1
|
Juárez Tello A, van der Zouwen CI, Dejas L, Duque-Yate J, Boutin J, Medina-Ortiz K, Suresh JS, Swiegers J, Sarret P, Ryczko D. Dopamine-sensitive neurons in the mesencephalic locomotor region control locomotion initiation, stop, and turns. Cell Rep 2024; 43:114187. [PMID: 38722743 PMCID: PMC11157412 DOI: 10.1016/j.celrep.2024.114187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/31/2024] [Accepted: 04/17/2024] [Indexed: 06/01/2024] Open
Abstract
The locomotor role of dopaminergic neurons is traditionally attributed to their ascending projections to the basal ganglia, which project to the mesencephalic locomotor region (MLR). In addition, descending dopaminergic projections to the MLR are present from basal vertebrates to mammals. However, the neurons targeted in the MLR and their behavioral role are unknown in mammals. Here, we identify genetically defined MLR cells that express D1 or D2 receptors and control different motor behaviors in mice. In the cuneiform nucleus, D1-expressing neurons promote locomotion, while D2-expressing neurons stop locomotion. In the pedunculopontine nucleus, D1-expressing neurons promote locomotion, while D2-expressing neurons evoke ipsilateral turns. Using RNAscope, we show that MLR dopamine-sensitive neurons comprise a combination of glutamatergic, GABAergic, and cholinergic neurons, suggesting that different neurotransmitter-based cell types work together to control distinct behavioral modules. Altogether, our study uncovers behaviorally relevant cell types in the mammalian MLR based on the expression of dopaminergic receptors.
Collapse
Affiliation(s)
- Andrea Juárez Tello
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Cornelis Immanuel van der Zouwen
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Léonie Dejas
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Juan Duque-Yate
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Joël Boutin
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Katherine Medina-Ortiz
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jacinthlyn Sylvia Suresh
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jordan Swiegers
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Philippe Sarret
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada; Neurosciences Sherbrooke, Institut de Pharmacologie de Sherbrooke, Sherbrooke, QC, Canada
| | - Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada; Neurosciences Sherbrooke, Institut de Pharmacologie de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
2
|
Wullimann MF, Mokayes N, Shainer I, Kuehn E, Baier H. Genoarchitectonics of the larval zebrafish diencephalon. J Comp Neurol 2024; 532:e25549. [PMID: 37983970 DOI: 10.1002/cne.25549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/15/2023] [Accepted: 10/03/2023] [Indexed: 11/22/2023]
Abstract
The brain is spatially organized into subdivisions, nuclei and areas, which often correspond to functional and developmental units. A segmentation of brain regions in the form of a consensus atlas facilitates mechanistic studies and is a prerequisite for sharing information among neuroanatomists. Gene expression patterns objectively delineate boundaries between brain regions and provide information about their developmental and evolutionary histories. To generate a detailed molecular map of the larval zebrafish diencephalon, we took advantage of the Max Planck Zebrafish Brain (mapzebrain) atlas, which aligns hundreds of transcript and transgene expression patterns in a shared coordinate system. Inspection and co-visualization of close to 50 marker genes have allowed us to resolve the tripartite prosomeric scaffold of the diencephalon at unprecedented resolution. This approach clarified the genoarchitectonic partitioning of the alar diencephalon into pretectum (alar part of prosomere P1), thalamus (alar part of prosomere P2, with habenula and pineal complex), and prethalamus (alar part of prosomere P3). We further identified the region of the nucleus of the medial longitudinal fasciculus, as well as the posterior and anterior parts of the posterior tuberculum, as molecularly distinct basal parts of prosomeres 1, 2, and 3, respectively. Some of the markers examined allowed us to locate glutamatergic, GABAergic, dopaminergic, serotoninergic, and various neuropeptidergic domains in the larval zebrafish diencephalon. Our molecular neuroanatomical approach has thus (1) yielded an objective and internally consistent interpretation of the prosomere boundaries within the zebrafish forebrain; has (2) produced a list of markers, which in sparse combinations label the subdivisions of the diencephalon; and is (3) setting the stage for further functional and developmental studies in this vertebrate brain.
Collapse
Affiliation(s)
- Mario F Wullimann
- Genes - Circuits - Behavior Max-Planck-Institute for Biological Intelligence, Martinsried, Germany
- Department Biology II, Division of Neurobiology, Ludwig-Maximilians-University (LMU Munich), Martinsried, Germany
| | - Nouwar Mokayes
- Genes - Circuits - Behavior Max-Planck-Institute for Biological Intelligence, Martinsried, Germany
| | - Inbal Shainer
- Genes - Circuits - Behavior Max-Planck-Institute for Biological Intelligence, Martinsried, Germany
| | - Enrico Kuehn
- Genes - Circuits - Behavior Max-Planck-Institute for Biological Intelligence, Martinsried, Germany
| | - Herwig Baier
- Genes - Circuits - Behavior Max-Planck-Institute for Biological Intelligence, Martinsried, Germany
| |
Collapse
|
3
|
Liang H, Liu P, Wang Z, Xiong H, Yin C, Zhao D, Wu C, Chen L. TREM2 gene induces differentiation of induced pluripotent stem cells into dopaminergic neurons and promotes neuronal repair via TGF-β activation in 6-OHDA-lesioned mouse model of Parkinson's disease. CNS Neurosci Ther 2024; 30:e14630. [PMID: 38348765 PMCID: PMC10862187 DOI: 10.1111/cns.14630] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
OBJECTIVE Induced pluripotent stem cells (iPSCs) hold a promising potential for rescuing dopaminergic neurons in therapy for Parkinson's disease (PD). This study clarifies a TREM2-dependent mechanism explaining the function of iPSC differentiation in neuronal repair of PD. METHODS PD-related differentially expressed genes were screened by bioinformatics analyses and their expression was verified using RT-qPCR in nigral tissues of 6-OHDA-lesioned mice. Following ectopic expression and depletion experiments in iPSCs, cell differentiation into dopaminergic neurons as well as the expression of dopaminergic neuronal markers TH and DAT was measured. Stereotaxic injection of 6-OHDA was used to develop a mouse model of PD, which was injected with iPSC suspension overexpressing TREM2 to verify the effect of TREM2 on neuronal repair. RESULTS TREM2 was poorly expressed in the nigral tissues of 6-OHDA-lesioned mice. In the presence of TREM2 overexpression, the iPSCs showed increased expression of dopaminergic neuronal markers TH and DAT, which facilitated the differentiation of iPSCs into dopaminergic neurons. Mechanistic investigations indicated that TREM2 activated the TGF-β pathway and induced iPSC differentiation into dopaminergic neurons. In vivo data showed that iPSCs overexpressing TREM2 enhanced neuronal repair in 6-OHDA-lesioned mice. CONCLUSION This work identifies a mechanistic insight for TREM2-mediated TGF-β activation in the regulation of neuronal repair in PD and suggests novel strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Hanbai Liang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Ping Liu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Zijing Wang
- Department of Gastroenterology and Hepatology, West China HospitalSichuan UniversityChengduChina
| | - Huan Xiong
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Cheng Yin
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Dongdong Zhao
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Chunhui Wu
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Longyi Chen
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
4
|
Ryczko D, Dubuc R. Dopamine control of downstream motor centers. Curr Opin Neurobiol 2023; 83:102785. [PMID: 37774481 DOI: 10.1016/j.conb.2023.102785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/26/2023] [Indexed: 10/01/2023]
Abstract
The role of dopamine in the control of movement is traditionally associated with ascending projections to the basal ganglia. However, more recently descending dopaminergic pathways projecting to downstream brainstem motor circuits were discovered. In lampreys, salamanders, and rodents, these include projections to the downstream Mesencephalic Locomotor Region (MLR), a brainstem region controlling locomotion. Such descending dopaminergic projections could prime brainstem networks controlling movement. Other descending dopaminergic projections have been shown to reach reticulospinal cells involved in the control of locomotion. In addition, dopamine directly modulates the activity of interneurons and motoneurons. Beyond locomotion, dopaminergic inputs modulate visuomotor transformations within the optic tectum (mammalian superior colliculus). Loss of descending dopaminergic inputs will likely contribute to pathological conditions such as in Parkinson's disease.
Collapse
Affiliation(s)
- Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada; Neurosciences Sherbrooke, Sherbrooke, Canada; Institut de Pharmacologie de Sherbrooke, Sherbrooke, Canada.
| | - Réjean Dubuc
- Groupe de Recherche en Activité Physique Adaptée, Département des Sciences de l'Activité Physique, Université du Québec à Montréal, Montréal, Québec, Canada; Groupe de recherche sur la Signalisation Neurale et la Circuiterie, Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
5
|
Barcomb K, Ford CP. Alterations in neurotransmitter co-release in Parkinson's disease. Exp Neurol 2023; 370:114562. [PMID: 37802381 PMCID: PMC10842357 DOI: 10.1016/j.expneurol.2023.114562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Parkinson's disease is a neurological disorder characterized by degeneration of midbrain dopamine neurons, which results in numerous adaptations in basal ganglia circuits. Research over the past twenty-five years has identified that midbrain dopamine neurons of the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) co-release multiple other transmitters including glutamate and GABA, in addition to their canonical transmitter, dopamine. This review summarizes previous work characterizing neurotransmitter co-release from dopamine neurons, work examining potential changes in co-release dynamics that result in animal models of Parkinson's disease, and future opportunities for determining how dysfunction in co-release may contribute to circuit dysfunction in Parkinson's disease.
Collapse
Affiliation(s)
- Kelsey Barcomb
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Christopher P Ford
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
6
|
Yao Z, van Velthoven CTJ, Kunst M, Zhang M, McMillen D, Lee C, Jung W, Goldy J, Abdelhak A, Aitken M, Baker K, Baker P, Barkan E, Bertagnolli D, Bhandiwad A, Bielstein C, Bishwakarma P, Campos J, Carey D, Casper T, Chakka AB, Chakrabarty R, Chavan S, Chen M, Clark M, Close J, Crichton K, Daniel S, DiValentin P, Dolbeare T, Ellingwood L, Fiabane E, Fliss T, Gee J, Gerstenberger J, Glandon A, Gloe J, Gould J, Gray J, Guilford N, Guzman J, Hirschstein D, Ho W, Hooper M, Huang M, Hupp M, Jin K, Kroll M, Lathia K, Leon A, Li S, Long B, Madigan Z, Malloy J, Malone J, Maltzer Z, Martin N, McCue R, McGinty R, Mei N, Melchor J, Meyerdierks E, Mollenkopf T, Moonsman S, Nguyen TN, Otto S, Pham T, Rimorin C, Ruiz A, Sanchez R, Sawyer L, Shapovalova N, Shepard N, Slaughterbeck C, Sulc J, Tieu M, Torkelson A, Tung H, Valera Cuevas N, Vance S, Wadhwani K, Ward K, Levi B, Farrell C, Young R, Staats B, Wang MQM, Thompson CL, Mufti S, Pagan CM, Kruse L, Dee N, Sunkin SM, Esposito L, Hawrylycz MJ, Waters J, Ng L, Smith K, Tasic B, Zhuang X, Zeng H. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature 2023; 624:317-332. [PMID: 38092916 PMCID: PMC10719114 DOI: 10.1038/s41586-023-06812-z] [Citation(s) in RCA: 139] [Impact Index Per Article: 139.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2023]
Abstract
The mammalian brain consists of millions to billions of cells that are organized into many cell types with specific spatial distribution patterns and structural and functional properties1-3. Here we report a comprehensive and high-resolution transcriptomic and spatial cell-type atlas for the whole adult mouse brain. The cell-type atlas was created by combining a single-cell RNA-sequencing (scRNA-seq) dataset of around 7 million cells profiled (approximately 4.0 million cells passing quality control), and a spatial transcriptomic dataset of approximately 4.3 million cells using multiplexed error-robust fluorescence in situ hybridization (MERFISH). The atlas is hierarchically organized into 4 nested levels of classification: 34 classes, 338 subclasses, 1,201 supertypes and 5,322 clusters. We present an online platform, Allen Brain Cell Atlas, to visualize the mouse whole-brain cell-type atlas along with the single-cell RNA-sequencing and MERFISH datasets. We systematically analysed the neuronal and non-neuronal cell types across the brain and identified a high degree of correspondence between transcriptomic identity and spatial specificity for each cell type. The results reveal unique features of cell-type organization in different brain regions-in particular, a dichotomy between the dorsal and ventral parts of the brain. The dorsal part contains relatively fewer yet highly divergent neuronal types, whereas the ventral part contains more numerous neuronal types that are more closely related to each other. Our study also uncovered extraordinary diversity and heterogeneity in neurotransmitter and neuropeptide expression and co-expression patterns in different cell types. Finally, we found that transcription factors are major determinants of cell-type classification and identified a combinatorial transcription factor code that defines cell types across all parts of the brain. The whole mouse brain transcriptomic and spatial cell-type atlas establishes a benchmark reference atlas and a foundational resource for integrative investigations of cellular and circuit function, development and evolution of the mammalian brain.
Collapse
Affiliation(s)
- Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA.
| | | | | | - Meng Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | | | - Changkyu Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Won Jung
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Pamela Baker
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Eliza Barkan
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Daniel Carey
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Min Chen
- University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jennie Close
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Scott Daniel
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Tim Dolbeare
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - James Gee
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Jessica Gloe
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - James Gray
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Windy Ho
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Mike Huang
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Madie Hupp
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Kelly Jin
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Kanan Lathia
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Arielle Leon
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Su Li
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Brian Long
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Zach Madigan
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Zoe Maltzer
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Naomi Martin
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Rachel McCue
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Ryan McGinty
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Nicholas Mei
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jose Melchor
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Sven Otto
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Lane Sawyer
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Noah Shepard
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Josef Sulc
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Michael Tieu
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Herman Tung
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Shane Vance
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Katelyn Ward
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Boaz Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Rob Young
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Brian Staats
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Shoaib Mufti
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Lauren Kruse
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Jack Waters
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA.
| |
Collapse
|
7
|
Altbürger C, Holzhauser J, Driever W. CRISPR/Cas9-based QF2 knock-in at the tyrosine hydroxylase ( th) locus reveals novel th-expressing neuron populations in the zebrafish mid- and hindbrain. Front Neuroanat 2023; 17:1196868. [PMID: 37603776 PMCID: PMC10433395 DOI: 10.3389/fnana.2023.1196868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/30/2023] [Indexed: 08/23/2023] Open
Abstract
Catecholaminergic neuron clusters are among the most conserved neuromodulatory systems in vertebrates, yet some clusters show significant evolutionary dynamics. Because of their disease relevance, special attention has been paid to mammalian midbrain dopaminergic systems, which have important functions in motor control, reward, motivation, and cognitive function. In contrast, midbrain dopaminergic neurons in teleosts were thought to be lost secondarily. Here, we generated a CRISPR/Cas9-based knock-in transgene at the th locus, which allows the expression of the Q-system transcription factor QF2 linked to the Tyrosine hydroxylase open reading frame by an E2A peptide. The QF2 knock-in allele still expresses Tyrosine hydroxylase in catecholaminergic neurons. Coexpression analysis of QF2 driven expression of QUAS fluorescent reporter transgenes and of th mRNA and Th protein revealed that essentially all reporter expressing cells also express Th/th. We also observed a small group of previously unidentified cells expressing the reporter gene in the midbrain and a larger group close to the midbrain-hindbrain boundary. However, we detected no expression of the catecholaminergic markers ddc, slc6a3, or dbh in these neurons, suggesting that they are not actively transmitting catecholamines. The identified neurons in the midbrain are located in a GABAergic territory. A coexpression analysis with anatomical markers revealed that Th-expressing neurons in the midbrain are located in the tegmentum and those close to the midbrain-hindbrain boundary are located in the hindbrain. Our data suggest that zebrafish may still have some evolutionary remnants of midbrain dopaminergic neurons.
Collapse
Affiliation(s)
- Christian Altbürger
- Developmental Biology, Faculty of Biology, Institute of Biology I, Albert Ludwigs University Freiburg, Freiburg, Germany
- CIBSS and BIOSS - Centres for Biological Signalling Studies, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Jens Holzhauser
- Developmental Biology, Faculty of Biology, Institute of Biology I, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Wolfgang Driever
- Developmental Biology, Faculty of Biology, Institute of Biology I, Albert Ludwigs University Freiburg, Freiburg, Germany
- CIBSS and BIOSS - Centres for Biological Signalling Studies, Albert Ludwigs University Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Wullimann MF. The Neuromeric/Prosomeric Model in Teleost Fish Neurobiology. BRAIN, BEHAVIOR AND EVOLUTION 2022; 97:336-360. [PMID: 35728561 PMCID: PMC9808694 DOI: 10.1159/000525607] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 06/08/2022] [Indexed: 01/07/2023]
Abstract
The neuromeric/prosomeric model has been rejuvenated by Puelles and Rubenstein [Trends Neurosci. 1993;16(11):472-9]. Here, its application to the (teleostean) fish brain is detailed, beginning with a historical account. The second part addresses three main issues with particular interest for fish neuroanatomy and looks at the impact of the neuromeric model on their understanding. The first one is the occurrence of four early migrating forebrain areas (M1 through M4) in teleosts and their comparative interpretation. The second issue addresses the complex development and neuroanatomy of the teleostean alar and basal hypothalamus. The third topic is the vertebrate dopaminergic system, with the focus on some teleostean peculiarities. Most of the information will be coming from zebrafish studies, although the general ductus is a comparative one. Throughout the manuscript, comparative developmental and organizational aspects of the teleostean amygdala are discussed. One particular focus is cellular migration streams into the medial amygdala.
Collapse
Affiliation(s)
- Mario F. Wullimann
- Division of Neurobiology, Department Biologie II, Ludwig-Maximilians-Universität München (LMU Munich), Martinsried, Germany,Department Genes-Circuits-Behavior, Max-Planck-Institute for Biological Intelligence (i.F.), Martinsried, Germany,*Mario F. Wullimann,
| |
Collapse
|
9
|
Relevance of interactions between dopamine and glutamate neurotransmission in schizophrenia. Mol Psychiatry 2022; 27:3583-3591. [PMID: 35681081 PMCID: PMC9712151 DOI: 10.1038/s41380-022-01649-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 02/08/2023]
Abstract
Dopamine (DA) and glutamate neurotransmission are strongly implicated in schizophrenia pathophysiology. While most studies focus on contributions of neurons that release only DA or glutamate, neither DA nor glutamate models alone recapitulate the full spectrum of schizophrenia pathophysiology. Similarly, therapeutic strategies limited to either system cannot effectively treat all three major symptom domains of schizophrenia: positive, negative, and cognitive symptoms. Increasing evidence suggests extensive interactions between the DA and glutamate systems and more effective treatments may therefore require the targeting of both DA and glutamate signaling. This offers the possibility that disrupting DA-glutamate circuitry between these two systems, particularly in the striatum and forebrain, culminate in schizophrenia pathophysiology. Yet, the mechanisms behind these interactions and their contributions to schizophrenia remain unclear. In addition to circuit- or system-level interactions between neurons that solely release either DA or glutamate, here we posit that functional alterations involving a subpopulation of neurons that co-release both DA and glutamate provide a novel point of integration between DA and glutamate systems, offering a key missing link in our understanding of schizophrenia pathophysiology. Better understanding of mechanisms underlying DA/glutamate co-release from these neurons may therefore shed new light on schizophrenia pathophysiology and lead to more effective therapeutics.
Collapse
|
10
|
Eugenin von Bernhardi J, Biechl D, Miek L, Herget U, Ryu S, Wullimann MF. A versatile transcription factor: Multiple roles of orthopedia a (otpa) beyond its restricted localization in dopaminergic systems of developing and adult zebrafish (Danio rerio) brains. J Comp Neurol 2022; 530:2537-2561. [PMID: 35708548 DOI: 10.1002/cne.25351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/06/2022]
Abstract
Many transcription factors boost neural development and differentiation in specific directions and serve for identifying similar or homologous structures across species. The expression of Orthopedia (Otp) is critical for the development of certain cell groups along the vertebrate neuraxis, for example, the medial amygdala or hypothalamic neurosecretory neurons. Therefore, the primary focus of the present study is the distribution of Orthopedia a (Otpa) in the larval and adult zebrafish (Danio rerio) brain. Since Otpa is also critical for the development of zebrafish basal diencephalic dopaminergic cells, colocalization of Otpa with the catecholamine synthesizing enzyme tyrosine hydroxylase (TH) is studied. Cellular colocalization of Otpa and dopamine is only seen in magnocellular neurons of the periventricular posterior tubercular nucleus and in the posterior tuberal nucleus. Otpa-positive cells occur in many additional structures along the zebrafish neuraxis, from the secondary prosencephalon down to the hindbrain. Furthermore, Otpa expression is studied in shh-GFP and islet1-GFP transgenic zebrafish. Otpa-positive cells only express shh in dopaminergic magnocellular periventricular posterior tubercular cells, and only colocalize with islet1-GFP in the ventral zone and prerecess caudal periventricular hypothalamic zone and the perilemniscal nucleus. The scarcity of cellular colocalization of Otpa in islet1-GFP cells indicates that the Shh-islet1 neurogenetic pathway is not active in most Otpa-expressing domains. Our analysis reveals detailed correspondences between mouse and zebrafish forebrain territories including the zebrafish intermediate nucleus of the ventral telencephalon and the mouse medial amygdala. The zebrafish preoptic Otpa-positive domain represents the neuropeptidergic supraopto-paraventricular region of all tetrapods. Otpa domains in the zebrafish basal plate hypothalamus suggest that the ventral periventricular hypothalamic zone corresponds to the otp-expressing basal hypothalamic tuberal field in the mouse. Furthermore, the mouse otp domain in the mammillary hypothalamus compares partly to our Otpa-positive domain in the prerecess caudal periventricular hypothalamic zone (Hc-a).
Collapse
Affiliation(s)
- Jaime Eugenin von Bernhardi
- Faculty of Biology, Division of Neurobiology, Ludwig-Maximilians-Universität Munich, München, Bavaria, Germany.,The Solomon Snyder Department of Neuroscience, Johns Hopkins Univeristy, Baltimore, Maryland, USA
| | - Daniela Biechl
- Faculty of Biology, Division of Neurobiology, Ludwig-Maximilians-Universität Munich, München, Bavaria, Germany
| | - Laura Miek
- Faculty of Biology, Division of Neurobiology, Ludwig-Maximilians-Universität Munich, München, Bavaria, Germany
| | - Ulrich Herget
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Soojin Ryu
- Living Systems Institute University of Exeter, Exeter, Devon, UK.,College of Medicine and Health, University of Exeter, Exeter, Devon, UK
| | - Mario F Wullimann
- Faculty of Biology, Division of Neurobiology, Ludwig-Maximilians-Universität Munich, München, Bavaria, Germany.,Max-Planck-Institute of Neurobiology, Planegg-Martinsried, Germany
| |
Collapse
|
11
|
Flaive A, Ryczko D. From retina to motoneurons: A substrate for visuomotor transformation in salamanders. J Comp Neurol 2022; 530:2518-2536. [PMID: 35662021 PMCID: PMC9545292 DOI: 10.1002/cne.25348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022]
Abstract
The transformation of visual input into motor output is essential to approach a target or avoid a predator. In salamanders, visually guided orientation behaviors have been extensively studied during prey capture. However, the neural circuitry involved is not resolved. Using salamander brain preparations, calcium imaging and tracing experiments, we describe a neural substrate through which retinal input is transformed into spinal motor output. We found that retina stimulation evoked responses in reticulospinal neurons of the middle reticular nucleus, known to control steering movements in salamanders. Microinjection of glutamatergic antagonists in the optic tectum (superior colliculus in mammals) decreased the reticulospinal responses. Using tracing, we found that retina projected to the dorsal layers of the contralateral tectum, where the dendrites of neurons projecting to the middle reticular nucleus were located. In slices, stimulation of the tectal dorsal layers evoked glutamatergic responses in deep tectal neurons retrogradely labeled from the middle reticular nucleus. We then examined how tectum activation translated into spinal motor output. Tectum stimulation evoked motoneuronal responses, which were decreased by microinjections of glutamatergic antagonists in the contralateral middle reticular nucleus. Reticulospinal fibers anterogradely labeled from tracer injection in the middle reticular nucleus were preferentially distributed in proximity with the dendrites of ipsilateral motoneurons. Our work establishes a neural substrate linking visual and motor centers in salamanders. This retino‐tecto‐reticulo‐spinal circuitry is well positioned to control orienting behaviors. Our study bridges the gap between the behavioral studies and the neural mechanisms involved in the transformation of visual input into motor output in salamanders.
Collapse
Affiliation(s)
- Aurélie Flaive
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada.,Centre d'excellence en neurosciences de l'Université de Sherbrooke, Sherbrooke, Quebec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
12
|
The development of behavioral sensitization induced by a single morphine exposure in adult zebrafish (Danio rerio). Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110456. [PMID: 34662694 DOI: 10.1016/j.pnpbp.2021.110456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Accumulating evidence suggest that behavioral sensitization is involved in the process of drug addiction. Zebrafish are sensitive to a variety of addictive drugs and are thus suitable for the study of behavioral sensitization. However, in contrast to mature rodent models of behavioral sensitization, how this phenomenon manifests in aquatic organisms, especially zebrafish, is largely unknown. In this study, we developed a morphine-induced behavioral sensitization adult zebrafish model and performed a preliminary investigation of the underlying mechanisms. METHODS Behavioral sensitization was established in zebrafish by observing their behavior after treatment and challenge with morphine. The effect of morphine was evaluated by a behavioral locomotor test. Different doses of morphine and withdrawal times were used to evaluate the establishment of the behavioral sensitization model. RESULTS Hyperlocomotion was induced after administration of morphine in adult zebrafish. After withdrawing the drug for a period, challenge with low-dose morphine evoked behavioral sensitization in zebrafish acutely pre-treated with morphine. Low-dose morphine failed to induce behavioral sensitization in zebrafish if the withdrawal time was less than 5 days or more than 7 days. Morphine induced behavioral sensitization in zebrafish may involve dopaminergic, glutamatergic and opioid systems. CONCLUSION A single low-dose of morphine could induce behavioral sensitization in zebrafish acutely pre-treated with morphine, and this phenomenon was highly correlated with drug dose and withdrawal time. These findings suggest that zebrafish is a suitable model for the study of behavioral sensitization.
Collapse
|
13
|
Optogenetic stimulation of glutamatergic neurons in the cuneiform nucleus controls locomotion in a mouse model of Parkinson's disease. Proc Natl Acad Sci U S A 2021; 118:2110934118. [PMID: 34670837 DOI: 10.1073/pnas.2110934118] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 01/22/2023] Open
Abstract
In Parkinson's disease (PD), the loss of midbrain dopaminergic cells results in severe locomotor deficits, such as gait freezing and akinesia. Growing evidence indicates that these deficits can be attributed to the decreased activity in the mesencephalic locomotor region (MLR), a brainstem region controlling locomotion. Clinicians are exploring the deep brain stimulation of the MLR as a treatment option to improve locomotor function. The results are variable, from modest to promising. However, within the MLR, clinicians have targeted the pedunculopontine nucleus exclusively, while leaving the cuneiform nucleus unexplored. To our knowledge, the effects of cuneiform nucleus stimulation have never been determined in parkinsonian conditions in any animal model. Here, we addressed this issue in a mouse model of PD, based on the bilateral striatal injection of 6-hydroxydopamine, which damaged the nigrostriatal pathway and decreased locomotor activity. We show that selective optogenetic stimulation of glutamatergic neurons in the cuneiform nucleus in mice expressing channelrhodopsin in a Cre-dependent manner in Vglut2-positive neurons (Vglut2-ChR2-EYFP mice) increased the number of locomotor initiations, increased the time spent in locomotion, and controlled locomotor speed. Using deep learning-based movement analysis, we found that the limb kinematics of optogenetic-evoked locomotion in pathological conditions were largely similar to those recorded in intact animals. Our work identifies the glutamatergic neurons of the cuneiform nucleus as a potentially clinically relevant target to improve locomotor activity in parkinsonian conditions. Our study should open avenues to develop the targeted stimulation of these neurons using deep brain stimulation, pharmacotherapy, or optogenetics.
Collapse
|
14
|
Eskenazi D, Malave L, Mingote S, Yetnikoff L, Ztaou S, Velicu V, Rayport S, Chuhma N. Dopamine Neurons That Cotransmit Glutamate, From Synapses to Circuits to Behavior. Front Neural Circuits 2021; 15:665386. [PMID: 34093138 PMCID: PMC8170480 DOI: 10.3389/fncir.2021.665386] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/16/2021] [Indexed: 11/21/2022] Open
Abstract
Discovered just over 20 years ago, dopamine neurons have the ability to cotransmit both dopamine and glutamate. Yet, the functional roles of dopamine neuron glutamate cotransmission and their implications for therapeutic use are just emerging. This review article encompasses the current body of evidence investigating the functions of dopamine neurons of the ventral midbrain that cotransmit glutamate. Since its discovery in dopamine neuron cultures, further work in vivo confirmed dopamine neuron glutamate cotransmission across species. From there, growing interest has led to research related to neural functioning including roles in synaptic signaling, development, and behavior. Functional connectome mapping reveals robust connections in multiple forebrain regions to various cell types, most notably to cholinergic interneurons in both the medial shell of the nucleus accumbens and the lateral dorsal striatum. Glutamate markers in dopamine neurons reach peak levels during embryonic development and increase in response to various toxins, suggesting dopamine neuron glutamate cotransmission may serve neuroprotective roles. Findings from behavioral analyses reveal prominent roles for dopamine neuron glutamate cotransmission in responses to psychostimulants, in positive valence and cognitive systems and for subtle roles in negative valence systems. Insight into dopamine neuron glutamate cotransmission informs the pathophysiology of neuropsychiatric disorders such as addiction, schizophrenia and Parkinson Disease, with therapeutic implications.
Collapse
Affiliation(s)
- Daniel Eskenazi
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Lauren Malave
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Susana Mingote
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, United States
| | - Leora Yetnikoff
- Department of Psychology, College of Staten Island, City University of New York, Staten Island, NY, United States
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, New York, NY, United States
| | - Samira Ztaou
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Vlad Velicu
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Stephen Rayport
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Nao Chuhma
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| |
Collapse
|
15
|
van der Zouwen CI, Boutin J, Fougère M, Flaive A, Vivancos M, Santuz A, Akay T, Sarret P, Ryczko D. Freely Behaving Mice Can Brake and Turn During Optogenetic Stimulation of the Mesencephalic Locomotor Region. Front Neural Circuits 2021; 15:639900. [PMID: 33897379 PMCID: PMC8062873 DOI: 10.3389/fncir.2021.639900] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/08/2021] [Indexed: 12/22/2022] Open
Abstract
A key function of the mesencephalic locomotor region (MLR) is to control the speed of forward symmetrical locomotor movements. However, the ability of freely moving mammals to integrate environmental cues to brake and turn during MLR stimulation is poorly documented. Here, we investigated whether freely behaving mice could brake or turn, based on environmental cues during MLR stimulation. We photostimulated the cuneiform nucleus (part of the MLR) in mice expressing channelrhodopsin in Vglut2-positive neurons in a Cre-dependent manner (Vglut2-ChR2-EYFP) using optogenetics. We detected locomotor movements using deep learning. We used patch-clamp recordings to validate the functional expression of channelrhodopsin and neuroanatomy to visualize the stimulation sites. In the linear corridor, gait diagram and limb kinematics were similar during spontaneous and optogenetic-evoked locomotion. In the open-field arena, optogenetic stimulation of the MLR evoked locomotion, and increasing laser power increased locomotor speed. Mice could brake and make sharp turns (~90°) when approaching a corner during MLR stimulation in the open-field arena. The speed during the turn was scaled with the speed before the turn, and with the turn angle. Patch-clamp recordings in Vglut2-ChR2-EYFP mice show that blue light evoked short-latency spiking in MLR neurons. Our results strengthen the idea that different brainstem neurons convey braking/turning and MLR speed commands in mammals. Our study also shows that Vglut2-positive neurons of the cuneiform nucleus are a relevant target to increase locomotor activity without impeding the ability to brake and turn when approaching obstacles, thus ensuring smooth and adaptable navigation. Our observations may have clinical relevance since cuneiform nucleus stimulation is increasingly considered to improve locomotion function in pathological states such as Parkinson's disease, spinal cord injury, or stroke.
Collapse
Affiliation(s)
- Cornelis Immanuel van der Zouwen
- Département de pharmacologie-physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Joël Boutin
- Département de pharmacologie-physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Maxime Fougère
- Département de pharmacologie-physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Aurélie Flaive
- Département de pharmacologie-physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mélanie Vivancos
- Département de pharmacologie-physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alessandro Santuz
- Department of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Dalhousie University, Halifax, NS, Canada.,Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Turgay Akay
- Department of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Dalhousie University, Halifax, NS, Canada
| | - Philippe Sarret
- Département de pharmacologie-physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada.,Centre d'excellence en neurosciences de l'Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de pharmacologie de Sherbrooke, Sherbrooke, QC, Canada
| | - Dimitri Ryczko
- Département de pharmacologie-physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada.,Centre d'excellence en neurosciences de l'Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de pharmacologie de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|