1
|
do Nascimento EB, Jurkevicz TS, Bonjardim LR, Sant' Ana ACP, Damante CA, Zangrando MSR. Qualitative somatosensory evaluation of recipient and donor sites of subepithelial connective tissue grafts: a preliminary study. Clin Oral Investig 2024; 28:555. [PMID: 39327312 DOI: 10.1007/s00784-024-05933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
OBJECTIVES The subepithelial connective tissue graft (SCTG) plus coronal advanced flap is commonly evaluated by clinical parameters, but potential sensory changes (patients' perception of painful or painless sensations) need to be further explored. This preliminary study aimed to qualitatively evaluate the somatosensory profile of recipient and palatal donor sites of SCTG. MATERIALS AND METHODS Sensory tests were applied at SCTG recipient and donor sites at baseline, after 3 and 6 months. A single calibrated examiner applied Douleur Neuropathique 4 questionnaire (DN4), qualitative sensory test (QualST), discriminating the areas as hypersensitive, hyposensitive or normosensitive, and two-point acuity test. Descriptive statistics, non-parametric Kruskal Wallis test for QualST evaluation and ANOVA for Two-point test (p < 0.05) were used. RESULTS QualST revealed that recipient areas presented no significant differences in tactile, pressure and thermal tests. Brush test revealed hyposensitivity after 3 months (p = 0.03). In donor areas, only thermal evaluation showed a significant difference (p = 0.01), being hypersensitive after 3 months and hyposensitive after 6 months. At baseline, all evaluations in recipient and donor areas were normosensitive. According to DN4, no patient reported pain in recipient and donor sites. Non-painful sensory perception was reported as numbness in recipient (3.14% of patients) and donor (18.4%) areas. No significant differences were found for two-point acuity test values. CONCLUSIONS Somatosensory variations were observed in donor and recipient areas using qualitative tests, with no detection of painful sensations, only non-painful sensations of numbness and electric shock. CLINICAL RELEVANCE This preliminary study demonstrated that alterations of hypo- and hypersensitivity may occur in donor and recipient areas of gingival grafts. However, when present, these alterations were non-painful and did not impact oral functions. CLINICAL REGISTRATION ReBEC #RBR-7zz3b6p.
Collapse
Affiliation(s)
| | | | - Leonardo Rigoldi Bonjardim
- Department of Biological Sciences- Bauru School of Dentistry, University of Sao Paulo, São Paulo, Brazil
| | - Adriana Campos Passanezi Sant' Ana
- Department of Periodontics- Bauru School of Dentistry, University of Sao Paulo, Dr. Octávio Pinheiro Brisolla 9-75, Vila Universitária, Bauru, SP, CEP: 17012-901, Brazil
| | - Carla Andreotti Damante
- Department of Periodontics- Bauru School of Dentistry, University of Sao Paulo, Dr. Octávio Pinheiro Brisolla 9-75, Vila Universitária, Bauru, SP, CEP: 17012-901, Brazil
| | - Mariana Schutzer Ragghianti Zangrando
- Department of Periodontics- Bauru School of Dentistry, University of Sao Paulo, Dr. Octávio Pinheiro Brisolla 9-75, Vila Universitária, Bauru, SP, CEP: 17012-901, Brazil.
| |
Collapse
|
2
|
Zhang L, Nagel M, Olson WP, Chesler AT, O'Connor DH. Trigeminal innervation and tactile responses in mouse tongue. Cell Rep 2024; 43:114665. [PMID: 39215998 PMCID: PMC11500437 DOI: 10.1016/j.celrep.2024.114665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 06/03/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
The neural basis of tongue mechanosensation remains largely mysterious despite the tongue's high tactile acuity, sensitivity, and relevance to ethologically important functions. We studied terminal morphologies and tactile responses of lingual afferents from the trigeminal ganglion. Fungiform papillae, the taste-bud-holding structures in the tongue, were convergently innervated by multiple Piezo2+ trigeminal afferents, whereas single trigeminal afferents branched into multiple adjacent filiform papillae. In vivo single-unit recordings from the trigeminal ganglion revealed lingual low-threshold mechanoreceptors (LTMRs) with distinct tactile properties ranging from intermediately adapting (IA) to rapidly adapting (RA). The receptive fields of these LTMRs were mostly less than 0.1 mm2 and concentrated at the tip of the tongue, resembling the distribution of fungiform papillae. Our results indicate that fungiform papillae are mechanosensory structures and suggest a simple model that links functional and anatomical properties of tactile sensory neurons in the tongue.
Collapse
Affiliation(s)
- Linghua Zhang
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Maximilian Nagel
- Sensory Cells and Circuits Section, National Center for Complementary and Integrative Health, Bethesda, MD 20892, USA
| | - William P Olson
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Alexander T Chesler
- Sensory Cells and Circuits Section, National Center for Complementary and Integrative Health, Bethesda, MD 20892, USA
| | - Daniel H O'Connor
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA.
| |
Collapse
|
3
|
Riantiningtyas RR, Dougkas A, Kwiecien C, Carrouel F, Giboreau A, Bredie WLP. A review of assessment methods for measuring individual differences in oral somatosensory perception. J Texture Stud 2024; 55:e12849. [PMID: 38961563 DOI: 10.1111/jtxs.12849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 07/05/2024]
Abstract
While taste and smell perception have been thoroughly investigated, our understanding of oral somatosensory perception remains limited. Further, assessing and measuring individual differences in oral somatosensory perception pose notable challenges. This review aimed to evaluate the existing methods to assess oral somatosensory perception by examining and comparing the strengths and limitations of each method. The review highlighted the lack of standardized assessment methods and the various procedures within each method. Tactile sensitivity can be assessed using several methods, but each method measures different tactile dimensions. Further investigations are needed to confirm its correlation with texture sensitivity. In addition, measuring a single textural attribute may not provide an overall representation of texture sensitivity. Thermal sensitivity can be evaluated using thermal-change detection or temperature discrimination tests. The chemesthetic sensitivity tests involve either localized or whole-mouth stimulation tests. The choice of an appropriate method for assessing oral somatosensory sensitivity depends on several factors, including the specific research objectives and the target population. Each method has its unique intended purpose, strengths, and limitations, so no universally superior approach exists. To overcome some of the limitations associated with certain methods, the review offers alternative or complementary approaches that could be considered. Researchers can enhance the comprehensive assessment of oral somatosensory sensitivity by carefully selecting and potentially combining methods. In addition, a standardized protocol remains necessary for each method.
Collapse
Affiliation(s)
- Reisya Rizki Riantiningtyas
- Section for Food Design and Consumer Behaviour, Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
- Health Systemic Process (P2S) Research Unit UR4129, University Claude Bernard Lyon 1, University of Lyon, Lyon, France
- Institut Lyfe (Ex. Institut Paul Bocuse) Research Center, Ecully, France
| | - Anestis Dougkas
- Institut Lyfe (Ex. Institut Paul Bocuse) Research Center, Ecully, France
- Laboratoire Centre Européen Nutrition et Santé (CENS), CarMeN, Unité INSERM 1060, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Camille Kwiecien
- Danone Global Research & Innovation Center, Utrecht, Netherlands
| | - Florence Carrouel
- Health Systemic Process (P2S) Research Unit UR4129, University Claude Bernard Lyon 1, University of Lyon, Lyon, France
| | - Agnès Giboreau
- Health Systemic Process (P2S) Research Unit UR4129, University Claude Bernard Lyon 1, University of Lyon, Lyon, France
- Institut Lyfe (Ex. Institut Paul Bocuse) Research Center, Ecully, France
| | - Wender L P Bredie
- Section for Food Design and Consumer Behaviour, Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
4
|
Kent RD. The Feel of Speech: Multisystem and Polymodal Somatosensation in Speech Production. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:1424-1460. [PMID: 38593006 DOI: 10.1044/2024_jslhr-23-00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
PURPOSE The oral structures such as the tongue and lips have remarkable somatosensory capacities, but understanding the roles of somatosensation in speech production requires a more comprehensive knowledge of somatosensation in the speech production system in its entirety, including the respiratory, laryngeal, and supralaryngeal subsystems. This review was conducted to summarize the system-wide somatosensory information available for speech production. METHOD The search was conducted with PubMed/Medline and Google Scholar for articles published until November 2023. Numerous search terms were used in conducting the review, which covered the topics of psychophysics, basic and clinical behavioral research, neuroanatomy, and neuroscience. RESULTS AND CONCLUSIONS The current understanding of speech somatosensation rests primarily on the two pillars of psychophysics and neuroscience. The confluence of polymodal afferent streams supports the development, maintenance, and refinement of speech production. Receptors are both canonical and noncanonical, with the latter occurring especially in the muscles innervated by the facial nerve. Somatosensory representation in the cortex is disproportionately large and provides for sensory interactions. Speech somatosensory function is robust over the lifespan, with possible declines in advanced aging. The understanding of somatosensation in speech disorders is largely disconnected from research and theory on speech production. A speech somatoscape is proposed as the generalized, system-wide sensation of speech production, with implications for speech development, speech motor control, and speech disorders.
Collapse
|
5
|
Koehler M, Benthin J, Karanth S, Wiesenfarth M, Sebald K, Somoza V. Biophysical investigations using atomic force microscopy can elucidate the link between mouthfeel and flavour perception. NATURE FOOD 2024; 5:281-287. [PMID: 38605131 DOI: 10.1038/s43016-024-00958-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024]
Abstract
Food texture, along with taste and odour, is an important factor in determining food flavour. However, the physiological properties of oral texture perception require greater examination and definition. Here we explore recent trends and perspectives related to mouthfeel and its relevance in food flavour perception, with an emphasis on the biophysical point of view and methods. We propose that atomic force microscopy, combined with other biophysical techniques and more traditional food science approaches, offers a unique opportunity to study the mechanisms of mouthfeel at cellular and molecular levels. With this knowledge, food composition could be modified to develop healthier products by limiting salt, sugar, fat and calories while maintaining sensory qualities and consumer acceptance.
Collapse
Affiliation(s)
- Melanie Koehler
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.
- TUM Junior Fellow at the Chair of Nutritional Systems Biology, Technical University of Munich, Freising, Germany.
| | - Julia Benthin
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- TUM Graduate School, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Sanjai Karanth
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Marina Wiesenfarth
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- TUM Graduate School, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Karin Sebald
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Veronika Somoza
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chair of Nutritional Systems Biology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Ross CF, Laurence-Chasen JD, Li P, Orsbon C, Hatsopoulos NG. Biomechanical and Cortical Control of Tongue Movements During Chewing and Swallowing. Dysphagia 2024; 39:1-32. [PMID: 37326668 PMCID: PMC10781858 DOI: 10.1007/s00455-023-10596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Tongue function is vital for chewing and swallowing and lingual dysfunction is often associated with dysphagia. Better treatment of dysphagia depends on a better understanding of hyolingual morphology, biomechanics, and neural control in humans and animal models. Recent research has revealed significant variation among animal models in morphology of the hyoid chain and suprahyoid muscles which may be associated with variation in swallowing mechanisms. The recent deployment of XROMM (X-ray Reconstruction of Moving Morphology) to quantify 3D hyolingual kinematics has revealed new details on flexion and roll of the tongue during chewing in animal models, movements similar to those used by humans. XROMM-based studies of swallowing in macaques have falsified traditional hypotheses of mechanisms of tongue base retraction during swallowing, and literature review suggests that other animal models may employ a diversity of mechanisms of tongue base retraction. There is variation among animal models in distribution of hyolingual proprioceptors but how that might be related to lingual mechanics is unknown. In macaque monkeys, tongue kinematics-shape and movement-are strongly encoded in neural activity in orofacial primary motor cortex, giving optimism for development of brain-machine interfaces for assisting recovery of lingual function after stroke. However, more research on hyolingual biomechanics and control is needed for technologies interfacing the nervous system with the hyolingual apparatus to become a reality.
Collapse
Affiliation(s)
- Callum F Ross
- Department of Organismal Biology & Anatomy, The University of Chicago, 1027 East 57th St, Chicago, IL, 60637, USA.
| | - J D Laurence-Chasen
- National Renewable Energy Laboratory, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Peishu Li
- Department of Organismal Biology & Anatomy, The University of Chicago, 1027 East 57th St, Chicago, IL, 60637, USA
| | - Courtney Orsbon
- Department of Radiology, University of Vermont Medical Center, Burlington, USA
| | - Nicholas G Hatsopoulos
- Department of Organismal Biology & Anatomy, The University of Chicago, 1027 East 57th St, Chicago, IL, 60637, USA
| |
Collapse
|
7
|
Liaqat R, Fatima S, Komal W, Minahal Q, Kanwal Z, Suleman M, Carter CG. Effects of Bacillus subtilis as a single strain probiotic on growth, disease resistance and immune response of striped catfish (Pangasius hypophthalmus). PLoS One 2024; 19:e0294949. [PMID: 38289940 PMCID: PMC10842300 DOI: 10.1371/journal.pone.0294949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/11/2023] [Indexed: 02/01/2024] Open
Abstract
The present study investigated the potential role of Bacillus subtilis as probiotic in striped catfish (Pangasius hypophthalmus). Fish (initial weight = 150.00±2.63g n = 180) were stocked in circular tanks. Four isonitrogenous (30%) and isolipidic (3.29%) diets were formulated having supplementation of B. subtilis at four different levels (P0; 0, P1: 1×106, P2: 1×108 and P3: 1×1010 CFU/g). Each treatment had three replicates, while each replicate had fifteen fish. The trial started on second week of July and continued for eight weeks. Growth, feed conversion ratio, crude protein content, the concentration of amylase and protease, the profile of both dispensable and non-dispensable amino acids in all four dietary groups increased with a gradual increase of B. subtilis in the diet. At the end of growth experiment, fish in all four groups were exposed to Staphylococcus aureus (5×105 CFU/ml). After S. aureus challenge, fish fed with B. subtilis responded better to damage caused by reactive oxygen species and lipid peroxidation and better survival rate. The catalase and superoxide dismutase level also increased in response to bacterial challenge in B. subtilis fed groups. On the other hand, the concentration of malondialdehyde gradually decreased in these groups (+ve P0 >P1>P2>P3). It is concluded that supplementation of B. subtilis as a probiotic improved the growth, protein content, antioxidant response and immunocompetency against S. aureus in striped catfish. The optimum dosage of B. subtilis, at a concentration of 1×1010 CFU/g, resulted in the most favorable outcomes in striped catfish. This single bacterial strain can be used as an effective probiotic in large scale production of aquafeed for striped catfish. Future studies can investigate this probiotic's impact in the intensive culture of the same species.
Collapse
Affiliation(s)
- Razia Liaqat
- Department of Zoology, Lahore College for Women University, Lahore,
Punjab, Pakistan
| | - Shafaq Fatima
- Department of Biological Sciences, Purdue University Fort Wayne, Fort
Wayne, IN, United States of America
| | - Wajeeha Komal
- Department of Zoology, Lahore College for Women University, Lahore,
Punjab, Pakistan
| | - Qandeel Minahal
- Department of Zoology, Lahore College for Women University, Lahore,
Punjab, Pakistan
| | - Zakia Kanwal
- Department of Zoology, Lahore College for Women University, Lahore,
Punjab, Pakistan
| | - Muhammad Suleman
- Institute of Microbiology, University of Veterinary and Animal Sciences
Lahore, Lahore, Pakistan
| | - Chris G. Carter
- Aquaculture Nutrition at the Institute for Marine and Antarctic Studies
(IMAS), University of Tasmania, Hobart, Australia
| |
Collapse
|
8
|
Meier Bürgisser G, Heuberger DM, Rieber J, Miescher I, Giovanoli P, Calcagni M, Buschmann J. Delineation of the healthy rabbit tongue by immunohistochemistry - A technical note. Acta Histochem 2024; 126:152127. [PMID: 38039795 DOI: 10.1016/j.acthis.2023.152127] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
In the oral cavity the tongue is an important muscular organ that supports the swallowing of food and liquids. It is responsible for the sense of taste, based on the many different taste buds it contains. Research in the field of tongue diseases demands for suitable preclinical models. The healthy rabbit tongue may therefore serve as baseline and reference for the pathological situation. With this consideration, we covered the fixation and histological stainings as well as the immunohistochemical labelling of the healthy rabbit tongue. In this technical note, initial choice of the fixative is discussed, with a comparison of formalin fixation and subsequent paraffin embedding versus cryopreservation. Moreover, we delineate the effect of an antigen retrieval step for formalin fixation by several examples. Finally, we provide ECM markers collagen I, collagen III, fibronectin, α-SMA and elastin staining as well as ki67 for proliferative status and PAR-2 protein expression as a marker for inflammatory status and nociception in tongue sections, mainly from the tongue body. Technically, we found superiority of paraffin sections for collagen I, collagen III, fibronectin, ki67 and α-SMA labelling, for selected detections systems. As for ECM components, the lamina propria was very rich in collagen and fibronectin, while the muscular body of the tongue showed only collagen and fibronectin positive areas between the muscle fibers. Moreover, α-SMA was clearly expressed in the walls of arteries and veins. The inflammatory marker PAR-2 on the other hand was prominently expressed in the salivary glands and to some extent in the walls of the vessels. Particular PAR-2 expression was found in the excretory ducts of the tongue. This technical note has the aim to provide baseline images that can be used to compare the pathological state of the diseased rabbit tongue as well as for inter-species comparison, such as mouse or rat tongue. Finally, it can be used for the comparison with the human situation.
Collapse
Affiliation(s)
- Gabriella Meier Bürgisser
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Dorothea M Heuberger
- Institute of Intensive Care Medicine, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Julia Rieber
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Iris Miescher
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Pietro Giovanoli
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Maurizio Calcagni
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Johanna Buschmann
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland.
| |
Collapse
|
9
|
Ricci S, Kim MS, Simons CT. The impact of temperature and a chemesthetic cooling agent on lingual roughness sensitivity. Chem Senses 2024; 49:bjae013. [PMID: 38526180 DOI: 10.1093/chemse/bjae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 03/26/2024] Open
Abstract
Oral tactile sensitivity underpins food texture perception, but few studies have investigated mechanoreception in oral tissues. During food consumption, oral tissues are exposed to a wide range of temperatures and chemical entities. The objective of the present study was to assess the influence of thermal sensations on lingual roughness sensitivity. Just-noticeable difference thresholds (JNDs) were determined using the staircase method for surface roughness from stainless steel coupons (Ra; 0.177-0.465 µm). Thresholds were assessed when cooling or heating the metal stimuli (n = 32 subjects). Compared to the JND threshold obtained at an ambient stimulus temperature (21 °C: 0.055 ± 0.010 μm), a cold (8 °C) temperature significantly (P = 0.019) reduced tongue sensitivity (i.e. increased JND) to surface roughness (0.109 ± 0.016 μm, respectively) whereas warm and hot temperatures had no significant effect (35 °C: 0.084 ± 0.012 μm; 45 °C: 0.081 ± 0.011 μm). To assess whether the effect of cooling on roughness thresholds is TRPM8-dependent, we collected roughness thresholds in a second cohort of subjects (n = 27) following the lingual application of the cooling compound Evercool 190 (24.3 µM). Interestingly, when Evercool 190 was used to elicit the cold sensation, lingual roughness JNDs were unaffected compared to the control application of water (EC: 0.112 ± 0.016 μm; water: 0.102 ± 0.017 μm; P = 0.604). That lingual roughness sensitivity is decreased by cold temperature, but not chemicals evoking cold sensations, suggests the mechanism underpinning thermal modulation is not TRPM8 dependent.
Collapse
Affiliation(s)
- Sebastiano Ricci
- Department of Food Science & Technology, The Ohio State University, 2015 Fyffe Rd., Columbus, OH 43210-1007, United States
- Department of Food Science, University of Parma, Science Area Park, 27/ A, 43124 Parma, Italy
| | - Min Sung Kim
- Department of Food Science & Technology, The Ohio State University, 2015 Fyffe Rd., Columbus, OH 43210-1007, United States
| | - Christopher T Simons
- Department of Food Science & Technology, The Ohio State University, 2015 Fyffe Rd., Columbus, OH 43210-1007, United States
| |
Collapse
|
10
|
Tong C, Moayedi Y, Lumpkin EA. Merkel cells and keratinocytes in oral mucosa are activated by mechanical stimulation. Physiol Rep 2024; 12:e15826. [PMID: 38246872 PMCID: PMC10800296 DOI: 10.14814/phy2.15826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 01/23/2024] Open
Abstract
The detection of mechanical qualities of foodstuffs is essential for nutrient acquisition, evaluation of food freshness, and bolus formation during mastication. However, the mechanisms through which mechanosensitive cells in the oral cavity transmit mechanical information from the periphery to the brain are not well defined. We hypothesized Merkel cells, which are epithelial mechanoreceptors and important for pressure and texture sensing in the skin, can be mechanically activated in the oral cavity. Using live-cell calcium imaging, we recorded Merkel cell activity in ex vivo gingival and palatal preparations from mice in response to mechanical stimulation. Merkel cells responded with distinct temporal patterns and activation thresholds in a region-specific manner, with Merkel cells in the hard palate having a higher mean activation threshold than those in the gingiva. Unexpectedly, we found that oral keratinocytes were also activated by mechanical stimulation, even in the absence of Merkel cells. This indicates that mechanical stimulation of oral mucosa independently activates at least two subpopulations of epithelial cells. Finally, we found that oral Merkel cells contribute to preference for consuming oily emulsion. To our knowledge, these data represent the first functional study of Merkel-cell physiology and its role in flavor detection in the oral cavity.
Collapse
Affiliation(s)
- Chi‐Kun Tong
- Department of Physiology and Cellular BiophysicsColumbia University Medical CenterNew YorkNew YorkUSA
| | - Yalda Moayedi
- Department of Physiology and Cellular BiophysicsColumbia University Medical CenterNew YorkNew YorkUSA
- Present address:
Departments of Neurology and Otolaryngology‐Head and Neck SurgeryColumbia UniversityNew YorkNYUSA
| | - Ellen A. Lumpkin
- Department of Physiology and Cellular BiophysicsColumbia University Medical CenterNew YorkNew YorkUSA
- Department of DermatologyColumbia University Medical CenterNew YorkNew YorkUSA
- Present address:
Department of Molecular and Cell BiologyHelen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyCAUSA
| |
Collapse
|
11
|
Nakatomi C, Hsu CC, Ono K. Correlations of sensations of hardness and springiness of agar and gelatin gels with mechanical properties in human participants. J Oral Biosci 2023; 65:316-323. [PMID: 37689308 DOI: 10.1016/j.job.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
OBJECTIVES It is unclear which mechanical properties of foods cause the texture sensation in humans. This study aimed to investigate the relationship between unilateral compression measurements and the sensations of hardness and springiness in gels. METHODS Three different concentrations of agar and gelatin gels were prepared by the addition of agar (1%, 2%, and 3%) and gelatin (4%, 8%, and 16%) to water or apple juice. In a stress-rupture test, stress-strain curves were obtained by the application of uniaxial compression with a disc plunger at a compression rate of 10 mm/s. The hardness, springiness, and palatability of the gels were evaluated by 12 healthy volunteers using a visual analog scale. RESULTS The sensation of hardness was positively correlated with the sensation of springiness for the agar and gelatin gels. Palatability decreased as hardness increased for both gels. In terms of mechanical properties, the sensation of hardness was only significantly correlated with the initial elastic modulus, while the sensation of springiness was correlated with the late elastic modulus and other mechanical properties such as fracture strain, time, and stress. CONCLUSIONS These results suggest that sensations of hardness and springiness are produced in the initial and late stages, respectively, during the food-crushing process using the tongue, palate, and teeth.
Collapse
Affiliation(s)
- Chihiro Nakatomi
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - Chia-Chien Hsu
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Kentaro Ono
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| |
Collapse
|
12
|
Piccini I, Chéret J, Tsutsumi M, Sakaguchi S, Ponce L, Almeida L, Funk W, Kückelhaus M, Kajiya K, Paus R, Bertolini M. Preliminary evidence that Merkel cells exert chemosensory functions in human epidermis. Exp Dermatol 2023; 32:1848-1855. [PMID: 37587642 DOI: 10.1111/exd.14907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/30/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023]
Abstract
The mechanotransduction of light-touch sensory stimuli is considered to be the main physiological function of epidermal Merkel cells (MCs). Recently, however, MCs have been demonstrated to be also thermo-sensitive, suggesting that their role in skin physiologically extends well beyond mechanosensation. Here, we demonstrate that in healthy human skin epidermal MCs express functional olfactory receptors, namely OR2AT4, just like neighbouring keratinocytes. Selective stimulation of OR2AT4 by topical application of the synthetic odorant, Sandalore®, significantly increased Piccolo protein expression in MCs, as assessed by quantitative immunohistomorphometry, indicating increased vesicle trafficking and recycling, and significantly reduced nerve growth factor (NGF) immunoreactivity within MCs, possibly indicating increased neurotrophin release upon OR2AT4 activation. Live-cell imaging showed that Sandalore® rapidly induces a loss of FFN206-dependent fluorescence in MCs, suggesting OR2AT4-dependent MC depolarization and subsequent vesicle secretion. Yet, in contrast to keratinocytes, OR2AT4 stimulation by Sandalore® altered neither the number nor the proliferation status of MCs. These preliminary ex vivo findings demonstrate that epidermal MCs also exert OR-dependent chemosensory functions in human skin, and invite one to explore whether these newly identified properties are dysregulated in selected skin disorders, for example, in pruritic dermatoses, and if these novel MC functions can be therapeutically targeted to maintain/promote skin health.
Collapse
Affiliation(s)
- Ilaria Piccini
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Jeremy Chéret
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Münster, Germany
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Moe Tsutsumi
- MIRAI Technology Institute, Shiseido Co., Ltd., Yokohama, Japan
| | - Saito Sakaguchi
- MIRAI Technology Institute, Shiseido Co., Ltd., Yokohama, Japan
| | - Leslie Ponce
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Luis Almeida
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Wolfgang Funk
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Munich, Germany
| | | | - Kentaro Kajiya
- MIRAI Technology Institute, Shiseido Co., Ltd., Yokohama, Japan
| | - Ralf Paus
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Münster, Germany
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- CUTANEON - Skin & Hair Innovations, Hamburg, Germany
| | - Marta Bertolini
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Münster, Germany
| |
Collapse
|
13
|
Yao Q, Doyle ME, Liu QR, Appleton A, O'Connell JF, Weng NP, Egan JM. Long-Term Dysfunction of Taste Papillae in SARS-CoV-2. NEJM EVIDENCE 2023; 2:10.1056/evidoa2300046. [PMID: 38145006 PMCID: PMC10745124 DOI: 10.1056/evidoa2300046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND We sought to determine whether ongoing taste disturbance in the postacute sequelae of coronavirus disease 2019 period is associated with persistent virus in primary taste tissue. METHODS We performed fungiform papillae biopsies on 16 patients who reported taste disturbance lasting more than 6 weeks after molecularly determined severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Then, on multiple occasions, we rebiopsied 10 of those patients who still had taste complaints for at least 6 months postinfection. Fungiform papillae obtained from other patients before March 2020 served as negative controls. We performed hematoxylin and eosin staining to examine fungiform papillae morphology and immunofluorescence and fluorescence in situ hybridization to look for evidence of persistent viral infection and immune response. RESULTS In all patients, we found evidence of SARS-CoV-2, accompanying immune response and misshapen or absent taste buds with loss of intergemmal neurite fibers. Six patients reported normal taste perception by 6 months postinfection and were not further biopsied. In the remaining 10, the virus was eliminated in a seemingly random fashion from their fungiform papillae, but four patients still, by history, reported incomplete return to preinfection taste perception by the time we wrote this report. CONCLUSIONS Our data show a temporal association in patients between functional taste, taste papillae morphology, and the presence of SARS-CoV-2 and its associated immunological changes. (Funded by Intramural Research Program/National Institute on Aging/National Institute of Allergy and Infectious Diseases/National Institutes of Health; ClinicalTrials.gov numbers NCT03366168 and NCT04565067.).
Collapse
Affiliation(s)
- Qin Yao
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore
| | - Máire E Doyle
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore
| | - Qing-Rong Liu
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore
| | - Ashley Appleton
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore
| | - Jennifer F O'Connell
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore
| | - Nan-Ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore
| | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore
| |
Collapse
|
14
|
Gadonski AP, Carletti TM, de Medeiros MMD, Rodrigues Garcia RCM. Effects of tongue lesions and palatal coverage on oral sensory functions. J Prosthet Dent 2023:S0022-3913(23)00341-4. [PMID: 37357083 DOI: 10.1016/j.prosdent.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/27/2023]
Abstract
STATEMENT OF PROBLEM Oral stereognosis (OS) plays a significant role in the oral rehabilitation of patients with edentulism, as it influences their adaptation to new prostheses. Because of the essentially tactile characteristic of oral sensory perception, the tongue and palate appear to have a crucial function in OS. However, little is known about the influence of tongue lesions on OS and sensorial function. In addition, controversies remain regarding the role of the palate. PURPOSE The purpose of this clinical study was to evaluate whether tongue lesions and palatal coverage are disruptive to OS and gustatory function. MATERIAL AND METHODS Seventy participants (mean age=30.7 ±6.7 years) were divided into a tongue lesion group (experimental; n=35) and a control group (n=35). The tongue lesion group included participants with geographic, fissured, or hairy tongue. OS was evaluated with the oral stereognosis ability (OSA) test. Gustatory function was assessed with exposure to flavored solutions. After completing the above tests, the participants received a palate covering device, and then OS and gustatory function were immediately reevaluated. Data were analyzed with the Mann-Whitney and Wilcoxon tests (α=.05). RESULTS OSA and gustatory function scores did not differ among the tongue lesion and control groups with and without palatal coverage (all P>.05). After palatal coverage, the tongue lesion group took more time to perform the OSA test than the control group (P<.05). CONCLUSIONS Neither the presence of tongue lesions nor palatal coverage influenced OS or gustatory function. The OSA test response times were longer for the tongue lesion group after they had received palatal coverage.
Collapse
Affiliation(s)
- Ana Paula Gadonski
- Graduate student, Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Talita Malini Carletti
- Graduate student, Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Mariana Marinho Davino de Medeiros
- Graduate student, Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | | |
Collapse
|
15
|
Ekström AG, Edlund J. Evolution of the human tongue and emergence of speech biomechanics. Front Psychol 2023; 14:1150778. [PMID: 37325743 PMCID: PMC10266234 DOI: 10.3389/fpsyg.2023.1150778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
The tongue is one of the organs most central to human speech. Here, the evolution and species-unique properties of the human tongue is traced, via reference to the apparent articulatory behavior of extant non-human great apes, and fossil findings from early hominids - from a point of view of articulatory phonetics, the science of human speech production. Increased lingual flexibility provided the possibility of mapping of articulatory targets, possibly via exaptation of manual-gestural mapping capacities evident in extant great apes. The emergence of the human-specific tongue, its properties, and morphology were crucial to the evolution of human articulate speech.
Collapse
|
16
|
Cole CL, Yu VX, Perry S, Seenauth A, Lumpkin EA, Troche MS, Pitman MJ, Moayedi Y. Healthy Human Laryngopharyngeal Sensory Innervation Density Correlates with Age. Laryngoscope 2023; 133:773-784. [PMID: 35841384 DOI: 10.1002/lary.30287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/23/2022] [Accepted: 06/16/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Somatosensory feedback from upper airway structures is essential for swallowing and airway defense but little is known about the identities and distributions of human upper airway neurons. Furthermore, whether sensory innervation modifies with aging is unknown. In this study, we quantify neuronal and chemosensory cell density in upper airway structures and correlate with age. METHODS Participants underwent biopsies from base of tongue, lateral and midline pharyngeal wall, epiglottis, and arytenoids (N = 25 13 female/12 male; 20-80 years, mean 51.4 years without clinical diagnosis of dysphagia or clinical indication for biopsy). Tissue sections were labeled with antibodies for all neurons, myelinated neurons, and chemosensory cells. Densities of lamina propria innervation, epithelial innervation, solitary chemosensory cells, and taste buds were calculated and correlated with age. RESULTS Arytenoid had the highest density of innervation and chemosensory cells across all measures compared to other sites. Taste buds were frequently observed in arytenoid and epiglottis. Base of tongue, lateral pharynx, and midline posterior pharynx had minimal innervation and few chemosensory cells. Epithelial innervation was present primarily in close proximity to chemosensory cells and taste buds. Overall innervation and myelinated fibers in the arytenoid lamina propria decline with aging. CONCLUSION Findings establish the architecture of healthy adult sensory innervation and demonstrate the varied distribution of laryngopharyngeal innervation, necessary steps toward understanding the sensory basis for swallowing and airway defense. We also document age-related decline in arytenoid innervation density. These findings suggest that sensory afferent denervation of the upper airway may be a contributing factor to presbyphagia. LEVEL OF EVIDENCE NA Laryngoscope, 133:773-784, 2023.
Collapse
Affiliation(s)
- Caroline L Cole
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Victoria X Yu
- Department of Otolaryngology-Head & Neck Surgery, Columbia University, New York, New York, USA
| | - Sarah Perry
- Laboratory for the Study of Upper Airway Dysfunction, Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York, USA.,Department of Medicine, University of Otago, Christchurch, New Zealand.,The University of Canterbury Rose Center for Stroke Recovery & Research at St. George's Medical Center, Christchurch, New Zealand
| | - Anisa Seenauth
- Department of Neurology, Columbia University, New York, New York, USA
| | - Ellen A Lumpkin
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA
| | - Michelle S Troche
- Laboratory for the Study of Upper Airway Dysfunction, Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York, USA
| | - Michael J Pitman
- Department of Otolaryngology-Head & Neck Surgery, Columbia University, New York, New York, USA
| | - Yalda Moayedi
- Department of Otolaryngology-Head & Neck Surgery, Columbia University, New York, New York, USA.,Department of Neurology, Columbia University, New York, New York, USA.,Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA
| |
Collapse
|
17
|
Doyle ME, Premathilake HU, Yao Q, Mazucanti CH, Egan JM. Physiology of the tongue with emphasis on taste transduction. Physiol Rev 2023; 103:1193-1246. [PMID: 36422992 PMCID: PMC9942923 DOI: 10.1152/physrev.00012.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The tongue is a complex multifunctional organ that interacts and senses both interoceptively and exteroceptively. Although it is easily visible to almost all of us, it is relatively understudied and what is in the literature is often contradictory or is not comprehensively reported. The tongue is both a motor and a sensory organ: motor in that it is required for speech and mastication, and sensory in that it receives information to be relayed to the central nervous system pertaining to the safety and quality of the contents of the oral cavity. Additionally, the tongue and its taste apparatus form part of an innate immune surveillance system. For example, loss or alteration in taste perception can be an early indication of infection as became evident during the present global SARS-CoV-2 pandemic. Here, we particularly emphasize the latest updates in the mechanisms of taste perception, taste bud formation and adult taste bud renewal, and the presence and effects of hormones on taste perception, review the understudied lingual immune system with specific reference to SARS-CoV-2, discuss nascent work on tongue microbiome, as well as address the effect of systemic disease on tongue structure and function, especially in relation to taste.
Collapse
Affiliation(s)
- Máire E Doyle
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Hasitha U Premathilake
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Qin Yao
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Caio H Mazucanti
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Josephine M Egan
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
18
|
Moayedi Y, Xu S, Obayashi SK, Hoffman BU, Gerling GJ, Lumpkin EA. The cellular basis of mechanosensation in mammalian tongue. Cell Rep 2023; 42:112087. [PMID: 36763499 PMCID: PMC10409885 DOI: 10.1016/j.celrep.2023.112087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Mechanosensory neurons that innervate the tongue provide essential information to guide feeding, speech, and social grooming. We use in vivo calcium imaging of mouse trigeminal ganglion neurons to identify functional groups of mechanosensory neurons innervating the anterior tongue. These sensory neurons respond to thermal and mechanical stimulation. Analysis of neuronal activity patterns reveal that most mechanosensory trigeminal neurons are tuned to detect moving stimuli across the tongue. Using an unbiased, multilayer hierarchical clustering approach to classify pressure-evoked activity based on temporal response dynamics, we identify five functional classes of mechanosensory neurons with distinct force-response relations and adaptation profiles. These populations are tuned to detect different features of touch. Molecular markers of functionally distinct clusters are identified by analyzing cluster representation in genetically marked neuronal subsets. Collectively, these studies provide a platform for defining the contributions of functionally distinct mechanosensory neurons to oral behaviors crucial for survival in mammals.
Collapse
Affiliation(s)
- Yalda Moayedi
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA; Department of Otolaryngology - Head & Neck Surgery, Columbia University, New York, NY 10032, USA
| | - Shan Xu
- School of Engineering and Applied Science, University of Virginia, Charlottesville, VA 22904, USA
| | - Sophie K Obayashi
- Department of Molecular & Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Benjamin U Hoffman
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Gregory J Gerling
- School of Engineering and Applied Science, University of Virginia, Charlottesville, VA 22904, USA.
| | - Ellen A Lumpkin
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA; Department of Molecular & Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
19
|
Brown TL, Horton EC, Craig EW, Goo CEA, Black EC, Hewitt MN, Yee NG, Fan ET, Raible DW, Rasmussen JP. Dermal appendage-dependent patterning of zebrafish atoh1a+ Merkel cells. eLife 2023; 12:85800. [PMID: 36648063 PMCID: PMC9901935 DOI: 10.7554/elife.85800] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Touch system function requires precise interactions between specialized skin cells and somatosensory axons, as exemplified by the vertebrate mechanosensory Merkel cell-neurite complex. Development and patterning of Merkel cells and associated neurites during skin organogenesis remain poorly understood, partly due to the in utero development of mammalian embryos. Here, we discover Merkel cells in the zebrafish epidermis and identify Atonal homolog 1a (Atoh1a) as a marker of zebrafish Merkel cells. We show that zebrafish Merkel cells derive from basal keratinocytes, express neurosecretory and mechanosensory machinery, extend actin-rich microvilli, and complex with somatosensory axons, all hallmarks of mammalian Merkel cells. Merkel cells populate all major adult skin compartments, with region-specific densities and distribution patterns. In vivo photoconversion reveals that Merkel cells undergo steady loss and replenishment during skin homeostasis. Merkel cells develop concomitant with dermal appendages along the trunk and loss of Ectodysplasin signaling, which prevents dermal appendage formation, reduces Merkel cell density by affecting cell differentiation. By contrast, altering dermal appendage morphology changes the distribution, but not density, of Merkel cells. Overall, our studies provide insights into touch system maturation during skin organogenesis and establish zebrafish as an experimentally accessible in vivo model for the study of Merkel cell biology.
Collapse
Affiliation(s)
- Tanya L Brown
- Department of Biology, University of WashingtonSeattleUnited States
| | - Emma C Horton
- Department of Biology, University of WashingtonSeattleUnited States
| | - Evan W Craig
- Department of Biology, University of WashingtonSeattleUnited States
| | - Camille EA Goo
- Department of Biology, University of WashingtonSeattleUnited States
| | - Erik C Black
- Department of Biology, University of WashingtonSeattleUnited States
- Molecular and Cellular Biology Program, University of WashingtonSeattleUnited States
| | - Madeleine N Hewitt
- Molecular and Cellular Biology Program, University of WashingtonSeattleUnited States
- Department of Biological Structure, University of WashingtonSeattleUnited States
| | - Nathaniel G Yee
- Department of Biology, University of WashingtonSeattleUnited States
| | - Everett T Fan
- Department of Biology, University of WashingtonSeattleUnited States
| | - David W Raible
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Department of Otolaryngology - Head and Neck Surgery, University of WashingtonSeattleUnited States
- Institute for Stem Cell and Regenerative Medicine, University of WashingtonSeattleUnited States
| | - Jeffrey P Rasmussen
- Department of Biology, University of WashingtonSeattleUnited States
- Institute for Stem Cell and Regenerative Medicine, University of WashingtonSeattleUnited States
| |
Collapse
|
20
|
A Simple Taste Test for Clinical Assessment of Taste and Oral Somatosensory Function-The "Seven-iTT". LIFE (BASEL, SWITZERLAND) 2022; 13:life13010059. [PMID: 36676008 PMCID: PMC9865728 DOI: 10.3390/life13010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
Taste dysfunctions may occur, for example, after viral infection, surgery, medications, or with age. In clinical practice, it is important to assess patients' taste function with rapidity and reliability. This study aimed to develop a test that assesses human gustatory sensitivity together with somatosensory functions of astringency and spiciness. A total of 154 healthy subjects and 51 patients with chemosensory dysfunction rated their gustatory sensitivity. They underwent a whole-mouth identification test of 12 filter-paper strips impregnated with low and high concentrations of sweet, sour, salty, bitter (sucrose, citric acid, NaCl, quinine), astringency (tannin), and spiciness (capsaicin). The percentage of correct identifications for high-concentrated sweet and sour, and for low-concentrated salty, bitter and spicy was lower in patients as compared with healthy participants. Interestingly, a lower identification in patients for both astringent concentrations was found. Based on the results, we proposed the Seven-iTT to assess chemo/somatosensory function, with a cut-off of 6 out of 7. The test score discriminated patients from healthy controls and showed gender differences among healthy controls. This quantitative test seems to be suitable for routine clinical assessment of gustatory and trigeminal function. It also provides new evidence on the mutual interaction between the two sensory systems.
Collapse
|
21
|
Localization of TRP Channels in Healthy Oral Mucosa from Human Donors. eNeuro 2022; 9:ENEURO.0328-21.2022. [PMID: 36635242 PMCID: PMC9797210 DOI: 10.1523/eneuro.0328-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The oral cavity is exposed to a remarkable range of noxious and innocuous conditions, including temperature fluctuations, mechanical forces, inflammation, and environmental and endogenous chemicals. How such changes in the oral environment are sensed is not completely understood. Transient receptor potential (TRP) ion channels are a diverse family of molecular receptors that are activated by chemicals, temperature changes, and tissue damage. In non-neuronal cells, TRP channels play roles in inflammation, tissue development, and maintenance. In somatosensory neurons, TRP channels mediate nociception, thermosensation, and chemosensation. To assess whether TRP channels might be involved in environmental sensing in the human oral cavity, we investigated their distribution in human tongue and hard palate biopsies. TRPV3 and TRPV4 were expressed in epithelial cells with inverse expression patterns where they likely contribute to epithelial development and integrity. TRPA1 immunoreactivity was present in fibroblasts, immune cells, and neuronal afferents, consistent with known roles of TRPA1 in sensory transduction and response to damage and inflammation. TRPM8 immunoreactivity was found in lamina propria and neuronal subpopulations including within the end bulbs of Krause, consistent with a role in thermal sensation. TRPV1 immunoreactivity was identified in intraepithelial nerve fibers and end bulbs of Krause, consistent with roles in nociception and thermosensation. TRPM8 and TRPV1 immunoreactivity in end bulbs of Krause suggest that these structures contain a variety of neuronal afferents, including those that mediate nociception, thermosensation, and mechanotransduction. Collectively, these studies support the role of TRP channels in oral environmental surveillance and response.
Collapse
|
22
|
Ekström AG. Motor constellation theory: A model of infants' phonological development. Front Psychol 2022; 13:996894. [PMID: 36405212 PMCID: PMC9669916 DOI: 10.3389/fpsyg.2022.996894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/17/2022] [Indexed: 04/24/2024] Open
Abstract
Every normally developing human infant solves the difficult problem of mapping their native-language phonology, but the neural mechanisms underpinning this behavior remain poorly understood. Here, motor constellation theory, an integrative neurophonological model, is presented, with the goal of explicating this issue. It is assumed that infants' motor-auditory phonological mapping takes place through infants' orosensory "reaching" for phonological elements observed in the language-specific ambient phonology, via reference to kinesthetic feedback from motor systems (e.g., articulators), and auditory feedback from resulting speech and speech-like sounds. Attempts are regulated by basal ganglion-cerebellar speech neural circuitry, and successful attempts at reproduction are enforced through dopaminergic signaling. Early in life, the pace of anatomical development constrains mapping such that complete language-specific phonological mapping is prohibited by infants' undeveloped supralaryngeal vocal tract and undescended larynx; constraints gradually dissolve with age, enabling adult phonology. Where appropriate, reference is made to findings from animal and clinical models. Some implications for future modeling and simulation efforts, as well as clinical settings, are also discussed.
Collapse
Affiliation(s)
- Axel G. Ekström
- Speech, Music and Hearing, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
23
|
Nakatomi C, Sako N, Miyamura Y, Horie S, Shikayama T, Morii A, Naniwa M, Hsu CC, Ono K. Novel approaches to the study of viscosity discrimination in rodents. Sci Rep 2022; 12:16448. [PMID: 36180505 PMCID: PMC9525710 DOI: 10.1038/s41598-022-20441-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
Texture has enormous effects on food preferences. The materials used to study texture discrimination also have tastes that experimental animal can detect; therefore, such studies must be designed to exclude taste differences. In this study, to minimize the effects of material tastes, we utilized high- and low-viscosity forms of carboxymethyl cellulose (CMC-H and CMC-L, respectively) at the same concentrations (0.1-3%) for viscosity discrimination tests in rats. In two-bottle preference tests of water and CMC, rats avoided CMC-H solutions above 1% (63 mPa·s) but did not avoid less viscous CMC-L solutions with equivalent taste magnitudes, suggesting that rats spontaneously avoided high viscosity. To evaluate low-viscosity discrimination, we performed conditioned aversion tests to 0.1% CMC, which initially showed a comparable preference ratio to water in the two-bottle preference tests. Conditioning with 0.1% CMC-L (1.5 mPa·s) did not induce aversion to 0.1% CMC-L or CMC-H. However, rats acquired a conditioned aversion to 0.1% CMC-H (3.6 mPa·s) even after latent inhibition to CMC taste by pre-exposure to 0.1% CMC-L. These results suggest that rats can discriminate considerably low viscosity independent of CMC taste. This novel approach for viscosity discrimination can be used to investigate the mechanisms of texture perception in mammals.
Collapse
Affiliation(s)
- Chihiro Nakatomi
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan
| | - Noritaka Sako
- Department of Oral Physiology, Asahi University School of Dentistry, Gifu, 501-0296, Japan
| | - Yuichi Miyamura
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan
| | - Seiwa Horie
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka, 803-8580, Japan
| | - Takemi Shikayama
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan
| | - Aoi Morii
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan
| | - Mako Naniwa
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan
| | - Chia-Chien Hsu
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan
| | - Kentaro Ono
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan.
| |
Collapse
|
24
|
Neural signalling of gut mechanosensation in ingestive and digestive processes. Nat Rev Neurosci 2022; 23:135-156. [PMID: 34983992 DOI: 10.1038/s41583-021-00544-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/29/2022]
Abstract
Eating and drinking generate sequential mechanosensory signals along the digestive tract. These signals are communicated to the brain for the timely initiation and regulation of diverse ingestive and digestive processes - ranging from appetite control and tactile perception to gut motility, digestive fluid secretion and defecation - that are vital for the proper intake, breakdown and absorption of nutrients and water. Gut mechanosensation has been investigated for over a century as a common pillar of energy, fluid and gastrointestinal homeostasis, and recent discoveries of specific mechanoreceptors, contributing ion channels and the well-defined circuits underlying gut mechanosensation signalling and function have further expanded our understanding of ingestive and digestive processes at the molecular and cellular levels. In this Review, we discuss our current understanding of the generation of mechanosensory signals from the digestive periphery, the neural afferent pathways that relay these signals to the brain and the neural circuit mechanisms that control ingestive and digestive processes, focusing on the four major digestive tract parts: the oral and pharyngeal cavities, oesophagus, stomach and intestines. We also discuss the clinical implications of gut mechanosensation in ingestive and digestive disorders.
Collapse
|
25
|
Miles BL, Wu Z, Kennedy KS, Zhao K, Simons CT. Elucidation of a lingual detection mechanism for high-viscosity solutions in humans. Food Funct 2022; 13:64-75. [PMID: 34874045 PMCID: PMC8727634 DOI: 10.1039/d1fo02460d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
While perception of high-viscosity solutions (η > 1000 cP) is speculated to be linked to filiform papillae deformation, this has not been demonstrated psychophysically. Presently, just-noticeable-viscosity-difference thresholds were determined using the forced-choice staircase method and high-viscosity solutions (η = 4798-12260 cP) with the hypotheses that the tongue would be chiefly responsible for viscosity perception in the oral cavity, and that individuals with more, longer, narrower filiform papillae would show a greater acuity for viscosity perception. Subjects (n = 59) evaluated solutions in a normal, "unblocked" condition as well as in a "palate blocked" condition which isolated the tongue so that only perceptual mechanisms on the lingual tissue were engaged. Optical profiling was used to characterize papillary length, diameter, and density in tongue biopsies of a subset (n = 45) of participants. Finally, psychophysical and anatomical data were used to generate a novel model of the tongue surface as porous media to predict papillary deformation as a strain-detector for viscosity perception. Results suggest that viscosity thresholds are governed by filiform papillae features. Indeed, anatomical characterization of filiform papillae suggests sensitivity to high-viscosity solutions is associated with filiform papillae length and density (r = 0.68, p < 0.00001), but not with diameter. Modelling indicated this is likely due to a reciprocal interaction between papillae diameter and fluid shear stress. Papillae with larger diameters would result in higher viscous shear stress due to a narrower gap and stronger fluid-structure interaction, but a larger-diameter papilla would also deform less easily.
Collapse
Affiliation(s)
- Brittany L Miles
- Department of Food Science & Technology, The Ohio State University, 2015 Fyffe Rd., Columbus, OH 43210-1007, USA.
| | - Zhenxing Wu
- Department of Otolaryngology - Head & Neck Surgery, The Ohio State University, 915 Olentangy River Rd., Columbus, OH 43212-3153, USA
| | - Kelly S Kennedy
- Division of Oral & Maxillofacial Surgery and Dental Anesthesiology, The Ohio State University, 305 W. 12th Avenue, Columbus, OH 43210-1267, USA
| | - Kai Zhao
- Department of Otolaryngology - Head & Neck Surgery, The Ohio State University, 915 Olentangy River Rd., Columbus, OH 43212-3153, USA
| | - Christopher T Simons
- Department of Food Science & Technology, The Ohio State University, 2015 Fyffe Rd., Columbus, OH 43210-1007, USA.
| |
Collapse
|
26
|
Donnelly CR, Kumari A, Li L, Vesela I, Bradley RM, Mistretta CM, Pierchala BA. Probing the multimodal fungiform papilla: complex peripheral nerve endings of chorda tympani taste and mechanosensitive fibers before and after Hedgehog pathway inhibition. Cell Tissue Res 2021; 387:225-247. [PMID: 34859291 PMCID: PMC8821500 DOI: 10.1007/s00441-021-03561-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/16/2021] [Indexed: 11/28/2022]
Abstract
The fungiform papilla (FP) is a gustatory and somatosensory structure incorporating chorda tympani (CT) nerve fibers that innervate taste buds (TB) and also contain somatosensory endings for touch and temperature. Hedgehog (HH) pathway inhibition eliminates TB, but CT innervation remains in the FP. Importantly, after HH inhibition, CT neurophysiological responses to taste stimuli are eliminated, but tactile responses remain. To examine CT fibers that respond to tactile stimuli in the absence of TB, we used Phox2b-Cre; Rosa26LSL−TdTomato reporter mice to selectively label CT fibers with TdTomato. Normally CT fibers project in a compact bundle directly into TB, but after HH pathway inhibition, CT fibers reorganize and expand just under the FP epithelium where TB were. This widened expanse of CT fibers coexpresses Synapsin-1, β-tubulin, S100, and neurofilaments. Further, GAP43 expression in these fibers suggests they are actively remodeling. Interestingly, CT fibers have complex terminals within the apical FP epithelium and in perigemmal locations in the FP apex. These extragemmal fibers remain after HH pathway inhibition. To identify tactile end organs in FP, we used a K20 antibody to label Merkel cells. In control mice, K20 was expressed in TB cells and at the base of epithelial ridges outside of FP. After HH pathway inhibition, K20 + cells remained in epithelial ridges but were eliminated in the apical FP without TB. These data suggest that the complex, extragemmal nerve endings within and disbursed under the apical FP are the mechanosensitive nerve endings of the CT that remain after HH pathway inhibition.
Collapse
Affiliation(s)
- Christopher R Donnelly
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Archana Kumari
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | - Libo Li
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Iva Vesela
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Robert M Bradley
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Charlotte M Mistretta
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA.
| | - Brian A Pierchala
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA. .,Department of Anatomy, Cell Biology & Physiology, Stark Neurosciences Research Institute, Indiana University School of Medicine, IN, Indianapolis, USA.
| |
Collapse
|
27
|
Bordoni B, Escher AR. Non-Instrumental Test for the Evaluation of Tongue Function. Cureus 2021; 13:e18333. [PMID: 34603903 PMCID: PMC8476096 DOI: 10.7759/cureus.18333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
The tongue undergoes various negative adaptations in the presence of local or systemic pathologies, adversely its behavior within the body context. Tongue assessments to correctly diagnose its functions are carried out using instrumentation, such as ultrasonography, magnetic resonance imaging, electromyography and different intraoral devices (swallowing, strength, posture, phonesis). Currently, there is no dynamic non-instrumental test in the scientific literature to highlight any lingual dysfunctions. The article describes a non-instrumental test for the assessment of lingual function in the body context, to obtain preliminary information on the quality of the neurological activities of the tongue, with respect to the balance and muscle strength that the patient expresses. The text briefly reviews the anatomy of the tongue and describes a clinical case to better understand how to use this test. Further studies will be needed for the validation of the test.
Collapse
Affiliation(s)
- Bruno Bordoni
- Physical Medicine and Rehabilitation, Foundation Don Carlo Gnocchi, Milan, ITA
| | - Allan R Escher
- Anesthesiology/Pain Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| |
Collapse
|
28
|
Bordoni B, Escher AR. A Missing Voice: The Lingual Complex and Osteopathic Manual Medicine in the Context of Five Osteopathic Models. Cureus 2021; 13:e18658. [PMID: 34659928 PMCID: PMC8503936 DOI: 10.7759/cureus.18658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 12/19/2022] Open
Abstract
The five osteopathic models recognized by the American Association of Colleges of Osteopathic Medicine guide clinicians in the evaluation and therapeutic choice which must be the most appropriate concerning the patient's needs. Skeletal muscles represent an important interpretation, such as screening and treatment, on which these models are based. A muscle district that is not considered by the usual osteopathic practice is the tongue. The lingual complex has numerous functions, both local and systemic; it can adapt negatively in the presence of pathology, just as it can influence the body system in a non-physiological manner if it is a source of dysfunctions. This paper, the first of its kind in the panorama of scientific literature, briefly reviews the anatomy and neurophysiology of the tongue, trying to highlight the logic and the need to insert this muscle in the context of the five osteopathic models. The clinician's goal is to restore the patient's homeostasis, and we believe that this task is more concrete if the patient is approached after understanding all the contractile districts, including the tongue.
Collapse
Affiliation(s)
- Bruno Bordoni
- Physical Medicine and Rehabilitation, Don Carlo Gnocchi Foundation, Milan, ITA
| | - Allan R Escher
- Anesthesiology/Pain Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| |
Collapse
|