1
|
Ishijima T, Nakajima K. Mechanisms of Microglia Proliferation in a Rat Model of Facial Nerve Anatomy. BIOLOGY 2023; 12:1121. [PMID: 37627005 PMCID: PMC10452325 DOI: 10.3390/biology12081121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Although microglia exist as a minor glial cell type in the normal state of the brain, they increase in number in response to various disorders and insults. However, it remains unclear whether microglia proliferate in the affected area, and the mechanism of the proliferation has long attracted the attention of researchers. We analyzed microglial mitosis using a facial nerve transection model in which the blood-brain barrier is left unimpaired when the nerves are axotomized. Our results showed that the levels of macrophage colony-stimulating factor (M-CSF), cFms (the receptor for M-CSF), cyclin A/D, and proliferating cell nuclear antigen (PCNA) were increased in microglia in the axotomized facial nucleus (axotFN). In vitro experiments revealed that M-CSF induced cFms, cyclin A/D, and PCNA in microglia, suggesting that microglia proliferate in response to M-CSF in vivo. In addition, M-CSF caused the activation of c-Jun N-terminal kinase (JNK) and p38, and the specific inhibitors of JNK and p38 arrested the microglial mitosis. JNK and p38 were shown to play roles in the induction of cyclins/PCNA and cFms, respectively. cFms was suggested to be induced through a signaling cascade of p38-mitogen- and stress-activated kinase-1 (MSK1)-cAMP-responsive element binding protein (CREB) and/or p38-activating transcription factor 2 (ATF2). Microglia proliferating in the axotFN are anticipated to serve as neuroprotective cells by supplying neurotrophic factors and/or scavenging excite toxins and reactive oxygen radicals.
Collapse
Affiliation(s)
- Takashi Ishijima
- Graduate School of Science and Engineering, Soka University, Tokyo 192-8577, Japan;
| | - Kazuyuki Nakajima
- Graduate School of Science and Engineering, Soka University, Tokyo 192-8577, Japan;
- Glycan & Life Systems Integration Center, Soka University, Tokyo 192-8577, Japan
| |
Collapse
|
2
|
Rathnasamy G, Foulds WS, Ling EA, Kaur C. Retinal microglia - A key player in healthy and diseased retina. Prog Neurobiol 2018; 173:18-40. [PMID: 29864456 DOI: 10.1016/j.pneurobio.2018.05.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/09/2018] [Accepted: 05/29/2018] [Indexed: 01/04/2023]
Abstract
Microglia, the resident immune cells of the brain and retina, are constantly engaged in the surveillance of their surrounding neural tissue. During embryonic development they infiltrate the retinal tissues and participate in the phagocytosis of redundant neurons. The contribution of microglia in maintaining the purposeful and functional histo-architecture of the adult retina is indispensable. Within the retinal microenvironment, robust microglial activation is elicited by subtle changes caused by extrinsic and intrinsic factors. When there is a disturbance in the cell-cell communication between microglia and other retinal cells, for example in retinal injury, the activated microglia can manifest actions that can be detrimental. This is evidenced by activated microglia secreting inflammatory mediators that can further aggravate the retinal injury. Microglial activation as a harbinger of a variety of retinal diseases is well documented by many studies. In addition, a change in the microglial phenotype which may be associated with aging, may predispose the retina to age-related diseases. In light of the above, the focus of this review is to highlight the role played by microglia in the healthy and diseased retina, based on findings of our own work and from that of others.
Collapse
Affiliation(s)
- Gurugirijha Rathnasamy
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore; Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53706, United States
| | - Wallace S Foulds
- Singapore Eye Research Institute Level 6, The Academia, Discovery Tower, 20 College Road, 169856, Singapore; University of Glasgow, Glasgow, Scotland, G12 8QQ, United Kingdom
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore
| | - Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore.
| |
Collapse
|
3
|
Weller M, Esser P, Heimann K, Wiedemann P. Mononuclear Phagocytes in Proliferative Vitreoretinopathy (PVR). A Specific Role of Microglial Cells in Non-Traumatic Disease? Eur J Ophthalmol 2018; 1:161-6. [PMID: 1821209 DOI: 10.1177/112067219100100401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mononuclear phagocytes have been a focus of attention in the cellular biology of proliferative vitreoretinopathy (PVR) for more than ten years. The pattern of phagocyte participation in periretinal traction membrane formation in PVR depends on the etiology, i.e. trauma, rhegmatogenous retinal detachment, previous therapy, i.e. multiple surgical interventions, and the clinical stage of the disease. We have recently identified microglial cells as a distinct cellular population, in membranes from patients with non-traumatic PVR. Current evidence of mononuclear phagocyte function in PVR suggests a role for resident phagocytes of the vitreous and retina in PVR subsequent to rhegmatogenous detachment, and a role for blood-derived monocytes in post-traumatic PVR. The cellular biology of PVR may be much more heterogeneous than previously assumed.
Collapse
Affiliation(s)
- M Weller
- Department of Vitreoretinal Surgery, University Eye Hospital, Cologne, Germany
| | | | | | | |
Collapse
|
4
|
|
5
|
Francisco-Morcillo J, Bejarano-Escobar R, Rodríguez-León J, Navascués J, Martín-Partido G. Ontogenetic cell death and phagocytosis in the visual system of vertebrates. Dev Dyn 2014; 243:1203-25. [PMID: 25130286 DOI: 10.1002/dvdy.24174] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/04/2014] [Accepted: 07/25/2014] [Indexed: 12/25/2022] Open
Abstract
Programmed cell death (PCD), together with cell proliferation, cell migration, and cell differentiation, is an essential process during development of the vertebrate nervous system. The visual system has been an excellent model on which to investigate the mechanisms involved in ontogenetic cell death. Several phases of PCD have been reported to occur during visual system ontogeny. During these phases, comparative analyses demonstrate that dying cells show similar but not identical spatiotemporally restricted patterns in different vertebrates. Additionally, the chronotopographical coincidence of PCD with the entry of specialized phagocytes in some regions of the developing vertebrate visual system suggests that factors released from degenerating cells are involved in the cell migration of macrophages and microglial cells. Contradicting this hypothesis however, in many cases the cell corpses generated during degeneration are rapidly phagocytosed by neighboring cells, such as neuroepithelial cells or Müller cells. In this review, we describe the occurrence and the sites of PCD during the morphogenesis and differentiation of the retina and optic pathways of different vertebrates, and discuss the possible relationship between PCD and phagocytes during ontogeny.
Collapse
|
6
|
Santiago AR, Baptista FI, Santos PF, Cristóvão G, Ambrósio AF, Cunha RA, Gomes CA. Role of microglia adenosine A(2A) receptors in retinal and brain neurodegenerative diseases. Mediators Inflamm 2014; 2014:465694. [PMID: 25132733 PMCID: PMC4124703 DOI: 10.1155/2014/465694] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/20/2014] [Indexed: 12/20/2022] Open
Abstract
Neuroinflammation mediated by microglial cells in the brain has been commonly associated with neurodegenerative diseases. Whether this microglia-mediated neuroinflammation is cause or consequence of neurodegeneration is still a matter of controversy. However, it is unequivocal that chronic neuroinflammation plays a role in disease progression and halting that process represents a potential therapeutic strategy. The neuromodulator adenosine emerges as a promising targeting candidate based on its ability to regulate microglial proliferation, chemotaxis, and reactivity through the activation of its G protein coupled A2A receptor (A2AR). This is in striking agreement with the ability of A2AR blockade to control several brain diseases. Retinal degenerative diseases have been also associated with microglia-mediated neuroinflammation, but the role of A2AR has been scarcely explored. This review aims to compare inflammatory features of Parkinson's and Alzheimer's diseases with glaucoma and diabetic retinopathy, discussing the therapeutic potential of A2AR in these degenerative conditions.
Collapse
Affiliation(s)
- Ana R. Santiago
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- AIBILI, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Largo Marquês de Pombal, Universidade de Coimbra, 3004-517 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
| | - Filipa I. Baptista
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Paulo F. Santos
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Largo Marquês de Pombal, Universidade de Coimbra, 3004-517 Coimbra, Portugal
- Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Gonçalo Cristóvão
- Center for Neuroscience and Cell Biology, Largo Marquês de Pombal, Universidade de Coimbra, 3004-517 Coimbra, Portugal
| | - António F. Ambrósio
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- AIBILI, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Largo Marquês de Pombal, Universidade de Coimbra, 3004-517 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
| | - Rodrigo A. Cunha
- Center for Neuroscience and Cell Biology, Largo Marquês de Pombal, Universidade de Coimbra, 3004-517 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
| | - Catarina A. Gomes
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Largo Marquês de Pombal, Universidade de Coimbra, 3004-517 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
| |
Collapse
|
7
|
Bejarano-Escobar R, Blasco M, Durán AC, Martín-Partido G, Francisco-Morcillo J. Chronotopographical distribution patterns of cell death and of lectin-positive macrophages/microglial cells during the visual system ontogeny of the small-spotted catshark Scyliorhinus canicula. J Anat 2013; 223:171-84. [PMID: 23758763 DOI: 10.1111/joa.12071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2013] [Indexed: 01/15/2023] Open
Abstract
The patterns of distribution of TUNEL-positive bodies and of lectin-positive phagocytes were investigated in the developing visual system of the small-spotted catshark Scyliorhinus canicula, from the optic vesicle stage to adulthood. During early stages of development, TUNEL-staining was mainly found in the protruding dorsal part of the optic cup and in the presumptive optic chiasm. Furthermore, TUNEL-positive bodies were also detected during detachment of the embryonic lens. Coinciding with the developmental period during which ganglion cells began to differentiate, an area of programmed cell death occurred in the distal optic stalk and in the retinal pigment epithelium that surrounds the optic nerve head. The topographical distribution of TUNEL-positive bodies in the differentiating retina recapitulated the sequence of maturation of the various layers and cell types following a vitreal-to-scleral gradient. Lectin-positive cells apparently entered the retina by the optic nerve head when the retinal layering was almost complete. As development proceeded, these labelled cells migrated parallel to the axon fascicles of the optic fiber layer and then reached more external layers by radial migration. In the mature retina, lectin-positive cells were confined to the optic fiber layer, ganglion cell layer and inner plexiform layer. No evident correlation was found between the chronotopographical pattern of distribution of TUNEL-positive bodies and the pattern of distribution of lectin-labelled macrophages/microglial cells during the shark's visual system ontogeny.
Collapse
Affiliation(s)
- Ruth Bejarano-Escobar
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | | | | | | |
Collapse
|
8
|
Abstract
Visualization of microglia by means of histochemistry has been for years a reliable method to demonstrate this population of cells in the central nervous system (CNS). Wide range of data on microglia has been published using lectin and enzymatic histochemistry. While at present, in most laboratories, the use of specific antibodies is the first choice, histochemical detection of microglia remains a powerful method as it has certain advantages upon immunohistochemical methods because it is faster, cheaper, and can be used in different species including human. In this chapter we want to present the detailed methodology for microglial staining using the histoenzymatic demonstration of the enzyme nucleoside-diphosphatase (NDPase), a phosphatase found in the plasma membrane of microglia that is absent in the plasma membrane of other glial cells and neurons. With this technique it is possible to visualize amoeboid microglia during development, ramified microglia in the adult brain, and also reactive microglia. As the technique also stains the blood vessels, it allows the analysis of the relationship between microglia and vasculature. This method can be performed in either histological sections or cell cultures for light microscopy analysis. Furthermore, we described how to combine this histochemical method with conventional immunohistochemistry for double labelling using other markers, and finally we give details to perform the procedure not only for optical microscopic studies but also for transmission electron microscopy (TEM).
Collapse
|
9
|
Bejarano-Escobar R, Holguín-Arévalo MS, Montero JA, Francisco-Morcillo J, Martín-Partido G. Macrophage and microglia ontogeny in the mouse visual system can be traced by the expression of Cathepsins B and D. Dev Dyn 2011; 240:1841-55. [PMID: 21648018 DOI: 10.1002/dvdy.22673] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2011] [Indexed: 01/11/2023] Open
Abstract
Here, we show a detailed chronotopographical analysis of cathepsin B and D expression during development of the mouse visual system. Both proteases were detected in large rounded/ameboid cells usually located in close relationship with prominent sites of extensive physiological cell death. In concordance with their morphological features and topographical distribution, we demonstrate that expressing cells corresponded with macrophages and microglial precursors. We found that as microglial precursors differentiated the expression of both cathepsins was down-regulated. Of interest, cathepsin B and D transcripts were never observed in degenerating cells. Our findings point to a role for cathepsin D and B in cell debris degradation after apoptotic processes rather than promoting cell death, as proposed for other developmental models. Additionally their pattern of expression suggests a role in the maturation of the microglial precursors.
Collapse
Affiliation(s)
- Ruth Bejarano-Escobar
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | | | | | | |
Collapse
|
10
|
MHC class II expression by beta2 integrin (CD18)-positive microglia, macrophages and macrophage-like cells in rabbit retina. ACTA ACUST UNITED AC 2009; 4:285-94. [PMID: 19575844 DOI: 10.1017/s1740925x0999007x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of this study was to investigate the developmental expression of major histocompatibility complex class II (MHCII) by microglia and macrophages and their relationship to blood vessels in the retina, a representative tissue of the central nervous system. Such information is crucial to understanding the role of these cells in immune surveillance. Wholemount preparations of retinas from late embryonic, postnatal and adult rabbits were subjected to three-colour fluorescence microscopy using beta2 integrin (CD18) and MHCII antibodies and biotinylated Griffonia simplicifolia B4 isolectin labelling of blood vessels. CD18+ cells consistently exhibited characteristics of macrophages or microglia in the vascularized and non-vascularized regions of the retina, respectively. At all ages, MHCII was expressed by a high proportion of cells in the vascularized region, which contained macrophage-like 'parenchymal cells' as well as typical perivascular macrophages. MHCII expression by ramified microglia, first detected on postnatal day 30, was lower in the peripheral retina and intermediate in the avascular region of the myelinated streak. The observed localization of MHCII+ cells in relation to blood vessels and location-dependent differences in MHCII expression point to the possibility that these cells may be distributed strategically within the retina to provide multiple lines of defence against immune challenge arriving via the retinal vasculature.
Collapse
|
11
|
Costa G, Pereira T, Neto AM, Cristóvão AJ, Ambrósio AF, Santos PF. High glucose changes extracellular adenosine triphosphate levels in rat retinal cultures. J Neurosci Res 2009; 87:1375-80. [PMID: 19084903 DOI: 10.1002/jnr.21956] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Diabetic retinopathy (DR) is the leading cause of blindness in adults. In diabetes, there is activation of microglial cells and a concomitant release of inflammatory mediators. However, it remains unclear how diabetes triggers an inflammatory response in the retina. Activation of P2 purinergic receptors by adenosine triphosphate (ATP) may contribute to the inflammatory response in the retina, insofar as it has been shown to be associated with microglial activation and cytokine release. In this work, we evaluated how high glucose, used as a model of hyperglycemia, considered the main factor in the development of DR, affects the extracellular levels of ATP in retinal cell cultures. We found that basal extracellular ATP levels were not affected by high glucose or mannitol, but the extracellular elevation of ATP, after a depolarizing stimulus, was significantly higher in retinal cells cultured in high glucose compared with control or mannitol-treated cells. The increase in the extracellular ATP was prevented by application of botulinum neurotoxin A or by removal of extracellular calcium. In addition, degradation of exogenously added ATP was significantly lower in high-glucose-treated cells. It was also observed that, in retinal cells cultured under high-glucose conditions, the changes in the intracellular calcium concentrations were greater than those in control or mannitol-treated cells. In conclusion, in this work we have shown that high glucose alters the purinergic signaling system in the retina, by increasing the exocytotic release of ATP and decreasing its extracellular degradation. The resulting high levels of extracellular ATP may lead to inflammation involved in the pathogenesis of DR.
Collapse
Affiliation(s)
- G Costa
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
12
|
Fishman P, Bar-Yehuda S, Synowitz M, Powell JD, Klotz KN, Gessi S, Borea PA. Adenosine receptors and cancer. Handb Exp Pharmacol 2009:399-441. [PMID: 19639290 PMCID: PMC3598010 DOI: 10.1007/978-3-540-89615-9_14] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The A(1), A(2A), A(2B) and A(3) G-protein-coupled cell surface adenosine receptors (ARs) are found to be upregulated in various tumor cells. Activation of the receptors by specific ligands, agonists or antagonists, modulates tumor growth via a range of signaling pathways. The A(1)AR was found to play a role in preventing the development of glioblastomas. This antitumor effect of the A(1)AR is mediated via tumor-associated microglial cells. Activation of the A(2A)AR results in inhibition of the immune response to tumors via suppression of T regulatory cell function and inhibition of natural killer cell cytotoxicity and tumor-specific CD4+/CD8+ activity. Therefore, it is suggested that pharmacological inhibition of A(2A)AR activation by specific antagonists may enhance immunotherapeutics in cancer therapy. Activation of the A(2B)AR plays a role in the development of tumors via upregulation of the expression levels of angiogenic factors in microvascular endothelial cells. In contrast, it was evident that activation of A(2B)AR results in inhibition of ERK1/2 phosphorylation and MAP kinase activity, which are involved in tumor cell growth signals. Finally, A(3)AR was found to be highly expressed in tumor cells and tissues while low expression levels were noted in normal cells or adjacent tissue. Receptor expression in the tumor tissues was directly correlated to disease severity. The high receptor expression in the tumors was attributed to overexpression of NF-kappaB, known to act as an A(3)AR transcription factor. Interestingly, high A(3)AR expression levels were found in peripheral blood mononuclear cells (PBMCs) derived from tumor-bearing animals and cancer patients, reflecting receptor status in the tumors. A(3)AR agonists were found to induce tumor growth inhibition, both in vitro and in vivo, via modulation of the Wnt and the NF-kappaB signaling pathways. Taken together, A(3)ARs that are abundantly expressed in tumor cells may be targeted by specific A(3)AR agonists, leading to tumor growth inhibition. The unique characteristics of these A(3)AR agonists make them attractive as drug candidates.
Collapse
Affiliation(s)
- P Fishman
- Can-Fite BioPharma, Kiryat Matalon, Petach Tikva, 49170, Israel.
| | | | | | | | | | | | | |
Collapse
|
13
|
Sobrado-Calvo P, Vidal-Sanz M, Villegas-Pérez MP. Rat retinal microglial cells under normal conditions, after optic nerve section, and after optic nerve section and intravitreal injection of trophic factors or macrophage inhibitory factor. J Comp Neurol 2007; 501:866-78. [PMID: 17311318 DOI: 10.1002/cne.21279] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Retinal microglial cells may have a role in both degeneration and neuroprotection of retinal ganglion cells (RGC) after optic nerve (ON) section. We have used NDPase enzymohistochemistry to label adult rat retinal microglial cells and have studied these cells under normal conditions, after left ON section, and after left ON section and eye puncture or intravitreal injection of different substances: vehicle, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin 3 (NT3), or macrophage inhibitory factor (MIF). Resident microglial cells are present in four layers in the adult rat retina: the nerve fiber layer (NFL), ganglion cell layer (GCL), inner plexiform layer (IPL), and outer plexiform layer (OPL). Left ON section induces microglial activation in the ipsilateral and contralateral retina as manifested by stronger staining intensity in both retinas and increased microglial cell densities in the NFL, IPL, and GCL of the ipsilateral retina. Left ON section followed by left eye puncture or intravitreal injection increases microglial cell density in both retinas and induces changes in the microglial cells of the ipsilateral retina that vary depending on the substance injected: BDNF injections delay microglial activation, possibly through retinal ganglion cell neuroprotection, whereas NT3 partially inhibits microglial activation in the NFL; MIF injections have no clear effects on microglial activation. In conclusion, retinal microglial cells become activated after an ON section and react more intensely when the eye is also punctured or injected, and this response may be altered by using neurotrophic factors, although the effects of MIF are less clear.
Collapse
Affiliation(s)
- Paloma Sobrado-Calvo
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, 30100 Espinardo, Murcia, Spain
| | | | | |
Collapse
|
14
|
Santos AM, Calvente R, Tassi M, Carrasco MC, Martín-Oliva D, Marín-Teva JL, Navascués J, Cuadros MA. Embryonic and postnatal development of microglial cells in the mouse retina. J Comp Neurol 2007; 506:224-39. [DOI: 10.1002/cne.21538] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Synowitz M, Glass R, Färber K, Markovic D, Kronenberg G, Herrmann K, Schnermann J, Nolte C, van Rooijen N, Kiwit J, Kettenmann H. A1 Adenosine Receptors in Microglia Control Glioblastoma-Host Interaction. Cancer Res 2006; 66:8550-7. [PMID: 16951167 DOI: 10.1158/0008-5472.can-06-0365] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report that experimental glioblastoma grow more vigorously in A(1) adenosine receptor (A(1)AR)-deficient mice associated with a strong accumulation of microglial cells at and around the tumors. A(1)ARs were prominently expressed in microglia associated with tumor cells as revealed with immunocytochemistry but low in microglia in the unaffected brain tissue. The A(1)AR could also be detected on microglia from human glioblastoma resections. To study functional interactions between tumor and host cells, we studied glioblastoma growth in organotypical brain slice cultures. A(1)AR agonists suppressed tumor growth. When, however, microglial cells were depleted from the slices, the agonists even stimulated tumor growth. Thus, adenosine attenuates glioblastoma growth acting via A(1)AR in microglia.
Collapse
Affiliation(s)
- Michael Synowitz
- Cellular Neuroscience Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
The Development of the Retina. Retina 2006. [DOI: 10.1016/b978-0-323-02598-0.50007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
17
|
Rodríguez-Gallardo L, Lineros-Domínguez MDC, Francisco-Morcillo J, Martín-Partido G. Macrophages during retina and optic nerve development in the mouse embryo: relationship to cell death and optic fibres. ACTA ACUST UNITED AC 2005; 210:303-16. [PMID: 16217650 DOI: 10.1007/s00429-005-0051-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2005] [Indexed: 10/25/2022]
Abstract
We compared the spatial and temporal patterns of distribution of macrophages, with patterns of naturally occurring cell death and optic fibre growth during early retina and optic nerve development, in the mouse. We used embryos between day 10 of embryogenesis (E10; before the first optic fibres are generated in the retina) and E13 (when the first optic fibres have crossed the chiasmatic anlage). The macrophages and optic axons were identified by immunocytochemistry, and the apoptotic cells were detected by the TUNEL technique, which specifically labels fragmented DNA. Cell death was observed in the retina and the optic stalk long before the first optic axons appeared in either region. Subsequently, specialized F4/80-positive phagocytes were detected in chronological and topographical coincidence with cell death, which disappeared progressively. As development proceeded, the pioneer ganglion cell axons reached the regions where the macrophages were located. As the number of optic fibres increased, the macrophages disappeared. Therefore, cell death, accompanied by macrophages, preceded the growth of fibres in the retina and the optic nerve. Moreover, these macrophages synthesized NGF and the optic axons were p75 neurotrophin receptor (p75(NTR))- and TrkA-positive. These findings suggest that macrophages may be involved in optic axon guidance and fasciculation.
Collapse
Affiliation(s)
- Lucía Rodríguez-Gallardo
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda de Elvas s/n, 06071, Badajoz, Spain.
| | | | | | | |
Collapse
|
18
|
Patton N, Aslam T, Macgillivray T, Pattie A, Deary IJ, Dhillon B. Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J Anat 2005; 206:319-48. [PMID: 15817102 PMCID: PMC1571489 DOI: 10.1111/j.1469-7580.2005.00395.x] [Citation(s) in RCA: 518] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The retinal and cerebral microvasculatures share many morphological and physiological properties. Assessment of the cerebral microvasculature requires highly specialized and expensive techniques. The potential for using non-invasive clinical assessment of the retinal microvasculature as a marker of the state of the cerebrovasculature offers clear advantages, owing to the ease with which the retinal vasculature can be directly visualized in vivo and photographed due to its essential two-dimensional nature. The use of retinal digital image analysis is becoming increasingly common, and offers new techniques to analyse different aspects of retinal vascular topography, including retinal vascular widths, geometrical attributes at vessel bifurcations and vessel tracking. Being predominantly automated and objective, these techniques offer an exciting opportunity to study the potential to identify retinal microvascular abnormalities as markers of cerebrovascular pathology. In this review, we describe the anatomical and physiological homology between the retinal and cerebral microvasculatures. We review the evidence that retinal microvascular changes occur in cerebrovascular disease and review current retinal image analysis tools that may allow us to use different aspects of the retinal microvasculature as potential markers for the state of the cerebral microvasculature.
Collapse
Affiliation(s)
- Niall Patton
- Princess Alexandra Eye Pavilion, Chalmers Street, Edinburgh, UK.
| | | | | | | | | | | |
Collapse
|
19
|
Jeon GS, Kang TC, Park SW, Kim DW, Seo JH, Cho SS. Microglial responses in the avascular quail retina following transection of the optic nerve. Brain Res 2004; 1023:15-23. [PMID: 15364014 DOI: 10.1016/j.brainres.2004.01.093] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2004] [Indexed: 10/26/2022]
Abstract
This study was undertaken to investigate microglial responses in the avascular central nervous system using the quail retina that is known to be devoid of blood vessels. Following intraorbital optic nerve transection (ONT), the quail retina was examined immunohistochemically at various times up to 6 months. A few days after transection, microglia in the inner retinal layers revealed features of activation. Activated cells displayed an amoeboid shape and enhanced QH1-immunoreactivity. The numbers of these amoeboid cells were rapidly increased, first in the inner plexiform layer (IPL), and then in the ganglion cell/nerve fiber layer (GCL/NFL) of the retina where retrograde degenerating ganglion cell processes and perikarya were located. By 6 months after transection, microglia regained their resting morphology, and their cell counts returned to control levels. At early time points of microglial activation, numerous QH1+ amoeboid cells were observed along the vitreal surface of the pecten and retinal region adjacent to the insertion of the pecten, where some amoeboid cells were attached underneath the internal limiting membrane, and appeared to squeeze through the optic nerve fiber bundles. A considerable number of these amoeboid cells in the GCL/NFL and the IPL were labeled with PCNA, suggesting that active exogenous migration (from the pecten) and in situ proliferation of precursor cells contribute to the increase in microglial population of the degenerating retina. On the other hand, TUNEL-positive microglia appeared in the GCL/NFL at later time points indicate that the decrease of microglial numbers is in part due to apoptosis in these layers. Although some aspects of microglial activation in the avascular retina appear unique, their consequences were similar to those described in vascular retinae of mammals, a finding indicates that blood vessels are not a prerequisite for microglial activation, and microglial precursors could migrate long distance to reach the lesioned site, which is not accessible via blood vessels. Our data provide the first analysis of microglial activation in the avascular central nervous system (CNS), and suggest that the quail retina is a useful model for studies of microglial behavior in CNS.
Collapse
Affiliation(s)
- Gye Sun Jeon
- Department of Anatomy, Seoul National University College of Medicine, Yongon-Dong 28, Seoul 110-799, South Korea
| | | | | | | | | | | |
Collapse
|
20
|
Schuetz E, Thanos S. Neuro-glial interactions in the adult rat retina after reaxotomy of ganglion cells: examination of neuron survival and phagocytic microglia using fluorescent tracers. Brain Res Bull 2004; 62:391-6. [PMID: 15168904 DOI: 10.1016/j.brainresbull.2003.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2003] [Revised: 09/19/2003] [Accepted: 10/28/2003] [Indexed: 01/05/2023]
Abstract
Retinal ganglion cells (RGCs) regenerating through peripheral nerve grafts show enhanced survival after further axonal injury for at least 4 weeks [Restor. Neurol. Neurosci. 21 (2003) 11]. Here, we examined the survival of the neurons and their microglial phagocytosis in dependence of the site of reaxotomy. Therefore, the optic nerve in adult rats was transected at different distances from the eye cup and replaced with an autologous piece of sciatic nerve. After 14 days of axonal growth, the regenerated neurites were reaxotomized either within the remaining optic stump or within the graft and their cell bodies were retrogradely labeled. Reaxotomy of regenerated ganglion cells within the remaining optic nerve resulted in reduced (but not significant) ganglion cell survival and significant microglial phagocytosis in contrast to reaxotomy within the peripheral nerve graft. Furthermore, phagocytosis-dependent labeling using two different fluorescent tracers revealed that the same microglial cell can phagocytose further dying ganglion cells within 14 days after the first activation. The results suggest that the intrasciatic segments of axons receive some trophic support that is retrogradely transported and required to limit the microglial activation. The microglial capability to phagocytose dying neurons several fold emphasizes their function in permanent scavenging within the retina.
Collapse
Affiliation(s)
- Erik Schuetz
- Department of Experimental Ophthalmology, University Eye Hospital Münster, Domagkstrasse 15, 48149 Münster, Germany
| | | |
Collapse
|
21
|
Abstract
Mammalian retinal degenerations initiated by gene defects in rods, cones or the retinal pigmented epithelium (RPE) often trigger loss of the sensory retina, effectively leaving the neural retina deafferented. The neural retina responds to this challenge by remodeling, first by subtle changes in neuronal structure and later by large-scale reorganization. Retinal degenerations in the mammalian retina generally progress through three phases. Phase 1 initiates with expression of a primary insult, followed by phase 2 photoreceptor death that ablates the sensory retina via initial photoreceptor stress, phenotype deconstruction, irreversible stress and cell death, including bystander effects or loss of trophic support. The loss of cones heralds phase 3: a protracted period of global remodeling of the remnant neural retina. Remodeling resembles the responses of many CNS assemblies to deafferentation or trauma, and includes neuronal cell death, neuronal and glial migration, elaboration of new neurites and synapses, rewiring of retinal circuits, glial hypertrophy and the evolution of a fibrotic glial seal that isolates the remnant neural retina from the surviving RPE and choroid. In early phase 2, stressed photoreceptors sprout anomalous neurites that often reach the inner plexiform and ganglion cell layers. As death of rods and cones progresses, bipolar and horizontal cells are deafferented and retract most of their dendrites. Horizontal cells develop anomalous axonal processes and dendritic stalks that enter the inner plexiform layer. Dendrite truncation in rod bipolar cells is accompanied by revision of their macromolecular phenotype, including the loss of functioning mGluR6 transduction. After ablation of the sensory retina, Müller cells increase intermediate filament synthesis, forming a dense fibrotic layer in the remnant subretinal space. This layer invests the remnant retina and seals it from access via the choroidal route. Evidence of bipolar cell death begins in phase 1 or 2 in some animal models, but depletion of all neuronal classes is evident in phase 3. As remodeling progresses over months and years, more neurons are lost and patches of the ganglion cell layer can become depleted. Some survivor neurons of all classes elaborate new neurites, many of which form fascicles that travel hundreds of microns through the retina, often beneath the distal glial seal. These and other processes form new synaptic microneuromas in the remnant inner nuclear layer as well as cryptic connections throughout the retina. Remodeling activity peaks at mid-phase 3, where neuronal somas actively migrate on glial surfaces. Some amacrine and bipolar cells move into the former ganglion cell layer while other amacrine cells are everted through the inner nuclear layer to the glial seal. Remodeled retinas engage in anomalous self-signaling via rewired circuits that might not support vision even if they could be driven anew by cellular or bionic agents. We propose that survivor neurons actively seek excitation as sources of homeostatic Ca(2+) fluxes. In late phase 3, neuron loss continues and the retina becomes increasingly glial in composition. Retinal remodeling is not plasticity, but represents the invocation of mechanisms resembling developmental and CNS plasticities. Together, neuronal remodeling and the formation of the glial seal may abrogate many cellular and bionic rescue strategies. However, survivor neurons appear to be stable, healthy, active cells and given the evidence of their reactivity to deafferentation, it may be possible to influence their emergent rewiring and migration habits.
Collapse
Affiliation(s)
- Robert E Marc
- John A. Moran Eye Center, Department of Ophthalmology, University of Utah School of Medicine, 50 N Medical Center, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
22
|
Thanos S. The Relationship of Microglial Cells to Dying Neurons During Natural Neuronal Cell Death and Axotomy-induced Degeneration of the Rat Retina. Eur J Neurosci 2002; 3:1189-1207. [PMID: 12106219 DOI: 10.1111/j.1460-9568.1991.tb00054.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interactions between dying neurons and phagocytotic cells within the developing and injured retina remain controversial. The present work explored the role of microglia and investigated whether so-called resident microglial cells are permanently responsible for removing cell debris whenever it is produced. As a first goal, I characterized some quantitative and morphometric features of the small ipsilateral retinocollicular projections and analysed the permanent function of phagocytosing microglia with these projections as a paradigm. To achieve this, I combined the fluorescent dyes Dil and 4Di-10ASP, both of which persist in the labelled ganglion cells after injection into the superior colliculus (SC), and retrograde labelling. After neuronal degradation, the dyes accompany the degradation products, become interiorized and then persist within the phagocytosing microglia. Consequently, early labelling of microglial cells can be assessed by injecting one dye into the SC during the first postnatal day of life, that is, prior to advanced natural neuronal cell death. Labelling of the remaining ipsilaterally projecting neurons with the second dye following intraorbital axotomy in adulthood and during subsequent neuronal death would therefore result in double labelling of some microglial cells, if these were involved in phagocytosis during both the natural and the induced phases of neuronal degradation. The ganglion cells which survived natural neuronal cell death remained fluorescent for 3 months after labelling with either dye on the day of the animal's birth, indicating that both fluorescent probes persisted within neurons. Quantitatively, 1770+/-220 ganglion cells/mm2 were labelled within the contralateral retina and a total population of 1442+/-120 cells/retina were observed within the periphery of the inferior/temporal quadrant of the ipsilateral retina. A smaller, ipsilateral projection of 150+/-24 cells/retina was uniformly scattered throughout the rest of the retinal surface. Transient projections of ganglion cells to either the contralateral or the ipsilateral colliculi and death of labelled ganglion cells during the first postnatal days resulted in labelling of 210+/-36 microglial cells/mm2 within the contralateral retina and a total number of 800+/-120 cells/retina within the inferior/temporal and 200+/-22 cells/retina within the rest of the retina. These labelled microglial cells were observed in adulthood and indicated that after taking away the neuronal cell debris they persisted within the retinal tissue. The small number of prelabelled ganglion cells which formed persistent ipsilateral projections until adulthood were axotomized by transecting the optic nerve, and resulted in additional labelling of microglial cells with the second fluorescent dye as well. Double-labelled microglia were observed within the inferior/temporal quadrant (3500+/-240 cells/retina) and to a lesser extent (340+/-40 cells/retina) scattered over the entire retinal surface. The chronotopological sequence of microglial labelling paralleled that of ganglion cell degeneration. Injection of protease inhibitors into the vitreous body during optic nerve transection retarded retrograde glial cell degeneration, probably by blocking microglial proteases. The results directly proved that the same microglial cells which remove neuronal cell debris in the postnatal retina were reactivated later in life to proteolytically degrade and then phagocytose neurons which had altered because of the axotomy.
Collapse
Affiliation(s)
- Solon Thanos
- Research Laboratory, Department of Ophthalmology, University of Tübingen School of Medicine, Schleichstrasse 12, 7400 Tübingen, FRG
| |
Collapse
|
23
|
Naito T, Yoshioka H, Yasuda Y. Migration and Proliferation of Motile Immature Glial Cells in the Developing Cerebral Cortex of Infantile Rat. Acta Histochem Cytochem 2002. [DOI: 10.1267/ahc.35.407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Takeshi Naito
- Department of Pediatrics, Kyoto Prefectural University of Medicine
- Cell Biology Section, Division of Basic Research, Louis Pasteur Center for Medical Research
| | - Hiroshi Yoshioka
- Department of Pediatrics, Kyoto Prefectural University of Medicine
| | - Yuko Yasuda
- Cell Biology Section, Division of Basic Research, Louis Pasteur Center for Medical Research
| |
Collapse
|
24
|
Mertsch K, Hanisch UK, Kettenmann H, Schnitzer J. Characterization of microglial cells and their response to stimulation in an organotypic retinal culture system. J Comp Neurol 2001. [DOI: 10.1002/1096-9861(20010305)431:2<217::aid-cne1066>3.0.co;2-t] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Bodeutsch N, Thanos S. Migration of phagocytotic cells and development of the murine intraretinal microglial network: an in vivo study using fluorescent dyes. Glia 2000; 32:91-101. [PMID: 10975914 DOI: 10.1002/1098-1136(200010)32:1<91::aid-glia90>3.0.co;2-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This work was undertaken to study whether retinal ganglion cell (RGC) death, which occurs during postnatal development of the mouse retina could aid in assessing the topological and chronological pattern of microglial cell migration. The study was conducted from postnatal day 0 (P0) to adulthood. The fluorescent dyes Fluorogold (FG) or (4-[4-didecylaminostyryl]-N-methylpyridinium iodide (4Di-10ASP) used in this study, were transported retrogradely to the RGC soma when either dye was injected into the superior colliculus (SC) at P0. Some of these labeled RGCs die due to natural apoptosis during this stage of development and are phagocytosed by microglial cells, which move to the site of RGC death, to become labeled with the same dye. The retinas were examined to quantify the microglial cells from P5 to adulthood. In addition, the reaction of microglia to optic nerve crush was studied in adult animals. Both dyes labeled RGCs in the contralateral retina and a few RGCs in the retina ipsilateral to the injected SC. The density of labeled RGCs decreased by 22% between P5 and P7. During this phase, microglial cells become visible as they ingested the fluorescent detritus of the dying RGCs. Microglial cells were evenly distributed across the entire retinal surface and migrated to the outer plexiform layer. Migrating microglia consecutively altered their morphology from the amoeboid to the ramified form. In terms of intracellular storage of the dyes, resident microglial cells retained the fluorescent dye 4Di-10ASP over a period of 12 months. In contrast, FG was completely transferred from the RGCs and microglial cells to intramural cells (pericytes) of the retinal capillaries after 10 months. This resulted in delineation of the entire intraretinal vascular network. Finally, resident retinal microglial cells were also activated by injury to the adult optic nerve and phagocytosed degenerating neurons. Retinal microglial cells can be monitored with vital fluorescent dyes while they migrate across the retina and establish their intra-retinal network. It is possible to label microglia with lipophilic dyes and they remain labeled for a long time. In addition, intramural pericytes can be labeled by slow release of FG from RGCs and microglial cells. The findings suggest that ingested fluorescent dyes having different properties can be used to study different populations of retinal cells in vivo.
Collapse
Affiliation(s)
- N Bodeutsch
- Department of Experimental Ophthalmology, School of Medicine, University of Münster, Münster, Germany
| | | |
Collapse
|
26
|
Navascués J, Calvente R, Marín-Teva JL, Cuadros MA. Entry, dispersion and differentiation of microglia in the developing central nervous system. AN ACAD BRAS CIENC 2000; 72:91-102. [PMID: 10932110 DOI: 10.1590/s0001-37652000000100013] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microglial cells within the developing central nervous system (CNS) originate from mesodermic precursors of hematopoietic lineage that enter the nervous parenchyma from the meninges, ventricular space and/or blood stream. Once in the nervous parenchyma, microglial cells increase in number and disperse throughout the CNS; these cells finally differentiate to become fully ramified microglial cells. In this article we review present knowledge on these phases of microglial development and the factors that probably influence them.
Collapse
Affiliation(s)
- J Navascués
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Spain.
| | | | | | | |
Collapse
|
27
|
Abstract
To study the morphology and distribution of the retinal microglial cells of the goldfish retina in normal conditions and after optic nerve crush, we have used the nucleoside diphosphatase (NDPase) technique, applied to whole-mounts or sections, for light and electron microscopy. In normal retinas, two populations of NDPase-positive cells were identified: compact cells associated with the retinal vessels on the vitreal surface of the retina and microglial cells in various retinal layers. The microglial cells had a bipolar or multipolar morphology. Bipolar cells were observed in the nerve fibre layer, and multipolar cells were visualised in the ganglion cell layer (GCL), inner plexiform layer (IPL), and outer plexiform layer. The highest densities of multipolar cells were observed in the IPL layer, where they adopted a regular mosaic-like arrangement in which the occasional spaces were occupied by cells of the GCL. After optic nerve crush, we observed an increase in the number of compact cells associated with the vessels and changes in NDPase activity, morphology, and distribution of the retinal microglial cells. These cells showed an increase in NDPase activity in all retinal layers from day 1 to day 15 after axotomy, and retraction of their processes from day 1 to day 7. In addition, the densities of microglial cells increased in the GCL between 2 and 15 days after axotomy, and decreased in the IPL by day 4 after axotomy. These microglial changes resemble those observed in other regenerating and nonregenerating neuronal systems and may reflect a general response of microglia directed to help the regeneration process.
Collapse
Affiliation(s)
- M Salvador-Silva
- Laboratorio de Oftalmología Experimental, Facultad de Medicina, Universidad de Murcia, Spain
| | | | | |
Collapse
|
28
|
ZENG XIAOXIA, NG YEEKONG, LING ENGANG. Labelling of retinal microglial cells following an intravenous injection of a fluorescent dye into rats of different ages. J Anat 2000; 196 ( Pt 2):173-9. [PMID: 10739013 PMCID: PMC1468051 DOI: 10.1046/j.1469-7580.2000.19620173.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retinal microglia were selectively and sequentially labelled in different layers of the retina of postnatal rats following a single intravenous injection of the fluorescent dye, rhodamine isothiocyanate (RhIc). The fluorescent cells were doubly immunostained with OX-42 and ED-1 antibodies that recognise complement type 3 (CR3) receptors and macrophage antigen, respectively. RhIc was first detected in the retinal blood vessels 5 min after injection. At 1 h, a variable number of microglia in the inner layers of the retina, namely, the nerve fibre and ganglion cell layers appeared to emit weak fluorescence. Labelled microglial cells in the inner nuclear and outer plexiform layers were not detected until 1 and 2 d had elapsed following RhIc injection. The number of labelled retinal microglia was progressively increased with time, peaking at 4 d after RhIc injection. The frequency of RhIc labelled cells also increased with age, with the largest number of cells occurring in 7-d-old rats but declined thereafter. In 11 d or older rats, RhIc was confined to the retinal blood vessels. It is concluded that when injected into the circulation, RhIc could readily gain access into the retina tissues due to an inefficient blood-retina barrier in early postnatal stages. It became impeded with maturation of the blood-retina barrier, which was established between 11 and 13 d of age. RhIc that inundated the retinal tissues was thoroughly sequestered by the resident microglial cells. It is therefore suggested that the latter could play a protective role against serum-derived substances that may be deleterious to the developing retina.
Collapse
Affiliation(s)
- XIAO-XIA ZENG
- Department of Anatomy, Faculty of Medicine, National University of Singapore, Singapore
| | - YEE-KONG NG
- Department of Anatomy, Faculty of Medicine, National University of Singapore, Singapore
| | - ENG-ANG LING
- Department of Anatomy, Faculty of Medicine, National University of Singapore, Singapore
- Correspondence to Professor E.-A. Ling, Department of Anatomy, Faculty of Medicine, National University of Singapore, Singapore 119260. e-mail:
; fax: +65-7787643
| |
Collapse
|
29
|
|
30
|
Mar�n-Teva JL, Cuadros MA, Calvente R, Almendros A, Navascu�s J. Naturally occurring cell death and migration of microglial precursors in the quail retina during normal development. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990920)412:2<255::aid-cne6>3.0.co;2-h] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Marín-Teva JL, Calvente R, Cuadros MA, Almendros A, Navascués J. Circumferential migration of ameboid microglia in the margin of the developing quail retina. Glia 1999; 27:226-38. [PMID: 10457369 DOI: 10.1002/(sici)1098-1136(199909)27:3<226::aid-glia4>3.0.co;2-t] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Central-to-peripheral migration of QH1-positive microglial precursors occurs in the vitrealmost part of the developing quail retina. This study shows that some QH1-positive ameboid cells with morphological features of migrating cells are already present in the margin of the retina before microglial precursors migrating centrally to peripherally arrive in this zone. Because the earlier cells are oriented parallel to the ora serrata, we deduce that some microglial cells migrate circumferentially in the margin of the retina, whereas other microglial precursors migrate from central to peripheral zones. Microglial cells that migrate circumferentially are first seen on embryonic day 6 (E6) and advance in a temporal-to-dorsal-to-nasal direction from the temporoventral quadrant of the retina. When cells migrating centrally to peripherally reach the retinal margin, they meet those migrating circumferentially. From E6 on, some QH1-positive dendritic cells in the ciliary body bear processes that penetrate the retina, where they are oriented circumferentially. These observations suggest that microglial cells that migrate circumferentially in the retinal margin share a common origin with dendritic cells of the ciliary body. Therefore, microglial cells of the quail retina appear to make up a heterogeneous population, with some cells originating from the pecten/optic nerve head area and others from the ciliary body.
Collapse
Affiliation(s)
- J L Marín-Teva
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | | | | | | | |
Collapse
|
32
|
Velasco A, Jimeno D, Lillo C, Caminos E, Lara JM, Aijón J. Enzyme histochemical identification of microglial cells in the retina of a fish (Tinca tinca). Neurosci Lett 1999; 263:101-4. [PMID: 10213145 DOI: 10.1016/s0304-3940(99)00117-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Histochemistry for nucleoside diphosphatase was used to study the microglial cells in the adult tench retina. An abundant population of microglial cells was located in the vascular membrane, nerve fibre layer, inner and outer plexiform layers and scattered cells were observed in the inner nuclear layer. Rounded and amoeboid cells could be seen close to the vessel in the vascular membrane, bipolar cells in the nerve fibre layer and ramified cells in the rest of the layers. Several microglial forms could correspond to developing cells. The pattern of distribution was similar to that described in other vertebrates, but with several differences, such as the presence of microglial cells in the vascular membrane and inner nuclear layer and the overlap of processes in the plexiform layers.
Collapse
Affiliation(s)
- A Velasco
- Instituto de Neurociencias de Castilla y León, Departamento de Biología Celular y Patología, Universidad de Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Jimeno D, Velasco A, Lillo C, Lara JM, Aijón J. Response of microglial cells after a cryolesion in the peripheral proliferative retina of tench. Brain Res 1999; 816:175-89. [PMID: 9878725 DOI: 10.1016/s0006-8993(98)01170-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We studied the glial response after inducing a lesion in the zone of the peripheral retina of tench, where there is proliferative neuroepithelium. In the retina and optic nerve, the microglial response was analysed with tomato lectin and the macroglial response with antibodies against GFAP and S-100. In lesioned retinas, there was a temporal-spatial distribution pattern of microglia. One day after lesion, primitive ramified cells appeared in the nerve fibre layer. These cells appeared progressively from the vitreal to the scleral layers until day 7 when cells appeared in all layers, with the exception of the outer plexiform layer. From this point, labelling decreased. In the optic nerve, 3 days after lesion, an increase in the number of microglial cells was observed, first in the nerve folds and from day 15 in specific areas of the optic nerve. In the central retina, in the optic nerve head and within the optic nerve itself, the appearance of microglial cells, after the lesion, near the blood vessels, could indicate a vascular origin of microglia, as has been proposed by many authors. However, we cannot discount the idea that some of the reactive microglial cells arise by proliferation of the microglia existing in the normal state. Using GFAP and S-100 antibodies, no important changes in the retina were observed, however in the optic nerve there was response to the lesion. Thus, the macroglial cells appeared to be involved in reorganisation of the optic nerve axons after lesion.
Collapse
Affiliation(s)
- D Jimeno
- Instituto de Neurociencias de Castilla y León (INCyL), Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, Avda. Campo Charro s/n, E-37007, Salamanca, Spain
| | | | | | | | | |
Collapse
|
34
|
McGillem GS, Dacheux RF. Migration of retinal microglia in experimental proliferative vitreoretinopathy. Exp Eye Res 1998; 67:371-5. [PMID: 9778418 DOI: 10.1006/exer.1998.0526] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Dalmau I, Vela JM, González B, Castellano B. Expression of purine metabolism-related enzymes by microglial cells in the developing rat brain. J Comp Neurol 1998; 398:333-46. [PMID: 9714147 DOI: 10.1002/(sici)1096-9861(19980831)398:3<333::aid-cne3>3.0.co;2-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The nucleoside triphosphatase (NTPase), nucleoside diphosphatase (NDPase), 5'-nucleotidase (5'-Nase), and purine nucleoside phosphorylase (PNPase) activity has been examined in the cerebral cortex, subcortical white matter, and hippocampus from embryonic day (E)16 to postnatal day (P)18. Microglia display all four purine-related enzymatic activities, but the expression of these enzymatic activities differed depending on the distinct microglial typologies observed during brain development. We have identified three main morphologic typologies during the process of microglial differentiation: ameboid microglia (parenchymatic precursors), primitive ramified microglia (intermediate forms), and resting microglia (differentiated cells). Ameboid microglia, which were encountered from E16 to P12, displayed the four enzymatic activities. However, some ameboid microglial cells lacked 5'-Nase activity in gray matter, and some were PNPase-negative in both gray and white matter. Primitive ramified microglia were already observed in the embryonic period but mostly distributed during the first 2 postnatal weeks. These cells expressed NTPase, NDPase, 5'-Nase, and PNPase. Similar to ameboid microglia, we found primitive ramified microglia lacking the 5'-Nase and PNPase activities. Resting microglia, which were mostly distinguishable from the third postnatal week, expressed NTPase and NDPase, but they lacked or displayed very low levels of 5'-Nase activity, and only a subpopulation of resting microglia was PNPase-positive. Apart from cells of the microglial lineage, GFAP-positive astrocytes and radial glia cells were also labeled by the PNPase histochemistry. As shown by our results, the differentiation process from cell precursors into mature microglia is accompanied by changes in the expression of purine-related enzymes. We suggest that the enzymatic profile and levels of the different purine-related enzymes may depend not only on the differentiation stage but also on the nature of the cells. The use of purine-related histoenzymatic techniques as a microglial markers and the possible involvement of microglia in the control of extracellular purine levels during development are also discussed.
Collapse
Affiliation(s)
- I Dalmau
- Unit of Histology, Faculty of Medicine, Autonomous University of Barcelona, Bellaterra, Spain.
| | | | | | | |
Collapse
|
36
|
Marín-Teva JL, Almendros A, Calvente R, Cuadros MA, Navascués J. Tangential migration of ameboid microglia in the developing quail retina: mechanism of migration and migratory behavior. Glia 1998; 22:31-52. [PMID: 9436786 DOI: 10.1002/(sici)1098-1136(199801)22:1<31::aid-glia4>3.0.co;2-b] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Long distance migration of microglial precursors within the central nervous system is essential for microglial colonization of the nervous parenchyma. We studied morphological features of ameboid microglial cells migrating tangentially in the developing quail retina to shed light on the mechanism of migration and migratory behavior of microglial precursors. Many microglial precursors remained attached on retinal sheets containing the inner limiting membrane covered by a carpet of Müller cell endfeet. This demonstrates that most ameboid microglial cells migrate tangentially on Müller cell endfeet. Many of these cells showed a central-to-peripheral polarized morphology, with extensive lamellipodia spreading through grooves flanked by Müller cell radial processes, to which they were frequently anchored. Low protuberances from the vitreal face of microglial precursors were firmly attached to the subjacent basal lamina, which was accessible through gaps in the carpet of Müller cell endfeet. These results suggest a mechanism of migration involving polarized extension of lamellipodia at the leading edge of the cell, strong cell-to-substrate attachment, translocation of the cell body forward, and retraction of the rear of the cell. Other ameboid cells were multipolar, with lamellipodial projections radiating in all directions from the cell body, suggesting that microglial precursors explore the surrounding environment to orient their movement. Central-to-peripheral migration of microglial precursors in the retina does not follow a straight path; instead, these cells perform forward, backward, and sideways movements, as suggested by the occurrence of (a) V-shaped bipolar ameboid cells with their vertex pointing toward either the center or the periphery of the retina, and (b) threadlike processes projecting from either the periphery-facing edge or the center-facing edge of ameboid microglial cells.
Collapse
Affiliation(s)
- J L Marín-Teva
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Spain
| | | | | | | | | |
Collapse
|
37
|
|
38
|
Tumosa N, Baker JR. The monoclonal antibody H386F labels microglia in the retinal nerve fiber layer of several mammals. Vis Neurosci 1997; 14:663-9. [PMID: 9278995 DOI: 10.1017/s0952523800012621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The antibody H386F revealed microglia in the retinae of several species: owl monkey, slow loris, galago, ferret, raccoon, and tree shrew. The shape, size, and density of labeled microglia were identical to those labeled by OX-42 and OX-41, two antibodies specific for microglia, in both galago and owl monkey. The labeled microglia varied little in retinal location. There was remarkably little variability in density, shape, number, and size of the labeled microglia between species. All labeled microglia were evenly distributed across, but restricted to, the nerve fiber layer. Possible reasons for this restriction in location are discussed.
Collapse
Affiliation(s)
- N Tumosa
- School of Optometry, University of Missouri, St. Louis 63121, USA
| | | |
Collapse
|
39
|
Abstract
Microglia are pluripotent members of the macrophage/monocyte lineage that can respond in several ways to pathological changes in the central nervous system. To determine their role in the pathogenesis of fatal murine cerebral malaria (FMCM) we have conducted a detailed study of the changes in morphology and distribution of retinal microglia during the progression of the disease. Adult CBA/T6 mice were inoculated with Plasmodium berghei ANKA. These mice died 7 days post inoculation (p.i.) with the parasite while exhibiting cerebral symptoms, increased permeability of the blood-brain barrier, and monocyte adherence to the vascular endothelium. Mice were injected i.v. with Monastral blue 2 h prior to sacrifice to identify "activated" monocytes, and their isolated retinae were incubated with the Griffonia simplicifolia (GS) lectin or reacted for the nucleoside diphosphatase enzyme to visualize microglia and the vasculature. Changes in microglial morphology were seen within 2-3 days p.i., that is, at least 3 days prior to the onset of cerebral symptoms and 4 days before death. Morphological changes included retraction of ramified processes, soma enlargement, an increasingly amoeboid appearance, and vacuolation. There was also increased staining intensity and redistribution of "activated" microglia toward retinal vessels, but no increase in density of NDPase-positive cells. The GS lectin only labeled a small population of microglia in the uninfected adult mouse retina. However, there was a striking increase in the focal density of GS-positive microglia during the progression of the disease. Extravasation of monocytes also was observed prior to the onset of cerebral symptoms. These results provide the first evidence that microglial activation is a critical component of the pathological process during FMCM.
Collapse
Affiliation(s)
- I M Medana
- Department of Pathology, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
40
|
|
41
|
Egensperger R, Maslim J, Bisti S, Holländer H, Stone J. Fate of DNA from retinal cells dying during development: uptake by microglia and macroglia (Müller cells). BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 97:1-8. [PMID: 8946048 DOI: 10.1016/s0165-3806(96)00119-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The tunel technique of labelling fragmenting dna was used to examine cell death in the developing retina of the rabbit, rat and cat. TUNEL-labelled structures included the still-intact nuclei of retinal cells and smaller, strongly labelled bodies interpreted as fragments of disintegrating nuclei (apoptotic or pyknotic bodies). With confocal microscopy, the cytoplasm around labelled nuclei was observed to be labelled, suggesting that DNA fragments spread into the cytoplasm of the dying cell. Also observed were cells whose nuclei were TUNEL-but whose cytoplasm was TUNEL+, so that their morphology could be discerned. Evidence is presented that these are phagocytes, their cytoplasmic labelling resulting from the ingestion of the fragmenting DNA of a dying neighbour. Results suggest that in developing retina fragmenting DNA is phagocytosed principally by microglia and Müller cells, with a few neurones and no astrocytes active as phagocytes. In the postnatal material studied, microglia are the predominant phagocytes for cells dying in the ganglion cell and inner nuclear layers. Müller cells appear able to phagocytose cells dying in any retinal layer and, since microglia do not normally enter the outer nuclear layer, may be important for the phagocytosis of dying photoreceptors.
Collapse
Affiliation(s)
- R Egensperger
- Department of Neuromorphology, Max-Planck-Institute for Psychiatry, Martinsried, Germany
| | | | | | | | | |
Collapse
|
42
|
Tumosa N, Baker JR. Microglia in the nerve fiber layer of the cat retina: detection of postnatal changes by a new monoclonal antibody. Vis Neurosci 1996; 13:671-82. [PMID: 8870224 DOI: 10.1017/s0952523800008567] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This paper describes changes in the appearance and distribution of microglia in postnatal cat retina as demonstrated by a new antibody, H386F. This fractionated IgM antibody was created via an intrasplenic immunization of a single BALB/C mouse with about 2-3 x 10(5) large, whole cells isolated from 46 minced cat retinae. To confirm that the labeled cells are microglia, the staining properties of H386F were compared with those of four commercially available antibodies, OX-33, OX-41, OX-42, and ED-1, that have been used by others to distinguish between microglia and other cells in rat brain. These experiments show that H386F is the only antibody of the five to label only microglia in both the cat retina and hippocampus.
Collapse
Affiliation(s)
- N Tumosa
- School of Optometry, University of Missouri, St. Louis 63121, USA
| | | |
Collapse
|
43
|
Li H, Cuzner ML, Newcombe J. Microglia-derived macrophages in early multiple sclerosis plaques. Neuropathol Appl Neurobiol 1996. [DOI: 10.1111/j.1365-2990.1996.tb00896.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Abstract
There is a very wide spread Müller glial response to focal laser photocoagulation lesions in the rabbit retina. In this study we have described the microglial response to similar lesions and compared this with the Müller and retinal ganglion cell responses. Microglia were labelled using nucleoside di-phosphatase histochemistry in adult rabbit retinal wholemounts and compared with axonal and Müller cell responses as shown respectively by neurofilament and GFAP immunohistochemistry. In the normal retina, microglia were located in the nerve fibre layer (NFL), inner plexiform layer (IPL), and sparsely in the outer plexiform layer (OPL). Following laser photocoagulation each layer reacted differently. The NFL reaction was exclusively associated with axonal degeneration, as shown by abnormal neurofilament label, and therefore only started several days after injury. In the IPL, neighbouring microglial cells directed their processes towards the lesion by 2 h and had migrated into the lesion by 6 h, but the reaction did not extend more than 2-3 cell diameters from the lesion and was over by 7 days. In the OPL the cell density increased by 1-2 days over a few millimeters from the lesion. The Müller cells expressed GFAP for several millimeters from the lesion starting at 24 h and persisting for over one month and therefore the correlation with the microglial reaction was poor. The different reaction in each retinal layer is evidence that microglial responses are modulated by local factors, probably mainly by contact with injured retinal elements as well as diffusable factors.
Collapse
Affiliation(s)
- M F Humphrey
- WARP Research Centre, Lions Eye Institute, University of Western Australia, Nedlands
| | | |
Collapse
|
45
|
Affiliation(s)
- W J Streit
- Department of Neuroscience, University of Florida Brain Institute Gainesville 32610, USA
| | | |
Collapse
|
46
|
|
47
|
Diaz-Araya CM, Provis JM, Penfold PL, Billson FA. Development of microglial topography in human retina. J Comp Neurol 1995; 363:53-68. [PMID: 8682937 DOI: 10.1002/cne.903630106] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The development of microglial topography in wholemounts of human retina has been examined in the age range 10-25 weeks gestation (WG) using histochemistry and immunohistochemistry for CD45 and major histocompatibility complex class II antigens. Microglia were present in three planes corresponding to the developing nerve fibre layer/ganglion cell layer, the inner plexiform layer and the outer plexiform layer. Distribution patterns of cells through the retinal thickness and across the retinal surface area varied with gestational age. Microglia were elongated in superficial retina, large and ramified in the middle plane, and small, rounded and less ramified in deep retina. Intensely labeled, rounded profiles seen at the pars caeca of the ciliary processes, the retinal margin and at the optic disc may represent precursors of some retinal microglia. At 10 WG, the highest densities of microglia were present in middle and deep retina in the far periphery and at the retinal margin, with few superficial microglia evident centrally at the optic disc. At 14 WG, high densities of microglia were apparent superficially at the optic disc; microglia of middle and deep retina were distributed at more central locations although continuing to concentrate in the retinal periphery. Microglia appear to migrate into the developing human retina from two mains sources, the retinal margin and the optic disc, most likely originating from the blood vessels of the ciliary body and iris, and the retinal vasculature, respectively. The data suggest that the development of microglial topography occurs in two phases, an early phase occurring prior to vascularization, and a late phase associated with the development of the retinal vasculature.
Collapse
Affiliation(s)
- C M Diaz-Araya
- Save Sight and Eye Health Institute, Department of Clinical Ophthalmology, University of Sydney, N.S.W., Australia
| | | | | | | |
Collapse
|
48
|
Humphrey MF, Moore SR. Strain differences in the distribution of NDP-ase labelled microglia in the normal rabbit retina. Glia 1995; 15:367-76. [PMID: 8926032 DOI: 10.1002/glia.440150402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nucleoside diphosphatase (NDP-ase) labelled microglial cells were examined in retinas of three strains of rabbit, the New Zealand White (albino), the Canberra Half-Lop, and the Dutch Belted. The distribution in the nerve fibre and inner plexiform layers was similar in all strains. However, the outer plexiform layer (OPL) of Dutch-Belted rabbits was completely covered with a population of non-overlapping NDP-ase positive microglia while the OPL of New Zealand White and Half-Lop strains contained only occasional isolated cells. In the Dutch-Belted strain the area covered by the processes of each cell was less in central than peripheral retina where the cell density was lower. In the central retina of the New Zealand White and Half-Lop strains the cells covered an area similar to that of peripheral Dutch-Belted cells, suggesting that they were at a low density and there was no hidden population of cells. This finding was confirmed by Griffonia simplicifolia lectin labelling. Therefore the data is consistent with there being a strain variation in OPL microglia. The intensity of NDP-ase label in the IPL and GCL was less in the New Zealand White and Half-Lop strains and although the intensity increased after retinal injury it never reached that of the Dutch-Belted retinas. These variations in the intensity of NDP-ase expression and the localization of microglial cells may be important in inflammation and also for CNS function.
Collapse
Affiliation(s)
- M F Humphrey
- Lions Eye Institute, University of Western Australia, Nedlands
| | | |
Collapse
|
49
|
Diaz-Araya CM, Provis JM, Penfold PL. Ontogeny and cellular expression of MHC and leucocyte antigens in human retina. Glia 1995; 15:458-70. [PMID: 8926039 DOI: 10.1002/glia.440150409] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have investigated the ontogeny of MHC class I, class II, CD45, and macrophage antigens in whole mounts of normal human fetal retina at 10-25 weeks gestation (WG) using monoclonal antibodies and immunogold histochemistry. MHC class I antigens were expressed on retinal vascular endothelial cells and provided a useful marker of vessel organization from 14-25 WG. Microglial cells expressed immunoreactivity to MHC class I, class II, and CD45 antigens from 10 WG (pre-vascularization) and macrophage S22 (Mac S22) antigen from 14 WG (post-vascularization), although none of the antigens tested were detected on neuronal or macroglial elements. Microglia expressing MHC, CD45, and macrophage antigens occurred in both ramified and rounded forms with no close correlation being observed between morphology and antigenicity. The numbers of immunoreactive cells labeled with each of the four markers increased steadily throughout gestation in all specimens studied. Equivalent numbers of microglia expressed MHC class I, class II, and CD45 antigens in retinae at similar gestational ages; however, our data indicate that microglia expressing Mac S22 antigen comprise approximately 40% or less of the population of MHC and CD45-immunoreactive cells during development. Topographical analyses suggest that MHC class I, class II, and CD45-positive microglia enter the retina from both the peripheral retinal margin and the optic disc from at least 10 WG; Mac S22-positive cells appear in association with the development of the retinal vasculature and enter the retina via the optic disc after 14 WG.
Collapse
Affiliation(s)
- C M Diaz-Araya
- Department of Clinical Ophthalmology, University of Sydney, N.S.W., Australia
| | | | | |
Collapse
|
50
|
Vela JM, Dalmau I, González B, Castellano B. Morphology and distribution of microglial cells in the young and adult mouse cerebellum. J Comp Neurol 1995; 361:602-16. [PMID: 8576417 DOI: 10.1002/cne.903610405] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The morphology and distribution of microglial cells were studied in the normal cerebellum of young and adult mice using the histochemical demonstration of nucleoside diphosphatase as a specific microglial marker. Our results showed that microglial cells were present in all cerebellular lobules of both young and adult mice, but their distribution and morphology were not homogeneous throughout the cerebellum. Heterogeneity in microglial cell distribution was exclusively related to their location in the different histological layers, and no significant differences were found either between the different cerebellar lobules or between young and adult mice. Microglial density was higher in the cerebellar nuclei than in the cortex; within the cortex, the molecular layer was less densely populated by microglial cells than the granular layer and the white matter. The morphological study revealed that microglial cells were ramified in all cerebellar lobules of both young and adult mice but showed different sizes and ramification patterns as a function of their specific location in the different histological layers. Several typologies of microglial cells were described on the basis of observations in both horizontal and coronal sections. The specific layer-related pattern of microglial distribution and morphology in mouse cerebellum strongly suggests a physical and functional adaptation of these cells to the characteristics of their microenvironment.
Collapse
Affiliation(s)
- J M Vela
- Department of Cell Biology and Physiology, Faculty of Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | | | | | | |
Collapse
|