1
|
Safronov BV, Szucs P. Novel aspects of signal processing in lamina I. Neuropharmacology 2024; 247:109858. [PMID: 38286189 DOI: 10.1016/j.neuropharm.2024.109858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 01/31/2024]
Abstract
The most superficial layer of the spinal dorsal horn, lamina I, is a key element of the nociceptive processing system. It contains different types of projection neurons (PNs) and local-circuit neurons (LCNs) whose functional roles in the signal processing are poorly understood. This article reviews recent progress in elucidating novel anatomical features and physiological properties of lamina I PNs and LCNs revealed by whole-cell recordings in ex vivo spinal cord. This article is part of the Special Issue on "Ukrainian Neuroscience".
Collapse
Affiliation(s)
- Boris V Safronov
- Neuronal Networks Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| | - Peter Szucs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; HUN-REN-DE Neuroscience Research Group, Debrecen, Hungary
| |
Collapse
|
2
|
Barker DJ, Zhang S, Wang H, Estrin DJ, Miranda-Barrientos J, Liu B, Kulkarni RJ, de Deus JL, Morales M. Lateral preoptic area glutamate neurons relay nociceptive information to the ventral tegmental area. Cell Rep 2023; 42:113029. [PMID: 37632750 PMCID: PMC10584074 DOI: 10.1016/j.celrep.2023.113029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/28/2023] [Accepted: 08/09/2023] [Indexed: 08/28/2023] Open
Abstract
The ventral tegmental area (VTA) has been proposed to play a role in pain, but the brain structures modulating VTA activity in response to nociceptive stimuli remain unclear. Here, we demonstrate that the lateral preoptic area (LPO) glutamate neurons relay nociceptive information to the VTA. These LPO glutamatergic neurons synapsing on VTA neurons respond to nociceptive stimulation and conditioned stimuli predicting nociceptive stimulation and also mediate aversion. In contrast, LPO GABA neurons synapsing in the VTA mediate reward. By ultrastructural quantitative synaptic analysis, ex vivo electrophysiology, and functional neuroanatomy we identify a complex circuitry between LPO glutamatergic and GABAergic neurons and VTA dopaminergic, GABAergic, and glutamatergic neurons. We conclude that LPO glutamatergic neurons play a causal role in the processing of nociceptive stimuli and in relaying information about nociceptive stimuli. The pathway from LPO glutamatergic neurons to the VTA represents an unpredicted interface between peripheral nociceptive information and the limbic system.
Collapse
Affiliation(s)
- David J Barker
- Integrative Neuroscience Branch, Neuronal Networks Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Shiliang Zhang
- Confocal and Electron Microscopy Core, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Huiling Wang
- Integrative Neuroscience Branch, Neuronal Networks Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - David J Estrin
- Integrative Neuroscience Branch, Neuronal Networks Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Jorge Miranda-Barrientos
- Integrative Neuroscience Branch, Neuronal Networks Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Bing Liu
- Integrative Neuroscience Branch, Neuronal Networks Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Rucha J Kulkarni
- Integrative Neuroscience Branch, Neuronal Networks Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Junia Lara de Deus
- Integrative Neuroscience Branch, Neuronal Networks Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Marisela Morales
- Integrative Neuroscience Branch, Neuronal Networks Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA.
| |
Collapse
|
3
|
Nakaya Y, Yamamoto K, Kobayashi M. Descending projections from the insular cortex to the trigeminal spinal subnucleus caudalis facilitate excitatory outputs to the parabrachial nucleus in rats. Pain 2023; 164:e157-e173. [PMID: 35969237 PMCID: PMC9916064 DOI: 10.1097/j.pain.0000000000002755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/09/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Nociceptive information from the orofacial area projects to the trigeminal spinal subnucleus caudalis (Sp5C) and is then conveyed to several nuclei, including the parabrachial nucleus (PBN). The insular cortex (IC) receives orofacial nociceptive information and sends corticofugal projections to the Sp5C. The Sp5C consists of glutamatergic and GABAergic/glycinergic interneurons that induce excitatory postsynaptic currents and inhibitory postsynaptic currents, respectively, in projection neurons. Therefore, quantification of glutamatergic IC inputs in combination with identifying postsynaptic neuronal subtypes is critical to elucidate IC roles in the regulation of Sp5C activities. We investigated features of synaptic transmission from the IC to glutamatergic and GABAergic/glycinergic Sp5C neurons of laminae I/II using vesicular GABA transporter-Venus transgenic rats that received an injection of adeno-associated virus-channelrhodopsin-2-mCherry into the IC. Selective stimulation of IC axon terminals in Sp5C slice preparations induced monosynaptic excitatory postsynaptic currents in both excitatory glutamatergic and inhibitory GABAergic/glycinergic Sp5C neurons with a comparable amplitude. Paired whole-cell patch-clamp recordings showed that unitary inhibitory postsynaptic currents from inhibitory neurons influencing excitatory neurons, including neurons projecting to the PBN, exhibited a high failure rate and were suppressed by both bicuculline and strychnine, suggesting that excitatory neurons in the Sp5C receive both GABAergic and glycinergic inhibition with low impact. Moreover, selective stimulation of IC axons increased the firing rate at the threshold responses. Finally, we demonstrated that selective stimulation of IC axons in the Sp5C by a chemogenetic approach decreased the thresholds of both mechanical and thermal nociception. Thus, IC projection to the Sp5C is likely to facilitate rather than suppress excitatory outputs from the Sp5C.
Collapse
Affiliation(s)
- Yuka Nakaya
- Department of Pharmacology, Nihon University School of Dentistry, Tokyo, Japan
- Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Kiyofumi Yamamoto
- Department of Pharmacology, Nihon University School of Dentistry, Tokyo, Japan
- Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, Tokyo, Japan
- Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
- Molecular Dynamics Imaging Unit, RIKEN Center for Life Science Technologies, Kobe, Japan
| |
Collapse
|
4
|
Role of Lateral Hypothalamus in Acupuncture Inhibition of Cocaine Psychomotor Activity. Int J Mol Sci 2021; 22:ijms22115994. [PMID: 34206060 PMCID: PMC8198598 DOI: 10.3390/ijms22115994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 01/01/2023] Open
Abstract
Acupuncture modulates the mesolimbic dopamine (DA) system; an area implicated in drug abuse. However, the mechanism by which peripheral sensory afferents, during acupuncture stimulation, modulate this system needs further investigation. The lateral hypothalamus (LH) has been implicated in reward processing and addictive behaviors. To investigate the role of the LH in mediating acupuncture effects, we evaluated the role of LH and spinohypothalamic neurons on cocaine-induced psychomotor activity and NAc DA release. Systemic injection of cocaine increased locomotor activity and 50 kHz ultrasonic vocalizations (USVs), which were attenuated by mechanical stimulation of needles inserted into HT7 but neither ST36 nor LI5. The acupuncture effects were blocked by chemical lesions of the LH or mimicked by activation of LH neurons. Single-unit extracellular recordings showed excitation of LH and spinohypothalamic neurons following acupuncture. Our results suggest that acupuncture recruits the LH to suppress the mesolimbic DA system and psychomotor responses following cocaine injection.
Collapse
|
5
|
Li JN, Ren JH, Zhao LJ, Wu XM, Li H, Dong YL, Li YQ. Projecting neurons in spinal dorsal horn send collateral projections to dorsal midline/intralaminar thalamic complex and parabrachial nucleus. Brain Res Bull 2021; 169:184-195. [PMID: 33508400 DOI: 10.1016/j.brainresbull.2021.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 10/22/2022]
Abstract
Itch is an annoying sensation that always triggers scratching behavior, yet little is known about its transmission pathway in the central nervous system. Parabrachial nucleus (PBN), an essential transmission nucleus in the brainstem, has been proved to be the first relay station in itch sensation. Meanwhile, dorsal midline/intralaminar thalamic complex (dMITC) is proved to be activated with nociceptive stimuli. However, whether the PBN-projecting neurons in spinal dorsal horn (SDH) send collateral projections to dMITC, and whether these projections involve in itch remain unknown. In the present study, a double retrograde tracing method was applied when the tetramethylrhodamine-dextran (TMR) was injected into the dMITC and Fluoro-gold (FG) was injected into the PBN, respectively. Immunofluorescent staining for NeuN, substance P receptor (SPR), substance P (SP), or FOS induced by itch or pain stimulations with TMR and FG were conducted to provide morphological evidence. The results revealed that TMR/FG double-labeled neurons could be predominately observed in superficial laminae and lateral spinal nucleus (LSN) of SDH; Meanwhile, most of the collateral projection neurons expressed SPR and some of them expressed FOS in acute itch model induced by histamine. The present results implicated that some of the SPR-expressing neurons in SDH send collateral projections to the dMITC and PBN in itch transmission, which might be involved in itch related complex affective/emotional processing to the higher brain centers.
Collapse
Affiliation(s)
- Jia-Ni Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jia-Hao Ren
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
| | - Liu-Jie Zhao
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Xue-Mei Wu
- Department of Human Anatomy, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Hui Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Lin Dong
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China; Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Haikou, China.
| |
Collapse
|
6
|
Bourojeni FB, Zeilhofer HU, Kania A. Netrin-1 receptor DCC is required for the contralateral topography of lamina I anterolateral system neurons. Pain 2021; 162:161-175. [PMID: 32701653 PMCID: PMC7737868 DOI: 10.1097/j.pain.0000000000002012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/30/2022]
Abstract
Anterolateral system (AS) neurons relay nociceptive information from the spinal cord to the brain, protecting the body from harm by evoking a variety of behaviours and autonomic responses. The developmental programs that guide the connectivity of AS neurons remain poorly understood. Spinofugal axons cross the spinal midline in response to Netrin-1 signalling through its receptor deleted in colorectal carcinoma (DCC); however, the relevance of this canonical pathway to AS neuron development has only been demonstrated recently. Here, we disrupted Netrin-1:DCC signalling developmentally in AS neurons and assessed the consequences on the path finding of the different classes of spinofugal neurons. Many lamina I AS neurons normally innervate the lateral parabrachial nucleus and periaqueductal gray on the contralateral side. The loss of DCC in the developing spinal cord resulted in increased frequency of ipsilateral projection of spinoparabrachial and spinoperiaqueductal gray neurons. Given that contralateral spinofugal projections are largely associated with somatotopic representation of the body, changes in the laterality of AS spinofugal projections may contribute to reduced precision in pain localization observed in mice and humans carrying Dcc mutations.
Collapse
Affiliation(s)
- Farin B. Bourojeni
- Research Unit in Neural Circuit Development, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Switzerland
| | - Artur Kania
- Research Unit in Neural Circuit Development, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Division of Experimental Medicine, Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| |
Collapse
|
7
|
Abstract
The spinal gray matter region around the central canal, lamina X, is critically involved in somatosensory processing and visceral nociception. Although several classes of primary afferent fibers terminate or decussate in this area, little is known about organization and functional significance of the afferent supply of lamina X neurons. Using the hemisected ex vivo spinal cord preparation, we show that virtually all lamina X neurons receive primary afferent inputs, which are predominantly mediated by the high-threshold Aδ- fibers and C-fibers. In two-thirds of the neurons tested, the inputs were monosynaptic, implying a direct targeting of the population of lamina X neurons by the primary nociceptors. Beside the excitatory inputs, 48% of the neurons also received polysynaptic inhibitory inputs. A complex pattern of interactions between the excitatory and inhibitory components determined the output properties of the neurons, one-third of which fired spikes in response to the nociceptive dorsal root stimulation. In this respect, the spinal gray matter region around the central canal is similar to the superficial dorsal horn, the major spinal nociceptive processing area. We conclude that lamina X neurons integrate direct and indirect inputs from several types of thin primary afferent fibers and play an important role in nociception.
Collapse
|
8
|
Abstract
Migraine is the most common disabling primary headache globally. Attacks typically present with unilateral throbbing headache and associated symptoms including, nausea, multisensory hypersensitivity, and marked fatigue. In this article, the authors address the underlying neuroanatomical basis for migraine-related headache, associated symptomatology, and discuss key clinical and preclinical findings that indicate that migraine likely results from dysfunctional homeostatic mechanisms. Whereby, abnormal central nervous system responses to extrinsic and intrinsic cues may lead to increased attack susceptibility.
Collapse
Affiliation(s)
- Peter J Goadsby
- Headache Group, Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.
| | - Philip R Holland
- Headache Group, Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|
9
|
Kobayashi M, Nakaya Y. Anatomical aspects of corticotrigeminal projections to the medullary dorsal horn. J Oral Sci 2020; 62:144-146. [DOI: 10.2334/josnusd.19-0386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry
- Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry
- Molecular Imaging Research Center, Riken
| | - Yuka Nakaya
- Department of Pharmacology, Nihon University School of Dentistry
- Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry
| |
Collapse
|
10
|
Abstract
BACKGROUND The clinical picture, but also neuroimaging findings, suggested the brainstem and midbrain structures as possible driving or generating structures in migraine. FINDINGS This has been intensely discussed in the last decades and the advent of modern imaging studies refined the involvement of rostral parts of the pons in acute migraine attacks, but more importantly suggested a predominant role of the hypothalamus and alterations in hypothalamic functional connectivity shortly before the beginning of migraine headaches. This was shown in the NO-triggered and also in the preictal stage of native human migraine attacks. Another headache type that is clinically even more suggestive of hypothalamic involvement is cluster headache, and indeed a structure in close proximity to the hypothalamus has been identified to play a crucial role in attack generation. CONCLUSION It is very likely that spontaneous oscillations of complex networks involving the hypothalamus, brainstem, and dopaminergic networks lead to changes in susceptibility thresholds that ultimately start but also terminate headache attacks. We will review clinical and neuroscience evidence that puts the hypothalamus in the center of scientific attention when attack generation is discussed.
Collapse
Affiliation(s)
- Arne May
- Department of Systems Neuroscience, University Medical Center Eppendorf, Hamburg, Germany
| | - Rami Burstein
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical center, Department of Anesthesia, Harvard medical School, Boston, MA, USA
| |
Collapse
|
11
|
Harriott AM, Strother LC, Vila-Pueyo M, Holland PR. Animal models of migraine and experimental techniques used to examine trigeminal sensory processing. J Headache Pain 2019; 20:91. [PMID: 31464579 PMCID: PMC6734323 DOI: 10.1186/s10194-019-1043-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
Background Migraine is a common debilitating condition whose main attributes are severe recurrent headaches with accompanying sensitivity to light and sound, nausea and vomiting. Migraine-related pain is a major cause of its accompanying disability and can encumber almost every aspect of daily life. Main body Advancements in our understanding of the neurobiology of migraine headache have come in large from basic science research utilizing small animal models of migraine-related pain. In this current review, we aim to describe several commonly utilized preclinical models of migraine. We will discuss the diverse array of methodologies for triggering and measuring migraine-related pain phenotypes and highlight briefly specific advantages and limitations therein. Finally, we will address potential future challenges/opportunities to refine existing and develop novel preclinical models of migraine that move beyond migraine-related pain and expand into alternate migraine-related phenotypes. Conclusion Several well validated animal models of pain relevant for headache exist, the researcher should consider the advantages and limitations of each model before selecting the most appropriate to answer the specific research question. Further, we should continually strive to refine existing and generate new animal and non-animal models that have the ability to advance our understanding of head pain as well as non-pain symptoms of primary headache disorders.
Collapse
Affiliation(s)
- Andrea M Harriott
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Lauren C Strother
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Marta Vila-Pueyo
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Philip R Holland
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK.
| |
Collapse
|
12
|
Neurochemical characterization of pERK-expressing spinal neurons in histamine-induced itch. Sci Rep 2015; 5:12787. [PMID: 26248539 PMCID: PMC4650701 DOI: 10.1038/srep12787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/08/2015] [Indexed: 12/27/2022] Open
Abstract
Acute itch is divided into histamine- and non-histamine-dependent subtypes, and our previous study has shown that activation of ERK signaling in the spinal dorsal horn (SDH) is required selectively for histamine-induced itch sensation. Morphological characteristics of pERK-expressing neurons are required for exploring the mechanism underlying spinal itch sensation. To investigate whether pERK-expressing neurons are supraspinally-projecting neurons, we injected Fluorogold (FG) into the ventrobasal thalamic complex (VB) and parabrachial region, the two major spinal ascending sites in rodents. A small number (1%) of pERK-positive neurons were labeled by FG, suggesting that histamine-induced activation of ERK is primarily located in local SDH neurons. We then examined the co-localization of pERK with Calbindin and Lmx1b, which are expressed by excitatory neurons, and found that more than half (58%) of pERK-positive neurons expressed Lmx1b, but no co-expression with Calbindin was observed. On the other hand, approximately 7% of pERK-positive neurons expressed GAD67, and 27% of them contained Pax2. These results support the idea that pERK-expressing neurons serve as a component of local neuronal circuits for processing itch sensation in the spinal cord.
Collapse
|
13
|
Akiyama T, Curtis E, Nguyen T, Carstens MI, Carstens E. Anatomical evidence of pruriceptive trigeminothalamic and trigeminoparabrachial projection neurons in mice. J Comp Neurol 2015; 524:244-56. [PMID: 26099199 DOI: 10.1002/cne.23839] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 11/06/2022]
Abstract
Itch is relayed to higher centers by projection neurons in the spinal and medullary dorsal horn. We employed a double-label method to map the ascending projections of pruriceptive and nociceptive trigeminal and spinal neurons. The retrograde tracer fluorogold (FG) was stereotaxically injected into the right thalamus or lateral parabrachial area (LPb) in mice. Seven days later, mice received intradermal (id) microinjection of histamine, chloroquine, capsaicin, or vehicle into the left cheek. Histamine, chloroquine, and capsaicin intradermally elicited similar distributions of Fos-positive neurons in the medial aspect of the superficial medullary and spinal dorsal horn from the trigeminal subnucleus caudalis to C2. Among neurons retrogradely labeled from the thalamus, 43%, 8%, and 22% were Fos-positive following id histamine, chloroquine, or capsaicin. Among the Fos-positive neurons following pruritic or capsaicin stimuli, ∼1-2% were retrogradely labeled with FG. Trigeminoparabrachial projection neurons exhibited a higher incidence of double labeling in the superficial dorsal horn. Among the neurons retrogradely labeled from LPb, 36%, 29%, and 33% were Fos positive following id injection of histamine, chloroquine, and capsaicin, respectively. Among Fos-positive neurons elicited by id histamine, chloroquine, and capsaicin, respectively, 3.7%, 4.3%, and 4.1% were retrogradely labeled from LPb. The present results indicate that, overall, relatively small subpopulations of pruriceptive and/or nociceptive neurons innervating the cheek project to thalamus or LPb. These results imply that the vast majority of pruritogen- and algogen-responsive spinal neurons are likely to function as interneurons relaying information to projection neurons and/or participating in segmental nocifensive circuits.
Collapse
Affiliation(s)
- Tasuku Akiyama
- Temple Itch Center, Department of Dermatology, Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Eric Curtis
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, California, 95616
| | - Tony Nguyen
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, California, 95616
| | - Mirela Iodi Carstens
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, California, 95616
| | - E Carstens
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, California, 95616
| |
Collapse
|
14
|
Neurons in the lateral part of the lumbar spinal cord show distinct novel axon trajectories and are excited by short propriospinal ascending inputs. Brain Struct Funct 2015; 221:2343-60. [PMID: 25912439 DOI: 10.1007/s00429-015-1046-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/15/2015] [Indexed: 10/23/2022]
Abstract
The role of spinal dorsal horn propriospinal connections in nociceptive processing is not yet established. Recently described, rostrocaudally oriented axon collaterals of lamina I projection and local-circuit neurons (PNs and LCNs) running in the dorsolateral funiculus (DLF) may serve as the anatomical substrate for intersegmental processing. Putative targets of these axons include lateral dendrites of superficial dorsal horn neurons, including PNs, and also neurons in the lateral spinal nucleus (LSN) that are thought to be important integrator units receiving, among others, visceral sensory information. Here we used an intact spinal cord preparation to study intersegmental connections within the lateral part of the superficial dorsal horn. We detected brief monosynaptic and prolonged polysynaptic excitation of lamina I and LSN neurons when stimulating individual dorsal horn neurons located caudally, even in neighboring spinal cord segments. These connections, however, were infrequent. We also revealed that some projection neurons outside the dorsal grey matter and in the LSN have distinct, previously undescribed course of their projection axon. Our findings indicate that axon collaterals of lamina I PNs and LCNs in the DLF rarely form functional connections with other lamina I and LSN neurons and that the majority of their targets are on other elements of the dorsal horn. The unique axon trajectories of neurons in the dorsolateral aspect of the spinal cord, including the LSN do not fit our present understanding of midline axon guidance and suggest that their function and development differ from the neurons inside lamina I. These findings emphasize the importance of understanding the connectivity matrix of the superficial dorsal horn in order to decipher spinal sensory information processing.
Collapse
|
15
|
Fischer MJ, Stephan M, Kielstein H, Rahne H, Nugraha B, Gutenbrunner C, Ro JY, Svensson P. Functions of the temporomandibular system in extracranial chronic pain conditions: modulatory effects on nocifensive behavior in an animal model. J Manipulative Physiol Ther 2014; 37:485-93. [PMID: 25150425 DOI: 10.1016/j.jmpt.2014.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Mastication may be able to activate endogenous pain inhibitory mechanisms and therefore lead to modulation of nociceptive processing. The purpose of this study was to examine the possible effect of food consistency on noxious input from the spinal system. METHODS Three groups of adult male Sprague-Dawley rats were given an injection of complete Freund adjuvant in a hind paw 10 days after eating soft or hard food (one group received a saline injection-the control group [C]; the other group (D) received no injection). Nocifensive behavior was assessed with the use of the hot plate and tail flick assays at 1, 3, 6, and 12 hours and at 6.5 days after injection for groups A/B, and c-Fos activity was assessed in the brain after testing. Groups C/D had hot plate testing at 1 hour and 6.5 days. The data were analyzed by general linear modeling and 1-way analysis of variance. RESULTS There was a small increase in the hot plate percent maximum possible effect (MPE) from -45.7 to -61.1 in group A over the length of the experiment, but a very small decrease for group B over the same period (-33.5 to -28.8). For the saline control group, there was a small increase toward 0 %MPE over the same time frame (-15.0 to 1.7). The %MPE differences were significant between groups A and C (P < .0005), but not significant between the other groups (F = 13.34, df = 2, P = .001, observed power = 99%). Using the pooled results (all time points), the differences between all groups were significant (P < .0005). There were no significant differences in the tail flick test. c-Fos was mainly observed in the raphe pallidus area with significant differences between groups A and B at 3 and 6 hours after injection of CFA (P = .027 and .022, respectively). CONCLUSIONS The results of this study indicate that food consistency (hardness) influences nocifensive behavior in this animal model via a descending pathway operating at the supraspinal level.
Collapse
Affiliation(s)
- Michael J Fischer
- Lecturer/Privatdozent, Department of Rehabilitation Medicine, Hanover Medical School, 30625 Hanover, Germany; Lecturer/Privatdozent, Department of Orthopaedics, Hanover Medical School, Medical University Innsbruck, A-6020 Innsbruck, Austria
| | - Michael Stephan
- Department of Psychosomatics and Psychotherapy, Hanover Medical School, 30625 Hanover, Germany
| | - Heike Kielstein
- Professor, Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Henning Rahne
- Department of Rehabilitation Medicine, Hanover Medical School, 30625 Hanover, Germany
| | - Boya Nugraha
- Department of Rehabilitation Medicine, Hanover Medical School, 30625 Hanover, Germany
| | - Christoph Gutenbrunner
- Professor, Department of Rehabilitation Medicine, Hanover Medical School, 30625 Hanover, Germany
| | - Jin Y Ro
- Professor, Department of Biomedical Sciences, Program in Neuroscience, School of Dentistry, University of Maryland, Baltimore, MD
| | - Peter Svensson
- Professor, Department of Clinical Oral Physiology, School of Dentistry, University of Aarhus, Aarhus, Denmark; Department of Oral and Maxillofacial Surgery, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
16
|
Braz J, Solorzano C, Wang X, Basbaum AI. Transmitting pain and itch messages: a contemporary view of the spinal cord circuits that generate gate control. Neuron 2014; 82:522-36. [PMID: 24811377 DOI: 10.1016/j.neuron.2014.01.018] [Citation(s) in RCA: 305] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The original formulation of Gate Control Theory (GCT) proposed that the perception of pain produced by spinal cord signaling to the brain depends on a balance of activity generated in large (nonnociceptive)- and small (nociceptive)-diameter primary afferent fibers. The theory proposed that activation of the large-diameter afferent "closes" the gate by engaging a superficial dorsal horn interneuron that inhibits the firing of projection neurons. Activation of the nociceptors "opens" the gate through concomitant excitation of projection neurons and inhibition of the inhibitory interneurons. Sixty years after publication of the GCT, we are faced with an ever-growing list of morphologically and neurochemically distinct spinal cord interneurons. The present Review highlights the complexity of superficial dorsal horn circuitry and addresses the question whether the premises outlined in GCT still have relevance today. By examining the dorsal horn circuits that underlie the transmission of "pain" and "itch" messages, we also address the extent to which labeled lines can be incorporated into a contemporary view of GCT.
Collapse
Affiliation(s)
- João Braz
- Department of Anatomy, University California, San Francisco, San Francisco, CA 94158, USA
| | - Carlos Solorzano
- Department of Anatomy, University California, San Francisco, San Francisco, CA 94158, USA
| | - Xidao Wang
- Department of Anatomy, University California, San Francisco, San Francisco, CA 94158, USA
| | - Allan I Basbaum
- Department of Anatomy, University California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
17
|
Strobel C, Hunt S, Sullivan R, Sun J, Sah P. Emotional regulation of pain: the role of noradrenaline in the amygdala. SCIENCE CHINA-LIFE SCIENCES 2014; 57:384-90. [PMID: 24643418 DOI: 10.1007/s11427-014-4638-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/25/2014] [Indexed: 01/22/2023]
Abstract
The perception of pain involves the activation of the spinal pathway as well as the supra-spinal pathway, which targets brain regions involved in affective and cognitive processes. Pain and emotions have the capacity to influence each other reciprocally; negative emotions, such as depression and anxiety, increase the risk for chronic pain, which may lead to anxiety and depression. The amygdala is a key-player in the expression of emotions, receives direct nociceptive information from the parabrachial nucleus, and is densely innervated by noradrenergic brain centers. In recent years, the amygdala has attracted increasing interest for its role in pain perception and modulation. In this review, we will give a short overview of structures involved in the pain pathway, zoom in to afferent and efferent connections to and from the amygdala, with emphasis on the direct parabrachio-amygdaloid pathway and discuss the evidence for amygdala's role in pain processing and modulation. In addition to the involvement of the amygdala in negative emotions during the perception of pain, this brain structure is also a target site for many neuromodulators to regulate the perception of pain. We will end this article with a short review on the effects of noradrenaline and its role in hypoalgesia and analgesia.
Collapse
Affiliation(s)
- Cornelia Strobel
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | | | | | | | | |
Collapse
|
18
|
Georgescu M, Afonso VM, Graham MD, Pfaus JG. Glutamate release in the ventromedial hypothalamus of the female rat during copulation: modulation by estradiol. Horm Behav 2014; 65:119-26. [PMID: 24333845 DOI: 10.1016/j.yhbeh.2013.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 10/29/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
Abstract
Binding of glutamate or its ionotropic receptor agonists in the ventromedial hypothalamus (VMH) of female rats inhibits both appetitive and consummatory aspects of sexual behavior. Because vaginocervical stimulation activates glutamate neurons in the VMH, and administration of estradiol benzoate (EB) and progesterone (P) delays this effect, the present study examined the effects of hormonal priming on glutamate release within the VMH of female rats paired with sexually vigorous males. Ovariectomized, sexually experienced rats were implanted with guide cannula aimed at the ventrolateral VMH, through which microdialysis probes were inserted prior to testing. Females were assigned randomly to one of three hormone treatment conditions: EB+P, EB alone, or the oil vehicle. Testing was conducted over 5h, including a 120-min period of habituation to the testing chamber, a 60-min period of baseline sample collection, and a 120-min period during which a sexually vigorous male was introduced into the testing chamber. Dialysates were collected every 20min during the test and were analyzed for glutamate using HPLC. Females primed with oil had large and significant increases in glutamate release from baseline once the male was introduced to the chamber. Treatment with EB alone decreased glutamate release in response to male cues. Although treatment with EB+P did not differ significantly from EB alone, the degree of reduced glutamate release was less than with EB alone. These results indicate that priming with EB reduces glutamate transmission in the VMH in response to male cues. Taken together with our previous findings, estradiol blunts the activation of glutamate neurons in the VMH thus allowing female rats to copulate.
Collapse
Affiliation(s)
- M Georgescu
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC H4B 1R6, Canada
| | - V M Afonso
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC H4B 1R6, Canada
| | - M D Graham
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC H4B 1R6, Canada
| | - J G Pfaus
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC H4B 1R6, Canada.
| |
Collapse
|
19
|
Dudley CA, Rajendren G, Moss RL. Induction of FOS immunoreactivity in central accessory olfactory structures of the female rat following exposure to conspecific males. Mol Cell Neurosci 2012; 3:360-9. [PMID: 19912880 DOI: 10.1016/1044-7431(92)90034-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/1992] [Indexed: 11/24/2022] Open
Abstract
Reproductive events in the female rat can be influenced by exposure to the odors of conspecific males. Much evidence indicates that these pheromonal effects are mediated by the accessory olfactory system (AOS); however, individual cells within the AOS that are stimulated following exposure to male odors have not yet been visualized. The present experiment was designed to determine the effect of exposure to conspecific males and male odors on signal transduction in central AOS neurons as measured by immunohistochemical detection of the induction of the fos-like protein. AOS structures examined included the accessory olfactory bulb (AOB), medial amygdala (mAMYG), and bed nucleus of the stria terminalis (BNST). Due to its importance in the control of reproductive activities and its direct link to the AOS, the ventromedial nucleus of the hypothalamus (VMH) was also examined. Adult, ovariectomized rats were injected with estradiol benzoate (EB) and 48 h later were placed in cages containing bedding material soiled by conspecific males or placed in cages containing clean bedding material. After exposure durations ranging from 10 to 180 min, the animals were sacrificed and the brains were immunohistochemically processed for detection of fos-like immunoreactivity. Another group of ovariectomized, EB-injected females was repeatedly paired with conspeciflc males for 15 min followed by 15 min of rest. Repeated matings were conducted over a 60-, 120-, or 180-min period while control animals were repeatedly exposed to clean bedding material. Quantitative analysis of the number of fos-immunopositive cells in the AOB revealed that continuous exposure to male-soiled bedding or repeated mating resulted in significant induction of foslike immunoreactivity compared to controls. Both treatments produced similar numbers of fos-like immunoreactive cells in the mitral and granule cell layers of the AOB. Fos induction was apparent after 60 min of treatment but was more prominent at 120 and 180 min. In the mAMYG, BLAST, and VMH, differences between the two treatments were noted. Exposure to male-soiled bedding for 60 min produced scattered staining in the mAMYG, BLAST, and VMH, whereas 60 min of repetitive mating resulted in a more dense distribution of fos-like immunoreactive cells in these areas. Strikingly distinct patterns of fos-like immunoreactive cells were observed in the mAMYG, BLAST, and VMH following 120 or 180 min of repetitive mating. These patterns were not present in animals exposed to male odors. The findings indicate that exposure of female rats to reproductively relevant stimuli resulted in induction of fos-like immunoreactivity within the AOS and that both olfactory and nonolfactory cues probably contributed to this effect.
Collapse
Affiliation(s)
- C A Dudley
- University of Texas Southwestern Medical Center, Department of Physiology, 5323 Harry Hines Boulevard, Dallas, Texas 75235-9040, USA
| | | | | |
Collapse
|
20
|
Loss of the Reelin-signaling pathway differentially disrupts heat, mechanical and chemical nociceptive processing. Neuroscience 2012; 226:441-50. [PMID: 22999972 DOI: 10.1016/j.neuroscience.2012.09.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 09/06/2012] [Accepted: 09/11/2012] [Indexed: 02/02/2023]
Abstract
The Reelin-signaling pathway regulates neuronal positioning during embryonic development. Reelin, the extracellular matrix protein missing in reeler mutants, is secreted by neurons in laminae I, II and V, binds to Vldl and Apoer2 receptors on nearby neurons, and tyrosine phosphorylates the adaptor protein Disabled-1 (Dab1), which activates downstream signaling. We previously reported that reeler and dab1 mutants had significantly reduced mechanical and increased heat nociception. Here we extend our analysis to chemical, visceral, and cold pain and importantly, used Fos expression to relate positioning errors in mutant mouse dorsal horn to changes in neuronal activity. We found that noxious mechanical stimulation-induced Fos expression is reduced in reeler and dab1 laminae I-II, compared to wild-type mice. Additionally, mutants had fewer Fos-immunoreactive neurons in the lateral-reticulated area of the deep dorsal horn than wild-type mice, a finding that correlates with a 50% reduction and subsequent mispositioning of the large Dab1-positive cells in the mutant lateral-reticulated area. Furthermore, several of these Dab1 cells expressed Fos in wild-type mice but rarely in reeler mutants. By contrast, paralleling the behavioral observations, noxious heat stimulation evoked significantly greater Fos expression in laminae I-II of reeler and dab1 mutants. We then used the formalin test to show that chemical nociception is reduced in reeler and dab1 mutants and that there is a corresponding decrease in formalin-induced Fos expression. Finally, neither visceral pain nor cold-pain sensitivity differed between wild-type and mutant mice. As differences in the nociceptor distribution within reeler and dab1 mutant dorsal horn were not detected, these differential effects observed on distinct pain modalities suggest that dorsal horn circuits are organized along modality-specific lines.
Collapse
|
21
|
Shelton L, Becerra L, Borsook D. Unmasking the mysteries of the habenula in pain and analgesia. Prog Neurobiol 2012; 96:208-19. [PMID: 22270045 PMCID: PMC3465722 DOI: 10.1016/j.pneurobio.2012.01.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 11/01/2011] [Accepted: 01/06/2012] [Indexed: 02/06/2023]
Abstract
The habenula is a small bilateral structure in the posterior-medial aspect of the dorsal thalamus that has been implicated in a remarkably wide range of behaviors including olfaction, ingestion, mating, endocrine and reward function, pain and analgesia. Afferent connections from forebrain structures send inputs to the lateral and medial habenula where efferents are mainly projected to brainstem regions that include well-known pain modulatory regions such as the periaqueductal gray and raphe nuclei. A convergence of preclinical data implicates the region in multiple behaviors that may be considered part of the pain experience including a putative role in pain modulation, affective, and motivational processes. The habenula seems to play a role as an evaluator, acting as a major point of convergence where external stimuli is received, evaluated, and redirected for motivation of appropriate behavioral response. Here, we review the role of the habenula in pain and analgesia, consider its potential role in chronic pain, and review more recent clinical and functional imaging data of the habenula from animals and humans. Even through the habenula is a small brain structure, advances in structural and functional imaging in humans should allow for further advancement of our understanding of its role in pain and analgesia.
Collapse
Affiliation(s)
- L. Shelton
- Center for Pain and the Brain, Harvard Medical School, United States
- Children’s Hospital Boston, Harvard Medical School, United States
| | - L. Becerra
- Center for Pain and the Brain, Harvard Medical School, United States
- Children’s Hospital Boston, Harvard Medical School, United States
- McLean Hospital, Harvard Medical School, United States
- Massachusetts General Hospital, Harvard Medical School, United States
| | - D. Borsook
- Center for Pain and the Brain, Harvard Medical School, United States
- Children’s Hospital Boston, Harvard Medical School, United States
- McLean Hospital, Harvard Medical School, United States
- Massachusetts General Hospital, Harvard Medical School, United States
| |
Collapse
|
22
|
Akerman S, Holland PR, Goadsby PJ. Diencephalic and brainstem mechanisms in migraine. Nat Rev Neurosci 2011; 12:570-84. [DOI: 10.1038/nrn3057] [Citation(s) in RCA: 385] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Serotonin transporter binding in the hypothalamus correlates negatively with tonic heat pain ratings in healthy subjects: A [11C]DASB PET study. Neuroimage 2011; 54:1336-43. [DOI: 10.1016/j.neuroimage.2010.09.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 08/31/2010] [Accepted: 09/03/2010] [Indexed: 11/22/2022] Open
|
24
|
Dimitrov E, Usdin TB. Tuberoinfundibular peptide of 39 residues modulates the mouse hypothalamic-pituitary-adrenal axis via paraventricular glutamatergic neurons. J Comp Neurol 2010; 518:4375-94. [PMID: 20853513 PMCID: PMC3004125 DOI: 10.1002/cne.22462] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Neurons in the subparafascicular area at the caudal border of the thalamus that contain the neuropeptide tuberoinfundibular peptide of 39 residues (TIP39) densely innervate several hypothalamic areas, including the paraventricular nucleus (PVN). These areas contain a matching distribution of TIP39's receptor, the parathyroid hormone receptor 2 (PTH2R). Frequent PTH2R coexpression with a vesicular glutamate transporter (VGlut2) suggests that TIP39 could presynaptically regulate glutamate release. By using immunohistochemistry we found CRH-ir neurons surrounded by PTH2R-ir fibers and TIP39-ir axonal projections in the PVN area of the mouse brain. Labeling hypothalamic neuroendocrine neurons by peripheral injection of fluorogold in PTH2R-lacZ knock-in mice showed that most PTH2Rs are on PVN and peri-PVN interneurons and not on neuroendocrine cells. Double fluorescent in situ hybridization revealed a high level of coexpression between PTH2R and VGlut2 mRNA by cells located in the PVN and nearby brain areas. Local TIP39 infusion (100 pmol) robustly increased pCREB-ir in the PVN and adjacent perinuclear zone. It also increased plasma corticosterone and decreased plasma prolactin. These effects of TIP39 on pCREB-ir, corticosterone, and prolactin were abolished by coinfusion of the ionotropic glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and DL-2-amino-5-phosphonopentanoic acid (AP-5; 30 pmol each) and were absent in PTH2R knockout mice. Basal plasma corticosterone was slightly decreased in TIP39 knockout mice just before onset of their active phase. The present data indicate that the TIP39 ligand/PTH2 receptor system provides facilitatory regulation of the hypothalamic-pituitary-adrenal axis via hypothalamic glutamatergic neurons and that it may regulate other neuroendocrine systems by a similar mechanism.
Collapse
Affiliation(s)
- Eugene Dimitrov
- Section on Fundamental Neuroscience, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Ted Björn Usdin
- Section on Fundamental Neuroscience, National Institute of Mental Health, Bethesda, Maryland 20892
| |
Collapse
|
25
|
Davidson S, Truong H, Giesler GJ. Quantitative analysis of spinothalamic tract neurons in adult and developing mouse. J Comp Neurol 2010; 518:3193-204. [PMID: 20575056 DOI: 10.1002/cne.22392] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding the development of nociceptive circuits is important for the proper treatment of pain and administration of anesthesia to prenatal, newborn, and infant organisms. The spinothalamic tract (STT) is an integral pathway in the transmission of nociceptive information to the brain, yet the stage of development when axons from cells in the spinal cord reach the thalamus is unknown. Therefore, the retrograde tracer Fluoro-Gold was used to characterize the STT at several stages of development in the mouse, a species in which the STT was previously unexamined. One-week-old, 2-day-old and embryonic-day-18 mice did not differ from adults in the number or distribution of retrogradely labeled STT neurons. Approximately 3,500 neurons were retrogradely labeled from one side of the thalamus in each age group. Eighty percent of the labeled cells were located on the side of the spinal cord contralateral to the injection site. Sixty-three percent of all labeled cells were located within the cervical cord, 18% in thoracic cord, and 19% in the lumbosacral spinal cord. Retrogradely labeled cells significantly increased in diameter over the first postnatal week. Arborizations and boutons within the ventrobasal complex of the thalamus were observed after the anterograde tracer biotinylated dextran amine was injected into the neonatal spinal cord. These data indicate that, whereas neurons of the STT continue to increase in size during the postnatal period, their axons reach the thalamus before birth and possess some of the morphological features required for functionality.
Collapse
Affiliation(s)
- Steve Davidson
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
26
|
Yellon SM, Grisham LA, Rambau GM, Lechuga TJ, Kirby MA. Pregnancy-related changes in connections from the cervix to forebrain and hypothalamus in mice. Reproduction 2010; 140:155-64. [PMID: 20453158 DOI: 10.1530/rep-10-0002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The transneuronal tracer pseudorabies virus was used to test the hypothesis that connections from the cervix to the forebrain and hypothalamus are maintained with pregnancy. The virus was injected into the cervix of nonpregnant or pregnant mice, and, after 5 days, virus-labeled cells and fibers were found in specific forebrain regions and, most prominently, in portions of the hypothalamic paraventricular nucleus. With pregnancy, fewer neurons and fibers were evident in most brain regions compared to that in nonpregnant mice. In particular, little or no virus was found in the medial and ventral parvocellular subdivisions, anteroventral periventricular nucleus, or motor cortex in pregnant mice. By contrast, labeling of virus was sustained in the dorsal hypothalamus and suprachiasmatic nucleus in all groups. Based upon image analysis of digitized photomicrographs, the area with label in the rostral and medial parvocellular paraventricular nucleus and magnocellular subdivisions was significantly reduced in mice whose cervix was injected with virus during pregnancy than in nonpregnant mice. The findings indicate that connections from the cervix to brain regions that are involved in sensory input and integrative autonomic functions are reduced during pregnancy. The findings raise the possibility that remaining pathways from the cervix to the forebrain and hypothalamus may be important for control of pituitary neuroendocrine secretion, as well as for effector functions in the cervix as pregnancy nears term.
Collapse
Affiliation(s)
- Steven M Yellon
- Departments of Physiology, Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, California 92354, USA.
| | | | | | | | | |
Collapse
|
27
|
Multisegmental A{delta}- and C-fiber input to neurons in lamina I and the lateral spinal nucleus. J Neurosci 2010; 30:2384-95. [PMID: 20147564 DOI: 10.1523/jneurosci.3445-09.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spinal lamina I and the lateral spinal nucleus (LSN) receive and integrate nociceptive primary afferent inputs to project through diverse ascending pathways. The pattern of the afferent supply of individual lamina I and LSN neurons through different segmental dorsal roots is poorly understood. Therefore, we recorded responses of lamina I and LSN neurons in spinal segments L4 and L3 to stimulation of six ipsilateral dorsal roots (L1-L6). The neurons were viewed through the overlying white matter in the isolated spinal cord preparation using the oblique infrared LED illumination technique. Orientation of myelinated fibers in the white matter was used as a criterion to distinguish between the LSN and lamina I. Both types of neurons received mixed (monosynaptic and polysynaptic) excitatory Adelta- and C-fiber input from up to six dorsal roots, with only less than one-third of it arising from the corresponding segmental root. The largest mixed input arose from the dorsal root of the neighboring caudal segment. Lamina I and LSN neurons could fire spikes upon the stimulation of up to six different dorsal roots. We also found that individual lamina I neurons can receive converging monosynaptic Adelta- and/or C-fiber inputs from up to six segmental roots. This study shows that lamina I and LSN neurons function as intersegmental integrators of primary afferent inputs. We suggest that broad monosynaptic convergence of Adelta- and C-afferents onto a lamina I neuron is important for the somatosensory processing.
Collapse
|
28
|
Abstract
Migraine headache is triggered by and associated with a variety of hormonal, emotional, nutritional and physiological changes. The perception of migraine headache is formed when nociceptive signals originating in the meninges are conveyed to the somatosensory cortex through the trigeminal ganglion, medullary dorsal horn and thalamus. We propose that different migraine triggers activate a wide variety of brain areas that impinge on parasympathetic neurons innervating the meninges. According to this hypothesis, migraine triggers such as stress activate multiple hypothalamic, limbic and cortical areas, all of which contain neurons that project to the preganglionic parasympathetic neurons in the superior salivatory nucleus (SSN). The SSN, in turn, activates postganglionic parasympathetic neurons in the sphenopalatine ganglion, resulting in vasodilation and local release of inflammatory molecules that activate meningeal nociceptors. We propose that trigeminovascular projections from the medullary dorsal horn to selective areas in the midbrain, hypothalamus, amygdala and basal forebrain are functionally positioned to produce migraine symptoms such as irritability, loss of appetite, fatigue, depression and the quest for solitude. The network of bidirectional trafficking by which the trigeminovascular system can activate the same brain areas that have triggered its own activity in the first place provides an attractive mechanism of perpetual feedback that drives a migraine attack for many hours and even days.
Collapse
|
29
|
Mouton LJ, Eggens-Meijer E, Klop EM. The ventrolateral upper cervical cell group in cat projects to all rostrocaudal levels of the periaqueductal gray matter. Brain Res 2009; 1300:79-96. [DOI: 10.1016/j.brainres.2009.08.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 07/01/2009] [Accepted: 08/28/2009] [Indexed: 12/30/2022]
|
30
|
Al-Khater KM, Todd AJ. Collateral projections of neurons in laminae I, III, and IV of rat spinal cord to thalamus, periaqueductal gray matter, and lateral parabrachial area. J Comp Neurol 2009; 515:629-46. [PMID: 19496168 PMCID: PMC2729698 DOI: 10.1002/cne.22081] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Projection neurons in lamina I, together with those in laminae III–IV that express the neurokinin 1 receptor (NK1r), form a major route through which nociceptive information reaches the brain. Axons of these cells innervate various targets, including thalamus, periaqueductal gray matter (PAG), and lateral parabrachial area (LPb), and many cells project to more than one target. The aims of this study were to quantify projections from cervical enlargement to PAG and LPb, to determine the proportion of spinothalamic neurons at lumbar and cervical levels that were labelled from PAG and LPb, and to investigate morphological differences between projection populations. The C7 segment contained fewer lamina I spinoparabrachial cells than L4, but a similar number of spino-PAG cells. Virtually all spinothalamic lamina I neurons at both levels were labelled from LPb and between one-third and one-half from PAG. This suggests that significant numbers project to all three targets. Spinothalamic lamina I neurons differed from those labelled only from LPb in that they were generally larger, were more often multipolar, and (in cervical enlargement) had stronger NK1r immunoreactivity. Most lamina III/IV NK1r cells at both levels projected to LPb, but few were labelled from PAG. The great majority of these cells in C7 and over one-fourth of those in L4 were spinothalamic, and at each level some projected to both thalamus and LPb. These results confirm that neurons in these laminae have extensive collateral projections and suggest that different neuronal subpopulations in lamina I have characteristic patterns of supraspinal projection. J. Comp. Neurol. 515:629–646, 2009.
Collapse
Affiliation(s)
- Khulood M Al-Khater
- Neuroscience and Molecular Pharmacology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
31
|
Abstract
Migraine is a complex brain disorder where several neuronal pathways and neurotransmitters are involved in the pathophysiology. To search for a specific anatomical or physiological defect in migraine may be futile, but the hypothalamus, with its widespread connections with other parts of the central nervous system and its paramount control of the hypophysis and the autonomic nervous system, is a suspected locus in quo. Several lines of evidence support involvement of this small brain structure in migraine. However, whether it plays a major or minor role is unclear. The most convincing support for a pivotal role so far is the activation of the hypothalamus shown by positron emission tomography (PET) scanning during spontaneous migraine attacks. A well-known theory is that the joint effect of several triggers may cause temporary hypothalamic dysfunction, resulting in a migraine attack. If PET scanning had consistently confirmed hypothalamic activation prior to migraine headache, this hypothesis would have been supported. However, such evidence has not been provided, and the role of the hypothalamus in migraine remains puzzling. This review summarizes and discusses some of the clues.
Collapse
Affiliation(s)
- KB Alstadhaug
- Department of Neurology, Nordlandssykehuset Bode Norway
| |
Collapse
|
32
|
Palkovits M. Stress-induced activation of neurons in the ventromedial arcuate nucleus: a blood-brain-CSF interface of the hypothalamus. Ann N Y Acad Sci 2009; 1148:57-63. [PMID: 19120091 DOI: 10.1196/annals.1410.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In response to a pain-related acute stress, the expression of c-fos protein (Fos), a marker of acute neuronal excitation, was investigated in the hypothalamus of rats. Few Fos-immunopositive cells were seen 15 min after a single subcutaneous injection of 4% formalin in the hypothalamus, but only in the paraventricular nucleus (PVN). Fifteen minutes later, a high number of parvocellular neurons of the PVN showed Fos expression. By 60 min after injection, strong immunoreactivity appeared in the arcuate nucleus, but the Fos-positive neurons distributed almost exclusively in the ventromedial subdivision of the nucleus. Neurons in this part of the arcuate nucleus express mainly neuropeptide Y (NPY) that projects to the medial parvocellular subdivision of the PVN. It has been demonstrated by previous studies that this part of the arcuate nucleus receives blood partly from the anterior pituitary through the subependymal plexus of the median eminence, and that it establishes, together with the median eminence, a blood-brain barrier-free area in the medial basal hypothalamus. Since the PVN-projecting NPY neurons in the arcuate neurons are sensitive to alterations in circulating corticosterone levels, the existence of a possible short feedback route in the stress-activated hypothalamo-pituitary-adrenocortical system is discussed.
Collapse
Affiliation(s)
- M Palkovits
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Semmelweis University and Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
33
|
Tsingotjidou AS, Papadopoulos GC. The Milk-Ejection Reflex in the Sheep: An Anatomical Study on the Afferent Pathway. Anat Histol Embryol 2008; 37:245-50. [DOI: 10.1111/j.1439-0264.2007.00833.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Akopians AL, Babayan AH, Beffert U, Herz J, Basbaum AI, Phelps PE. Contribution of the Reelin signaling pathways to nociceptive processing. Eur J Neurosci 2008; 27:523-37. [DOI: 10.1111/j.1460-9568.2008.06056.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
REED WR, SHUM-SIU A, MAGNUSON DSK. Reticulospinal pathways in the ventrolateral funiculus with terminations in the cervical and lumbar enlargements of the adult rat spinal cord. Neuroscience 2008; 151:505-17. [PMID: 18065156 PMCID: PMC2829753 DOI: 10.1016/j.neuroscience.2007.10.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 10/24/2007] [Accepted: 11/01/2007] [Indexed: 11/16/2022]
Abstract
In the mammalian spinal cord, the ventrolateral funiculus (VLF) has been identified as critical to postural control and locomotor function, in part due to the reticulospinal pathways it contains. The primary purpose of this descriptive study was to investigate the distribution of neurons in the medulla labeled retrogradely from the VLF and the intermediate gray matter of specific lumbar and cervical spinal cord segments in the adult rat. We made discrete injections of Fluoro-Ruby (FR) into the intermediate gray matter at the cervical (C) 5/6, 7/8 or lumbar (L) 2 segmental levels followed by a single injection of Fluoro-Gold (FG) into the right VLF at T9. Double-labeled medullary neurons were found primarily in the gigantocellular group of nuclei (Gi), distributed both ipsilaterally and contralaterally following cervical or lumbar FR injections. In addition, a substantial population of neurons contained within the vestibular group of nuclei was double labeled both ipsilaterally and contralaterally. We also identified a substantial population of Gi-related neurons located ipsilateral to the VLF injections that were double labeled following left unilateral FR injections at C5/6, C7/8 or L2. These results describe a substantial population of ipsilateral and commissural medullary neurons that project to both cervical and thoracolumbar segments. Two different populations of commissural neurons are described, one with axons that cross the midline rostral to T9, and one with axons that cross the midline caudal to T9. These observations provide strong additional evidence for a pattern of reticulo- and vestibulospinal projections that include substantial numbers of commissural neurons and project to multiple cervical and thoracolumbar levels.
Collapse
Affiliation(s)
- W. R. REED
- University of Louisville School of Medicine, Departments of Neurological Surgery and Anatomical Sciences and Neurobiology, 511 South Floyd Street, MDR Room 616, Louisville, KY 40292, USA
| | - A. SHUM-SIU
- University of Louisville School of Medicine, Departments of Neurological Surgery and Anatomical Sciences and Neurobiology, 511 South Floyd Street, MDR Room 616, Louisville, KY 40292, USA
| | - D. S. K. MAGNUSON
- University of Louisville School of Medicine, Departments of Neurological Surgery and Anatomical Sciences and Neurobiology, 511 South Floyd Street, MDR Room 616, Louisville, KY 40292, USA
| |
Collapse
|
36
|
McKay SM, Brooks DJ, Hu P, McLachlan EM. Distinct types of microglial activation in white and grey matter of rat lumbosacral cord after mid-thoracic spinal transection. J Neuropathol Exp Neurol 2007; 66:698-710. [PMID: 17882014 DOI: 10.1097/nen.0b013e3181256b32] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The inflammatory response has been characterized in the lumbosacral segments (L4-S1) of rats after spinal transection at T8. Immune cells were identified immunohistochemically using antibodies to complement type 3 receptor, CD11b (OX-42), the macrophage lysosomal antigen, CD68 (ED1), major histocompatibility complex class II (MHC II), and CD163 (ED2), a marker of perivascular cells. One week after cord transection, OX-42+ microglial density had nearly doubled. In the white matter, microglia became enlarged, often with retracted processes. In contrast, microglia in the grey matter remained ramified although nearly half of those lying medially contained clusters of ED1+ granules. After 8 weeks, ED1+ (+/-MHC II) macrophages were prominent in regions of Wallerian degeneration extending from dorsolateral to ventral funiculi. Microglial density remained raised in grey matter, particularly in the ventral horns of L4/5. Ramified microglia expressing MHC II+ (+/-ED1) extended from deep in the dorsal columns and around the central canal to the ventral columns. More ED2+ (+/-MHC II) perivascular and meningeal cells were recruited and expressed ED1. Thus, distinct from their conversion into macrophages in the white matter, the activation of ramified microglia after degeneration in the grey matter involves expression of ED1 without morphologic transformation.
Collapse
Affiliation(s)
- Sarah M McKay
- Spinal Injuries Research Centre, Prince of Wales Medical Research Institute, Randwick, NSW, Australia
| | | | | | | |
Collapse
|
37
|
Willis WD. The somatosensory system, with emphasis on structures important for pain. ACTA ACUST UNITED AC 2007; 55:297-313. [PMID: 17604109 DOI: 10.1016/j.brainresrev.2007.05.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 05/10/2007] [Accepted: 05/20/2007] [Indexed: 11/15/2022]
Abstract
Santiago Ramón y Cajal described a number of somatosensory structures, including several associated with pain, in his major work on the Histology of the Nervous System of Man and Vertebrates. Our knowledge of such structures has been considerably expanded since Cajal because of the introduction of a number of experimental approaches that were not available in his time. For example, Cajal made several drawings of peripheral mechanoreceptors, as well as of bare nerve endings, but later work by others described additional somatosensory receptors and investigated the ultrastructure of bare nerve endings. Furthermore, the transducer molecules responsible for responses to nociceptive, thermal or chemical stimuli are now becoming known, including a series of TRP (transient receptor potential) receptor molecules, such as TRPV1 (the capsaicin receptor). Cajal described the development of dorsal root and other sensory ganglion cells and related the disposition of their somata and neurites to his theory of the functional polarity of neurons. He described the entry of both large and small afferent fibers into the spinal cord, including the projections of their collaterals into different parts of the gray matter and into different white matter tracts. He described a number of types of neurons in the gray matter, including ones in the marginal zone, substantia gelatinosa and head and neck of the dorsal horn. He found neurons in the deep dorsal horn whose dendrites extend dorsally into the superficial dorsal horn. Some of these neurons have since been shown by retrograde labeling to be spinothalamic tract cells. Cajal clearly described the dorsal column/medial lemniscus pathway, but the presence and course of the spinothalamic tract was unknown at the time.
Collapse
Affiliation(s)
- William D Willis
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1069, USA.
| |
Collapse
|
38
|
Fisiologia del dolore. Neurologia 2007. [DOI: 10.1016/s1634-7072(07)70549-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
39
|
Ogawa A, Meng ID. The cannabinoid receptor agonist, WIN 55,212-2, inhibits cool-specific lamina I medullary dorsal horn neurons. Neuroscience 2006; 143:265-72. [PMID: 16949215 DOI: 10.1016/j.neuroscience.2006.07.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 07/27/2006] [Accepted: 07/27/2006] [Indexed: 10/24/2022]
Abstract
Cannabinoid receptor agonists have been demonstrated to inhibit medullary and spinal cord dorsal horn nociceptive neurons. The effect of cannabinoids on thermoreceptive specific neurons in the spinal or medullary dorsal horn remains unknown. In the present study, single-unit recordings from the rat medullary dorsal horn were performed to examine the effect of a cannabinoid receptor agonists on cold-specific lamina I spinothalamic tract neurons. The cannabinoid CB1/CB2 receptor agonist, WIN 55,212-2 (WIN-2), was locally applied to the medullary dorsal horn and the neuronal activity evoked by cooling the receptive field was recorded. WIN-2 (1 microg/microl and 2 microg/microl) significantly attenuated cold-evoked activity. Co-administration of the CB1 receptor antagonist SR 141716 with WIN-2 did not affect cold-evoked activity. These results demonstrate a potential mechanism by which cannabinoids produce hypothermia, and also suggest that cannabinoids may affect non-noxious thermal discrimination.
Collapse
Affiliation(s)
- A Ogawa
- Department of Physiology, College of Osteopathic Medicine, University of New England, Biddeford, ME 04005, USA
| | | |
Collapse
|
40
|
Reed WR, Shum-Siu A, Onifer SM, Magnuson DS. Inter-enlargement pathways in the ventrolateral funiculus of the adult rat spinal cord. Neuroscience 2006; 142:1195-207. [PMID: 16938403 PMCID: PMC3741649 DOI: 10.1016/j.neuroscience.2006.07.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 07/03/2006] [Accepted: 07/11/2006] [Indexed: 11/23/2022]
Abstract
The ventrolateral funiculus (VLF) in the spinal cord contains important ascending and descending pathways related to locomotion and interlimb coordination. The primary purpose of this descriptive study was to investigate the distribution of inter-enlargement pathways in the adult rat spinal cord with an emphasis on the VLF. We made discrete unilateral injections of Fluoro-Gold (FG) into the right VLF at thoracic segment (T) 9, and either unilateral or bilateral injections of Fluoro-Ruby (FR) into the intermediate gray matter at the cervical (C) 5-6, C7-8, or lumbar (L) 2 segmental levels. Inter-enlargement neurons with ascending axons in the right VLF were found bilaterally in laminae VII and VIII throughout the rostral lumbar spinal cord (L1-L3) and predominantly contralaterally in the caudal lumbosacral (L4-S1) spinal cord. Following left unilateral FR injections at C5-6 or C7-8 and right unilateral VLF injections of FG at T9, very few double-labeled neurons could be found anywhere in the lumbar spinal cord. Similar injections of FR at L2 revealed an almost symmetrical bilateral distribution of double-labeled neurons throughout the cervical spinal cord (C1-8). These results describe ascending and descending pathways within the spinal cord that interconnect the two enlargements and involve both commissural and ipsilateral interneurons. The majority of inter-enlargement neurons had axons within the VLF at T9. These observations support the hypothesis that the VLF contains long ascending and descending axons with propriospinal inter-enlargement, commissural and ipsilateral connections that are anatomically well-suited to mediate interlimb coordination.
Collapse
Affiliation(s)
- William R. Reed
- Department of Anatomical Sciences and Neurobiology, The Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville KY 40292
| | - Alice Shum-Siu
- Department of Neurological Surgery, The Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville KY 40292
| | - Stephen M. Onifer
- Department of Neurological Surgery, The Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville KY 40292
| | - David S.K. Magnuson
- Department of Anatomical Sciences and Neurobiology, The Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville KY 40292
- Department of Neurological Surgery, The Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville KY 40292
| |
Collapse
|
41
|
Choi SS, Seo YJ, Shim EJ, Kwon MS, Lee JY, Ham YO, Suh HW. Involvement of phosphorylated Ca2+/calmodulin-dependent protein kinase II and phosphorylated extracellular signal-regulated protein in the mouse formalin pain model. Brain Res 2006; 1108:28-38. [PMID: 16863646 DOI: 10.1016/j.brainres.2006.06.048] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 06/07/2006] [Accepted: 06/11/2006] [Indexed: 01/12/2023]
Abstract
In the present study, we investigated the role of phosphorylated calcium/calmodulin-dependent protein kinase II (pCaMK-II) and phosphorylated extracellular signal-regulated protein kinase (pERK) in nociceptive processing at the spinal and supraspinal levels in the formalin subcutaneous induced mouse pain model. In the immunoblot assay, subcutaneous (s.c.) injection with formalin increased the pERK and pCaMK-IIalpha level in the spinal cord, and an immunohistochemical study showed that the increase of pERK and pCaMK-IIalpha immunoreactivity mainly occurred in the laminae I and II areas of the spinal dorsal horn. At the supraspinal level, although pERK was not changed in the hippocampus induced by formalin s.c. injection, pCaMK-IIalpha was increased in the hippocampus and hypothalamus by s.c. formalin injection, and an increase of pCaMK-IIalpha immunoreactivity mainly occurred in the pyramidal cells and the stratum lucidum/radiatum layer of the CA3 region of hippocampus and paraventricular nucleus of the hypothalamus. Moreover, pERK immunoreactivity in the hypothalamic paraventricular nucleus was also increased. The second phase of nociceptive behavior induced by formalin administered either i.t. or intracerebroventricularly (i.c.v.) was attenuated by PD98059 (ERK inhibitor) as well as KN-93(a CaMK-II inhibitor). On the other hand, the first phase of nociceptive behavior induced by formalin s.c. injection was not affected by i.t. KN-93. Our results suggest that pERK and pCaMK-II located at both the spinal cord and supraspinal levels are an important regulator during the nociceptive processes induced by formalin administered s.c. respectively.
Collapse
Affiliation(s)
- Seong-Soo Choi
- Department of Pharmacology and Institute of Natural Medicine, College of Medicine, Hallym University, 1 Okcheon-Dong, Chuncheon, Gangwon-Do, 200-702, South Korea
| | | | | | | | | | | | | |
Collapse
|
42
|
Bereiter DA, Cioffi JL, Bereiter DF. Oestrogen receptor-immunoreactive neurons in the trigeminal sensory system of male and cycling female rats. Arch Oral Biol 2006; 50:971-9. [PMID: 15893734 DOI: 10.1016/j.archoralbio.2005.03.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 03/04/2005] [Indexed: 12/31/2022]
Abstract
Many common craniofacial pain conditions are more prevalent in women than men and may be related to the phase of the menstrual cycle. Long-term effects of oestrogen in the nervous system are produced by receptor-mediated [oestrogen receptor alpha (ERalpha) and beta (ERbeta) isoforms] mechanisms; however, it is not known if the distribution of ER-positive neurons in the trigeminal system is similar in males and females. Quantitative immunocytochemistry was used to compare the distribution of ERalpha-labelled neurons in the trigeminal brainstem complex (TBC) and ganglion of male and female rats at different stages of the oestrous cycle. A high density of ERalpha-labelled neurons was seen in the superficial laminae (I-III) throughout the trigeminal subnucleus caudalis (Vc) and the upper cervical dorsal horn. Counts of ERalpha-positive neurons in laminae I-III were similar for prooestrous and dioestrous females, while males had fewer cells. The deeper laminae (IV-V) of the Vc and the cervical dorsal horn had few ERalpha-positive neurons in all groups. At the region surrounding the central canal at caudal levels of the Vc, prooestrous females had more ERalpha-positive neurons than dioestrous females or males. Few labelled cells were seen rostral to the trigeminal subnucleus interpolaris/caudalis transition region (Vi/Vc) in any group. In the trigeminal ganglion, prooestrous and dioestrous females had a moderate (8-10%) number of nuclear-labelled small or medium-sized neurons, while males had fewer labelled cells (4.5%). Qualitatively, the pattern of staining for ERbeta was similar, although weaker, than for ERalpha in the trigeminal dorsal horn or ganglion. These results were consistent with the hypothesis that oestrogen acts through trigeminal ganglion cells and caudal portions of the Vc to modulate sensory and autonomic aspects of craniofacial pain in a sex-related manner.
Collapse
Affiliation(s)
- D A Bereiter
- Department of Surgery, Rhode Island Hospital/Brown Medical School, 593 Eddy Street 222 Nursing Arts, Providence, RI 02903, USA.
| | | | | |
Collapse
|
43
|
Burstein R, Jakubowski M. Unitary hypothesis for multiple triggers of the pain and strain of migraine. J Comp Neurol 2006; 493:9-14. [PMID: 16258903 DOI: 10.1002/cne.20688] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Migraine headache is triggered by and associated with a variety of hormonal, emotional, nutritional, and physiological changes. The perception of migraine headache is formed when nociceptive signals originating in the meninges are conveyed to the somatosensory cortex through the trigeminal ganglion, medullary dorsal horn, and thalamus. Is there a common descending pathway accounting for the activation of meningeal nociceptors by different migraine triggers? We propose that different migraine triggers activate a wide variety of brain areas that impinge on parasympathetic neurons innervating the meninges. According to this hypothesis, migraine triggers such as perfume, stress, or awakening activate multiple hypothalamic, limbic, and cortical areas, all of which contain neurons that project to the preganglionic parasympathetic neurons in the superior salivatory nucleus (SSN). The SSN, in turn, activates postganglionic parasympathetic neurons in the sphenopalatine ganglion, resulting in vasodilation and local release of inflammatory molecules that activate meningeal nociceptors. Are there ascending pathways through which the trigeminovascular system can induce the wide variety of migraine symptoms? We propose that trigeminovascular projections from the medullary dorsal horn to selective areas in the midbrain, hypothalamus, amygdala, and basal forebrain are functionally positioned to produce migraine symptoms such as irritability, loss of appetite, fatigue, depression, or the quest for solitude. Bidirectional trafficking by which the trigeminovascular system can activate the same brain areas that have triggered its own activity in the first place provides an attractive network of perpetual feedback that drives a migraine attack for many hours and even days.
Collapse
Affiliation(s)
- Rami Burstein
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
44
|
Yu XH, Ribeiro-da-Silva A, Ribeiro Da Silva A, De Koninck Y. Morphology and neurokinin 1 receptor expression of spinothalamic lamina I neurons in the rat spinal cord. J Comp Neurol 2006; 491:56-68. [PMID: 16127696 DOI: 10.1002/cne.20675] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Distinct morphological types of spinothalamic tract (STT) lamina I (LI) neurons have been identified in the cat and monkey spinal dorsal horn. Because these morphological types appear to differ in functional properties and receptor expression, we examined their distribution in the rat to test how their identification relates to earlier classification schemes. LI STT cells were retrogradely labeled with cholera toxin subunit b (CTb). Three types were recognized on the basis of cell body shape and proximal dendrites in the horizontal plane: fusiform, multipolar, and pyramidal. The relative distribution of these types was: 43, 26, and 28%, respectively, similar to that observed in the cat and monkey. 3D reconstructions were used to view each cell in all three major projection planes: horizontal, parasagittal, and transverse. Most LI STT neurons appeared fusiform in the parasagittal plane even though they belonged to different types based on their appearance in the horizontal plane, except in the most lateral portion of the dorsal horn, where LI curves ventrally. The proportion of STT neurons within LI was quantified by using the optical dissector method. To label all LI neurons, we used an anti-neuron-specific nuclear protein (NeuN) antibody. We found that approximately 9% of LI neurons projected to the thalamus. We also investigated neurokinin 1 receptor (NK-1r) expression in LI STT neurons. As in the monkey, most pyramidal STT neurons did not express NK-1r. These results provide further evidence that distinct morphological types of neurons differ in phenotype but not in their projection pattern.
Collapse
Affiliation(s)
- Xiao Hong Yu
- Department of Pharmacology & Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | | | |
Collapse
|
45
|
Villeda SA, Akopians AL, Babayan AH, Basbaum AI, Phelps PE. Absence of Reelin results in altered nociception and aberrant neuronal positioning in the dorsal spinal cord. Neuroscience 2006; 139:1385-96. [PMID: 16580148 DOI: 10.1016/j.neuroscience.2006.01.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 12/31/2005] [Accepted: 01/16/2006] [Indexed: 11/23/2022]
Abstract
Mutations in reeler, the gene coding for the Reelin protein, result in pronounced motor deficits associated with positioning errors (i.e. ectopic locations) in the cerebral and cerebellar cortices. In this study we provide the first evidence that the reeler mutant also has profound sensory defects. We focused on the dorsal horn of the spinal cord, which receives inputs from small diameter primary afferents and processes information about noxious, painful stimulation. We used immunocytochemistry to map the distribution of Reelin and Disabled-1 (the protein product of the reeler gene, and the intracellular adaptor protein, Dab1, involved in its signaling pathway) in adjacent regions of the developing dorsal horn, from early to late embryonic development. As high levels of Dab1 accumulate in cells that sustain positioning errors in reeler mutants, our findings of increased Dab1 immunoreactivity in reeler laminae I-III, lamina V and the lateral spinal nucleus suggest that there are incorrectly located neurons in the reeler dorsal horn. Subsequently, we identified an aberrant neuronal compaction in reeler lamina I and a reduction of neurons in the lateral spinal nucleus throughout the spinal cord. Additionally, we detected neurokinin-1 receptors expressed by Dab1-labeled neurons in reeler laminae I-III and the lateral spinal nucleus. Consistent with these anatomical abnormalities having functional consequences, we found a significant reduction in mechanical sensitivity and a pronounced thermal hyperalgesia (increased pain sensitivity) in reeler compared with control mice. As the nociceptors in control and reeler dorsal root ganglia are similar, our results indicate that Reelin signaling is an essential contributor to the normal development of central circuits that underlie nociceptive processing and pain.
Collapse
Affiliation(s)
- S A Villeda
- Department of Physiological Science, UCLA, Los Angeles, CA 90095-1606, USA
| | | | | | | | | |
Collapse
|
46
|
Puder BA, Papka RE. Activation and circuitry of uterine-cervix-related neurons in the lumbosacral dorsal root ganglia and spinal cord at parturition. J Neurosci Res 2005; 82:875-89. [PMID: 16273543 DOI: 10.1002/jnr.20690] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Stimulation of the uterine cervix at parturition activates neural circuits involving primary sensory nerves and supraspinally projecting neurons of the lumbosacral spinal cord, resulting in output of hypothalamic neurohormones. Dorsal root ganglia (DRG) and spinal neurons of these circuits are not well-characterized. The objectives of this study were to detail the activation of DRG and spinal neurons of the L6/S1 levels that are stimulated at late pregnancy, verify hypothalamic projections of activated spinal neurons, and determine whether activated neurons express estrogen receptor-alpha (ERalpha). Expression of phosphorylated cyclic-AMP response element-binding protein (PCREB) and Fos immunohistochemistry were used to "mark" activated DRG and spinal neurons, respectively. Retrograde tracing identified uterine-cervix-related and spinohypothalamic neurons. Baseline PCREB expression in the DRG increased during pregnancy and peaked during the last trimester. Some PCREB-expressing neurons contained retrograde tracer identifying them as cervix-related neurons. Fos-expressing neurons were few in spinal cords of nonpregnant and day 22 pregnant rats but were numerous in parturient animals. Some Fos-expressing neurons located in the dorsal half of the spinal cord contained retrograde tracer identifying them as spinohypothalamic neurons. Some DRG neurons expressing PCREB also expressed ERalpha, and some spinal neurons activated at parturition projected axons to the hypothalamus and expressed ERalpha. These results indicate that DRG and spinal cord neurons are activated at parturition; that those in the spinal cord are present in areas involved in autonomic and sensory processing; that some spinal neurons project axons to the hypothalamus, ostensibly part of a neuroendocrine reflex; and that sensory and spinal neurons can respond to estrogens. Moreover, some activated sensory neurons may be involved in the animal's perception of labor pain.
Collapse
Affiliation(s)
- B A Puder
- Department of Neurobiology, Northeastern Ohio Universities College of Medicine, Rootstown, 44272, USA
| | | |
Collapse
|
47
|
Slack SE, Grist J, Mac Q, McMahon SB, Pezet S. TrkB expression and phospho-ERK activation by brain-derived neurotrophic factor in rat spinothalamic tract neurons. J Comp Neurol 2005; 489:59-68. [PMID: 15977164 DOI: 10.1002/cne.20606] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin implicated in the phenomena of synaptic plasticity in the adult. It is found in terminals of nociceptive primary afferents. Following a pain-related stimulus, it is released in the spinal cord, where it activates its high-affinity receptor TrkB, leading to the phosphorylation of the mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase (ERK). A large body of evidence suggests that BDNF has a positive neuromodulatory effect on glutamate transmission in the spinal cord. However, none of these studies examined anatomically whether projection neurons known to be involved in transmission of nociceptive inputs express BDNF's receptor. Because the spinothalamic tract (STT) is a well-characterized pathway for its role in the transfer and integration of sensory and nociceptive informations, this study in rats aimed to 1) determine whether neurons of the STT pathway express the TrkB receptor, 2) establish the rostrocaudal and laminar distribution of STT-TrkB neurons in the whole spinal cord, and 3) test the potential functionality of TrkB expression in these cells by investigating the ability of BDNF to activate the MAP kinase ERK. Using tract tracing coupled to immunofluorescent labeling for TrkB, we observed that in all levels of the spinal cord most STT neurons were immunoreactive for TrkB. Furthermore, microinjections of BDNF into the spinal cord or release of endogenous BDNF by intraplantar injection of capsaicin activated ERK phosphorylation in TrkB-containing STT neurons. These data suggest an important role for BDNF in nociception as an activator of spinothalamic projection neurons.
Collapse
Affiliation(s)
- Sarah E Slack
- The London Pain Consortium, King's College London, Neurorestoration, Center for Age Related Diseases, London SE1 1UL, United Kingdom
| | | | | | | | | |
Collapse
|
48
|
Choi SS, Seo YJ, Kwon MS, Shim EJ, Lee JY, Ham YO, Lee HK, Suh HW. Increase of phosphorylation of calcium/calmodulin-dependent protein kinase-II in several brain regions by substance P administered intrathecally in mice. Brain Res Bull 2005; 65:375-81. [PMID: 15833591 DOI: 10.1016/j.brainresbull.2005.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 01/10/2005] [Accepted: 01/30/2005] [Indexed: 01/12/2023]
Abstract
In the present study, we investigated the role of phosphorylated calcium/calmodulin-dependent protein kinase-II (pCaMK-II) in nociceptive processing at the spinal and supraspinal levels in the substance P (SP)-induced mouse pain model. In the immunoblot assay, intrathecal (i.t.) injection with SP increased the pCaMK-II level in the spinal cord, and an immunohistochemical study showed that the increase of pCaMK-II immunoreactivity mainly occurred in the laminae I and II areas of the spinal dorsal horn. At the supraspinal level, pCaMK-II was increased in the hippocampus and hypothalamus by i.t. SP injection, and an increase of pCaMK-II immunoreactivity mainly occurred in the pyramidal cells and the stratum lucidum/radiatum layer of the CA3 region of hippocampus and paraventricular nucleus of the hypothalamus. Moreover, pCaMK-II immunoreactivity in the locus coelureus of the brain stem was also increased. The nociceptive behavior induced by SP administered either i.t. or intracerebroventricularly (i.c.v.) was attenuated by KN-93 (a CaMK-II inhibitor). Our results suggest that pCaMK-II located at both spinal cord and supraspinal levels is an important regulator during the nociceptive processes induced by SP administered i.t.
Collapse
Affiliation(s)
- Seong-Soo Choi
- Department of Pharmacology and Institute of Natural Medicine, College of Medicine, Hallym University, 1 Okchun-Dong, Chunchon, Gangwon-Do 200-702, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Choi SS, Seo YJ, Kwon MS, Shim EJ, Lee JY, Ham YO, Park SH, Suh HW. Involvement of phosphorylated extracellular signal-regulated kinase in the mouse substance P pain model. ACTA ACUST UNITED AC 2005; 137:152-8. [PMID: 15950773 DOI: 10.1016/j.molbrainres.2005.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 02/17/2005] [Accepted: 03/03/2005] [Indexed: 01/14/2023]
Abstract
In the present study, we investigated the role of pERK in nociceptive processing at the spinal and supraspinal levels in the substance P (SP)-induced mouse pain model. In the immunoblot assay, intrathecal (it) injection with SP increased pERK level at the spinal cord and an immunohistochemical study showed that increase of pERK immunoreactivity mainly occurred in the lamina I and II areas of the spinal dorsal horn. At the supraspinal level, pERK was increased in hippocampus and hypothalamus by i.t. SP injection, and an increase of pERK immunoreactivity mainly occurred in the dentate gyrus and CA3 region of hippocampus and paraventricular nucleus on hypothalamus. The nociceptive behavior induced by Sub P administered either i.t. or intracerebroventricularly (i.c.v.) was attenuated by PD98059 (a MEK 1/2 inhibitor) in a dose-dependent manner. Our results suggest that pERK located at both spinal cord and supraspinal levels plays as an important regulator during the nociceptive process activated by SP administered it.
Collapse
Affiliation(s)
- Seong-Soo Choi
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, 1 Okchun-Dong, Chuncheon, Gangwon-Do, 200-702, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Jonsdottir S, Bouma A, Sergeant JA, Scherder EJA. Effects of transcutaneous electrical nerve stimulation (TENS) on cognition, behavior, and the rest-activity rhythm in children with attention deficit hyperactivity disorder, combined type. Neurorehabil Neural Repair 2005; 18:212-21. [PMID: 15537992 DOI: 10.1177/1545968304270759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The aim of this study was to examine the effects of transcutaneous electrical nerve stimulation (TENS) on cognition, behavior, and the rest-activity rhythm in children with attention deficit hyperactivity disorder, combined type (ADHD-CT). METHODS Twenty-two children diagnosed with ADHD-CT received TENS treatment during 6 weeks, 2 times 30 min a day. Neuropsychological tests were administered to assess cognition, parent/teacher behavioral rating scales were used to measure behavior, and actigraphy was used to assess the rest-activity rhythm. RESULTS TENS appeared to have a moderate beneficial influence on cognitive functions that load particularly on executive function. There was also improvement in behavior as measured by parent/teacher behavioral rating scales. Moreover, motor restlessness during sleep and motor activity during the day decreased by TENS. CONCLUSIONS The effects of TENS in children with ADHD are modest but encouraging and warrant further research.
Collapse
Affiliation(s)
- Solveig Jonsdottir
- Department of Child and Adolescent Psychiatry, Landspitali-University Hospital, Reykjavík, Iceland.
| | | | | | | |
Collapse
|