlies age-related hearing loss. Because investigating age-related changes in the cochlea in humans is challenging and often impossible, animal models are indispensable to investigate these mechanisms as well as the complex consequences of age-related hearing loss on the brain and behavior. In this review, we advocate for a comparative and interdisciplinary approach while also addressing the challenges of comparing age-related hearing loss across species with varying lifespans. We describe the experimental advantages and limitations as well as areas for future research in well-established models of age-related hearing loss, including mice, rats, gerbils, chinchillas, and birds. We also indicate the need to expand characterization of age-related hearing loss in other established animal models, especially guinea pigs, cats, and non-human primates, in which auditory function is well characterized but age-related cochlear pathology is understudied. Finally, we highlight the potential of emerging animal models for advancing our understanding of age-related hearing loss, including deer mice, with their notably extended lifespans and preserved hearing, naked mole rats, with their exceptional longevity and extensive vocal communications, as well as zebrafish, which offer genetic tractability and suitability for drug screening. Ultimately, a comparative and interdisciplinary approach in auditory research, combining insights from various animal models with human studies, is key to robust and reliable research outcomes that better advance our understanding and treatment of age-related hearing loss.
Collapse
Affiliation(s)
- Karen Castaño-González
- Department of Otorhinolaryngology, Head & Neck Surgery, University Medical Center Groningen; The Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands
| | - Christine Köppl
- Cluster of Excellence "Hearing4All", Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky Universität; Research Center Neurosensory Science, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Sonja J Pyott
- Department of Otorhinolaryngology, Head & Neck Surgery, University Medical Center Groningen; The Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
3
|
Bovee S, Klump GM, Pyott SJ, Sielaff C, Köppl C. Cochlear Ribbon Synapses in Aged Gerbils. Int J Mol Sci 2024; 25:2738. [PMID: 38473985 DOI: 10.3390/ijms25052738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
In mammalian hearing, type-I afferent auditory nerve fibers comprise the basis of the afferent auditory pathway. They are connected to inner hair cells of the cochlea via specialized ribbon synapses. Auditory nerve fibers of different physiological types differ subtly in their synaptic location and morphology. Low-spontaneous-rate auditory nerve fibers typically connect on the modiolar side of the inner hair cell, while high-spontaneous-rate fibers are typically found on the pillar side. In aging and noise-damaged ears, this fine-tuned balance between auditory nerve fiber populations can be disrupted and the functional consequences are currently unclear. Here, using immunofluorescent labeling of presynaptic ribbons and postsynaptic glutamate receptor patches, we investigated changes in synaptic morphology at three different tonotopic locations along the cochlea of aging gerbils compared to those of young adults. Quiet-aged gerbils showed about 20% loss of afferent ribbon synapses. While the loss was random at apical, low-frequency cochlear locations, at the basal, high-frequency location it almost exclusively affected the modiolar-located synapses. The subtle differences in volumes of pre- and postsynaptic elements located on the inner hair cell's modiolar versus pillar side were unaffected by age. This is consistent with known physiology and suggests a predominant, age-related loss in the low-spontaneous-rate auditory nerve population in the cochlear base, but not the apex.
Collapse
Affiliation(s)
- Sonny Bovee
- Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Georg M Klump
- Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
- Cluster of Excellence "Hearing4all", Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
- Research Centre Neurosensory Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Sonja J Pyott
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| | - Charlotte Sielaff
- Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), 30625 Hannover, Germany
| | - Christine Köppl
- Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
- Cluster of Excellence "Hearing4all", Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
- Research Centre Neurosensory Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
4
|
Wong HS, Freeman DA, Zhang Y. Not just a cousin of the naked mole-rat: Damaraland mole-rats offer unique insights into biomedicine. Comp Biochem Physiol B Biochem Mol Biol 2022; 262:110772. [PMID: 35710053 PMCID: PMC10155858 DOI: 10.1016/j.cbpb.2022.110772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Abstract
Evolutionary medicine has been a fast-growing field of biological research in the past decade. One of the strengths of evolutionary medicine is to use non-traditional model organisms which often exhibit unusual characteristics shaped by natural selection. Studying these unusual traits could provide valuable insight to understand biomedical questions, since natural selection likely discovers solutions to those complex biological problems. Because of many unusual traits, the naked mole-rat (NMR) has attracted attention from different research areas such as aging, cancer, and hypoxia- and hypercapnia-related disorders. However, such uniqueness of NMR physiology may sometimes make the translational study to human research difficult. Damaraland mole-rat (DMR) shares multiple characteristics in common with NMR, but shows higher degree of similarity with human in some aspects of their physiology. Research on DMR could therefore offer alternative insights and might bridge the gap between experimental findings from NMR to human biomedical research. In this review, we discuss studies of DMR as an extension of the current set of model organisms to help better understand different aspects of human biology and disease. We hope to encourage researchers to consider studying DMR together with NMR. By studying these two similar but evolutionarily distinct species, we can harvest the power of convergent evolution and avoid the potential biased conclusions based on life-history of a single species.
Collapse
Affiliation(s)
- Hoi-Shan Wong
- Nine Square Therapeutics, South San Francisco, CA 94080, United States of America.
| | - David A Freeman
- Department of Biological Sciences, The University of Memphis, Memphis, TN 38152, United States of America
| | - Yufeng Zhang
- College of Health Sciences, The University of Memphis, Memphis, TN 38152, United States of America.
| |
Collapse
|
5
|
McCullagh EA, Peacock J, Lucas A, Poleg S, Greene NT, Gaut A, Lagestee S, Zhang Y, Kaczmarek LK, Park TJ, Tollin DJ, Klug A. Auditory brainstem development of naked mole-rats ( Heterocephalus glaber). Proc Biol Sci 2022; 289:20220878. [PMID: 35946148 PMCID: PMC9363996 DOI: 10.1098/rspb.2022.0878] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/15/2022] [Indexed: 01/12/2023] Open
Abstract
Life underground often leads to animals having specialized auditory systems to accommodate the constraints of acoustic transmission in tunnels. Despite living underground, naked mole-rats use a highly vocal communication system, implying that they rely on central auditory processing. However, little is known about these animals' central auditory system, and whether it follows a similar developmental time course as other rodents. Naked mole-rats show slowed development in the hippocampus suggesting they have altered brain development compared to other rodents. Here, we measured morphological characteristics and voltage-gated potassium channel Kv3.3 expression and protein levels at different key developmental time points (postnatal days 9, 14, 21 and adulthood) to determine whether the auditory brainstem (lateral superior olive and medial nucleus of the trapezoid body) develops similarly to two common auditory rodent model species: gerbils and mice. Additionally, we measured the hearing onset of naked mole-rats using auditory brainstem response recordings at the same developmental timepoints. In contrast with other work in naked mole-rats showing that they are highly divergent in many aspects of their physiology, we show that naked mole-rats have a similar hearing onset, between postnatal day (P) 9 and P14, to many other rodents. On the other hand, we show some developmental differences, such as a unique morphology and Kv3.3 protein levels in the brainstem.
Collapse
Affiliation(s)
| | - John Peacock
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandra Lucas
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shani Poleg
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nathaniel T. Greene
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Addison Gaut
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Samantha Lagestee
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL USA
| | - Yalan Zhang
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Leonard K. Kaczmarek
- Department of Pharmacology, Yale University, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Thomas J. Park
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL USA
| | - Daniel J. Tollin
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Achim Klug
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
6
|
Hite NJ, Sudheimer KD, Anderson L, Sarko DK. Spatial Learning and Memory in the Naked Mole-Rat: Evolutionary Adaptations to a Subterranean Niche. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.879989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Evolutionary adaptation to a subterranean habitat consisting of extensive underground tunnel systems would presumably require adept spatial learning and memory, however, such capabilities have not been characterized to date in naked mole-rats (Heterocephalus glaber) which, like other members of Bathyergidae, are subterranean rodents. The goal of this study was to develop a method for effectively assessing spatial learning and memory by modifying a Hebb-Williams maze for use with these subterranean rodents. Established behavioral tests to assess spatial learning and memory have primarily focused on, and have been optimized for, more typical laboratory rodent species such as mice and rats. In the current study, we utilized species-appropriate motivators, analyzed learning curves associated with maze performance, and tested memory retention in naked mole-rats. Using a modified Hebb-Williams maze, naked mole-rats underwent 3 days of training, consisting of five trials per day wherein they could freely explore the maze in search of the reward chamber. Memory retention was then tested 1 day, 1 week, and 1 month following the last day of training. Performance was analyzed based on latency to the reward chamber, errors made, and distance traveled to reach the reward chamber. Overall, this study established a behavioral paradigm for assessing maze navigation, spatial learning, and spatial memory in subterranean rodents, including optimization of rewards and environmental motivators.
Collapse
|
7
|
Caspar KR, Heinrich A, Mellinghaus L, Gerhardt P, Begall S. Evoked auditory potentials from African mole-rats and coruros reveal disparity in subterranean rodent hearing. J Exp Biol 2021; 224:272630. [PMID: 34704596 DOI: 10.1242/jeb.243371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022]
Abstract
Hearing in subterranean rodents exhibits numerous peculiarities, including low sensitivity and restriction to a narrow range of comparatively low frequencies. Past studies provided two conflicting hypotheses explaining how these derived traits evolved: structural degeneration and adaptive specialization. To further elucidate this issue, we recorded auditory brainstem responses from three species of social subterranean rodents that differ in the degree of specialization to the underground habitat: the naked mole-rat (Heterocephalus glaber) and the Mashona mole-rat (Fukomys darlingi), which represent the ancient lineage of African mole-rats (Bathyergidae), and the coruro (Spalacopus cyanus), a South American rodent (Octodontidae) that adopted a subterranean lifestyle in more recent geological time. Additionally, we measured call amplitudes of social vocalizations to study auditory vocal coupling. We found elevated auditory thresholds and severe hearing range restrictions in the African mole-rats, with hearing in naked mole-rats tending to be more sensitive than in Mashona mole-rats, in which hearing notably deteriorated with increasing age. In contrast, hearing in coruros was similar to that of epigeic rodents, with its range extending into ultrasonic frequencies. However, as in the mole-rats, the coruros' region of best hearing was located at low frequencies close to 1 kHz. We argue that the auditory sensitivity of African mole-rats, although remarkably poor, has been underestimated by recent studies, whereas data on coruros conform to previous results. Considering the available evidence, we propose to be open to both degenerative and adaptive interpretations of hearing physiology in subterranean mammals, as each may provide convincing explanations for specific auditory traits observed.
Collapse
Affiliation(s)
- Kai R Caspar
- Department of General Zoology, University of Duisburg-Essen, Universitaetsstraße 5, 45141 Essen, Germany
| | - Alexandra Heinrich
- Department of General Zoology, University of Duisburg-Essen, Universitaetsstraße 5, 45141 Essen, Germany
| | - Lea Mellinghaus
- Department of General Zoology, University of Duisburg-Essen, Universitaetsstraße 5, 45141 Essen, Germany
| | - Patricia Gerhardt
- Institute of Physiology, Faculty of Medicine, University of Duisburg-Essen, 45147 Essen, Germany
| | - Sabine Begall
- Department of General Zoology, University of Duisburg-Essen, Universitaetsstraße 5, 45141 Essen, Germany
| |
Collapse
|
8
|
Vice EN, Lagestee S, Browe BM, Deb D, Smith ESJ, Park TJ. Sensory Systems of the African Naked Mole-Rat. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:137-156. [PMID: 34424515 DOI: 10.1007/978-3-030-65943-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Naked mole-rats share some sensory characteristics with other subterraneans, including lack of object vision, retention of the ability to entrain their circadian rhythm to light, and poor hearing. On the other hand, a characteristic that may be specialized in the naked mole-rat is their exquisite orienting responses to the touch of even a single body vibrissa. They have about 100 whisker-like body vibrissae on their otherwise furless bodies. They are also insensitive to chemical and inflammatory pain, likely an adaptation to living in an atmosphere that is high in carbon dioxide, a result of many respiring individuals driving carbon dioxide accumulation. Naked mole-rats have the highest population density among subterranean mammals. High levels of carbon dioxide cause tissue acidosis and associated pain. Remarkably, naked mole-rats are completely immune to carbon dioxide-induced pulmonary edema. However, they retain the ability to detect acid as a taste (sour). Finally, their ability to smell and discriminate odors is comparable to that of rats and mice, but their vomeronasal organ, associated with sensing pheromones, is extremely small and shows a complete lack of post-natal growth. In this chapter, we review what is known about the sensory systems of the naked mole-rat with emphasis on how they differ from other mammals, and even other subterraneans. More extensive accounts of the naked mole-rat's auditory and pain systems can be found in other chapters of this book.
Collapse
Affiliation(s)
- Emily N Vice
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Samantha Lagestee
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Brigitte M Browe
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Deblina Deb
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.,Kids In Motion Pediatric Therapy Services, Highland, MI, USA
| | - Ewan St J Smith
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Thomas J Park
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
9
|
Reijntjes DOJ, Breitzler JL, Persic D, Pyott SJ. Preparation of the intact rodent organ of Corti for RNAscope and immunolabeling, confocal microscopy, and quantitative analysis. STAR Protoc 2021; 2:100544. [PMID: 34195667 PMCID: PMC8233256 DOI: 10.1016/j.xpro.2021.100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This protocol describes the preparation of the mouse organ of Corti for RNAscope, immunolabeling, confocal microscopy, and quantitative image analysis to examine transcript and protein localization, sensory hair cells, and synapses. This protocol can be applied to mice and other rodents (juvenile and adult) and can be adapted for other techniques, including electrophysiology and RNA sequencing. This protocol features minimal tissue processing to preserve viability for downstream assays, while isolating the organ of Corti is the most challenging step. For additional details on the use and execution of this protocol, please refer to McLean et al. (2009); Schuth et al. (2014); Lingle et al. (2019); Pyott et al. (2020).
Collapse
Affiliation(s)
- Daniel O J Reijntjes
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MA 21201, USA
| | - J Lukas Breitzler
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, the Netherlands
| | - Dora Persic
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, the Netherlands
| | - Sonja J Pyott
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, the Netherlands
| |
Collapse
|
10
|
Gao D, Wu H, Jie H, Liang M, Yu D, Feng Y, Balasubramanian K, Zheng G, Yang J, He J. XIAP inhibits gentamicin-induced hair cell damage and ototoxicity through the caspase-3/9 pathway. Biochem Pharmacol 2021; 186:114513. [PMID: 33713642 DOI: 10.1016/j.bcp.2021.114513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022]
Abstract
Gentamicin (GM), an aminoglycoside antibiotic, is one commonly used clinical drugs with ototoxic side effects. One of the most principal mechanisms of its ototoxicity is that GM can activate caspase-mediated cell death pathways in the cochlea. Since the anti-apoptotic protein known as X-linked Inhibitor of Apoptosis Protein (XIAP) has been reported to directly bind to activated caspase protein and inhibit their activities, we hypothesized that it might protect cochlea hair cells from GM ototoxicity. To evaluate this hypothesis, postnatal day 2-3 (P2-3) transgenic (TG) mice, in which XIAP gene is over-expressed under a pure C57BL/6J genetic background was constructed. We first extracted the cochlea tissue of normal mice and treated them with different concentrations of GM, and the number of hair cells were observed to determine the concentration of GM used in subsequent experiments. Next, we used Western Blot experiment to examine the effect of GM on XIAP protein expression in normal mouse cochlea, and then Western Blot and RT-PCR experiments were used to identify the transgenic mice. Finally, immunofluorescence assays were used to detect the effect of GM on the expression of caspase protein and verify the protective effect of XIAP. We found that GM at a concentration of 0.5 mM significantly affected the function of cochlea hair cells, up-regulating the expression of cleaved-caspase-3 and cleaved-caspase-9 protein but down-regulating XIAP protein. In the cochlea tissues of TG mice, this effect of GM was suppressed, and the destruction of hair cells was significantly reduced, and the cleaved-caspase-3 and cleaved-caspase-9 proteins were significantly suppressed. These results suggested that XIAP reduces GM-induced ototoxicity and caspase-3/9 pathway is associated with this process.
Collapse
Affiliation(s)
- Dekun Gao
- Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Hui Wu
- Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Huiqun Jie
- Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Min Liang
- Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Dongzhen Yu
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China; Department of Otorhinolaryngology, Sixth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanmei Feng
- Department of Otorhinolaryngology, First People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | | | - Guiliang Zheng
- Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| | - Jun Yang
- Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| | - Jingchun He
- Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China; Department of Otorhinolaryngology, First People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| |
Collapse
|
11
|
Barker AJ, Koch U, Lewin GR, Pyott SJ. Hearing and Vocalizations in the Naked Mole-Rat. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:157-195. [PMID: 34424516 DOI: 10.1007/978-3-030-65943-1_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since their discovery, naked mole-rats have been speaking to us. Early field studies noted their extensive vocalizations, and scientists who are fortunate enough to spend time with these creatures in the laboratory setting cannot help but notice their constant peeping, chirruping and grunting (Hill et al., Proc Zool Soc Lond 128:455-514, 1957). Yet, few dwell on the function of these chirps and peeps, being instead drawn to the many other extraordinary aspects of naked mole-rat physiology detailed throughout this book. Still, no biology is complete without a description of how an organism communicates. While the field of naked mole-rat bioacoustics and acoustic communication has been largely silent for many years, we highlight recent progress in understanding how and what Heterocephalus glaber hears and which vocalizations it uses. These efforts are essential for a complete understanding of naked mole-rat cooperation, society and even culture.
Collapse
Affiliation(s)
- Alison J Barker
- Max Planck Institute for Brain Research, Max-von-Laue-Straße 4, Frankfurt am Main, Germany
| | - Ursula Koch
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Gary R Lewin
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Sonja J Pyott
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
12
|
Pyott SJ, van Tuinen M, Screven LA, Schrode KM, Bai JP, Barone CM, Price SD, Lysakowski A, Sanderford M, Kumar S, Santos-Sacchi J, Lauer AM, Park TJ. Functional, Morphological, and Evolutionary Characterization of Hearing in Subterranean, Eusocial African Mole-Rats. Curr Biol 2020; 30:4329-4341.e4. [PMID: 32888484 DOI: 10.1016/j.cub.2020.08.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/09/2020] [Accepted: 08/07/2020] [Indexed: 12/26/2022]
Abstract
Naked mole-rats are highly vocal, eusocial, subterranean rodents with, counterintuitively, poor hearing. The causes underlying their altered hearing are unknown. Moreover, whether altered hearing is degenerate or adaptive to their unique lifestyles is controversial. We used various methods to identify the factors contributing to altered hearing in naked and the related Damaraland mole-rats and to examine whether these alterations result from relaxed or adaptive selection. Remarkably, we found that cochlear amplification was absent from both species despite normal prestin function in outer hair cells isolated from naked mole-rats. Instead, loss of cochlear amplification appears to result from abnormal hair bundle morphologies observed in both species. By exploiting a well-curated deafness phenotype-genotype database, we identified amino acid substitutions consistent with abnormal hair bundle morphology and reduced hearing sensitivity. Amino acid substitutions were found in unique groups of six hair bundle link proteins. Molecular evolutionary analyses revealed shifts in selection pressure at both the gene and the codon level for five of these six hair bundle link proteins. Substitutions in three of these proteins are associated exclusively with altered hearing. Altogether, our findings identify the likely mechanism of altered hearing in African mole-rats, making them the only identified mammals naturally lacking cochlear amplification. Moreover, our findings suggest that altered hearing in African mole-rats is adaptive, perhaps tailoring hearing to eusocial and subterranean lifestyles. Finally, our work reveals multiple, unique evolutionary trajectories in African mole-rat hearing and establishes species members as naturally occurring disease models to investigate human hearing loss.
Collapse
Affiliation(s)
- Sonja J Pyott
- University Medical Center Groningen and University of Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713GZ Groningen, the Netherlands.
| | - Marcel van Tuinen
- University Medical Center Groningen and University of Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713GZ Groningen, the Netherlands
| | - Laurel A Screven
- Johns Hopkins School of Medicine, Department of Otolaryngology, Baltimore, MD 21205, USA
| | - Katrina M Schrode
- Johns Hopkins School of Medicine, Department of Otolaryngology, Baltimore, MD 21205, USA
| | - Jun-Ping Bai
- Yale University School of Medicine, Department of Neurology, 333 Cedar Street, New Haven, CT 06510, USA
| | - Catherine M Barone
- University of Illinois at Chicago, Department of Biological Sciences, Chicago, IL 60612, USA
| | - Steven D Price
- University of Illinois at Chicago, Department of Anatomy and Cell Biology, Chicago, IL 60612, USA
| | - Anna Lysakowski
- University of Illinois at Chicago, Department of Anatomy and Cell Biology, Chicago, IL 60612, USA
| | - Maxwell Sanderford
- Temple University, Institute for Genomics and Evolutionary Medicine and Department of Biology, Philadelphia, PA 19122, USA
| | - Sudhir Kumar
- Temple University, Institute for Genomics and Evolutionary Medicine and Department of Biology, Philadelphia, PA 19122, USA; King Abdulaziz University, Center for Excellence in Genome Medicine and Research, Jeddah, Saudi Arabia
| | - Joseph Santos-Sacchi
- Yale University School of Medicine, Department of Surgery (Otolaryngology) and Department of Neuroscience and Cellular and Molecular Physiology, 333 Cedar Street, New Haven, CT 06510, USA
| | - Amanda M Lauer
- Johns Hopkins School of Medicine, Department of Otolaryngology, Baltimore, MD 21205, USA
| | - Thomas J Park
- University of Illinois at Chicago, Department of Biological Sciences, Chicago, IL 60612, USA
| |
Collapse
|
13
|
Reijntjes DOJ, Köppl C, Pyott SJ. Volume gradients in inner hair cell-auditory nerve fiber pre- and postsynaptic proteins differ across mouse strains. Hear Res 2020; 390:107933. [PMID: 32203820 DOI: 10.1016/j.heares.2020.107933] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/12/2020] [Accepted: 02/26/2020] [Indexed: 02/04/2023]
Abstract
In different animal models, auditory nerve fibers display variation in spontaneous activity and response threshold. Functional and structural differences among inner hair cell ribbon synapses are believed to contribute to this variation. The relative volumes of synaptic proteins at individual synapses might be one such difference. This idea is based on the observation of opposing volume gradients of the presynaptic ribbons and associated postsynaptic glutamate receptor patches in mice along the pillar modiolar axis of the inner hair cell, the same axis along which fibers were shown to vary in their physiological properties. However, it is unclear whether these opposing gradients are expressed consistently across animal models. In addition, such volume gradients observed for separate populations of presynaptic ribbons and postsynaptic glutamate receptor patches suggest different relative volumes of these synaptic structures at individual synapses; however, these differences have not been examined in mice. Furthermore, it is unclear whether such gradients are limited to these synaptic proteins. Therefore, we analyzed organs of Corti isolated from CBA/CaJ, C57BL/6, and FVB/NJ mice using immunofluorescence, confocal microscopy, and quantitative image analysis. We find consistent expression of presynaptic volume gradients across strains of mice and inconsistent expression of postsynaptic volume gradients. We find differences in the relative volume of synaptic proteins, but these are different between CBA/CaJ mice, and C57BL/6 and FVB/NJ mice. We find similar results in C57BL/6 and FVB/NJ mice when using other postsynaptic density proteins (Shank1, Homer, and PSD95). These results have implications for the mechanisms by which volumes of synaptic proteins contribute to variations in the physiology of individual auditory nerve fibers and their vulnerability to excitotoxicity.
Collapse
Affiliation(s)
- Daniël O J Reijntjes
- University of Groningen, University Medical Center Groningen, Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713 GZ, Groningen, the Netherlands.
| | - Christine Köppl
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, Germany
| | - Sonja J Pyott
- University of Groningen, University Medical Center Groningen, Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
14
|
Barone CM, Douma S, Reijntjes DOJ, Browe BM, Köppl C, Klump G, Park TJ, Pyott SJ. Altered cochlear innervation in developing and mature naked and Damaraland mole rats. J Comp Neurol 2019; 527:2302-2316. [PMID: 30861124 PMCID: PMC6767702 DOI: 10.1002/cne.24682] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 01/04/2023]
Abstract
Compared to many other rodent species, naked mole rats (Heterocephalus glaber) have elevated auditory thresholds, poor frequency selectivity, and limited ability to localize sound. Because the cochlea is responsible for encoding and relaying auditory signals to the brain, we used immunofluorescence and quantitative image analysis to examine cochlear innervation in mature and developing naked mole rats compared to mice (Mus musculus), gerbils (Meriones unguiculatus), and Damaraland mole rats (Fukomys damarensis), another subterranean rodent. In comparison to mice and gerbils, we observed alterations in afferent and efferent innervation as well as their patterns of developmental refinement in naked and Damaraland mole rats. These alterations were, however, not always shared similarly between naked and Damaraland mole rats. Most conspicuously, in both naked and Damaraland mole rats, inner hair cell (IHC) afferent ribbon density was reduced, whereas outer hair cell afferent ribbon density was increased. Naked and Damaraland mole rats also showed reduced lateral and medial efferent terminal density. Developmentally, naked mole rats showed reduced and prolonged postnatal reorganization of afferent and efferent innervation. Damaraland mole rats showed no evidence of postnatal reorganization. Differences in cochlear innervation specifically between the two subterranean rodents and more broadly among rodents provides insight into the cochlear mechanisms that enhance frequency sensitivity and sound localization, maturation of the auditory system, and the evolutionary adaptations occurring in response to subterranean environments.
Collapse
Affiliation(s)
- Catherine M Barone
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Sytse Douma
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Daniël O J Reijntjes
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Brigitte M Browe
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Christine Köppl
- Cluster of Excellence "Hearing4All", Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Georg Klump
- Cluster of Excellence "Hearing4All", Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Thomas J Park
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Sonja J Pyott
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|