1
|
Network Architecture of Gap Junctional Coupling among Parallel Processing Channels in the Mammalian Retina. J Neurosci 2020; 40:4483-4511. [PMID: 32332119 DOI: 10.1523/jneurosci.1810-19.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 03/27/2020] [Accepted: 04/12/2020] [Indexed: 01/04/2023] Open
Abstract
Gap junctions are ubiquitous throughout the nervous system, mediating critical signal transmission and integration, as well as emergent network properties. In mammalian retina, gap junctions within the Aii amacrine cell-ON cone bipolar cell (CBC) network are essential for night vision, modulation of day vision, and contribute to visual impairment in retinal degenerations, yet neither the extended network topology nor its conservation is well established. Here, we map the network contribution of gap junctions using a high-resolution connectomics dataset of an adult female rabbit retina. Gap junctions are prominent synaptic components of ON CBC classes, constituting 5%-25% of all axonal synaptic contacts. Many of these mediate canonical transfer of rod signals from Aii cells to ON CBCs for night vision, and we find that the uneven distribution of Aii signals to ON CBCs is conserved in rabbit, including one class entirely lacking direct Aii coupling. However, the majority of gap junctions formed by ON CBCs unexpectedly occur between ON CBCs, rather than with Aii cells. Such coupling is extensive, creating an interconnected network with numerous lateral paths both within, and particularly across, these parallel processing streams. Coupling patterns are precise with ON CBCs accepting and rejecting unique combinations of partnerships according to robust rulesets. Coupling specificity extends to both size and spatial topologies, thereby rivaling the synaptic specificity of chemical synapses. These ON CBC coupling motifs dramatically extend the coupled Aii-ON CBC network, with implications for signal flow in both scotopic and photopic retinal networks during visual processing and disease.SIGNIFICANCE STATEMENT Electrical synapses mediated by gap junctions are fundamental components of neural networks. In retina, coupling within the Aii-ON CBC network shapes visual processing in both the scotopic and photopic networks. In retinal degenerations, these same gap junctions mediate oscillatory activity that contributes to visual impairment. Here, we use high-resolution connectomics strategies to identify gap junctions and cellular partnerships. We describe novel, pervasive motifs both within and across classes of ON CBCs that dramatically extend the Aii-ON CBC network. These motifs are highly specific with implications for both signal processing within the retina and therapeutic interventions for blinding conditions. These findings highlight the underappreciated contribution of coupling motifs in retinal circuitry and the necessity of their detection in connectomics studies.
Collapse
|
2
|
Veruki ML, Oltedal L, Hartveit E. Electrical Synapses Between AII Amacrine Cells: Dynamic Range and Functional Consequences of Variation in Junctional Conductance. J Neurophysiol 2008; 100:3305-22. [DOI: 10.1152/jn.90957.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
AII amacrine cells form a network of electrically coupled interneurons in the mammalian retina and tracer coupling studies suggest that the junctional conductance ( Gj) can be modulated. However, the dynamic range of Gjand the functional consequences of varying Gjover the dynamic range are unknown. Here we use whole cell recordings from pairs of coupled AII amacrine cells in rat retinal slices to provide direct evidence for physiological modulation of Gj, appearing as a time-dependent increase from about 500 pS to a maximum of about 3,000 pS after 30–90 min of recording. The increase occurred in recordings with low- but not high-resistance pipettes, suggesting that it was related to intracellular washout and perturbation of a modulatory system. Computer simulations of a network of electrically coupled cells verified that our recordings were able to detect and quantify changes in Gjover a large range. Dynamic-clamp electrophysiology, with insertion of electrical synapses between AII amacrine cells, allowed us to finely and reversibly control Gjwithin the same range observed for physiologically coupled cells and to examine the quantitative relationship between Gjand steady-state coupling coefficient, synchronization of subthreshold membrane potential fluctuations, synchronization and transmission of action potentials, and low-pass filter characteristics. The range of Gjvalues over which signal transmission was modulated depended strongly on the specific functional parameter examined, with the largest range observed for action potential transmission and synchronization, suggesting that the full range of Gjvalues observed during spontaneous run-up of coupling could represent a physiologically relevant dynamic range.
Collapse
|
3
|
Janssen-Bienhold U, Schultz K, Hoppenstedt W, Weiler R. Molecular diversity of gap junctions between horizontal cells. PROGRESS IN BRAIN RESEARCH 2001; 131:93-107. [PMID: 11420985 DOI: 10.1016/s0079-6123(01)31010-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
4
|
Wink B, Harris J. A model of the Parkinsonian visual system: support for the dark adaptation hypothesis. Vision Res 2000; 40:1937-46. [PMID: 10837836 DOI: 10.1016/s0042-6989(00)00036-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Considerable evidence suggests that some visual abnormalities in Parkinson's disease are mediated by disruption of dopaminergic processes in the retina. Since dopamine is thought to be involved in the process of dark adaptation, and some of these abnormalities are similar to the changes which accompany dark adaptation in normal subjects, it has been proposed that the parkinsonian retina behaves as though inappropriately dark-adapted. In Parkinson's disease, the apparent contrast of peripherally viewed medium and high spatial frequency gratings is reduced. In our first experiment, normal subjects were dark-adapted, and were required to match the apparent contrast of a peripherally viewed grating to that of a foveally viewed grating. The results showed an interaction between spatial frequency and dark adaptation, reflecting a greater reduction in the apparent contrast of peripheral high spatial frequency gratings. In a second experiment, no effect of dark adaptation was found on the apparent spatial frequency of a peripherally viewed grating required to match that of a foveally viewed grating. The first experiment supports the dark adaptation hypothesis of parkinsonian vision, and the second suggests that the changes in apparent contrast are mediated by different amounts of change in contrast gain in central and peripheral vision, rather than by differential changes in receptive field size.
Collapse
Affiliation(s)
- B Wink
- Psychology Division, University of Wolverhampton, Wulfruna Street, WV1 1SB, Wolverhampton, UK.
| | | |
Collapse
|
5
|
Wang Y, Harsanyi K, Mangel SC. Endogenous activation of dopamine D2 receptors regulates dopamine release in the fish retina. J Neurophysiol 1997; 78:439-49. [PMID: 9242292 DOI: 10.1152/jn.1997.78.1.439] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the fish retina, horizontal cell electrical coupling and light responsiveness is regulated by activation of dopamine D1 receptors that are located on the horizontal cells themselves. The effects of dopamine and dopamine D2 receptor agonists and antagonists on cone horizontal cell light responses were studied in in vitro superfused goldfish retinas. Horizontal cell light responses and electrical coupling were assessed by monitoring responses to full-field stimuli and to small, centered (0.4 mm diam) spots of light, respectively. Dopamine (0.2-10 microM) application uncoupled horizontal cells and decreased their responses to full-field stimuli. Application of the D2 antagonist eticlopride (10-50 microM) produced similar effects, whereas quinpirole (0.1-10 microM), a D2 agonist, had the opposite effects. The uncoupling effect of eticlopride was blocked by prior application of SCH23390 (10 microM), a D1 receptor antagonist, and was eliminated after destruction of dopaminergic neurons by prior treatment of the retinas with 6-hydroxydopamine. The effects of these D2 drugs were observed following flickering light stimulation, but were not observed following sustained light stimulation. Application of the D2 antagonists sulpiride (0.5-20 microM) and spiperone (0.25-10 microM) uncoupled horizontal cells when the total concentration of divalent cations (Mg2+ and Ca2+) in the Ringer solution was 1.1 mM. However, when the concentration of divalent cations was 0.2 mM, spiperone had no effect on the horizontal cells and sulpiride increased coupling. In contrast, eticlopride uncoupled the cells and decreased their light responsiveness irrespective of the concentration of divalent cations. The effects of quinpirole also depended on the concentration of divalent cations; its coupling effect was reduced when the divalent cation concentration was increased from 0.2 to 1.0 mM. The results suggest that activation of D2 receptors in the fish retina by endogenous dopamine decreases dopamine release and is greater after flickering compared with sustained light stimulation. These D2 receptors thus function as presynaptic autoreceptors that inhibit dopamine release from dopaminergic cells. In addition, the results also indicate that the effectiveness of some D2 drugs at these receptors is dependent on the concentration of divalent cations.
Collapse
Affiliation(s)
- Y Wang
- Department of Neurobiology, University of Alabama School of Medicine, Birmingham 35294, USA
| | | | | |
Collapse
|
6
|
Yazulla S, Lin ZS, Studholme KM. Dopaminergic control of light-adaptive synaptic plasticity and role in goldfish visual behavior. Vision Res 1996; 36:4045-57. [PMID: 9068857 DOI: 10.1016/s0042-6989(96)00128-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dopamine has been implicated in processes of retinal light and dark adaptation. In goldfish retina, horizontal cell dendrites elaborate neurite processes (spinules) into cone terminals, in a light- and dopamine-dependent manner. However, the functions of retinal dopamine and the horizontal cell spinules in visual behavior are unknown. These issues were addressed in behavioral, electroretinographic, and anatomical studies of normal fish and those with unilateral depletion of retinal dopamine induced by intraocular (i.o.) injections with 6-hydroxydopamine (6-OHDA). Dopamine interplexiform cells (DA-IPC) disappear within 2 weeks after 6-OHDA injection; cell bodies appear at the marginal zone within 6 weeks at which time neurites slowly reinnervate the retina with a sparse plexus over the next 12 months. We found that dopamine depletion increased light sensitivity at photopic but not scotopic backgrounds by 2.5 log units, an effect mimicked by i.o. injections of dopamine D1 and D2 antagonists. The ERG b-wave increment thresholds were the same for control and dopamine depleted eyes, indicating a normal transition from rod to cone systems in the ON pathway. Light-dependent spinule formation was reduced by about 60% in dopamine-depleted retinas, but returned to normal by 3 months and 9 months after injection in the entire retina, even areas not directly innervated with DA-IPC processes. Spinule formation in vivo was inhibited 50% with i.o. injection of SCH 23390 in control retinas as well as throughout 3 month 6-OHDA injected retinas, including DA-IPC free areas. This latter result indicates a volume effect of dopamine, diffusing laterally through the retina over several millimeters, in regulating spinules. We conclude that DA-IPCs regulate sensitivity to background at photopic levels not via the ON pathway, but perhaps the OFF pathway. Goldfish display both increased sensitivity to light and a normal Purkinje shift in the ERG b-wave whether or not horizontal cell spinules are present, indicating that dopamine control of photopic vision in fish is not mediated through light-induced spinule formation of horizontal cell dendrites.
Collapse
Affiliation(s)
- S Yazulla
- Department of Neurobiology and Behavior, University at Stony Brook, NY 11794-5230, USA.
| | | | | |
Collapse
|
7
|
Abstract
Retinal ganglion cells in the cat respond to single rhodopsin isomerizations with one to three spikes. This quantal signal is transmitted in the retina by the rod bipolar pathway: rod-->rod bipolar-->AII-->cone bipolar-->ganglion cell. The two-dimensional circuit underlying this pathway includes extensive convergence from rods to an AII amacrine cell, divergence from a rod to several AII and ganglion cells, and coupling between the AII amacrine cells. In this study we explored the function of coupling by reconstructing several AII amacrine cells and the gap junctions between them from electron micrographs; and simulating the AII network with and without coupling. The simulation showed that coupling in the AII network can: (1) improve the signal/noise ratio in the AII network; (2) improve the signal/noise ratio for a single rhodopsin isomerization striking in the periphery of the ganglion cell receptive field center, and therefore in most ganglion cells responding to a single isomerization; (3) expand the AII and ganglion cells' receptive field center; and (4) expand the "correlation field". All of these effects have one major outcome: an increase in correlation between ganglion cell activity. Well correlated activity between the ganglion cells could improve the brain's ability to discriminate few absorbed external photons from the high background of spontaneous thermal isomerizations. Based on the possible benefits of coupling in the AII network, we suggest that coupling occurs at low scotopic luminances.
Collapse
Affiliation(s)
- N Vardi
- Department of Neuroscience, University of Pennsylvania, Philadelphia 19104, USA.
| | | |
Collapse
|
8
|
McMahon DG, Mattson MP. Horizontal cell electrical coupling in the giant danio: synaptic modulation by dopamine and synaptic maintenance by calcium. Brain Res 1996; 718:89-96. [PMID: 8773769 DOI: 10.1016/0006-8993(96)00043-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Electrical synapses, and their structural manifestation, gap junctions, are critical elements of retinal circuitry. These synapses are subject to both rapid modulation and slower structural changes by physiological signals which mediate changes in the adaptational state of the retina. The electrical synapses of fish retinal horizontal cells are an excellent preparation for in vitro studies of electrical synapses. We have examined the rapid modulation of electrical coupling by dopamine and effects on the expression and maintenance of electrical synapses by cell calcium in pairs of horizontal cells isolated from retinas of the giant danio (Danio aquipinnatus). We report that rapid modulation by dopamine reduces junctional conductance by modifying gap junction channel gating, while maintaining cells in reduced calcium medium, and lowering intracellular calcium concentration, results in the loss of electrical coupling. The effects of calcium on synaptic maintenance may be related to structural changes observed in horizontal cell electrical synapses during light adaptation.
Collapse
Affiliation(s)
- D G McMahon
- Department of Physiology, University of Kentucky, Lexington 40536-0084, USA.
| | | |
Collapse
|
9
|
De Juan J, Garcia M, Cuenca N. Formation and dissolution of spinules and changes in nematosome size require optic nerve integrity in black bass (Micropterus salmoides) retina. Brain Res 1996; 707:213-20. [PMID: 8919298 DOI: 10.1016/0006-8993(95)01259-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Teleost retinas adapted to light show numerous spinules invaginated in the cone pedicles and small nematosomes in the distal horizontal cells. Darkness induces the dissolution of spinules and the presence of large and numerous nematosomes. The aim of this work is to study the influence of optic nerve integrity on spinule formation/dissolution and changes in nematosome size during light or dark adaptation of black bass (Micropterus salmoides) retinas. Eyes from fish, dark- or light-adapted, were removed and the eyecups placed in oxygenated Ringer's solution and immediately exposed to light or dark, respectively, for 1 h. The number of spinules per pedicle and the nematosome diameter were measured on electron micrographs. Isolation of eyecups in the dark, impaired both spinule formation and nematosome size reduction when they were superfused in light. In the same way, isolation of eyecups in the light, impaired both spinule dissolution and nematosome size increase when they were superfused in dark. No significant differences in spinule number and nematosome size, following dopamine superfusion, were found in comparison to retinas superfused with Ringer's solution only. Our results suggest: (1) optic nerve integrity is necessary to yield spinule formation/disruption and changes in nematosome size during light or dark adaptation. (2) dopamine does not appear to be the primary agent responsible for spinule formation.
Collapse
Affiliation(s)
- J De Juan
- Departamento de Histologia e Instituto de Neurociencias, Universidad de Alicante, Spain
| | | | | |
Collapse
|
10
|
|
11
|
Yazulla S, Studholme KM. Volume transmission of dopamine may modulate light-adaptive plasticity of horizontal cell dendrites in the recovery phase following dopamine depletion in goldfish retina. Vis Neurosci 1995; 12:827-36. [PMID: 8924407 DOI: 10.1017/s0952523800009391] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We investigated the recovery of light-adaptive spinule formation following dopamine depletion with intraocular injection of 6-hydroxydopamine (6-OHDA) and subsequent neogeneration of dopamine interplexiform cells (DA-IPC) at the marginal zone. DA-IPCs were gone by 2 weeks postinjection and appeared at the marginal zone by 6 weeks postinjection, at which time DA-IPC neurites grew toward the central retina, reaching within 0.5 mm of the central retina by 1 year. Retinas from day time, light-adapted fish at 2 weeks, 4 weeks, 3 months, and 1 year postinjection with 6-OHDA were processed for pre-embedding tyrosine hydroxylase immunoreactivity (TOH-IR) and compared to sham-injected and control retinas at the electron-microscopical (EM) level. Only 6-OHDA fish that tilted markedly toward the injected eye were used for these experiments. The tilt mimics the dorsal light reaction, indicating a 2-2.5 log unit increase in the photopic sensitivity of the 6-OHDA eye. Spinule formation was reduced by about 60% in the 2- and 4-week 6-OHDA retinas, but returned to control levels throughout the entire retina of 3-month and 1 year 6-OHDA retinas even though the central region of these retinas contained no detectable TOH-IR. Intraocular injection with 10 microM SCH 23390 (a D1 antagonist) reduced light-adaptive spinule formation by 50% both in control eyes as well as those eyes that were 3 months post 6-OHDA injected. The full return of spinule formation with only partial reinnervation of the retina with DA-IPC processes and their subsequent inhibition by SCH 23390 indicates that dopamine diffused large distances within the retina to regulate this synaptic plasticity (i.e. displayed volume transmission). Also, since all 6-OHDA injected fish displayed an increased photopic sensitivity in the injected eye when sacrificed, we suggest that horizontal cell spinules are not required for photopic luminosity coding in the outer retina.
Collapse
Affiliation(s)
- S Yazulla
- Department of Neurobiology and Behavior, SUNY, Stony Brook 11794-5230, USA
| | | |
Collapse
|
12
|
Bloomfield SA, Xin D, Persky SE. A comparison of receptive field and tracer coupling size of horizontal cells in the rabbit retina. Vis Neurosci 1995; 12:985-99. [PMID: 8924420 DOI: 10.1017/s0952523800009524] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The large receptive fields of retinal horizontal cells are thought to reflect extensive electrical coupling via gap junctions. It was shown recently that the biotinylated tracers, biocytin and Neurobiotin, provide remarkable images of coupling between many types of retinal neuron, including horizontal cells. Further, these demonstrations of tracer coupling between horizontal cells rivaled the size of their receptive fields, suggesting that the pattern of tracer coupling may provide some index of the extent of electrical coupling. We studied this question by comparing the receptive field and tracer coupling size of dark-adapted horizontal cells recorded in the superfused, isolated retina-eyecup of the rabbit. Both the edge-to-edge receptive field and space constants (lambda) were computed for each cell using a long, narrow slit of light displaced across the retinal surface. Cells were subsequently labeled by iontophoretic injection of Neurobiotin. The axonless A-type horizontal cells showed extensive, homologous tracer coupling in groups greater than 1000 covering distances averaging about 2 mm. The axon-bearing B-type horizontal cells were less extensively tracer coupled, showing homologous coupling of the somatic endings in groups of about 100 cells spanning approximately 400 microns and a separate homologous coupling of the axon terminal endings covering only about 275 microns. Moreover, we observed a remarkable, linear relationship between the size of the receptive fields of each of the three horizontal cell endings and the magnitude of their tracer coupling. Our findings suggest that the extent of tracer coupling provides a strong, linear index of the magnitude of electrical current flow, as derived from receptive-field measures, across groups of coupled horizontal cells. These data thus provide the first direct evidence that the receptive-field size of horizontal cells is related to the extent of their coupling via gap junctions.
Collapse
Affiliation(s)
- S A Bloomfield
- Department of Ophthalmology, New York University Medical Center, New York 10016, USA
| | | | | |
Collapse
|
13
|
Wolburg H, Rohlmann A. Structure--function relationships in gap junctions. INTERNATIONAL REVIEW OF CYTOLOGY 1995; 157:315-73. [PMID: 7706021 DOI: 10.1016/s0074-7696(08)62161-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Gap junctions are metabolic and electrotonic pathways between cells and provide direct cooperation within and between cellular nets. They are among the cellular structures most frequently investigated. This chapter primarily addresses aspects of the assembly of the gap junction channel, considering the insertion of the protein into the membrane, the importance of phosphorylation of the gap junction proteins for coupling modulation, and the formation of whole channels from two hemichannels. Interactions of gap junctions with the subplasmalemmal cytoplasm on the one side and with tight junctions on the other side are closely considered. Furthermore, reviewing the significance and alterations of gap junctions during development and oncogenesis, respectively, including the role of adhesion molecules, takes up a major part of the chapter. Finally, the literature on gap junctions in the central nervous system, especially between astrocytes in the brain cortex and horizontal cells in the retina, is summarized and new aspects on their structure-function relationship included.
Collapse
Affiliation(s)
- H Wolburg
- Institute of Pathology, University of Tübingen, Germany
| | | |
Collapse
|
14
|
Van Haesendonck E, Marc RE, Missotten L. New aspects of dopaminergic interplexiform cell organization in the goldfish retina. J Comp Neurol 1993; 333:503-18. [PMID: 8103778 DOI: 10.1002/cne.903330404] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dopaminergic interplexiform cells (DA-IPCs) in the goldfish retina have been reexamined by light and electron microscopic immunocytochemistry with antisera against dopamine (DA) or tyrosine hydroxylase (TH). Successful immunostaining with a specific anti-DA antiserum offers further direct support for DA-IPCs. Anti-DA immunocytochemistry in combination with [3H]-DA autoradiography shows 92% colocalization of the two markers, indicating that [3H]-DA autoradiography is a reliable technique for identification of DA-IPCs. Incubations with anti-TH antiserum show that immunoreactive DA-IPCs have a homogeneous distribution, with an average frequency of 71 +/- 8 cells/mm2 in retinas of 14-15 cm long goldfish. Their arrangement is distinctly nonrandom. Electron microscopy of TH-immunoreactive cell processes confirms that horizontal cell axons synapse onto DA-IPCs and adds the following junctional arrangements to the circuit diagram of the DA-IPC: 1) adjacent serial synapses between DA-IPCs, external horizontal cells, and putative glycinergic interplexiform cells, 2) junctional appositions between DA-IPCs and photoreceptor cells, 3) junctional appositions between neighbouring DA-IPCs, and 4) the "gap junctional complex," typically consisting of a DA-IPC process juxtaposed with a gap junction between horizontal cell axons. The gap junction is flanked by clusters of small, round vesicles and groups of electron-dense structures resembling intermediate filaments. These morphological results support the functional involvement of DA-IPCs in adaptive retinomotor movements and in horizontal cell gap junction modulation and/or dynamics. They also suggest particular interaction between the dopaminergic and the glycinergic IPC system in the outer plexiform layer of goldfish retina.
Collapse
|
15
|
Ball AK, Baldridge WH, Fernback TC. Neuromodulation of pigment movement in the RPE of normal and 6-OHDA-lesioned goldfish retinas. Vis Neurosci 1993; 10:529-40. [PMID: 8494804 DOI: 10.1017/s0952523800004740] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The role of dopamine as the endogenous signal-initiating light-dependent changes in the distribution of pigment granules in goldfish retinal pigment epithelium was investigated. In normal retinas, light adaptation resulted in the dispersion of pigment granules. This effect of light was mimicked by the intraocular injection of dopamine or serotonin, which is thought to increase endogenous dopamine release, into dark-adapted eyes. The effect of light, dopamine, or serotonin on dark-adapted retinas was blocked by the dopamine receptor antagonists haloperidol and sulpiride. However, lesioning the endogenous source of retinal dopamine, by prior intraocular injection of 6-hydroxydopamine (6-OHDA), did not block the dispersion of pigment granules in light-adapted retinas. No significant differences in pigment dispersion were noted between unlesioned and lesioned light- or dark-adapted retinas. However, the effect of light on pigment dispersion was no longer blocked by haloperidol or sulpiride in 6-OHDA lesioned animals. Dopamine and serotonin mimicked the effect of light when injected into lesioned dark-adapted eyes, but their effects were also not blocked by haloperidol or sulpiride. These results suggest that dopamine, acting on D2 receptors, is sufficient to induce pigment migration in unlesioned animals. In 6-OHDA-lesioned animals, however, pigment migration is mediated by a receptor mechanism other than D2.
Collapse
Affiliation(s)
- A K Ball
- Division of Anatomy and Experimental Morphology, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
16
|
Douglas RH, Wagner HJ, Zaunreiter M, Behrens UD, Djamgoz MB. The effect of dopamine depletion on light-evoked and circadian retinomotor movements in the teleost retina. Vis Neurosci 1992; 9:335-43. [PMID: 1390391 DOI: 10.1017/s0952523800010749] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The retinae of lower vertebrates undergo a number of structural changes during light adaptation, including the photomechanical contraction of cone myoids and the dispersion of melanin granules within the epithelial pigment. Since the application of dopamine to dark-adapted retinae is known to produce morphological changes that are characteristic of light adaptation, dopamine is accepted as a casual mechanism for such retinomotor movements. However, we report here that in the teleost fish, Aequidens pulcher, the intraocular injection of 6-hydroxydopamine (6-OHDA), a substance known to destroy dopaminergic retinal cells, has no effect on the triggering of light-adaptive retinomotor movements of the cones and epithelial pigment and only slightly depresses the final level of light adaptation reached. Furthermore, the retina continues to show circadian retinomotor changes even after 48 h in continual darkness that are similar in both control and 6-OHDA injected fish. Biochemical assay and microscopic examination showed that 6-OHDA had destroyed dopaminergic retinal cells. We conclude, therefore, that although a dopaminergic mechanism is probably involved in the control of light-induced retinomotor movements, it cannot be the only control mechanism, nor can it be the cause of circadian retinomotor migrations. Interestingly, 6-OHDA injected eyes never reached full retinomotor dark adaptation, suggesting that dopamine has a role to play in the retina's response to darkness.
Collapse
Affiliation(s)
- R H Douglas
- Department of Optometry & Visual Science, City University, London, U.K
| | | | | | | | | |
Collapse
|
17
|
Kurz-Isler G, Voigt T, Wolburg H. Modulation of connexon densities in gap junctions of horizontal cell perikarya and axon terminals in fish retina: effects of light/dark cycles, interruption of the optic nerve and application of dopamine. Cell Tissue Res 1992; 268:267-75. [PMID: 1319840 DOI: 10.1007/bf00318795] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the fish retina, connexon densities of gap junctions in the outer horizontal cells are modulated in response to different light or dark adaptation times and wavelengths. We have examined whether the connexon density is a suitable parameter of gap junction coupling under in situ conditions. Short-term light adaptation evoked low connexon densities, regardless of whether white or red light was used. Short-term dark adaptation evoked high connexon densities; this was more pronounced in the axon terminal than in perikaryal gap junctions. Under a 12 h red light/12 h dark cycle, a significant difference in connexon densities between the light and the dark period could be established in the gap junctions of the perikarya and axon terminals. Under a white light/dark cycle, only the gap junctions of axon terminals showed a significant difference. Crushing of the optic nerve resulted in an increase in connexon densities; this was more pronounced in axon terminals than in perikarya. Dopamine injected into the right eye of white-light-adapted animals had no effect. However, dopamine prevented the effect of optic-nerve crushing on connexon density. The reaction of axon-terminal gap junctions to different conditions thus resembles that of perikaryal gap junctions, but is more intense. Axon terminals are therefore thought to play an important role in the adaptation process.
Collapse
Affiliation(s)
- G Kurz-Isler
- Pathologisches Institut der Universität, Tübingen, Federal Republic of Germany
| | | | | |
Collapse
|
18
|
Abstract
Dopamine (DA) has satisfied many of the criteria for being a major neurochemical in vertebrate retinae. It is synthesized in amacrine and/or interplexiform cells (depending on species) and released upon membrane depolarization in a calcium-dependent way. Strong evidence suggests that it is normally released within the retina during light adaptation, although flickering and not so much steady light stimuli have been found to be most effective in inducing endogenous dopamine release. DA action is not restricted to those neurones which appear to be in "direct" contact with pre-synaptic dopaminergic terminals. Neurones that are several microns away from such terminals can also be affected, presumably by short diffusion of the chemical. DA thus affects the activity of many cell types in the retina. In photoreceptors, it induces retinomotor movements, but inhibits disc shedding acting via D2 receptors, without significantly altering their electrophysiological responses. DA has two main effects upon horizontal cells: it uncouples their gap junctions and, independently, enhances the efficacy of their photoreceptor inputs, both effects involving D1 receptors. In the amphibian retina, where horizontal cells receive mixed rod and cone inputs, DA alters their balance in favour of the cone input, thus mimicking light adaptation. Light-evoked DA release also appears to be responsible for potentiating the horizontal cell-->cone negative feed-back pathway responsible for generation of multi-phasic, chromatic S-potentials. However, there is little information concerning action of DA upon bipolar and amacrine cells. DA effects upon ganglion cells have been investigated in mammalian (cat and rabbit) retinae. The results suggest that there are both synaptic and non-synaptic D1 and D2 receptors on all physiological types of ganglion cell tested. Although the available data cannot readily be integrated, the balance of evidence suggests that dopaminergic neurones are involved in the light/dark adaptation process in the mammalian retina. Studies of the DA system in vertebrate retinae have contributed greatly to our understanding of its role in vision as well as DA neurobiology generally in the central nervous system. For example, the effect of DA in uncoupling horizontal cells is one of the earliest demonstrations of the uncoupling of electrotonic junctions by a neurally released chemical. The many other, diverse actions of DA in the retina reviewed here are also likely to become model modes of neurochemical action in the nervous system.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M B Djamgoz
- Imperial College of Science, Technology and Medicine, Department of Biology, London, U.K
| | | |
Collapse
|
19
|
Baldridge WH, Ball AK. Background illumination reduces horizontal cell receptive-field size in both normal and 6-hydroxydopamine-lesioned goldfish retinas. Vis Neurosci 1991; 7:441-50. [PMID: 1764414 DOI: 10.1017/s0952523800009731] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effect of background illumination on horizontal cell receptive-field size and dye coupling was investigated in isolated superfused goldfish retinas. Background illumination reduced both horizontal cell receptive-field size and dye coupling. The effect of light on horizontal cell receptive-field size was mimicked by treating the retina with 20 microM dopamine. To test the hypothesis that the effects of light were due to endogenous dopamine release, the effect of light was studied in goldfish retinas in which dopaminergic interplexiform cells were lesioned using 6-hydroxydopamine treatment. In lesioned retinas, background illumination reduced both horizontal cell receptive-field size and dye coupling. Furthermore, the effect of background illumination on unlesioned animals could not be blocked by prior treatment with the D1 dopamine receptor antagonist SCH-23390. These results suggest that, in goldfish retina, dopamine release is not the only mechanism by which horizontal cell receptive-field size could be reduced by light.
Collapse
Affiliation(s)
- W H Baldridge
- Department of Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
20
|
Cahill GM, Grace MS, Besharse JC. Rhythmic regulation of retinal melatonin: metabolic pathways, neurochemical mechanisms, and the ocular circadian clock. Cell Mol Neurobiol 1991; 11:529-60. [PMID: 1742771 DOI: 10.1007/bf00734814] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. Current knowledge of the mechanisms of circadian and photic regulation of retinal melatonin in vertebrates is reviewed, with a focus on recent progress and unanswered questions. 2. Retinal melatonin synthesis is elevated at night, as a result of acute suppression by light and rhythmic regulation by a circadian oscillator, or clock, which has been localized to the eye in some species. 3. The development of suitable in vitro retinal preparations, particularly the eyecup from the African clawed frog, Xenopus laevis, has enabled identification of neural, cellular, and molecular mechanisms of retinal melatonin regulation. 4. Recent findings indicate that retinal melatonin levels can be regulated at multiple points in indoleamine metabolic pathways, including synthesis and availability of the precursor serotonin, activity of the enzyme serotonin N-acetyltransferase, and a novel pathway for degradation of melatonin within the retina. 5. Retinal dopamine appears to act through D2 receptors as a signal for light in this system, both in the acute suppression of melatonin synthesis and in the entrainment of the ocular circadian oscillator. 6. A recently developed in vitro system that enables high-resolution measurement of retinal circadian rhythmicity for mechanistic analysis of the circadian oscillator is described, along with preliminary results that suggest its potential for elucidating general circadian mechanisms. 7. A model describing hypothesized interactions among circadian, neurochemical, and cellular mechanisms in regulation of retinal melatonin is presented.
Collapse
Affiliation(s)
- G M Cahill
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City 66103
| | | | | |
Collapse
|
21
|
Schmitz Y, Wolburg H. Gap junction morphology of retinal horizontal cells is sensitive to pH alterations in vitro. Cell Tissue Res 1991; 263:303-10. [PMID: 2007254 DOI: 10.1007/bf00318772] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Isolated goldfish retinae were incubated in NaHCO3-reduced solutions, a treatment known to lower intracellular pH and to decrease gap-junction-mediated coupling between cells. The morphology of the gap junctions of horizontal cells examined by means of freeze-fracture replicas and ultrathin sections displays alterations after such treatment. The gap-junctional particles aggregate into dense clusters or crystalline arrays, whereas controls (pH 7.5) display a loose arrangement of particles. Incubation in NaHCO3-reduced solution leads to the appearance, in ultrathin sections, of prominent, electron-dense material beneath the gap-junctional membranes. Both effects, the increasing density of particles and the appearance of electron-dense material, are reversible. The application of dopamine, which uncouples horizontal cells, and its antagonist haloperidol produce less clear-cut effects on particle density in vitro.
Collapse
Affiliation(s)
- Y Schmitz
- Pathologisches Institut der Universität, Tübingen, Federal Republic of Germany
| | | |
Collapse
|
22
|
Witkovsky P, Dearry A. Chapter 10 Functional roles of dopamine in the vertebrate retina. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/0278-4327(91)90031-v] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Abstract
In teleost retinas, the somata of same-type cone horizontal cells are electrically coupled via extensive gap junctions, as are the axon terminals of same-type cells. This coupling persists throughout the animal's life and is modulated by dopamine and conditions of light- vs. dark-adaptation. Gap junction particle density in goldfish horizontal cell somata has also been shown to change under these conditions, indicating that these junctions are dynamic. We have used electron microscopy to examine gap junctions in bass horizontal cells with a fixation method that facilitates detection of gap junctions. Annular gap junction profiles were observed in the somatic cytoplasm of all cone horizontal cell types in both light- and dark-adapted animals. Serial sections showed that most profiles represented gap junction vesicles free within the cytoplasm; the remainder represented vesicles still attached to extensive plasma membrane gap junctions by a thin cytoplasmic neck, suggestive of an intermediate stage in endocytosis. Observations of gap junction vesicles containing fragments of gap junctional membrane and/or fused with lysosomal bodies further supported this hypothesis. Because gap junctions persist between the horizontal cells, we propose that gap junction endocytosis and lysosomal degradation are balanced by addition of new junctions. While endocytosis has been widely demonstrated to serve in programmed removal of gap junctions (without subsequent replacement), from both nonneuronal cells and developing neurons, this study indicates that it can also function in the renewal of electrical synapses in the adult teleost retina, where gap junction elimination is not the goal.
Collapse
Affiliation(s)
- D K Vaughan
- Department of Physiology, University of Utah School of Medicine, Salt Lake City 84108
| | | |
Collapse
|