1
|
Nag TC, Sharma B, Gorla S. Glycogen in retinal horizontal cells of the African mud catfish Clarias gariepinus (Burchell, 1822) and its physiological significance. Tissue Cell 2023; 83:102140. [PMID: 37329686 DOI: 10.1016/j.tice.2023.102140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
This paper reports on glycogen store in the retinal horizontal cells (HC) of the African mud catfish Clarias gariepinus, as seen by histochemical reaction with periodic acid Schiff (PAS) and transmission electron microscopy in light- as well as dark-adapted state. Glycogen is abundant in the large somata and less in their axons, characterised ultrastructurally by many microtubules and extensive gap junctions interconnecting them. There was no apparent difference in glycogen content in HC somata between light- and dark adaptation, but the axons clearly showed absence of glycogen in dark condition. The HC somata (presynaptic) make synapses with dendrites in the outer plexiform layer. Müller cell inner processes, which contain more densely packed glycogen, invest the HC. Other cells of the inner nuclear layer do not show any appreciable content of glycogen. Rods, but not cones, contain abundant glycogen in their inner segments and synaptic terminals. It is likely that glycogen is used as energy substrate in hypoxia for this species that dwell muddy aquatic environment with low oxygen content. They appear to have high energy demand, and a high glycogen content in HC could act as a ready source to fulfil physiological processes, like microtubule-based transport of cargo from the large somata to axons and the maintenance of electrical activities across the gap junctions between the axonal processes. It is also likely that they can supplement glucose to the neighbouring inner nuclear layer neurons, which are clearly devoid of glycogen.
Collapse
Affiliation(s)
- Tapas C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| | - Bhaskar Sharma
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Shilpa Gorla
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
2
|
Lipin MY, Vigh J. Quantifying the effect of light activated outer and inner retinal inhibitory pathways on glutamate release from mixed bipolar cells. Synapse 2018; 72:e22028. [PMID: 29360185 DOI: 10.1002/syn.22028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 11/12/2022]
Abstract
Inhibition mediated by horizontal and amacrine cells in the outer and inner retina, respectively, are fundamental components of visual processing. Here, our purpose was to determine how these different inhibitory processes affect glutamate release from ON bipolar cells when the retina is stimulated with full-field light of various intensities. Light-evoked membrane potential changes (ΔVm ) were recorded directly from axon terminals of intact bipolar cells receiving mixed rod and cone inputs (Mbs) in slices of dark-adapted goldfish retina. Inner and outer retinal inhibition to Mbs was blocked with bath applied picrotoxin (PTX) and NBQX, respectively. Then, control and pharmacologically modified light responses were injected into axotomized Mb terminals as command potentials to induce voltage-gated Ca2+ influx (QCa ) and consequent glutamate release. Stimulus-evoked glutamate release was quantified by the increase in membrane capacitance (ΔCm ). Increasing depolarization of Mb terminals upon removal of inner and outer retinal inhibition enhanced the ΔVm /QCa ratio equally at a given light intensity and inhibition did not alter the overall relation between QCa and ΔCm . However, relative to control, light responses recorded in the presence of PTX and PTX + NBQX increased ΔCm unevenly across different stimulus intensities: at dim stimulus intensities predominantly the inner retinal GABAergic inhibition controlled release from Mbs, whereas the inner and outer retinal inhibition affected release equally in response to bright stimuli. Furthermore, our results suggest that non-linear relationship between QCa and glutamate release can influence the efficacy of inner and outer retinal inhibitory pathways to mediate Mb output at different light intensities.
Collapse
Affiliation(s)
- Mikhail Y Lipin
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, Colorado, 80523-1617
| | - Jozsef Vigh
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, Colorado, 80523-1617
| |
Collapse
|
3
|
Thoreson WB, Mangel SC. Lateral interactions in the outer retina. Prog Retin Eye Res 2012; 31:407-41. [PMID: 22580106 PMCID: PMC3401171 DOI: 10.1016/j.preteyeres.2012.04.003] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/05/2012] [Accepted: 03/09/2012] [Indexed: 10/28/2022]
Abstract
Lateral interactions in the outer retina, particularly negative feedback from horizontal cells to cones and direct feed-forward input from horizontal cells to bipolar cells, play a number of important roles in early visual processing, such as generating center-surround receptive fields that enhance spatial discrimination. These circuits may also contribute to post-receptoral light adaptation and the generation of color opponency. In this review, we examine the contributions of horizontal cell feedback and feed-forward pathways to early visual processing. We begin by reviewing the properties of bipolar cell receptive fields, especially with respect to modulation of the bipolar receptive field surround by the ambient light level and to the contribution of horizontal cells to the surround. We then review evidence for and against three proposed mechanisms for negative feedback from horizontal cells to cones: 1) GABA release by horizontal cells, 2) ephaptic modulation of the cone pedicle membrane potential generated by currents flowing through hemigap junctions in horizontal cell dendrites, and 3) modulation of cone calcium currents (I(Ca)) by changes in synaptic cleft proton levels. We also consider evidence for the presence of direct horizontal cell feed-forward input to bipolar cells and discuss a possible role for GABA at this synapse. We summarize proposed functions of horizontal cell feedback and feed-forward pathways. Finally, we examine the mechanisms and functions of two other forms of lateral interaction in the outer retina: negative feedback from horizontal cells to rods and positive feedback from horizontal cells to cones.
Collapse
Affiliation(s)
- Wallace B. Thoreson
- Departments of Ophthalmology & Visual Sciences and Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Stuart C. Mangel
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| |
Collapse
|
4
|
Koch PC, Heß M. Topographic mapping of retinal neurons in the european anchovy by nuclear staining and immunohistochemistry. J Neurosci Res 2011; 89:1316-30. [DOI: 10.1002/jnr.22651] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/14/2011] [Accepted: 03/02/2011] [Indexed: 11/09/2022]
|
5
|
SONG PHILIPI, MATSUI JONATHANI, DOWLING JOHNE. Morphological types and connectivity of horizontal cells found in the adult zebrafish (Danio rerio) retina. J Comp Neurol 2008; 506:328-38. [PMID: 18022944 PMCID: PMC2408720 DOI: 10.1002/cne.21549] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We describe here different types of horizontal cells in the zebrafish retina and how they connect to photoreceptors. To label horizontal cells, crystals of DiI were placed onto the tips of pulled glass pipettes and inserted into the inner nuclear layer of fixed whole-mount retinas. The DiI-labeled horizontal cells were imaged by confocal microscopy and analyzed according to dendritic arborization, cell depth, dendritic terminal morphology, and connectivity with photoreceptors. Three types of horizontal cells were unequivocally identified: two cone-connecting (H1/2 and H3) and one rod-related cell. H1/2 cells have dendritic terminals that are arranged in "rosette" clusters and that connect to cone photoreceptors without any apparent specificity. H3 cells are larger and have dendritic terminal doublets arranged in a rectilinear pattern. This pattern corresponds to the mosaic of the single cones in the zebrafish photoreceptor mosaic and indicates that H3 cells connect specifically to either the blue-sensitive (long-single) or ultraviolet-sensitive (short-single) cones. Thus, H3 cells are likely to be chromaticity-type cells that process specific color information, whereas H1/2 cells are probably luminosity-type cells that process luminance information. Rod horizontal cells were identified by their shape and dendritic pattern, and they connect with numerous rod photoreceptors via small spherical terminals.
Collapse
Affiliation(s)
- PHILIP I. SONG
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - JONATHAN I. MATSUI
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - JOHN E. DOWLING
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
6
|
Shields CR, Klooster J, Claassen Y, Ul-Hussain M, Zoidl G, Dermietzel R, Kamermans M. Retinal horizontal cell-specific promoter activity and protein expression of zebrafish connexin 52.6 and connexin 55.5. J Comp Neurol 2007; 501:765-79. [PMID: 17299759 DOI: 10.1002/cne.21282] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Connexins in retinal horizontal cells (HC) function in the processing of visual information. For example, gap junction-forming connexins may contribute to the spatial integration of visual stimuli. Additionally, connexin hemichannels have been hypothesized to participate in the feedback pathway from HCs to cones. To verify the identities of the zebrafish HC connexins, we performed promoter expression and immunohistochemical studies of connexin 52.6 (Cx52.6) and Cx55.5. Zebrafish embryos were microinjected with Cx52.6 or Cx55.5 promoter sequences and a green fluorescent protein reporter construct. Light and electron microscopic (EM) analysis showed green fluorescent protein expression exclusively in retinal HCs. Immunohistochemistry confirmed that HCs express Cx52.6 and Cx55.5 proteins. Light microscopy revealed Cx52.6 and Cx55.5 in the retinal inner nuclear and outer plexiform layers. Double labeling for Cx55.5 or Cx52.6 and cell-specific markers (tyrosine hydroxylase, protein kinase C-alpha, or GluR2) demonstrated that these connexins do not localize to interplexiform or ON bipolar cells, but most likely are present in HCs. Preembedding immuno-EM confirmed the HC-specific expression of Cx52.6 and Cx55.5 and illustrated the presence of these two connexins in gap junctions between HCs. The EM data also revealed robust labeling for Cx55.5 in hemichannels on HC dendrites in photoreceptor synaptic terminals. Voltage-clamp experiments in cultured cells demonstrated that Cx55.5-containing hemichannels can open at physiological membrane potentials. These results offer the first in vivo demonstration of the HC-specific activities of the Cx52.6 and Cx55.5 promoters. Furthermore, these data provide the first proof at the protein level for retinal HC-specific connexins in the zebrafish.
Collapse
Affiliation(s)
- Colleen R Shields
- Retinal Signal Processing, Netherlands Institute for Neuroscience, Netherlands Royal Academy of Sciences, 1105BA Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
7
|
Kolb H, Nelson R, Ahnelt P, Cuenca N. Cellular organization of the vertebrate retina. PROGRESS IN BRAIN RESEARCH 2001; 131:3-26. [PMID: 11420950 DOI: 10.1016/s0079-6123(01)31005-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- H Kolb
- John Moran Eye Center, University of Utah, Salt Lake City, Utah 84132, USA.
| | | | | | | |
Collapse
|
8
|
Linberg K, Cuenca N, Ahnelt P, Fisher S, Kolb H. Comparative anatomy of major retinal pathways in the eyes of nocturnal and diurnal mammals. PROGRESS IN BRAIN RESEARCH 2001; 131:27-52. [PMID: 11420947 DOI: 10.1016/s0079-6123(01)31006-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- K Linberg
- Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA 93106, USA.
| | | | | | | | | |
Collapse
|
9
|
Jung CS, Lee SJ, Paik SS, Bai SH. The GABA(C) receptor is present in cone-horizontal cell axon terminals isolated from catfish retina. Neurosci Lett 1999; 260:185-8. [PMID: 10076898 DOI: 10.1016/s0304-3940(98)00964-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Whole cell voltage-clamp recordings were performed on isolated terminals and somata from catfish retina to compare the distribution of excitatory and inhibitory receptors in both structures. Saturating concentrations of glutamate or kainate produced small currents in axon terminals, averaging less than 8% of the current evoked in the soma. In contrast, application of high concentrations of gamma-aminobutyric acid (GABA) produced approximately similar current amplitudes in both structures. Based on estimates of membrane surface area, GABA-induced current densities were around 0.05 pA/microm2 for both structures. The GABA-activated current in the axon terminal was not blocked by bicuculline or SR95531, but was completely inhibited by picrotoxin. Baclofen did not mimic the GABA effect, but trans-4-aminocrotonic acid (TACA, 300 microM) and muscimol (1 mM) elicited currents of 100 and 40 pA, respectively. These results suggest that the axon terminals of cone-horizontal cells possess GABA(C) receptors at a high density, do not possess GABA(A) or GABA(B) receptors, and have few glutamate receptors. The GABA(C) receptors could function as postsynaptic receptors in the inner plexiform layer or as autoreceptors.
Collapse
Affiliation(s)
- C S Jung
- Department of Physics and Biophysics, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| | | | | | | |
Collapse
|
10
|
Yazulla S, Studholme KM. Differential distribution of Shaker-like and Shab-like K+-channel subunits in goldfish retina and retinal bipolar cells. J Comp Neurol 1998; 396:131-40. [PMID: 9623892 DOI: 10.1002/(sici)1096-9861(19980622)396:1<131::aid-cne10>3.0.co;2-s] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The distributions of Shaker subfamily Kv1.1 and Kv1.2 and Shab subfamily Kv2.1 subunits of voltage-gated K+ channels were determined in the retina and ON bipolar cells of goldfish by using double-label light and electron microscopic immunocytochemistry. All labeling to be described was blocked by preabsorption of the primary antibodies with antigen. The retina was labeled throughout with all three antibodies. However, labeling was densest in the inner plexiform layer for Kv1.1, more concentrated in the outer nuclear layer for Kv2.1, and uniform throughout for Kv1.2. All ON mixed rod/cone (mb) and cone (cb) bipolar somata and the proximal portions of their axons and dendrites were labeled for anti-Kv1.1, Kv1.2, and Kv2.1. Labeling of axons rarely extended over the mb axon terminal. Only Kv1.2 antibodies labeled mb bipolar cell dendrites in the outer plexiform layer. No evidence for Kv1.1, 1.2, or 2.1 antibody labeling of OFF bipolar cells was found. Ultrastructurally, Kv1.2-immunoreactivity was associated with the plasma membrane of bipolar cell bodies and with dendrites that make narrow-cleft junctions with cone terminals (ON-type). Kv immunoreactivity was not found associated with presynaptic membranes in the inner plexiform layer and was found only rarely with membranes, postsynaptic to an amacrine cell process. Although both Shaker and Shab subfamilies include delayed rectifiers, their activation properties differ, suggesting differential modulation of K+ conductances in bipolar cells based not only on the presence or absence of rod photoreceptor input but also whether the bipolar cells are of the ON or OFF type.
Collapse
Affiliation(s)
- S Yazulla
- Department of Neurobiology and Behavior, University at Stony Brook, New York 11794-5230, USA.
| | | |
Collapse
|
11
|
Qian H, Li L, Chappell RL, Ripps H. GABA receptors of bipolar cells from the skate retina: actions of zinc on GABA-mediated membrane currents. J Neurophysiol 1997; 78:2402-12. [PMID: 9356392 DOI: 10.1152/jn.1997.78.5.2402] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
GABA receptors of bipolar cells from the skate retina: actions of zinc on GABA-mediated membrane currents. J. Neurophysiol. 78: 2402-2412, 1997. gamma-Aminobutyric acid (GABA)-induced currents were recorded from isolated bipolar cells of the skate retina using perforated patch-clamp methodology. Pharmacological analysis of the responses, using selective agonists and antagonists of the major classes of GABA receptor, revealed the presence of both GABAA and GABAC receptors at both the dendrites and axon terminals of the bipolar cells. The two receptor types showed very different reactions to zinc, a divalent metallic cation that was detected in the synaptic terminal region of skate photoreceptors. Currents mediated by the activation of GABAC receptors were down-regulated by zinc, a feature that is typical of the action of zinc on GABAC receptors. On the other hand, the effects of zinc on GABAA receptor-mediated activity was highly dependent on zinc concentration. Unlike the GABAA receptors on other neurons, responses mediated by activation of the GABAA receptor of skate bipolar cells were significantly enhanced by zinc concentrations in the range of 0. 1-100 mu M; at higher concentrations of zinc (>100 mu M), response amplitudes were suppressed below control levels. The enhancement of GABAA receptor activity on skate bipolar cells showed little voltage dependence, suggesting that zinc is acting on the extracellular domain of the GABAA receptor. In the presence of 10 mu M zinc, the dose-response curve for 4,5,6, 7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP; a GABAA agonist that suppresses GABAC-activated currents) was shifted to the left of the curve obtained in the absence of zinc, but without a significant change in the response maximum. This finding indicates that the enhancing effect of zinc is due primarily to its ability to increase the sensitivity of the GABAA receptor. The novel enhancement of neuronal GABAA receptor activity by zinc, observed previously in the GABAA-mediated responses of skate Müller (glial) cells, may reflect the presence of a unique subtype of GABAA receptor on the bipolar and Müller cells of the skate retina.
Collapse
Affiliation(s)
- H Qian
- The Marine Biological Laboratories, Woods Hole, Massachusetts 02543, USA
| | | | | | | |
Collapse
|
12
|
Djamgoz MB, Greenstreet EH. Quantitative analysis of triphasic (H3) horizontal cell-cone connectivity in the cyprinid fish (roach) retina. Vision Res 1996; 36:4007-14. [PMID: 9068853 DOI: 10.1016/s0042-6989(96)00144-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although horizontal cells encode chromatic information by means of a variety of spectrally opponent light-evoked response patterns, their synaptic connections with the different spectral classes of cone are not completely understood. In the cyprinid fish retina, where a hierarchical set of interactions between horizontal cells and cone types has been proposed, a particular type of horizontal cell generates light-evoked triphasic (red-hyperpolarizing/green depolarizing/blue-hyperpolarizing) responses. In the present study, we have studied the cone connectivity of these cells by intracellular recording and staining in the roach retina. The horizontal cells were first identified electrophysiologically using spectral stimuli, and then stained intracellularly with horseradish peroxidase. Light microscopy revealed that the cells had consistent H3-like morphologies. At an ultrastructural level, these horizontal cells were deduced to contact selectively blue-sensitive cones. Within the cone pedicles, the majority (approximately 80%) of the contacts were "central" to synaptic ribbons. Some 50% of the "lateral" processes were large and engulfed cone cytoplasm. Spinules were present within the contacted pedicles but not upon the dendrites of the stained horizontal cells, although previous work had suggested that horseradish peroxidase would not interfere with spinule dynamics. The results are discussed in terms of existing modes of horizontal cell-cone connectivity in cyprinid fish retinae.
Collapse
Affiliation(s)
- M B Djamgoz
- Department of Biology, Imperial College of Science, Technology and Medicine, London, U.K
| | | |
Collapse
|
13
|
Abstract
The retina is a remarkably sophisticated instrument and much of its internal circuitry is poorly characterized. A major problem for studies aimed at better understanding the retina is that the neurons in its middle layers are varied in type and relatively inaccessible. Two approaches that have facilitated progress towards elucidating retinal function include population-based studies of the anatomy of the retina and multi-electrode recordings from its output; in combination, they enable the neuronal system of the retina to be examined as a whole.
Collapse
Affiliation(s)
- R H Masland
- Howard Hughes Medical Institute, Wellman #429, Massachusetts General Hospital, 50 Blossom Street, Boston, 02114, USA.
| |
Collapse
|
14
|
Haugh-Scheidt L, Malchow RP, Ripps H. GABA transport and calcium dynamics in horizontal cells from the skate retina. J Physiol 1995; 488 ( Pt 3):565-76. [PMID: 8576848 PMCID: PMC1156724 DOI: 10.1113/jphysiol.1995.sp020990] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. Changes in intracellular calcium concentration [Ca2+]i in response to extracellularly applied gamma-aminobutyric acid (GABA) were studied in isolated horizontal cells from the all-rod skate retina. 2. Calcium measurements were made using fura-2 AM, both with and without whole-cell voltage clamp. Superfusion with GABA, in the absence of voltage clamp, resulted in an increase in [Ca2+]i; the threshold for detection was approximately 50 microM GABA, and a maximal response was elicited by 500 microM GABA. 3. The rise in [Ca2+]i was not mimicked by baclofen nor was it blocked by phaclofen, picrotoxin or bicuculline. However, the GABA-induced [Ca2+]i increase was completely abolished when extracellular sodium was replaced with N-methyl-D-glucamine. 4. With the horizontal cell voltage clamped at -70 mV, GABA evoked a large inward current, but there was no concomitant change in [Ca2+]i. Nifedipine, which blocks L-type voltage-gated Ca2+ channels, suppressed the GABA-induced increase in [Ca2+]i. These findings suggest that the calcium response was initiated by GABA activation of sodium dependent electrogenic transport, and that the resultant depolarization led to the opening of voltage-gated Ca2+ channels, and a rise in [Ca2+]i. 5. The GABA-induced influx of calcium appears not to have been the sole source of the calcium increase. The GABA-induced rise in [Ca2+]i was reduced by dantrolene, indicating that internal Ca2+ stores contributed to the GABA-mediated Ca2+ response. 6. These observations demonstrate that activation of the GABA transporter induces changes in [Ca2+]i which may have important implications for the functional properties of horizontal cells.
Collapse
Affiliation(s)
- L Haugh-Scheidt
- Department of Ophthalmology and Visual Sciences, UIC Eye Center, University of Illinois College of Medicine, Chicago 60612, USA
| | | | | |
Collapse
|
15
|
Wolburg H, Rohlmann A. Structure--function relationships in gap junctions. INTERNATIONAL REVIEW OF CYTOLOGY 1995; 157:315-73. [PMID: 7706021 DOI: 10.1016/s0074-7696(08)62161-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Gap junctions are metabolic and electrotonic pathways between cells and provide direct cooperation within and between cellular nets. They are among the cellular structures most frequently investigated. This chapter primarily addresses aspects of the assembly of the gap junction channel, considering the insertion of the protein into the membrane, the importance of phosphorylation of the gap junction proteins for coupling modulation, and the formation of whole channels from two hemichannels. Interactions of gap junctions with the subplasmalemmal cytoplasm on the one side and with tight junctions on the other side are closely considered. Furthermore, reviewing the significance and alterations of gap junctions during development and oncogenesis, respectively, including the role of adhesion molecules, takes up a major part of the chapter. Finally, the literature on gap junctions in the central nervous system, especially between astrocytes in the brain cortex and horizontal cells in the retina, is summarized and new aspects on their structure-function relationship included.
Collapse
Affiliation(s)
- H Wolburg
- Institute of Pathology, University of Tübingen, Germany
| | | |
Collapse
|
16
|
Vardi N, Sterling P. Subcellular localization of GABAA receptor on bipolar cells in macaque and human retina. Vision Res 1994; 34:1235-46. [PMID: 8023433 DOI: 10.1016/0042-6989(94)90198-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The subcellular distribution of GABAA receptor in the macaque and human retina was studied by immunocytochemistry with monoclonal antibodies for the alpha and beta subunits with a particular focus on bipolar cells. Immunoreactivity to GABAA receptor was present on dendritic tips of all bipolar cells. The stain was strongest on bipolar membranes in apposition to horizontal cell processes. Stain was concentrated on the tips of flat and invaginating cone bipolar cells at the base of the cone pedicle and on the invaginating tips of rod bipolar cells. Stain on the cone pedicle membrane was restricted to sites of apposition to stained bipolar dendrites; pedicle membrane in apposition to horizontal cell processes was unstained. Stain was also present on bipolar axon terminals in both on and off strata of the inner plexiform layer. All bipolar cell somas stained faintly; horizontal and Müller cell somas were unstained. The alpha and beta subunits distributed similarly in monkey and human retina. Presence of GABAA receptor on the bipolar dendritic tips suggests that horizontal cells directly affect bipolar cells. Thus, GABAA receptor might mediate the receptive field surround of both off and on bipolar cells. Presence of GABAA receptor on bipolar axon terminals suggests that much of the inhibition feeding back from GABAergic amacrine to bipolar cells is GABAA-mediated.
Collapse
Affiliation(s)
- N Vardi
- Department of Neuroscience, University of Pennsylvania, Philadelphia 19104-6058
| | | |
Collapse
|
17
|
Abstract
Wavelength discriminations in juvenile and adult goldfish were measured among three sensitivity maxima (450, 525 and 625 nm) of goldfish cone photoreceptors using a "go/no-go" (electroshock avoidance) task. The ability of juveniles to discriminate was significantly poorer in 450/525 nm and 450/625 nm discriminations than that of adults. While only a few juveniles acquired clear discriminative responses, there was a greater proportion of adults. In contrast to those discriminations, the ability of juveniles to discriminate between 525 and 625 nm was similar to that of adults. These results suggest that juveniles, in contrast to adults, have selective delayed development of the blue-sensitive mechanism. Some possible explanations for the poor blue discrimination of juveniles are proposed.
Collapse
Affiliation(s)
- K Ohnishi
- Department of Physiology, Nara Medical University, Japan
| |
Collapse
|
18
|
Van Haesendonck E, Marc RE, Missotten L. New aspects of dopaminergic interplexiform cell organization in the goldfish retina. J Comp Neurol 1993; 333:503-18. [PMID: 8103778 DOI: 10.1002/cne.903330404] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dopaminergic interplexiform cells (DA-IPCs) in the goldfish retina have been reexamined by light and electron microscopic immunocytochemistry with antisera against dopamine (DA) or tyrosine hydroxylase (TH). Successful immunostaining with a specific anti-DA antiserum offers further direct support for DA-IPCs. Anti-DA immunocytochemistry in combination with [3H]-DA autoradiography shows 92% colocalization of the two markers, indicating that [3H]-DA autoradiography is a reliable technique for identification of DA-IPCs. Incubations with anti-TH antiserum show that immunoreactive DA-IPCs have a homogeneous distribution, with an average frequency of 71 +/- 8 cells/mm2 in retinas of 14-15 cm long goldfish. Their arrangement is distinctly nonrandom. Electron microscopy of TH-immunoreactive cell processes confirms that horizontal cell axons synapse onto DA-IPCs and adds the following junctional arrangements to the circuit diagram of the DA-IPC: 1) adjacent serial synapses between DA-IPCs, external horizontal cells, and putative glycinergic interplexiform cells, 2) junctional appositions between DA-IPCs and photoreceptor cells, 3) junctional appositions between neighbouring DA-IPCs, and 4) the "gap junctional complex," typically consisting of a DA-IPC process juxtaposed with a gap junction between horizontal cell axons. The gap junction is flanked by clusters of small, round vesicles and groups of electron-dense structures resembling intermediate filaments. These morphological results support the functional involvement of DA-IPCs in adaptive retinomotor movements and in horizontal cell gap junction modulation and/or dynamics. They also suggest particular interaction between the dopaminergic and the glycinergic IPC system in the outer plexiform layer of goldfish retina.
Collapse
|
19
|
Kurz-Isler G, Voigt T, Wolburg H. Modulation of connexon densities in gap junctions of horizontal cell perikarya and axon terminals in fish retina: effects of light/dark cycles, interruption of the optic nerve and application of dopamine. Cell Tissue Res 1992; 268:267-75. [PMID: 1319840 DOI: 10.1007/bf00318795] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the fish retina, connexon densities of gap junctions in the outer horizontal cells are modulated in response to different light or dark adaptation times and wavelengths. We have examined whether the connexon density is a suitable parameter of gap junction coupling under in situ conditions. Short-term light adaptation evoked low connexon densities, regardless of whether white or red light was used. Short-term dark adaptation evoked high connexon densities; this was more pronounced in the axon terminal than in perikaryal gap junctions. Under a 12 h red light/12 h dark cycle, a significant difference in connexon densities between the light and the dark period could be established in the gap junctions of the perikarya and axon terminals. Under a white light/dark cycle, only the gap junctions of axon terminals showed a significant difference. Crushing of the optic nerve resulted in an increase in connexon densities; this was more pronounced in axon terminals than in perikarya. Dopamine injected into the right eye of white-light-adapted animals had no effect. However, dopamine prevented the effect of optic-nerve crushing on connexon density. The reaction of axon-terminal gap junctions to different conditions thus resembles that of perikaryal gap junctions, but is more intense. Axon terminals are therefore thought to play an important role in the adaptation process.
Collapse
Affiliation(s)
- G Kurz-Isler
- Pathologisches Institut der Universität, Tübingen, Federal Republic of Germany
| | | | | |
Collapse
|
20
|
Abstract
Dopamine (DA) has satisfied many of the criteria for being a major neurochemical in vertebrate retinae. It is synthesized in amacrine and/or interplexiform cells (depending on species) and released upon membrane depolarization in a calcium-dependent way. Strong evidence suggests that it is normally released within the retina during light adaptation, although flickering and not so much steady light stimuli have been found to be most effective in inducing endogenous dopamine release. DA action is not restricted to those neurones which appear to be in "direct" contact with pre-synaptic dopaminergic terminals. Neurones that are several microns away from such terminals can also be affected, presumably by short diffusion of the chemical. DA thus affects the activity of many cell types in the retina. In photoreceptors, it induces retinomotor movements, but inhibits disc shedding acting via D2 receptors, without significantly altering their electrophysiological responses. DA has two main effects upon horizontal cells: it uncouples their gap junctions and, independently, enhances the efficacy of their photoreceptor inputs, both effects involving D1 receptors. In the amphibian retina, where horizontal cells receive mixed rod and cone inputs, DA alters their balance in favour of the cone input, thus mimicking light adaptation. Light-evoked DA release also appears to be responsible for potentiating the horizontal cell-->cone negative feed-back pathway responsible for generation of multi-phasic, chromatic S-potentials. However, there is little information concerning action of DA upon bipolar and amacrine cells. DA effects upon ganglion cells have been investigated in mammalian (cat and rabbit) retinae. The results suggest that there are both synaptic and non-synaptic D1 and D2 receptors on all physiological types of ganglion cell tested. Although the available data cannot readily be integrated, the balance of evidence suggests that dopaminergic neurones are involved in the light/dark adaptation process in the mammalian retina. Studies of the DA system in vertebrate retinae have contributed greatly to our understanding of its role in vision as well as DA neurobiology generally in the central nervous system. For example, the effect of DA in uncoupling horizontal cells is one of the earliest demonstrations of the uncoupling of electrotonic junctions by a neurally released chemical. The many other, diverse actions of DA in the retina reviewed here are also likely to become model modes of neurochemical action in the nervous system.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M B Djamgoz
- Imperial College of Science, Technology and Medicine, Department of Biology, London, U.K
| | | |
Collapse
|
21
|
Affiliation(s)
- N C Brecha
- Department of Medicine, CURE, UCLA School of Medicine 90024
| |
Collapse
|
22
|
Mangel SC. Analysis of the horizontal cell contribution to the receptive field surround of ganglion cells in the rabbit retina. J Physiol 1991; 442:211-34. [PMID: 1665857 PMCID: PMC1179886 DOI: 10.1113/jphysiol.1991.sp018790] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
1. The influence of horizontal cells on ganglion cells, the output neuron of the retina, was examined in an in vitro rabbit eyecup preparation. The extracellular spike activity of ganglion cells was monitored while pulsatile DC or sinusoidally modulated current was injected intracellularly into nearby horizontal cells. Interactions between the effects of light stimulation and horizontal cell current injections on ganglion cell responses were also examined. 2. Horizontal cells were found to contribute to the receptive field surround of ganglion cells. In particular, horizontal cells contributed to surround excitability and to surround antagonism of the centre light response. 3. Brisk, sluggish and direction-selective ganglion cells were all affected by current injections into horizontal cells. However, brisk ganglion cells responded to lower amplitude currents than did sluggish or direction-selective cells. 4. Horizontal cells with receptive fields that overlap those of ganglion cells were able to affect ganglion cell discharge. Moreover, the closer a horizontal cell was to the receptive field centre of a ganglion cell, the more effective were current injections in modulating ganglion cell discharge rate. The length constant of the horizontal cell contribution to the ganglion cell receptive field was approximately 200 microns. These results indicate that horizontal cells which are located within or outside of a ganglion cell's receptive field centre can influence that ganglion cell's activity. 5. The influence of horizontal cells on ganglion cell discharges was relatively weak at low temporal frequencies of sinusoidally modulated current. 6. Application of 2-amino-4-phosphonobutyrate (APB), a glutamate analogue, blocked the modulation of spike activity of on-centre ganglion cells that was induced by sinusoidally modulated current injected into nearby horizontal cells. The spike activity of off-centre ganglion cells was not blocked. 7. These findings suggest that horizontal cells contribute to the surround of ganglion cells and bipolar cells primarily through a feedback pathway onto cone photoreceptor cells.
Collapse
Affiliation(s)
- S C Mangel
- Department of Ophthalmology and Physiology, University of Alabama, Birmingham 35294
| |
Collapse
|
23
|
Peng YW, Lam DM. Organization and development of horizontal cells in the goldfish retina, I: The use of monoclonal antibody AT101. Vis Neurosci 1991; 6:357-70. [PMID: 2059569 DOI: 10.1017/s0952523800006581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have produced and characterized a monoclonal antibody, AT101, which selectively labels both viable and formaldehyde-fixed horizontal cell axon terminals, but not their somas or axons, of the goldfish (Carassius auratus) retina. The antigen recognized by AT101 appears to be a cell surface glycoprotein with a molecular weight of about 35,000 Daltons, and is present exclusively or predominantly in nervous tissues of all vertebrate species examined. We have used AT101 as a probe to analyze immunocytochemically the organization of horizontal cell axon terminals (HCATs) in the adult goldfish retina, and the emergence and maturation of these terminals during retinal development. Because of continued growth at the retinal margin in adult goldfish, there is a peripheral-to-central gradient in the age of cells, with the most mature in the center and the youngest in the periphery. In the center and near periphery of the adult retina, HCATs have a fusiform morphology and form a dense network in the middle and proximal part of the inner nuclear layer. In the far peripheral retina, the axon terminals appear round or ellipsoid. The retina closest to the retinal margin is devoid of AT101 staining, indicating that either HCATs are absent or the antigen recognized by AT101 is not present on HCATs at this stage. A similar sequence of changes in staining pattern is seen during development. Although AT101 staining can first be demonstrated in the larval retina at 1 month after hatching, it appears mostly as punctate structures. At a later stage, there are round or ellipsoid structures that resemble in morphology and location (in the inner nuclear layer) those found in the far peripheral adult retina. Double-labeling experiments with AT101 and antiserum against tubulin also indicate that AT101 labels the HCATs when they first appear during development. These data suggest that the emergence and maturation of HCAT is a late event in retinal development.
Collapse
Affiliation(s)
- Y W Peng
- Alice R. McPherson Laboratory of Retina Research, Baylor College of Medicine, The Woodlands, TX 77381
| | | |
Collapse
|
24
|
Schmitz Y, Wolburg H. Gap junction morphology of retinal horizontal cells is sensitive to pH alterations in vitro. Cell Tissue Res 1991; 263:303-10. [PMID: 2007254 DOI: 10.1007/bf00318772] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Isolated goldfish retinae were incubated in NaHCO3-reduced solutions, a treatment known to lower intracellular pH and to decrease gap-junction-mediated coupling between cells. The morphology of the gap junctions of horizontal cells examined by means of freeze-fracture replicas and ultrathin sections displays alterations after such treatment. The gap-junctional particles aggregate into dense clusters or crystalline arrays, whereas controls (pH 7.5) display a loose arrangement of particles. Incubation in NaHCO3-reduced solution leads to the appearance, in ultrathin sections, of prominent, electron-dense material beneath the gap-junctional membranes. Both effects, the increasing density of particles and the appearance of electron-dense material, are reversible. The application of dopamine, which uncouples horizontal cells, and its antagonist haloperidol produce less clear-cut effects on particle density in vitro.
Collapse
Affiliation(s)
- Y Schmitz
- Pathologisches Institut der Universität, Tübingen, Federal Republic of Germany
| | | |
Collapse
|
25
|
Bustamante S, Gutierrez OC. Population study of horizontal cells in live carp retinas using microinjections of horseradish peroxidase. Vision Res 1991; 31:1107-18. [PMID: 1891806 DOI: 10.1016/0042-6989(91)90037-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In order to randomly sample horizontal cells (HCs) of carp retina, horseradish peroxidase (HRP) was delivered into axon terminals by means of vitreally inserted micropipettes in live fish. Survival time was extended to several hours to permit label diffusion into HC somata. A function measuring the relative complexity of cell contours was defined in order to help classify HCs according to their morphological types. The histogram of measurement from 313 HCs showed three modes fitting normal distributions. The numbers of cells in each group were 267, 36 and 10, respectively, representing a relative population of 85.3% H1s, 11.5% H2s and 3.2% H3s. It is suggested that cone HC somata are extended in a monolayer constituted by predominant type-H1 with interspersed groups of both type-H2 and type-H3 cells.
Collapse
Affiliation(s)
- S Bustamante
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago
| | | |
Collapse
|
26
|
Abstract
Retinal horizontal cells (HCs) are second-order neurons that integrate information from photoreceptors over large retinal areas, mediating the lateral spread of visual signals in the distal retina. The 'glial' vs. 'neuronal' nature of the HC has been widely debated. For example, carbonic anhydrase (CA), glutamine synthetase (GS), and glial fibrillary acidic protein (GFAP) are considered 'glial' markers, yet both CA and GFAP have been previously reported in HCs of the teleost retina in species-specific patterns. In contrast, the neurofilament triplet (NFT) proteins are considered 'neuronal' markers; these proteins have been immunolocalized to a mammalian HC, but are absent from teleost HCs. We have studied these cytochemical characteristics in HCs from the white bass, by immunolabeling both cryosections of intact retina and freshly isolated, identified cells attached to coverslips. We found that both HCs (neurons) and Müller cells (MCs; glia) immunolabeled with antisera to CA. Both type 1 (external) HCs and MCs immunolabeled with an antibody to vimentin. Only MCs immunolabeled with antisera to GS and GFAP. Neither HC perikarya (and their major dendrites) nor MCs immunolabeled with an antibody to the 160-kDa subunit of NFT protein. Thus, bass HCs and MCs share the presence of CA and vimentin epitopes and absence of the NFT 160-kDa epitope. Moreover, retinal cell isolation, by itself, does not affect cell-type specific immunolabeling patterns in identified cells, except for what may be lost with the finer processes of the various cells. Isolated cell studies can aid in interpreting immunolabeling patterns observed in the intact retina, especially in retinal layers where several cell types may be present.
Collapse
Affiliation(s)
- D K Vaughan
- Department of Physiology, University of Utah, Salt Lake City 84108
| | | |
Collapse
|
27
|
Abstract
In the retina of teleost fish, cone horizontal cell axons penetrate the inner nuclear layer, where they enlarge into fusiform terminal swellings. The present study shows that horizontal cell axon terminals enlarge disproportionately during postembryonic growth of the retina in juvenile and adult goldfish: the relative volume of axon terminals increases almost 20-fold, while the volume of the entire retina increases only about fourfold during a 2-3-yr period. The enlarging axon terminals fill in the gaps created as the numerical density of nuclei in the inner nuclear layer falls. Horizontal cell axon terminals are thought to participate in cone-dominated visual pathways, although their precise role is unclear. The results of this study suggest that a comparison of horizontal cell function in small and large fish might help to resolve this issue.
Collapse
Affiliation(s)
- P A Raymond
- Department of Anatomy and Cell Biology, University of Michigan, Ann Arbor 48109-0616
| |
Collapse
|
28
|
Djamgoz MB, Spadavecchia L, Usai C, Vallerga S. Variability of light-evoked response pattern and morphological characterization of amacrine cells in goldfish retina. J Comp Neurol 1990; 301:171-90. [PMID: 2262590 DOI: 10.1002/cne.903010204] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Amacrine cells of the goldfish retina were characterized electrophysiologically and subsequently labelled by intracellular injection of horseradish peroxidase. An attempt was made to broaden the electrophysiological classification of the cells. Light-evoked sustained amacrine cell responses were divided into two subtypes depending on colour opponency. Colour-coded responses (red/depolarizing and green/hyperpolarizing) were found to arise in amacrine cells possessing highly polarized dendritic fields; the dendrites were monostratified in the proximal half (sublamina b) of the inner plexiform layer. Non-colour-opponent sustained responses also arose in monostratified units, but the level of dendritic ramification was in sublamina a or b (hyperpolarizing or depolarizing units, respectively). Transient (ON-OFF) responses were associated mainly with bi- or multi-stratified or diffuse amacrine cells. Some variability was observed in the sizes of the dendritic fields in different sublaminae. There was a tendency for units with brisk components of responses to be narrowly stratified in the inner plexiform layer. Some units possessed "distant" dendrites. Several aspects of structure-function correlation in amacrine cells are discussed.
Collapse
Affiliation(s)
- M B Djamgoz
- Department of Biology, Imperial College, London, England
| | | | | | | |
Collapse
|
29
|
Abstract
In teleost retinas, the somata of same-type cone horizontal cells are electrically coupled via extensive gap junctions, as are the axon terminals of same-type cells. This coupling persists throughout the animal's life and is modulated by dopamine and conditions of light- vs. dark-adaptation. Gap junction particle density in goldfish horizontal cell somata has also been shown to change under these conditions, indicating that these junctions are dynamic. We have used electron microscopy to examine gap junctions in bass horizontal cells with a fixation method that facilitates detection of gap junctions. Annular gap junction profiles were observed in the somatic cytoplasm of all cone horizontal cell types in both light- and dark-adapted animals. Serial sections showed that most profiles represented gap junction vesicles free within the cytoplasm; the remainder represented vesicles still attached to extensive plasma membrane gap junctions by a thin cytoplasmic neck, suggestive of an intermediate stage in endocytosis. Observations of gap junction vesicles containing fragments of gap junctional membrane and/or fused with lysosomal bodies further supported this hypothesis. Because gap junctions persist between the horizontal cells, we propose that gap junction endocytosis and lysosomal degradation are balanced by addition of new junctions. While endocytosis has been widely demonstrated to serve in programmed removal of gap junctions (without subsequent replacement), from both nonneuronal cells and developing neurons, this study indicates that it can also function in the renewal of electrical synapses in the adult teleost retina, where gap junction elimination is not the goal.
Collapse
Affiliation(s)
- D K Vaughan
- Department of Physiology, University of Utah School of Medicine, Salt Lake City 84108
| | | |
Collapse
|
30
|
Abstract
Dopaminergic and glycinergic interplexiform cells (IPCs) in the goldfish retina were impregnated by using two new Golgi protocols. The two cell types have markedly different morphological characteristics: Dopaminergic IPCs have primary dendrites that descend into and stratify in the inner plexiform layer, where they give rise to processes that project to the outer plexiform layer. Conversely, glycinergic IPCs have primary dendrites that ascend to the outer plexiform layer and from this dendritic arbor, many processes then project into the inner plexiform layer. The apparent coverage of dopaminergic IPCs is almost four times that of glycinergic IPCs. Even so, the coverage of each glycinergic IPC in the outer plexiform layer allows it to provide an accurate copy of the S-space to the inner plexiform layer. Considering the known GABAergic and glycinergic synaptologies in the inner plexiform layer, the glycinergic IPC must form a major element in the retinal circuitry of the goldfish.
Collapse
Affiliation(s)
- M Kalloniatis
- Sensory Sciences Center, University of Texas Graduate School of Biomedical Sciences, Houston 77030
| | | |
Collapse
|
31
|
Kunz YW. Chapter 4 Ontogeny of retinal pigment epithelium - photoreceptor complex and development of rhythmic metabolism under ambient light conditions. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/0278-4327(90)90006-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Downing JE, Djamgoz MB. Quantitative analysis of cone photoreceptor-horizontal cell connectivity patterns in the retina of a cyprinid fish: electron microscopy of functionally identified and HRP-labelled horizontal cells. J Comp Neurol 1989; 289:537-53. [PMID: 2592596 DOI: 10.1002/cne.902890402] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Horizontal cells generating photopic luminosity and biphasic/chromaticity-type S-potentials were identified and intracellularly labelled with horseradish peroxidase in the retina of the roach. The synaptic connectivity patterns of the horizontal cell dendrites within pedicles of different spectral types of cone were then quantitatively studied by electron microscopy. Luminosity-type responses were generated by H1-like horizontal cells contacting similar numbers of red- and green-sensitive cones and very few blue-sensitive cones. Most dendritic contacts were lateral to synaptic ribbons. Central contacts with ribbons were made almost exclusively within red-sensitive cone pedicles. Biphasic/chromaticity-type S-potentials were generated by H2-like horizontal cells. The dendrites of the latter contacted green- and blue-sensitive cones, both at central and lateral sites at synaptic ribbons. An attempt was made to correlate cone ribbon connectivity patterns and spectral characteristics of the horizontal cells according to several hypotheses, some proposed in earlier studies.
Collapse
Affiliation(s)
- J E Downing
- Department of Pure and Applied Biology, Imperial College of Science, Technology and Medicine, London, England
| | | |
Collapse
|
33
|
Baldridge WH, Ball AK, Miller RG. Gap junction particle density of horizontal cells in goldfish retinas lesioned with 6-OHDA. J Comp Neurol 1989; 287:238-46. [PMID: 2507595 DOI: 10.1002/cne.902870207] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The I1 dopaminergic interplexiform cells of the fish retina are believed to modulate horizontal cell coupling by increasing gap junction resistance. Dopamine also modulates the morphology of horizontal cell gap junctions and mimics the effects of light adaptation. To determine whether the light-dependent changes in gap junction morphology are due to endogenous dopamine release, horizontal cell gap junctions were studied in goldfish retinas lacking dopaminergic neurons. Dopaminergic interplexiform cells were destroyed by intraocular injections of 6-hydroxydopamine in both eyes. After lesioning, fish were treated in one of four ways: (1) light-adapted, (2) dark-adapted (1 hour), (3) light-adapted and given an intraocular injection of dopamine, or (4) dark-adapted (1 hour) and injected with dopamine. The effectiveness of lesioning was evaluated by autoradiographic detection of [3H]-dopamine uptake in the retina of one eye. Retinas in which lesioning of the contralateral eye was deemed effective were processed for freeze-fracture electron microscopy and the particle density of horizontal cell gap junctions determined. Lesioned retinas, whether light- or dark-adapted, had elevated horizontal cell soma gap junction particle densities compared to lesioned retinas treated with dopamine. These results demonstrate that high soma gap junction particle densities can be correlated with the absence of dopamine and low densities associated with the presence of dopamine. The differences in gap junction particle density between lesioned and lesioned + dopamine-treatment were similar to differences between nonlesioned dark-adapted (1 hour) and light-adapted retinas, respectively. Therefore, the particle density of light- and dark-adapted soma gap junctions suggests a greater release of dopamine in light-adapted fish than in 1 hour dark-adapted fish.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W H Baldridge
- Division of Anatomy and Experimental Morphology, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
34
|
Kirsch M, Wagner HJ. Release pattern of endogenous dopamine in teleost retinae during light adaptation and pharmacological stimulation. Vision Res 1989; 29:147-54. [PMID: 2800344 DOI: 10.1016/0042-6989(89)90120-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The release of endogenous dopamine from teleost retinae was studied using high-performance-liquid-chromatography and electrochemical detection. Dopamine was measured in superfusates of isolated retinae after stimulation with flickering light as well as in the presence of GABA, L-glutamate, kainate or taurine. The effect of the receptor antagonists bicuculline, picrotoxin and kynurenic acid was also tested in retinae kept in the dark. We report a low level, basal release of dopamine in the dark (20 pg x 10 min-1/retina), which is transiently increased by stimulation with flickering light. This light evoked release of dopamine is inhibited by GABA and L-glutamate, whilst antagonists of these retinal transmitters stimulate release in the dark.
Collapse
Affiliation(s)
- M Kirsch
- Institut für Anatomie und Zellbiologie der Universitaet Marburg, F.R.G
| | | |
Collapse
|
35
|
Witkovsky P, Stone S, MacDonald ED. Morphology and synaptic connections of HRP-filled, axon-bearing horizontal cells in the Xenopus retina. J Comp Neurol 1988; 275:29-38. [PMID: 3170790 DOI: 10.1002/cne.902750104] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Axon-bearing horizontal cells of the Xenopus retina were studied by intracellular injection of HRP following physiological characterization. The profile of the cell viewed in whole mount consisted of a round or oval perikaryon about 50 microns in diameter and an axon about 1 mm long which lacked a prominent terminal expansion. The axonal diameter was 0.5-1.0 microns in its proximal third but 2-4 microns in its distal portion. Along its course the axon emitted 25-40 branchlets each 0.2 micron in diameter, up to 10 micron long and terminating in a cluster of two to six synaptic knobs. Electron microscopic examination revealed that both perikaryal dendrites and axon branchlets ended in both rod and cone synaptic bases; cone contacts outnumbered rod contacts by two- to threefold. We were unable to document synapses of presumed interplexiform cells onto identified horizontal cells. Horizontal cell axons are joined in their distal portions by numerous, small (0.2 micron long) gap junctions. Other gap junctions were noted between horizontal cell processes within the synaptic endings of photoreceptors. An hypothesis is advanced whereby the cluster of axon branchlet synaptic knobs permits dynamic interaction of rod and cone synaptic inputs to the horizontal cell.
Collapse
Affiliation(s)
- P Witkovsky
- Daniel B. Kirby Eye Institute, Department of Ophthalmology, New York, New York
| | | | | |
Collapse
|
36
|
Djamgoz MB. Differential recovery rates of horizontal and amacrine cell responses from intense irradiation in the isolated retina of cyprinid fish. Neurosci Lett 1988; 88:263-70. [PMID: 3386871 DOI: 10.1016/0304-3940(88)90221-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recovery of light sensitivity in horizontal and amacrine cells, following desensitization of photoreceptors by localized brief laser flashes (647.1 or 488 nm) in isolated retinae of roach has been studied in a comparative approach. Spectrally matching laser irradiation suppressed light-evoked horizontal cell responses for minutes, cells only recovering on average less than 10% of their pre-irradiation response levels. In contrast, transient depolarizing responses in on-off amacrine cells recovered 80% or more of their light sensitivity within 10-20 s following laser irradiation of either wavelength. Possible neural basis of the sensitization phenomenon in amacrine cells is discussed in relation to known mechanisms of synaptic transmission in the retina.
Collapse
Affiliation(s)
- M B Djamgoz
- Department of Pure and Applied Biology, Imperial College, London, U.K
| |
Collapse
|
37
|
Kurz-Isler G, Wolburg H. Light-dependent dynamics of gap junctions between horizontal cells in the retina of the crucian carp. Cell Tissue Res 1988; 251:641-9. [PMID: 3365755 DOI: 10.1007/bf00214013] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The dynamics of gap junctions between outer horizontal cells or their axon terminals in the retina of the crucian carp were investigated during light and dark adaptation by use of ultrathin-section and freeze-fracture electron microscopy. Light adaptation was induced by red light, while dark adaptation took place under ambient dark conditions. The two principal findings were: (1) The density of connexons within an observed gap junction is high in dark-adapted retina, and low in light-adapted retina. This, respectively, may reflect the coupled and uncoupled state of the gap junction. (2) The size of individual gap junctions is larger in light- than in dark-adapted retinae. Whereas the overall area occupied by gap junctions is reduced with dark adaptation, the percentage of small and very small gap junctions increases dramatically. A lateral shift of connexons in the gap junctional membrane is strongly suggested by these reversible processes of densification and dispersion. Two additional possibilities of gap junction modulation are discussed: (1) the de novo formation of very small gap junctions outside the large ones in the first few minutes of dark adaptation, and (2) the rearrangement of a portion of the very large gap junctions. The idea that the cytoskeleton is involved in such modulatory processes is corroborated by thin-section observations.
Collapse
Affiliation(s)
- G Kurz-Isler
- Institute of Pathology, University of Tübingen, Federal Republic of Germany
| | | |
Collapse
|
38
|
Baldridge WH, Ball AK, Miller RG. Dopaminergic regulation of horizontal cell gap junction particle density in goldfish retina. J Comp Neurol 1987; 265:428-36. [PMID: 3693614 DOI: 10.1002/cne.902650310] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Light- or dark-adapted goldfish (Carassius auratus) retinas were treated with dopamine, which is believed to uncouple horizontal cells via D1 receptors, or with the dopamine antagonist haloperidol. Aldehyde-fixed retinas were freeze-fractured and the replicas examined by electron microscopy to identify horizontal gap junctions. The density (number per micron2) of intra-membrane particles of horizontal cell soma gap junctions was significantly lower in light-adapted and dopamine-treated retinas than in dark-adapted and haloperidol-treated retinas. There was no statistically significant difference between gap junction particles densities in (I) light-adapted (untreated) and in dopamine-treated (light- or dark-adapted) retinas, or between (II) dark-adapted (untreated) and haloperidol-treated (light- or dark-adapted). These results suggest that the uncoupling of horizontal cell somas by dopamine is accompanied by a decrease in gap junction particle density and that there is a greater release of dopamine during light-adaptation than dark-adaptation. Unlike horizontal cell somas, horizontal cell axon terminals did not show consistent changes in gap junction particle density with light- or dark-adaptation. Although the data suggests that there may be a reduction in axon terminal gap junction particle density with dopamine treatment, this effect is not reversible with haloperidol treatment. Our results suggest that the regulation of gap junctions may differ at two sites within the same cell.
Collapse
Affiliation(s)
- W H Baldridge
- Department of Anatomy, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|