1
|
Murray CH, Gannon BM, Winsauer PJ, Cooper ZD, Delatte MS. The Development of Cannabinoids as Therapeutic Agents in the United States. Pharmacol Rev 2024; 76:915-955. [PMID: 38849155 PMCID: PMC11331953 DOI: 10.1124/pharmrev.123.001121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
Cannabis is one of the oldest and widely used substances in the world. Cannabinoids within the cannabis plant, known as phytocannabinoids, mediate cannabis' effects through interactions with the body's endogenous cannabinoid system. This endogenous system, the endocannabinoid system, has important roles in physical and mental health. These roles point to the potential to develop cannabinoids as therapeutic agents while underscoring the risks related to interfering with the endogenous system during nonmedical use. This scoping narrative review synthesizes the current evidence for both the therapeutic and adverse effects of the major (i.e., Δ9-tetrahydrocannabinol and cannabidiol) and lesser studied minor phytocannabinoids, from nonclinical to clinical research. We pay particular attention to the areas where evidence is well established, including analgesic effects after acute exposures and neurocognitive risks after acute and chronic use. In addition, drug development considerations for cannabinoids as therapeutic agents within the United States are reviewed. The proposed clinical study design considerations encourage methodological standards for greater scientific rigor and reproducibility to ultimately extend our knowledge of the risks and benefits of cannabinoids for patients and providers. SIGNIFICANCE STATEMENT: This work provides a review of prior research related to phytocannabinoids, including therapeutic potential and known risks in the context of drug development within the United States. We also provide study design considerations for future cannabinoid drug development.
Collapse
Affiliation(s)
- Conor H Murray
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Brenda M Gannon
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Peter J Winsauer
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Ziva D Cooper
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Marcus S Delatte
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| |
Collapse
|
2
|
Chen H, Bleimeister IH, Nguyen EK, Li J, Cui AY, Stratton HJ, Smith KM, Baccei ML, Ross SE. The functional and anatomical characterization of three spinal output pathways of the anterolateral tract. Cell Rep 2024; 43:113829. [PMID: 38421871 PMCID: PMC11025583 DOI: 10.1016/j.celrep.2024.113829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/24/2023] [Accepted: 02/03/2024] [Indexed: 03/02/2024] Open
Abstract
The nature of spinal output pathways that convey nociceptive information to the brain has been the subject of controversy. Here, we provide anatomical, molecular, and functional characterizations of two distinct anterolateral pathways: one, ascending in the lateral spinal cord, triggers nociceptive behaviors, and the other one, ascending in the ventral spinal cord, when inhibited, leads to sensorimotor deficits. Moreover, the lateral pathway consists of at least two subtypes. The first is a contralateral pathway that extends to the periaqueductal gray (PAG) and thalamus; the second is a bilateral pathway that projects to the bilateral parabrachial nucleus (PBN). Finally, we present evidence showing that activation of the contralateral pathway is sufficient for defensive behaviors such as running and freezing, whereas the bilateral pathway is sufficient for attending behaviors such as licking and guarding. This work offers insight into the complex organizational logic of the anterolateral system in the mouse.
Collapse
Affiliation(s)
- Haichao Chen
- Tsinghua Medicine, Tsinghua University, Beijing 100084, China; Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Isabel H Bleimeister
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Eileen K Nguyen
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jie Li
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Abby Yilin Cui
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Harrison J Stratton
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kelly M Smith
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mark L Baccei
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Sarah E Ross
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
3
|
Chisholm KI, Lo Re L, Polgár E, Gutierrez-Mecinas M, Todd AJ, McMahon SB. Encoding of cutaneous stimuli by lamina I projection neurons. Pain 2021; 162:2405-2417. [PMID: 33769365 PMCID: PMC8374708 DOI: 10.1097/j.pain.0000000000002226] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/11/2020] [Accepted: 01/04/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Lamina I of the dorsal horn, together with its main output pathway, lamina I projection neurons, has long been implicated in the processing of nociceptive stimuli, as well as the development of chronic pain conditions. However, the study of lamina I projection neurons is hampered by technical challenges, including the low throughput and selection biases of traditional electrophysiological techniques. Here we report on a technique that uses anatomical labelling strategies and in vivo imaging to simultaneously study a network of lamina I projection neurons in response to electrical and natural stimuli. Although we were able to confirm the nociceptive involvement of this group of cells, we also describe an unexpected preference for innocuous cooling stimuli. We were able to characterize the thermal responsiveness of these cells in detail and found cooling responses decline when exposed to stable cold temperatures maintained for more than a few seconds, as well as to encode the intensity of the end temperature, while heating responses showed an unexpected reliance on adaptation temperatures.
Collapse
Affiliation(s)
- Kim I. Chisholm
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Laure Lo Re
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Erika Polgár
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Maria Gutierrez-Mecinas
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andrew J. Todd
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Stephen B. McMahon
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| |
Collapse
|
4
|
Liu L, Xu XB, Qu ZY, Zhao LP, Zhang CS, Li ZJ, Lyu TL, Wang XF, Jing XH, Li B. Determining 5HT 7R's Involvement in Modifying the Antihyperalgesic Effects of Electroacupuncture on Rats With Recurrent Migraine. Front Neurosci 2021; 15:668616. [PMID: 34163324 PMCID: PMC8215279 DOI: 10.3389/fnins.2021.668616] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/20/2021] [Indexed: 01/14/2023] Open
Abstract
Electroacupuncture (EA) is widely used in clinical practice to relieve migraine pain. 5-HT7 receptor (5-HT7R) has been reported to play an excitatory role in neuronal systems and regulate hyperalgesic pain and neurogenic inflammation. 5-HT7R could influence phosphorylation of protein kinase A (PKA)- or extracellular signal-regulated kinase1 / 2 (ERK1 / 2)-mediated signaling pathways, which mediate sensitization of nociceptive neurons via interacting with cyclic adenosine monophosphate (cAMP). In this study, we evaluated the role of 5-HT7R in the antihyperalgesic effects of EA and the underlying mechanism through regulation of PKA and ERK1 / 2 in trigeminal ganglion (TG) and trigeminal nucleus caudalis (TNC). Hyperalgesia was induced in rats with dural injection of inflammatory soup (IS) to cause meningeal neurogenic inflammatory pain. Electroacupuncture was applied for 15 min every other day before IS injection. Von Frey filaments, tail-flick, hot-plate, and cold-plated tests were used to evaluate the mechanical and thermal hyperalgesia. Neuronal hyperexcitability in TNC was studied by an electrophysiological technique. The 5-HT7R antagonist (SB269970) or 5-HT7R agonist (AS19) was administered intrathecally before each IS application at 2-day intervals during the 7-day injection protocol. The changes in 5-HT7R and 5-HT7R-associated signaling pathway were examined by real-time polymerase chain reaction (RT-PCR), Western blot, immunofluorescence, and enzyme-linked immunosorbent assay (ELISA) analyses. When compared with IS group, mechanical and thermal pain thresholds of the IS + EA group were significantly increased. Furthermore, EA prevented the enhancement of both spontaneous activity and evoked responses of second-order trigeminovascular neurons in TNC. Remarkable decreases in 5-HT7R mRNA expression and protein levels were detected in the IS + EA group. More importantly, 5-HT7R agonist AS19 impaired the antihyperalgesic effects of EA on p-PKA and p-ERK1 / 2. Injecting 5-HT7R antagonist SB-269970 into the intrathecal space of IS rats mimicked the effects of EA antihyperalgesia and inhibited p-PKA and p-ERK1 / 2. Our findings indicate that 5-HT7R mediates the antihyperalgesic effects of EA on IS-induced migraine pain by regulating PKA and ERK1 / 2 in TG and TNC.
Collapse
Affiliation(s)
- Lu Liu
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Xiao-Bai Xu
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Zheng-Yang Qu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luo-Peng Zhao
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China.,Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Claire-Shuiqing Zhang
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Zhi-Juan Li
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Tian-Li Lyu
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Xue-Fei Wang
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Xiang-Hong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Li
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| |
Collapse
|
5
|
Roome RB, Bourojeni FB, Mona B, Rastegar-Pouyani S, Blain R, Dumouchel A, Salesse C, Thompson WS, Brookbank M, Gitton Y, Tessarollo L, Goulding M, Johnson JE, Kmita M, Chédotal A, Kania A. Phox2a Defines a Developmental Origin of the Anterolateral System in Mice and Humans. Cell Rep 2020; 33:108425. [PMID: 33238113 DOI: 10.1016/j.celrep.2020.108425] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/21/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Anterolateral system neurons relay pain, itch, and temperature information from the spinal cord to pain-related brain regions, but the differentiation of these neurons and their specific contribution to pain perception remain poorly defined. Here, we show that most mouse spinal neurons that embryonically express the autonomic-system-associated Paired-like homeobox 2A (Phox2a) transcription factor innervate nociceptive brain targets, including the parabrachial nucleus and the thalamus. We define the Phox2a anterolateral system neuron birth order, migration, and differentiation and uncover an essential role for Phox2a in the development of relay of nociceptive signals from the spinal cord to the brain. Finally, we also demonstrate that the molecular identity of Phox2a neurons is conserved in the human fetal spinal cord, arguing that the developmental expression of Phox2a is a prominent feature of anterolateral system neurons.
Collapse
Affiliation(s)
- R Brian Roome
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada; Integrated Program in Neuroscience, McGill University, Montréal, QC H3A 2B4, Canada
| | - Farin B Bourojeni
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada; Integrated Program in Neuroscience, McGill University, Montréal, QC H3A 2B4, Canada
| | - Bishakha Mona
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shima Rastegar-Pouyani
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada; Integrated Program in Neuroscience, McGill University, Montréal, QC H3A 2B4, Canada
| | - Raphael Blain
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
| | - Annie Dumouchel
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Charleen Salesse
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - W Scott Thompson
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Megan Brookbank
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Yorick Gitton
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
| | - Lino Tessarollo
- Neural Development Section, Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marie Kmita
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montréal, QC H3A 2B2, Canada
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
| | - Artur Kania
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada; Integrated Program in Neuroscience, McGill University, Montréal, QC H3A 2B4, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada; Division of Experimental Medicine, McGill University, Montréal, QC H3A 2B2, Canada.
| |
Collapse
|
6
|
Smith TM, Lee D, Bradley K, McMahon SB. Methodology for quantifying excitability of identified projection neurons in the dorsal horn of the spinal cord, specifically to study spinal cord stimulation paradigms. J Neurosci Methods 2020; 330:108479. [DOI: 10.1016/j.jneumeth.2019.108479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/22/2019] [Indexed: 11/28/2022]
|
7
|
Substance P-expressing excitatory interneurons in the mouse superficial dorsal horn provide a propriospinal input to the lateral spinal nucleus. Brain Struct Funct 2018; 223:2377-2392. [PMID: 29497838 PMCID: PMC5968060 DOI: 10.1007/s00429-018-1629-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/14/2018] [Indexed: 01/19/2023]
Abstract
The superficial dorsal horn (laminae I and II) of the spinal cord contains numerous excitatory and inhibitory interneurons, and recent studies have shown that each of these groups can be divided into several neurochemically distinct populations. Although it has long been known that some neurons in this region have intersegmental (propriospinal) axonal projections, there have been conflicting reports concerning the number of propriospinal cells and the extent of their axons. In addition, little is known about the neurochemical phenotype of propriospinal neurons or about the termination pattern of their axons. In the present study we show, using retrograde tracing, that around a third of lamina I-II neurons in the lumbar enlargement project at least five segments cranially. Substance P-expressing excitatory neurons are over-represented among these cells, accounting for one-third of the propriospinal neurons. In contrast, inhibitory interneurons and excitatory PKCγ neurons are both under-represented among the retrogradely labelled cells. By combining viral vector-mediated Cre-dependent anterograde tracing with immunocytochemistry, we provide evidence that the lateral spinal nucleus (LSN), rather than the superficial dorsal horn, is the main target for axons belonging to propriospinal substance P-expressing neurons. These findings help to resolve the discrepancies between earlier studies and have implications for the role of the LSN in pain mechanisms.
Collapse
|
8
|
|
9
|
Affiliation(s)
- Martha L. Baker
- Department of Anatomy, University of Minnesota, Minneapolis, Minnesota, 55455
| | - Glenn J. Giesler
- Department of Anatomy, University of Minnesota, Minneapolis, Minnesota, 55455
| |
Collapse
|
10
|
Hubscher CH. Ascending spinal pathways from sexual organs: effects of chronic spinal lesions. AUTONOMIC DYSFUNCTION AFTER SPINAL CORD INJURY 2006; 152:401-14. [PMID: 16198716 DOI: 10.1016/s0079-6123(05)52027-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A recent survey of paraplegics indicates that regaining sexual function is of the highest priority for both males and females (Anderson, K.D. (2004) Targeting recovery: priorities of the spinal cord-injured population J. Newrotrauma, 21: 1371-1383). Our understanding of the neural pathways and mechanisms underlying sexual behavior and function is limited at the present time. More studies are obviously needed to direct experiments geared toward developing effective therapeutic interventions. In this chapter, a review of studies on the processing of sensory inputs from the male and female reproductive organs is presented with a review of what is known about the location of ascending spinal pathways conveying this information. The effect of spinal cord injury on sexual function and the problems that ensue are discussed.
Collapse
Affiliation(s)
- Charles H Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
11
|
Ossipov MH, Porreca F. Chapter 14 Descending excitatory systems. HANDBOOK OF CLINICAL NEUROLOGY 2006; 81:193-210. [PMID: 18808836 DOI: 10.1016/s0072-9752(06)80018-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Hubscher CH, Johnson RD. Effects of Chronic Dorsal Column Lesions on Pelvic Viscerosomatic Convergent Medullary Reticular Formation Neurons. J Neurophysiol 2004; 92:3596-600. [PMID: 15282259 DOI: 10.1152/jn.00310.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Single medullary reticular formation (MRF) neurons receive multiple somatovisceral convergent inputs originating from many different spinal and cranial nerves, including the pelvic nerve (PN), dorsal nerve of the penis (DNP), and the abdominal branches of the vagus. In a previous study, the input to MRF from the male genitalia was shown to be eliminated with chronic 30-day dorsal hemisection at the T8 spinal level. In this study, the effect of a smaller chronic lesion [dorsal column lesion (DCx)] on MRF neuronal responses was examined. Responses to bilateral electrical stimulation of the DNP remained. MRF neuronal responses to non-noxious (touch/stroke) levels of penile stimulation, however, were eliminated; only responses to noxious pinch remained. No differences were found for the number of neurons responding to noxious distention of the colon between the DCx and control groups. Although no differences were found across these groups for the percent MRF responses to vagal stimulation, the mean response latency for the DCx group was twice the sham-DCx/intact control group. Taken together, these results indicate that the MRF receives at least some of its input from the male genitalia via pathways located within the dorsal columns at the mid-thoracic spinal level.
Collapse
Affiliation(s)
- Charles H Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky 40292, USA.
| | | |
Collapse
|
13
|
Ossipov MH, Lai J, King T, Vanderah TW, Malan TP, Hruby VJ, Porreca F. Antinociceptive and nociceptive actions of opioids. ACTA ACUST UNITED AC 2004; 61:126-48. [PMID: 15362157 DOI: 10.1002/neu.20091] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although the opioids are the principal treatment options for moderate to severe pain, their use is also associated with the development of tolerance, defined as the progressive need for higher doses to achieve a constant analgesic effect. The mechanisms which underlie this phenomenon remain unclear. Recent studies revealed that cholecystokinin (CCK) is upregulated in the rostral ventromedial medulla (RVM) during persistent opioid exposure. CCK is both antiopioid and pronociceptive, and activates descending pain facilitation mechanisms from the RVM enhancing nociceptive transmission at the spinal cord and promoting hyperalgesia. The neuroplastic changes elicited by opioid exposure reflect adaptive changes to promote increased pain transmission and consequent diminished antinociception (i.e., tolerance).
Collapse
Affiliation(s)
- Michael H Ossipov
- Departments of Pharmacology, Anesthesiology and Chemistry, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Spike RC, Puskár Z, Andrew D, Todd AJ. A quantitative and morphological study of projection neurons in lamina I of the rat lumbar spinal cord. Eur J Neurosci 2003; 18:2433-48. [PMID: 14622144 DOI: 10.1046/j.1460-9568.2003.02981.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the rat lumbar spinal cord the major supraspinal targets for lamina I projection neurons are the caudal ventrolateral medulla (CVLM), lateral parabrachial area (LPb) and periaqueductal grey matter (PAG). In this study we have estimated the number of lamina I neurons retrogradely labelled from each of these sites in the L4 segment, as well as the proportion that can be labelled by injecting different tracers into two separate sites. Our results suggest that this segment contains approximately 400 lamina I projection neurons on each side, and that approximately 85% of these can be labelled from either the CVLM or the LPb on the contralateral side. Around 120 lamina I cells in L4 project to the PAG, and over 90% of these cells can also be labelled from the CVLM or LPb. Most lamina I neurons projecting to CVLM or LPb are located in the contralateral dorsal horn, but in each case some cells were found to have bilateral projections. We also examined horizontal sections to investigate morphology and the expression of the neurokinin 1 (NK1) receptor in cells labelled from CVLM, LPb or PAG. There were no consistent morphological differences between these groups, however, while cells with strong or moderate NK1 receptor-immunostaining were labelled from LPb or CVLM, they seldom projected to the PAG. These results suggest that many lamina I cells project to more than one site in the brain and that those projecting to PAG may represent a distinct subclass of lamina I projection neuron.
Collapse
Affiliation(s)
- R C Spike
- Spinal Cord Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | |
Collapse
|
15
|
Stern JM, Yu YL, Crockett DP. Dorsolateral columns of the spinal cord are necessary for both suckling-induced neuroendocrine reflexes and the kyphotic nursing posture in lactating rats. Brain Res 2002; 947:110-21. [PMID: 12144859 DOI: 10.1016/s0006-8993(02)02916-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Maternal behavior in rats consists of active behaviors, such as retrieval and licking of pups, and quiescent nursing, including the suckling-induced kyphotic (upright, dorsally-arched) posture. Because lesions of the dorsolateral, but not of the dorsal, columns are known to prevent the suckling-induced milk-ejection reflex, we asked whether the same is true for kyphosis as well. Bilateral lesions of the dorsolateral funiculus (DLF) or dorsal columns (DC) at spinal segments C(4-6) were made on day 5-8 postpartum; controls (CON) were subjected to a sham procedure. All aspects of maternal behavior and lactation were present in CON and DC dams soon after treatment. Among DLF dams, two had poor postural, ambulatory, and ingestive recovery that was associated with large lesions extending to the ventrolateral columns, while one with very small lesions continued to lactate. Of the remaining eight DLF dams, milk ejection was lost while recovery of retrieval and licking of pups occurred in all (between 1 and 4 days after surgery). All eight were quiescent for long periods in response to suckling but they did not display sustained kyphosis; rather, they nursed while prone or hunched over the pups, with little or no leg support, or while supine. Ventral trunk cutaneous sensitivity was present in all subjects. These data suggest that the dorsolateral funiculus relays both suckling-induced neuroendocrine and postural nursing reflexes that are mediated by separate supraspinal regions, hypothalamus and the ventrolateral sectors of the caudal periaqueductal gray, respectively.
Collapse
Affiliation(s)
- Judith M Stern
- Department of Psychology, Rutgers-The State University of New Jersey, 152 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA.
| | | | | |
Collapse
|
16
|
Farquhar-Smith WP, Egertová M, Bradbury EJ, McMahon SB, Rice AS, Elphick MR. Cannabinoid CB(1) receptor expression in rat spinal cord. Mol Cell Neurosci 2000; 15:510-21. [PMID: 10860578 DOI: 10.1006/mcne.2000.0844] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
While evidence implicates the endogenous cannabinoid system as a novel analgesic target at a spinal level, detailed analysis of the distribution of the cannabinoid receptor CB(1) in spinal cord has not been reported. Here, immunocytochemical studies were used to characterize the CB(1) receptor expression in rat spinal cord. Staining was found in the dorsolateral funiculus, the superficial dorsal horn (a double band of CB(1) immunoreactivity (ir) in laminae I and II inner/III transition), and lamina X. Although CB(1)-ir was present in the same laminae as primary afferent nociceptor markers, there was limited colocalization at an axonal level. Interruption of both primary afferent input by dorsal root rhizotomy and descending input by rostral spinal cord hemisection produced minor changes in CB(1)-ir. This and colocalization of CB(1)-ir with interneurons expressing protein kinase C subunit gamma-ir suggest that the majority of CB(1) expression is on spinal interneurons. These data provide a framework and implicate novel analgesic mechanisms for spinal actions of cannabinoids at the CB(1) receptor.
Collapse
Affiliation(s)
- W P Farquhar-Smith
- Pain Research Group, Imperial College School of Medicine, St. Mary's Hospital Campus, London, W2 1NY, United Kingdom
| | | | | | | | | | | |
Collapse
|
17
|
Bester H, Chapman V, Besson JM, Bernard JF. Physiological properties of the lamina I spinoparabrachial neurons in the rat. J Neurophysiol 2000; 83:2239-59. [PMID: 10758132 DOI: 10.1152/jn.2000.83.4.2239] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Single-unit extracellular recordings of spino-parabrachial (spino-PB) neurons (n = 53) antidromically driven from the contralateral parabrachial (PB) area were performed in the lumbar cord in anesthetized rats. All the spino-PB neurons were located in the lamina I of the dorsal horn. Their axons exhibited conduction velocities between 2.8 and 27.8 m/s, in the thin myelinated fibers range. They had an extremely low spontaneous activity (median = 0. 064 Hz) and a small excitatory receptive field (</=2 toes or pads). They were all activated by both peripheral A (mainly Adelta) and C fibers after intense transcutaneous electrical stimulation. Their discharge always increased in response to noxious natural stimuli of increasing intensities. The great majority (75%) of spino-PB neurons were nociceptive specific, i.e., they were excited only by noxious stimuli. The remaining (25%) still were excited primarily by noxious stimuli but also responded moderately to innocuous stimuli. Almost all spino-PB neurons (92%, 49/53) were activated by both mechanical and heat noxious stimuli. Among them, 35% were in addition moderately activated by noxious cold (thresholds between +20 and -10 degrees C). Only (8%, 4/53) responded exclusively to noxious heat. Spino-PB neurons clearly encoded the intensity of mechanical (n = 39) and thermal (n = 38) stimuli in the noxious range, and most of the individual stimulus-response functions were monotonic and positive up to 40/60 N. cm(-2) and 50 degrees C, respectively. For the mechanical modality, the mean threshold was 11.5 +/- 1.25 N. cm(-2) (mean +/- SE), the response increased almost linearly with the logarithm of the pressure between 10 and 60 N. cm(-2), the mean p(50) (pressure evoking 50% of the maximum response) and the maximum responsiveness were: 30 +/- 2.4 N. cm(-2) and 40.5 +/- 5 Hz, respectively. For the thermal modality, the mean threshold was 43.6 +/- 0.5 degrees C, the mean curve had a general sigmoid aspect, the steepest portion being in the 46-48 degrees C interval, the mean t(50) and the maximum responsiveness were: 47.4 +/- 0.3 degrees C and 40 +/- 4.4 Hz, respectively. Most of the spino-PB neurons tested (13/16) had their noxiously evoked responses clearly inhibited by heterotopic noxious stimuli. The mean response to noxious stimuli during heterotopic stimuli was 31.7 +/- 6.1% of the control response. We conclude that the nociceptive properties of the lamina I spino-PB neurons are reflected largely by those of PB neurons that were suggested to be involved in autonomic and emotional/aversive aspects of pain.
Collapse
Affiliation(s)
- H Bester
- Institut National de la Santé et de la Recherche Médicale U.161, Ecole Pratique des Hautes Etudes, F-75014 Paris, France
| | | | | | | |
Collapse
|
18
|
Craig A. Spinal location of ascending lamina I axons in the macaque monkey. THE JOURNAL OF PAIN 2000. [DOI: 10.1016/s1526-5900(00)90086-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Walker JM, Huang SM, Strangman NM, Tsou K, Sañudo-Peña MC. Pain modulation by release of the endogenous cannabinoid anandamide. Proc Natl Acad Sci U S A 1999; 96:12198-203. [PMID: 10518599 PMCID: PMC18435 DOI: 10.1073/pnas.96.21.12198] [Citation(s) in RCA: 348] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/1999] [Accepted: 08/10/1999] [Indexed: 11/18/2022] Open
Abstract
Synthetic cannabinoids produce behavioral analgesia and suppress pain neurotransmission, raising the possibility that endogenous cannabinoids serve naturally to modulate pain. Here, the development of a sensitive method for measuring cannabinoids by atmospheric pressure-chemical ionization mass spectrometry permitted measurement of the release of the endogenous cannabinoid anandamide in the periaqueductal gray (PAG) by in vivo microdialysis in the rat. Electrical stimulation of the dorsal and lateral PAG produced CB1 cannabinoid receptor-mediated analgesia accompanied by a marked increase in the release of anandamide in the PAG, suggesting that endogenous anandamide mediates the behavioral analgesia. Furthermore, pain triggered by subcutaneous injections of the chemical irritant formalin substantially increased the release of anandamide in the PAG. These findings indicate that the endogenous cannabinoid anandamide plays an important role in a cannabinergic pain-suppression system existing within the dorsal and lateral PAG. The existence of a cannabinergic pain-modulatory system may have relevance for the treatment of pain, particularly in instances where opiates are ineffective.
Collapse
Affiliation(s)
- J M Walker
- Department of Psychology, Brown University, Providence, RI 02912, USA.
| | | | | | | | | |
Collapse
|
20
|
Hubscher CH, Johnson RD. Effects of acute and chronic midthoracic spinal cord injury on neural circuits for male sexual function. I. Ascending pathways. J Neurophysiol 1999; 82:1381-9. [PMID: 10482756 DOI: 10.1152/jn.1999.82.3.1381] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Normal male reproductive function, particularly ejaculation, requires the integrity of urogenital sensory input and its ascending spinal projections. After midthoracic chronic spinal cord injury, sexual dysfunction occurs in both rats and humans. Neurons in the medullary reticular formation (MRF) are involved in the processing of bilaterally convergent sensory inputs from multiple cutaneous, mucocutaneous, and visceral regions of the body, including the penis and male urogenital tract. A variety of acute and chronic lesions were used to determine the midthoracic location of ascending spinal pathways conveying sensory input from the penis and male urogenital tract to MRF. A total of 371 single neurons were recorded in the MRF of 34 urethan-anesthetized mature male rats. Twenty-seven rats received a chronic T8 dorsal (DHx) or lateral (LHx) hemisection or contusion (Cx) injury 30 days before the terminal electrophysiological experiments. In addition, nine dorsal nerve of the penis (DNP)-responsive MRF neurons in seven intact control animals were tested completely both before and after various select acute spinal cord lesions. The chronic lesion data indicate that low and high threshold input from the penis (mucocutaneous) and male urogenital tract (visceral) ascend bilaterally within the dorsal quadrant at T8 as opposed to high threshold input from the hindpaws (cutaneous), which ascends unilaterally in the ventrolateral quadrant (VLQ). The acute lesion data indicate that the low-threshold information conveyed from the penis and male urogenital tract ascends in the dorsal columns, as opposed to the high-threshold nociceptive inputs that ascend bilaterally in the dorsolateral quadrant (DLQ). These results, as well as previous data on ascending projections from female reproductive organs within the dorsal columns and DLQ to other caudal brain stem nuclei, provide evidence for ascending pathways conveying nociceptive information centrally via the DLQ. This spinal gray-DLQ pathway(s) conveying information from mucocutaneous/pelvic/visceral territories therefore differs from the traditionally recognized spinal gray-VLQ pathway(s), which is known to convey nociceptive information from cutaneous regions of the body.
Collapse
Affiliation(s)
- C H Hubscher
- Department of Physiological Sciences, College of Veterinary Medicine, and University of Florida Brain Institute, University of Florida, Gainesville, Florida 32610-0144, USA
| | | |
Collapse
|
21
|
Doyle CA, Hunt SP. A role for spinal lamina I neurokinin-1-positive neurons in cold thermoreception in the rat. Neuroscience 1999; 91:723-32. [PMID: 10366028 DOI: 10.1016/s0306-4522(98)00623-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lamina I neurons of the spinal cord convey specific nociceptive activity to the brain. A subpopulation of lamina I cells bears substance P receptors (neurokinin-1) and recent studies have shown that these neurons encode for the intensity of noxious peripheral stimulation. Here, we report that cool thermal stimuli, applied to the hindpaw of anaesthetized rats, induce Fos expression in lamina I neurokinin-1 neurons that is graded with respect to the intensity of the thermal stimulus. Thus, as the temperature of the stimulus was reduced, both the total number of neurokinin-l-positive neurons expressing Fos and the proportion of Fos nuclei present within neurokinin-1 cells showed a significant increase. These data show that lamina I neurokinin-1 cells encode the intensity of noxious cooling of the skin. In laminae III and IV, although there was no correlation between neurokinin-1 cell activation and stimulus intensity, the total Fos count in these layers was inversely related to the depth of cooling. Thus, neurons in laminae III and IV may also play a role in thermoreception.
Collapse
Affiliation(s)
- C A Doyle
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
22
|
Abstract
The past 10 years have brought several new experimental models with which to study chronic neuropathic pain in animals. Consequently, our knowledge about the mechanisms subserving neuropathic pain in humans has improved. However, the first animal model that was used for studying this type of chronic pain was the autotomy-model which can still be considered as a useful tool for pain studies. The present review assesses some of the similarities and differences between autotomy-model and more recent models of experimental traumatic mononeuropathy. In addition, it considers some of the similarities between the results obtained in clinical studies and in autotomy studies.
Collapse
Affiliation(s)
- T Kauppila
- Center for Sensory Motor Interaction, University of Aalborg, Denmark
| |
Collapse
|
23
|
Abstract
Just over a decade has past since Hunt et al. reported that the gene c-fos and its protein product Fos are expressed in the spinal cord of rats subjected to peripheral noxious stimulation. These authors showed that noxious stimulation (application of radiant heat or mustard oil) to the hind paw resulted in a massive increase in the expression of Fos in neurons in the dorsal horn of the lumbar spinal cord. Since then, there has been an explosion of studies in which c-fos has been used to study nociception (pain), and the number of such studies increases each year. The net result has been to establish c-fos expression as a valuable tool in pain research. Moreover, recent studies have provided evidence identifying the role of c-fos expression in spinal nociceptive processes. However, there are several important limitations to the practice of using c-fos to study nociception, and these limitations can be easily overlooked as the practice graduates to the status of an established technique. The increasing use of c-fos to study nociception necessitates a critical review of the practice, identifying the shortcomings as well as the strengths of this tool.
Collapse
Affiliation(s)
- J A Harris
- School of Psychology, The University of New South Wales, Sydney, Australia
| |
Collapse
|
24
|
|
25
|
Lewin GR, Mendell LM. Maintenance of modality-specific connections in the spinal cord after neonatal nerve growth factor deprivation. Eur J Neurosci 1996; 8:1677-84. [PMID: 8921258 DOI: 10.1111/j.1460-9568.1996.tb01311.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have investigated the properties of antidromically identified lamina I neurons in the rat dorsal horn (in vivo) after neonatal administration of antibody to nerve growth factor (anti-NGF). Treatment from postnatal day (P) 2 to P9 yielded normal lamina I cell physiology; most cells responded to mechanical nociception and the remainder had a wide dynamic range (WDR). Extending anti-NGF treatment to P14 reduced the proportion of cells responding to mechanical nociception, increased the proportion of WDR cells, and caused the emergence of cells not driven by cutaneous inputs. Both nociceptive-specific and WDR cells had larger receptive fields, suggestive of enhanced central action of the remaining nociceptive afferents. These findings cannot be explained by direct action of anti-NGF on spinal cord neurons since both P2-9 and P2-14 treatments should have had similar effects given the time course of development of the blood-brain barrier. The results are discussed in terms of previous findings indicating normal numbers of D-hairs and high-threshold mechanoreceptors (HTMRs) after anti-NGF treatment from P2 to P9, but a decline in the number of HTMRs and an increase in the number of D-hairs after treatment from P2 to P14. It is suggested that the reduction in nociceptive neurons and the appearance of neurons not driven by cutaneous stimulation in lamina I results from the reduction in HTMR input. However, D-hair input to lamina I did not increase despite the larger number of these afferents, suggesting that their central action was regulated to maintain appropriate modality relationships between periphery and centre.
Collapse
Affiliation(s)
- G R Lewin
- Department of Neurobiology and Behavior, State University of New York at Stony Brook 11794, USA
| | | |
Collapse
|
26
|
Rees H, Terenzi MG, Roberts MH. Anterior pretectal nucleus facilitation of superficial dorsal horn neurones and modulation of deafferentation pain in the rat. J Physiol 1995; 489 ( Pt 1):159-69. [PMID: 8583399 PMCID: PMC1156800 DOI: 10.1113/jphysiol.1995.sp021038] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. Functional relationships between the anterior pretectal nucleus (APTN) and nociceptive dorsal horn neurones were investigated electrophysiologically in the anaesthetized rat. The effects of APTN lesions were assessed behaviourally in a model of deafferentation pain. 2. Cells in the dorsal and rostral parts of the APTN were excited orthodromically by electrical stimulation of the ipsilateral dorsolateral funiculus or the contralateral dorsal columns, and by noxious and innocuous cutaneous stimuli. 3. Electrical stimulation of the APTN excited nociceptive lamina I spinal neurones. These cells all projected rostrally in the contralateral dorsolateral funiculus. Identical APTN stimulation also inhibited multireceptive spinal neurones which lay deep in the dorsal horn. These particular cells were shown to project to the brain in the ventrolateral funiculus. 4. It is proposed that noxious stimuli excite spinal lamina I projection neurones which send excitatory axons to the brain, including the APTN. The APTN inhibits deep multireceptive neurones, to reduce the perception of noxious stimuli. The discharge of spinal lamina I neurones, however, will be sustained by the noxious stimulus and by facilitation from the APTN. A sustained descending inhibition of this nature would reduce responses to prolonged injury. 5. The involvement of the APTN in responses to a chronic pain state was examined by comparing the behaviour of animals with bilateral lesions of the APTN with normal controls. Lesions of the APTN strongly enhanced the autotomy behaviour triggered by sectioning of the dorsal roots. 6. These observations support the suggestion that the APTN reduces the debilitating effects of prolonged injury.
Collapse
Affiliation(s)
- H Rees
- Physiology Unit, School of Molecular and Medical Bioscience, University of Wales College of Cardiff, UK
| | | | | |
Collapse
|
27
|
|
28
|
Molander C, Hongpaisan J, Persson JK. Distribution of c-fos expressing dorsal horn neurons after electrical stimulation of low threshold sensory fibers in the chronically injured sciatic nerve. Brain Res 1994; 644:74-82. [PMID: 8032952 DOI: 10.1016/0006-8993(94)90349-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The distribution of proto-oncogene c-Fos protein-immunoreactive cells in the spinal cord dorsal horn was studied after electrical stimulation at A alpha/A beta-fiber intensity of normal and previously injured sciatic nerves in urethane anesthetized rats. No or only occasional Fos protein-like immunoreactive cells were seen after stimulation of the normal uninjured nerve or after nerve transection without stimulation. Electrical nerve stimulation at 3, 12, and 21 days after sciatic nerve transection resulted in substantial increases in the numbers of Fos protein-like immunoreactive cell nuclei in each of Rexed's laminae I-V. Combined demonstration of Fos protein-like immunoreactivity and of glial fibrillary acidic protein-like immunoreactivity (astroglia) or OX-42 immunoreactivity (microglia), indicated that the observed Fos protein-like response was confined to neurons and not to astroglia or microglia. Combined demonstration in the spinal cord of Fos protein-like immunoreactive neurons and neurons labeled retrogradely with Fluoro-Gold from the gracile nucleus showed that some of the Fos protein-like immunoreactive neurons in Rexed's laminae III and IV contributed to the postsynaptic dorsal column pathway. The results indicate that stimulation at A alpha/A beta-fiber intensity of a previously injured nerve gives rise to an abnormally increased activation pattern of postsynaptic neurons in the dorsal horn, some of which contribute to the postsynaptic dorsal column pathway.
Collapse
Affiliation(s)
- C Molander
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
29
|
Light AR, Sedivec MJ, Casale EJ, Jones SL. Physiological and morphological characteristics of spinal neurons projecting to the parabrachial region of the cat. Somatosens Mot Res 1993; 10:309-25. [PMID: 8237218 DOI: 10.3109/08990229309028840] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Neurons in the lumbosacral, superficial spinal dorsal horn in the cat were recorded extra- and intracellularly, using dorsal root stimulation as a search stimulus. Isolated neurons were tested for antidromic activation from the contra- and ipsilateral parabrachial region. Seventy-one nociceptive-specific neurons, 11 innocuous cooling neurons, and 8 multireceptive neurons were antidromically activated from the lateral parabrachial region. The receptive fields and response properties were typical of other lamina I and lamina II neurons, in that the receptive fields were usually discrete and relatively small, and the responses ranged from sluggish and decrementing to brisk and augmenting with afterdischarge. The conduction velocity to the parabrachial region averaged 3.7 m/sec for the nociceptive-specific neurons, 3.9 m/sec for the innocuous cooling neurons, and 13.5 m/sec for the multireceptive neurons. Intracellularly labeled neurons were mostly medium to large Waldeyer-like neurons in lamina I. Some had axon collaterals that distributed varicosities in laminae I, II, and V. These data indicate that a slowly conducting nociceptive-specific and thermoreceptive pathway exists between the superficial dorsal horn and the parabrachial region at the pontine-midbrain junction.
Collapse
Affiliation(s)
- A R Light
- Department of Physiology, University of North Carolina at Chapel Hill 27599-7545
| | | | | | | |
Collapse
|
30
|
Shaposhnikov VL. Excitation of cat spinal cord dorsal column fibers during stimulation of different fiber groups of cutaneous and somatic nerves. NEUROPHYSIOLOGY+ 1993. [DOI: 10.1007/bf01052862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Toldi J, Joo F, Wolfe JR. Capsaicin differentially influences somatosensory cortical responses evoked by peripheral electrical or mechanical stimulation. Neuroscience 1992; 49:135-9. [PMID: 1407542 DOI: 10.1016/0306-4522(92)90081-c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effects of capsaicin injected intraperitoneally (200 micrograms/kg) or applied locally to the cortical surface (10(-5) M) were studied on cortical potentials evoked by peripheral electrical or mechanical stimulation. Capsaicin treatment (i.p.) differentially influenced the cortical evoked potentials depending on the type of stimulation. Just after both types of capsaicin application, the responses to both kinds of stimuli decreased in amplitude. Additionally, during this time a short fall in blood pressure was observed. Half an hour later, however, only in the case of interperitoneal application the potentials evoked by electrical stimulation were facilitated, while the potentials evoked by vibrissa deflection had recovered and stayed around the control levels thereafter. In addition, the responsive cortex area activated by electrical stimulation became enlarged after the i.p. injection of capsaicin, while that of the cortex region activated by mechanical stimulation did not change significantly. Capsaicin applied locally to the cortex resulted neither in the facilitation of evoked potentials nor in the enlargement of the responsive cortical area. The present findings are the first to demonstrate that the i.p. (but not local) administration of capsaicin, in low dosage, differentially influences the cortical responses evoked by electrical and mechanical stimulation of somatosensory afferents.
Collapse
Affiliation(s)
- J Toldi
- Department of Comparative Physiology, Jozsef Attila University, Szeged, Hungary
| | | | | |
Collapse
|
32
|
Craig AD. Spinal distribution of ascending lamina I axons anterogradely labeled with Phaseolus vulgaris leucoagglutinin (PHA-L) in the cat. J Comp Neurol 1991; 313:377-93. [PMID: 1722491 DOI: 10.1002/cne.903130212] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The location of the ascending axons of spinal lamina I cells was studied in cats that received injections of Phaseolus vulgaris leucoagglutinin (PHA-L) in the superficial dorsal horn of the cervical or lumbosacral enlargement. Lamina I axons that could be ascribed to the spinothalamic tract (STT) were of particular interest. The cases were divided into three sets: in seven optimal cases the injections were restricted to lamina I; in ten nominal cases the injections involved laminae I-II or laminae I-III and occasionally lamina IV; and in eight mixed cases laminae I-V were injected. Since ipsilateral propriospinal and bilateral supraspinal axons originate from laminae I and V, but only ipsilateral propriospinal axons from laminae II-IV, this categorization facilitated a comparative analysis. Ascending axons labeled immunohistochemically with avidin/Texas Red were observed in oblique transverse sections from the C1, C3/4, T6, T12, and L3/4 levels. Incidental axonal labeling occurred in the ipsilateral dorsal columns because of passing primary afferent fiber uptake and, in nominal and mixed cases with involvement of laminae III-IV, in the superficial dorsolateral funiculus at the location of the spinocervical tract. Ipsilateral ascending lamina I axons in optimal cases were located in Lissauer's tract and in the white matter adjacent to the dorsal horn. Since these appeared to terminate in lamina I, and few remained at C1, they were ascribed to propriospinal projections. Contralateral ascending lamina I axons in optimal and nominal cases were distributed throughout the dorsal and ventral portions of the lateral funiculus (LF), but, despite considerable variability between animals in their location and dispersion, they were consistently concentrated in the middle of the LF (i.e., at the level of the central canal). This concentration was observed in a slightly more ventral location at C1, and a similar but weaker concentration of lamina I axons was located slightly more dorsally in C1 on the ipsilateral side. These supraspinal lamina I projections were ascribed to the spinomesencephalic tract (SMT) and to the STT. In mixed cases, additional ascending axons ascribed to lamina V cells were labeled in the ventrolateral and ventral funiculi. Many labeled axons were found in this region following a large injection of biocytin into lumbosacral laminae V-VIII in a supplementary case. These results thus together support previous descriptions of a dorsoventral distribution of STT axons according to laminar origin, but they contradict recent reports that lamina I axons ascend in the dorsolateral funiculus.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- A D Craig
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona 85013
| |
Collapse
|
33
|
Ohta Y, Iwasaki Y, Abe H, Kato M. Activation of spinal neurons by afferent fibers in the ventral roots of rats. Neurosci Lett 1991; 130:137-9. [PMID: 1749513 DOI: 10.1016/0304-3940(91)90246-p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The present investigation was aimed to search for spinal neurons which are activated by afferent fibers in the ventral roots, and once found, to study their receptive field and rostral projection. After dorsal roots L1-S4 on the left side were cut, ventral roots were stimulated to record extracellular responses of the neurons using glass microelectrodes filled with Fast green FCF. Thirty-nine neurons were activated by stimulating ventral roots at 2.5-26.7 x threshold (T) of the lowest threshold fibers of the ventral root. Six neurons were classified as wide dynamic range neurons and 16 high threshold neurons according to their response patterns to the periphery. Seventeen neurons were unresponsive to cutaneous stimulation, suggesting they had innervated visceral organs. Most of the neurons (71%) were located in layer V and VI. In 7 neurons (18%), rostral projection was confirmed by collision block method and ability to respond to high frequency stimuli with constant latency.
Collapse
Affiliation(s)
- Y Ohta
- Department of Neurosurgery, Hokkaido University, School of Medicine, Sapporo, Japan
| | | | | | | |
Collapse
|
34
|
Sun MK, Spyer KM. Nociceptive inputs into rostral ventrolateral medulla-spinal vasomotor neurones in rats. J Physiol 1991; 436:685-700. [PMID: 2061851 PMCID: PMC1181528 DOI: 10.1113/jphysiol.1991.sp018573] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
1. In anaesthetized rats recordings were made from thirty-eight neurones in the rostral ventrolateral medulla (RVL) with spinal-projecting axons. Their responses to mechanical, thermal and/or electrical stimulation were examined as were the accompanying changes in arterial pressure. 2. Mechanical, thermal and electrical stimulation of either hindpaw at a strength that can be regarded as noxious produced a consistent rise in arterial pressure. RVL-spinal-projecting 'vasomotor' neurones were excited by the noxious mechanical and thermal (52 degrees C) stimulation at a latency that was shorter than that of the evoked pressor response. 3. Percutaneous electrical stimulation of either hindlimb extremity resulted in an early peak of excitation (fourteen out of fourteen), an early trough of inhibition (twelve out fourteen), and a later peak of excitation (two out of fourteen). This response pattern to stimulation of either limb was independent of which limb was activated, but contralateral hindpaw stimulation elicited excitation at a shorter latency. The differences in latency of responses to stimulating two locations along the tail suggested that the early excitation and inhibition of RVL-spinal 'vasomotor' neurones were evoked by activation of peripheral fibres with a mean conduction velocity in the A delta range. 4. Short-latency excitatory and inhibitory responses in RVL-spinal 'vasomotor' neurones were observed also when single-pulse stimuli were delivered within the lateral part of the spinal cord. 5. Ionophoretic application of bicuculline, a GABAA receptor antagonist, blocked the evoked inhibition of these neurones on electrical stimulation of the hindpaw without attenuating the excitatory input from the same stimulus. 6. These results indicate that RVL-spinal 'vasomotor' neurones receive an input from cutaneous nociceptive afferents. This suggests that these neurones mediate, at least partly, the cardiovascular responses related to nociceptor stimulation.
Collapse
Affiliation(s)
- M K Sun
- Department of Physiology, Royal Free Hospital School of Medicine, London
| | | |
Collapse
|
35
|
Zouaoui D, Benoliel JJ, Cesselin F, Conrath M. Cholecystokinin-like immunoreactivity in the rat spinal cord: effects of thoracic transection. Brain Res Bull 1991; 26:543-7. [PMID: 1868354 DOI: 10.1016/0361-9230(91)90093-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A study of cholecystokinin-like immunoreactivity in the lumbar (L1-L5) spinal cord segments of rats was realised 24-48 hours after complete thoracic transection (T6-T8). A comparison was made with corresponding spinal cord segments from control and sham-operated animals. The immunocytochemical study with light microscopy showed cholecystokinin-like immunoreactive cell bodies in laminae VII and X at L1-L5, caudal to the transection. In addition, the immunoreactivity was greatly enhanced in bundles of the dorsolateral funiculus compared to sham-operated animals. Our results suggest that part of cholecystokinin-like cell bodies of laminae VII and X send projections to supraspinal sites. Some of these supraspinal projections would go through the dorsolateral funiculus. In the lumbar dorsal horn of operated animals, the immunoreactivity was greatly enhanced in lamina I, while it was slightly decreased in lamina II, compared to control animals. Using electron microscopy, in lamina I, the immunoreactivity localized in different neurites was generally very intense. Moreover, axon terminals showed swelling: their mean size was 0.8-1.8 microns (0.5-1.2 in control animals). This result suggests that some cholecystokinin-like neurons also project to lamina I of rostral cervical segments. In lamina II, numerous degenerating axons were observed (24 hours after thoracic spinal transection). This would suggest that part of descending cholecystokinin-like projections terminate in lamina II.
Collapse
Affiliation(s)
- D Zouaoui
- Institut des Neurosciences, CNRS URA 1199, Université Pierre et Marie Curie, Paris, France
| | | | | | | |
Collapse
|
36
|
|
37
|
Hope PJ, Fleetwood-Walker SM, Mitchell R. Distinct antinociceptive actions mediated by different opioid receptors in the region of lamina I and laminae III-V of the dorsal horn of the rat. Br J Pharmacol 1990; 101:477-83. [PMID: 2175238 PMCID: PMC1917709 DOI: 10.1111/j.1476-5381.1990.tb12733.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
1. In view of the presence of mu, delta and kappa opioid receptors in the spinal dorsal horn and their apparent involvement in behavioural analgesia, the present experiments addressed the action of selective agonists ionophoresed in the vicinity of rat dorsal horn neurones which were located either in lamina I or in laminae III-V. 2. In laminae III-V, kappa agonists (U50488H and dynorphin A) caused a selective inhibition of the nociceptive responses of multireceptive cells, whilst mu and delta agonists [( D-Ala2, MePhe4, Gly-ol]enkephalin and [D-Pen2, D-Pen5]enkephalin respectively) failed to alter either the spontaneous activity or the response to noxious and innocuous cutaneous stimuli and to D,L-homocysteic acid or glutamate. Nocispecific neurones were encountered too rarely in laminae III-V to study their properties. 3. In lamina I, agonists had no effects on either nocispecific or multireceptive neurones. In contrast, the mu agonist [D-Ala2, MePhe4, Gly-ol]enkephalin consistently inhibited nociceptive responses of both multireceptive and nocispecific lamina I cells. The delta agonist [D-Pen2, D-Pen5]enkephalin consistently caused selective inhibition of the nociceptive responses of multireceptive cells but had a mixed profile of action on nocispecific cells. 4. These results suggest that mu, delta and kappa opioid receptors mediate different antinociceptive actions in both laminae III-V and lamina I. The study reveals a distinct physiological role for delta receptors in modulating nociceptive inputs to lamina I neurones. In contrast to mu and kappa receptor actions, delta receptors heterogeneously influence subpopulations of neurones.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer
- Analgesics/pharmacology
- Animals
- Electric Stimulation
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
- Enkephalin, D-Penicillamine (2,5)-
- Enkephalins/pharmacology
- Neurons/drug effects
- Pain/physiopathology
- Pyrrolidines/pharmacology
- Rats
- Receptors, Opioid/drug effects
- Receptors, Opioid/physiology
- Receptors, Opioid, delta
- Receptors, Opioid, kappa
- Receptors, Opioid, mu
- Spinal Cord/physiology
Collapse
Affiliation(s)
- P J Hope
- Department of Preclinical Veterinary Sciences, University of Edinburgh
| | | | | |
Collapse
|
38
|
Saadé NE, Atweh SF, Jabbur SJ, Wall PD. Effects of lesions in the anterolateral columns and dorsolateral funiculi on self-mutilation behavior in rats. Pain 1990; 42:313-321. [PMID: 2250922 DOI: 10.1016/0304-3959(90)91144-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The possible role of the anterolateral columns (ALCs) and dorsolateral funiculi (DLF) in pain mechanisms was examined from the effects of lesions in these tracts (alone or combined) on tests for chronic deafferentation pain (autotomy) in rats. Spinal lesions alone (i.e., without denervation) in either ALC or DLF or combined DLF-ALC did not lead to any form of self-mutilation behavior. Cervical surgery, without spinal lesion, followed by limb denervation (sham) resulted in similar autotomy characteristics to those observed following limb denervation alone (control). Both results were considered as one set of controls. ALC lesions simultaneous with, or 1-2 weeks prior to limb denervation (ipsilaterally or contralaterally) produced significant delay in onset of autotomy and decrease in percentage of rats showing this behavior. DLF lesions followed by limb denervation produced significant acceleration of onset of autotomy and increase in percentage of rats showing this behavior. Combined DLF-ALC lesions with limb denervation produced intermediate effects between those observed following either ALC or DLF lesions alone. These results give further support to the concept that autotomy is related to rostral transmission of nociceptive information and that a spino-bulbo-spinal inhibitory loop involving the DLF and ALC is triggered by chronic deafferentation pain.
Collapse
Affiliation(s)
- N E Saadé
- Departments of Physiology and Internal Medicine, Faculty of Medicine, American University of Beirut, BeirutLebanon Cerebral Functions Research Group, Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT U.K
| | | | | | | |
Collapse
|
39
|
Calvino B. Is spinal cord dorsolateral funiculus involved in hypoalgesia induced by counter-irritation? Behav Brain Res 1990; 39:97-111. [PMID: 2390201 DOI: 10.1016/0166-4328(90)90097-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Several previous studies have demonstrated that, depending upon the behavioral test used, counter-irritation (i.e. the pain-relieving effects of pain elicited from heterotopic body areas) can produce hypoalgesia. In the present study, behavioral responses were elicited in the rat by increasing calibrated pressure applied to a hindpaw (Randall-Selitto test; 'passive' stimulus) and were studied before and after a subcutaneous formalin injection ('active' stimulus). The vocalization threshold to the pressure was clearly increased after injection of the algogenic solution either in the forepaw or in the cheek. Using this vocalization threshold, the counter-irritation-produced hypoalgesia was generally unchanged by unilateral dorsolateral funiculus (DLF) lesions. Following bilateral DLF lesions, hypoalgesia was decreased when formalin was injected in the forepaw, but was unaffected when the algogen was injected in the cheek. The present results partly contrast with previous papers from our group, where it has been assumed that the DLF is mainly involved in the neural circuitry subserving diffuse noxious inhibitory controls (DNIC), which have been considered as one possible neurophysiological basis for counter-irritation phenomena. They are discussed with reference to various hypotheses, including DNIC, as explanations for counter-irritation.
Collapse
Affiliation(s)
- B Calvino
- Laboratoire de Physiopharmacologie du Système Nerveux, INSERM U161, Paris, France
| |
Collapse
|
40
|
Hayashi H, Tabata T. Pulpal and cutaneous inputs to somatosensory neurons in the parabrachial area of the cat. Brain Res 1990; 511:177-9. [PMID: 2331615 DOI: 10.1016/0006-8993(90)90240-c] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The majority of somatosensory neurons recorded from the mesencephalic parabrachial area and pontine parabrachial nucleus of the cat responded exclusively to noxious mechanical stimuli to the skin. Their receptive fields were very large. Two-thirds of the neurons tested responded to electrical stimulation of the tooth pulp. These results suggest that neurons in this area have extensive convergence of spinal and trigeminal inputs, and contribute to the affective or autonomic aspects of pain.
Collapse
Affiliation(s)
- H Hayashi
- Department of Physiology, School of Dentistry, Tohoku University, Sendai, Japan
| | | |
Collapse
|
41
|
Kayser V, Basbaum AI, Guilbaud G. Deafferentation in the rat increases mechanical nociceptive threshold in the innervated limbs. Brain Res 1990; 508:329-32. [PMID: 2306625 DOI: 10.1016/0006-8993(90)90418-b] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study in the rat, we evaluated the effect of unilateral, multiple cervical dorsal rhizotomy (C5-T1) on nociceptive thresholds in the unoperated limbs. This was tested by measuring the vocalization threshold to paw pressure. We report that deafferentation by dorsal rhizotomy results in a delayed, but transient increase in mechanical nociceptive thresholds in the 3 innervated limbs.
Collapse
Affiliation(s)
- V Kayser
- Unité de Recherche en Physiopharmacologie du Système nerveux U. 161, INSERM, Paris, France
| | | | | |
Collapse
|
42
|
Abstract
Spinal afferents to the medullary dorsal reticular nucleus were studied using the following retrograde tracers: horseradish peroxidase (diluted in dimethylsulfoxide), wheat germ agglutinin conjugated with horseradish peroxidase, and cholera toxin subunit B. Spinal cord cells projecting to that medullary region were located predominantly in medial lamina I and lamina X. Cell labelling was moderate in the medial part of laminae II-IV and sparse throughout laminae V-VII. Labelling was predominantly ipsilateral in the dorsal horn and bilateral in laminae VII and X. After mechanical lesions of the dorsal white matter which severed most of the ipsilateral cuneate fasciculus, the numbers of superficial dorsal horn cells that were labelled from the dorsal reticular nucleus were considerably decreased caudal to the lesion, which suggests that their axons utilize mostly the cuneate fasciculus. Since the medullary dorsal reticular nucleus of the rat has a predominant population of nociceptive specific neurons, it is suggested that this spino-dorsomedullary reticular pathway is involved in pain processing.
Collapse
Affiliation(s)
- D Lima
- Institute of Histology and Embryology, Faculty of Medicine, University of Oporto, Porto, Portugal
| |
Collapse
|
43
|
Lima D, Coimbra A. Structural types of marginal (lamina I) neurons projecting to the dorsal reticular nucleus of the medulla oblongata. Neuroscience 1990; 34:591-606. [PMID: 1693759 DOI: 10.1016/0306-4522(90)90167-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The morphological features of lamina I neurons labelled from the medullary dorsal reticular nucleus with free or wheat germ agglutinin conjugated horseradish peroxidase and cholera toxin subunit B, were studied in the three standard anatomical planes in the rat. Orientation and way of branching of the dendritic arbors were further analysed by the method of Sholl in cells labelled with cholera toxin subunit B. Most marginal cells belong to the multipolar type (70%) of our Golgi-based classification, and a minority to the pyramidal (15%) and flattened (15%) types. Following unilateral lesions severing the greatest part of the cuneate fasciculus, a considerable decrease of the numbers of labeled cells of the three types was observed caudal and ipsilaterally to the lesion. Contralateral labelling of multipolar and pyramidal cells was less decreased, and that of flattened cells was apparently unchanged. While multipolar cells, which make up the bulk of marginal spinobulbar neurons, appear to have no other supraspinal target, pyramidal and flattened cells have been labelled from the mesencephalon and the thalamus, respectively. It is suggested that the three structural cell types subserve different aspects of the spinofugal nociceptive output.
Collapse
Affiliation(s)
- D Lima
- Institute of Histology and Embryology, Faculty of Medicine, University of Oporto, Porto, Portugal
| | | |
Collapse
|
44
|
Hernández N, López Y, Vanegas H. Medullary on- and off-cell responses precede both segmental and thalamic responses to tail heating. Pain 1989; 39:221-230. [PMID: 2594400 DOI: 10.1016/0304-3959(89)90009-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Medullary on- and off-cell responses to tail heating were studied in lightly anesthetized rats. In 10 animals the electromyographic (EMG) activation of tail muscles was recorded simultaneously with on- or off-cells. The on-cell burst or the off-cell pause always preceded segmental EMG activation by about 0.5 sec. In turn, EMG activation preceded visible tail flick by about 0.09 sec. In 13 other animals ventrobasal thalamic unitary responses were recorded simultaneously with on- and off-cell responses. On-cell bursts or off-cell pauses always preceded thalamic responses by about 0.4 sec. These results support the notion that on- and off-cells play a regulatory role in both segmental and ascending nociceptive transmission.
Collapse
Affiliation(s)
- Norma Hernández
- Laboratorio de Neurofisiología, Centra de Biofisica y Bioquímica, Institute Venezolano de Investigacions Cientificas, Caracas 1020A Venezuela
| | | | | |
Collapse
|
45
|
Apkarian AV, Hodge CJ. Primate spinothalamic pathways: II. The cells of origin of the dorsolateral and ventral spinothalamic pathways. J Comp Neurol 1989; 288:474-92. [PMID: 2794144 DOI: 10.1002/cne.902880308] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The cells of origin of the dorsolateral (DSTT) and the ventral (VSTT) spinothalamic tracts were studied in 11 monkeys. The spinothalamic tract cells were retrogradely labeled by horseradish peroxidase (HRP) injected in the thalamus. All animals also received a midthoracic spinal cord lesion on the side ipsilateral to the thalamic injections. The distribution of labeled cells found in these animals throughout the cervical segments was similar to animals with no spinal cord lesions. Five animals had ventral quadrant lesions to demonstrate the cells of origin of the DSTT. In macaques with complete ventral quadrant lesions, more than 80% of the HRP label in the contralateral L4-L7 segments was located in lamina I, while in squirrel monkeys, the label in the contralateral lower lumbar region was distributed between laminae I-III and IV-VI. Few labeled cells were found in laminae VII-X. Six animals received dorsolateral funiculus lesions to demonstrate the cells of origin of the VSTT. In animals with adequate lesions, 84-99% of the contralateral HRP label in L4-L7 was located in laminae IV-X. Macaques had a larger percentage of labeled cells located in lamina I than squirrel monkeys. The results indicate the existence of two spinothalamic pathways in the primate. The DSTT was calculated to compose about one fourth of the total spinothalamic population.
Collapse
Affiliation(s)
- A V Apkarian
- Neurosurgery Department, SUNY Health Science Center, Syracuse 13210
| | | |
Collapse
|
46
|
Abstract
Prior work has indicated the existence of a major spinal cord pathway made up of lamina I cell axons ascending in the dorsolateral funiculus in both rat and cat. In cat, a portion of this lamina I dorsolateral funiculus pathway terminates in the thalamus. The purpose of this report is to demonstrate that a similar dorsolateral spinothalamic tract exists in macaque monkey. Retrograde transport of horseradish peroxidase, injected into the somatosensory thalamus of monkeys, was used to identify the cells of origin of the spinothalamic tract in the cervical and lumbar enlargements. In order to determine the funicular courses of the axons contributing to the spinothalamic pathway, thalamic injections of horseradish peroxidase were combined with ipsilateral ventral or dorsolateral thoracic spinal cord lesions. The results indicate that in macaque monkey many lamina I cell axons ascend to the thalamus in the dorsolateral funiculus, contralateral to their parent cells. Some lamina I cell axons as well as the majority of axons of spinothalamic cells located in deeper laminae ascend in the contralateral ventral quadrant to terminate in the thalamus. The existence in macaque of a dorsolateral spinothalamic pathway comprised of lamina I cell axons strongly implies the presence of a similar pathway in humans and has important implications regarding the mechanisms underlying both clinical and experimental nociception.
Collapse
Affiliation(s)
- A Vania Apkarian
- Department of Neurosurgery, State University of New York Health Science Center, 750 East Adams Street, Syracuse, NY 13210 U.S.A
| | | |
Collapse
|
47
|
Hylden JLK, Nahin RL, Traub RJ, Dubner R. Expansion of receptive fields of spinal lamina I projection neurons in rats with unilateral adjuvant-induced inflammation: the contribution of dorsal horn mechanisms. Pain 1989; 37:229-243. [PMID: 2664665 DOI: 10.1016/0304-3959(89)90135-8] [Citation(s) in RCA: 295] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have physiologically characterized the receptive field properties of lamina I projection neurons with cutaneous input in the lumbar spinal cords of control rats and rats with unilateral adjuvant-induced inflammation of the hindlimb. The majority of cells recorded in rats with inflamed limbs demonstrated properties uncharacteristic of this cell population in control rats, including large receptive fields, discontinuous receptive fields, responsiveness to deep as well as cutaneous tissues and ongoing or bursting spontaneous activity. Cells with complex receptive fields were encountered from less than 6 h to 5 days after induction of inflammation. This time course correlates with the occurrence of hyperalgesia to thermal stimuli. The contributions of nociceptive afferent sensitization and alterations in the physical environment of peripheral receptors to the observed enlargement of receptive fields were examined by testing the responses of cells to localized electrical and thermal stimuli in the absence and presence of local anesthesia. Nociceptive primary afferents did not demonstrate enlarged receptive fields in this model of inflammation. The results imply that the enlargement of receptive fields cannot be accounted for by peripheral sensitization of peripheral nociceptors or physical changes in the environment of peripheral receptors and must therefore involve changes within the central nervous system.
Collapse
Affiliation(s)
- Janice L K Hylden
- Neurobiology and Anesthesiology Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, MD 20892 U.S.A
| | | | | | | |
Collapse
|
48
|
Stevens RT, Hodge CJ, Apkarian AV. Medial, intralaminar, and lateral terminations of lumbar spinothalamic tract neurons: a fluorescent double-label study. Somatosens Mot Res 1989; 6:285-308. [PMID: 2728780 DOI: 10.3109/08990228909144678] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A dorsolateral spinothalamic tract (DSTT), consisting primarily of lamina I neurons, was confirmed in the cat lumbar spinal cord by the use of thalamic injections of fluorescent dyes combined with selective thoracic spinal cord lesions. In addition, collateralization of spinothalamic tract (STT) terminations to medial, lateral, and intralaminar thalamic regions was investigated by injections of two different fluorescent dyes into pairs of these regions. The results of this study indicate that less than 15% of cat lumbar STT neurons collateralize to more than one of the thalamic regions evaluated. Lumbar lamina I cells project to the lateral and to the medial thalamus (13% collateralize to these two regions) and have only a scant projection to the intralaminar thalamus. Lumbar laminae IV-VI STT cells are very few in cat and demonstrate almost no collateralization to multiple thalamic areas. Neurons of laminae VII-X project equally to the three thalamic regions evaluated, and approximately 10-14% of cells from this laminar group collateralize to any two of the thalamic sites evaluated.
Collapse
Affiliation(s)
- R T Stevens
- Department of Neurosurgery, SUNY Health Science Center, Syracuse 13210
| | | | | |
Collapse
|
49
|
Hylden JL, Anton F, Nahin RL. Spinal lamina I projection neurons in the rat: collateral innervation of parabrachial area and thalamus. Neuroscience 1989; 28:27-37. [PMID: 2548118 DOI: 10.1016/0306-4522(89)90229-7] [Citation(s) in RCA: 171] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A major ascending nociceptive pathway from spinal lamina I to the mesencephalon has previously been reported in the cat, rat and monkey. In the present paper, we have used single and double retrograde labeling techniques to describe this projection system and its collateralization to the thalamus in the rat. Injections of wheat germ agglutinin-horseradish peroxidase into the pontomesencephalic parabrachial area labeled cell bodies bilaterally in lamina I and deeper laminae of the spinal cord. Bilateral lesions of the dorsolateral funiculi at thoracic levels reduced labeling of lamina I neurons caudal to the lesions. Combined injections of fluorescent retrograde tracers into the lateral thalamus and parabrachial area resulted in double labeling of projection neurons in lamina I, lamina IV VIII and the lateral spinal nucleus of the cervical and lumbar enlargements. Double-labeled neurons were especially abundant in lamina I. Thus, we have demonstrated a major lamina I projection through the dorsolateral funiculi to the parabrachial area with significant collateralization to the thalamus. Moreover, since more than 80% of retrogradely labeled lamina I spinothalamic tract cells had collaterals to the parabrachial area we have indirectly demonstrated the presence of a dorsolateral funicular pathway for lamina I spinothalamic neurons in the rat. More lamina I neurons were retrogradely labeled from midbrain injections as compared to thalamic injections. The significance of these findings rest on previous work in this and other laboratories and concerns the understanding of spinal nociceptive mechanisms. Lamina I projection neurons are primarily nociceptive-specific in their response properties and have been shown to project to both the midbrain and thalamus via the dorsolateral funiculus in a number of species. The role of this projection system in nociceptive transmission may lie in its ability to distribute precise information to multiple brain stem sites which in turn activate autonomic or affective responses or descending pain modulatory mechanisms.
Collapse
Affiliation(s)
- J L Hylden
- Neurobiology and Anesthesiology Branch, National Institute of Dental Research, Bethesda, MD 20892
| | | | | |
Collapse
|
50
|
Lima D, Coimbra A. The spinothalamic system of the rat: structural types of retrogradely labelled neurons in the marginal zone (lamina I). Neuroscience 1988; 27:215-30. [PMID: 2462188 DOI: 10.1016/0306-4522(88)90232-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Retrogradely labelled lamina I neurons were studied after intrathalamic injections of free horseradish peroxidase mixed with dimethylsulphoxide, wheat germ agglutinin conjugated with horseradish peroxidase, and subunit B of cholera toxin. The first two tracers revealed only the perikaryal shape and the orientation of primary dendrites, while cholera toxin subunit B produced Golgi-like stainings. The morphological and morphometric analysis of the labelled marginal neurons in different planes showed them to belong to the pyramidal and the flattened types of our Golgi-based classification. These cells were located predominantly in the intermediate lateromedial portion of lamina I at all spinal levels, and it is suggested that their structural duality is matched by different functional properties. Distributions of the remaining spinothalamic cells labelled with the two horseradish peroxidase tracers were rather similar to those previously reported in the literature, including the almost exclusive occurrence of labelled cells, at lumbar levels, in the internal basilar column group. Cholera toxin subunit B labelled many more spinal cells and revealed considerable numbers of labelled cells in all cell groups at the lumbar enlargement.
Collapse
Affiliation(s)
- D Lima
- Centre of Experimental Morphology, Faculty of Medicine, University of Oporto, Portugal
| | | |
Collapse
|