1
|
Mali SS, Silva R, Gong Z, Cronce M, Vo U, Vuong C, Moayedi Y, Cox JS, Bautista DM. SARS-CoV-2 papain-like protease activates nociceptors to drive sneeze and pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575114. [PMID: 38260476 PMCID: PMC10802627 DOI: 10.1101/2024.01.10.575114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
SARS-CoV-2, the virus responsible for COVID-19, triggers symptoms such as sneezing, aches and pain.1 These symptoms are mediated by a subset of sensory neurons, known as nociceptors, that detect noxious stimuli, densely innervate the airway epithelium, and interact with airway resident epithelial and immune cells.2-6 However, the mechanisms by which viral infection activates these neurons to trigger pain and airway reflexes are unknown. Here, we show that the coronavirus papain-like protease (PLpro) directly activates airway-innervating trigeminal and vagal nociceptors in mice and human iPSC-derived nociceptors. PLpro elicits sneezing and acute pain in mice and triggers the release of neuropeptide calcitonin gene-related peptide (CGRP) from airway afferents. We find that PLpro-induced sneeze and pain requires the host TRPA1 ion channel that has been previously demonstrated to mediate pain, cough, and airway inflammation.7-9 Our findings are the first demonstration of a viral product that directly activates sensory neurons to trigger pain and airway reflexes and highlight a new role for PLpro and nociceptors in COVID-19.
Collapse
Affiliation(s)
- Sonali S. Mali
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA
| | - Ricardo Silva
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Zhongyan Gong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA
| | - Michael Cronce
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA
| | - Uyen Vo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
- Howard Hughes Medical Institute
| | - Cliff Vuong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Yalda Moayedi
- Pain Research Center, Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY
| | - Jeffery S. Cox
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Diana M. Bautista
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA
- Howard Hughes Medical Institute
| |
Collapse
|
2
|
Molot J, Sears M, Anisman H. Multiple Chemical Sensitivity: It's time to catch up to the science. Neurosci Biobehav Rev 2023; 151:105227. [PMID: 37172924 DOI: 10.1016/j.neubiorev.2023.105227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Multiple chemical sensitivity (MCS) is a complex medical condition associated with low dose chemical exposures. MCS is characterized by diverse features and common comorbidities, including fibromyalgia, cough hypersensitivity, asthma, and migraine, and stress/anxiety, with which the syndrome shares numerous neurobiological processes and altered functioning within diverse brain regions. Predictive factors linked to MCS comprise genetic influences, gene-environment interactions, oxidative stress, systemic inflammation, cell dysfunction, and psychosocial influences. The development of MCS may be attributed to the sensitization of transient receptor potential (TRP) receptors, notably TRPV1 and TRPA1. Capsaicin inhalation challenge studies demonstrated that TRPV1 sensitization is manifested in MCS, and functional brain imaging studies revealed that TRPV1 and TRPA1 agonists promote brain-region specific neuronal variations. Unfortunately, MCS has often been inappropriately viewed as stemming exclusively from psychological disturbances, which has fostered patients being stigmatized and ostracized, and often being denied accommodation for their disability. Evidence-based education is essential to provide appropriate support and advocacy. Greater recognition of receptor-mediated biological mechanisms should be incorporated in laws, and regulation of environmental exposures.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Margaret Sears
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Hymie Anisman
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| |
Collapse
|
3
|
Tsuzuki S. A point of view on human fat olfaction - do fatty derivatives serve as cues for awareness of dietary fats? Biomed Res 2023; 44:127-146. [PMID: 37544735 DOI: 10.2220/biomedres.44.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Fat (triglycerides) consumption is critical for the survival of animals, including humans. Being able to smell fat can be advantageous in judging food value. However, fat has poor volatility; thus, olfaction of fat seems impossible. What about fatty acids that comprise fat? Humans smell and discriminate medium-chain fatty acids. However, no conclusive evidence has been provided for the olfactory sense of long-chain fatty acids, including essential acids such as linoleic acid (LA). Instead, humans likely perceive the presence of essential fatty acids through the olfaction of volatile compounds generated by their oxidative breakdown (e.g., hexanal and γ-decalactone). For some people, such scents are pleasing, especially when they come from fruit. Nonetheless, it remains unclear whether the olfaction of these volatiles leads to the recognition of fat per se. Nowadays, people often smell LA-borne aldehydes such as E,E-2,4-decadienal that occur appreciably, for example, from edible oils during deep frying, and are pronely captivated by their characteristic "fatty" note, which can be considered a "pseudo-perception" of fat. However, our preference for such LA-borne aldehyde odors may be a potential cause behind the modern overdose of n-6 fatty acids. This review aims to provide a view of whether and, if any, how we olfactorily perceive dietary fats and raises future purposes related to human fat olfaction, such as investigating sub-olfactory systems for detecting long-chain fatty acids.
Collapse
Affiliation(s)
- Satoshi Tsuzuki
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
4
|
Molot J, Sears M, Marshall LM, Bray RI. Neurological susceptibility to environmental exposures: pathophysiological mechanisms in neurodegeneration and multiple chemical sensitivity. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:509-530. [PMID: 34529912 DOI: 10.1515/reveh-2021-0043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/13/2021] [Indexed: 05/23/2023]
Abstract
The World Health Organization lists air pollution as one of the top five risks for developing chronic non-communicable disease, joining tobacco use, harmful use of alcohol, unhealthy diets and physical inactivity. This review focuses on how host defense mechanisms against adverse airborne exposures relate to the probable interacting and overlapping pathophysiological features of neurodegeneration and multiple chemical sensitivity. Significant long-term airborne exposures can contribute to oxidative stress, systemic inflammation, transient receptor subfamily vanilloid 1 (TRPV1) and subfamily ankyrin 1 (TRPA1) upregulation and sensitization, with impacts on olfactory and trigeminal nerve function, and eventual loss of brain mass. The potential for neurologic dysfunction, including decreased cognition, chronic pain and central sensitization related to airborne contaminants, can be magnified by genetic polymorphisms that result in less effective detoxification. Onset of neurodegenerative disorders is subtle, with early loss of brain mass and loss of sense of smell. Onset of MCS may be gradual following long-term low dose airborne exposures, or acute following a recognizable exposure. Upregulation of chemosensitive TRPV1 and TRPA1 polymodal receptors has been observed in patients with neurodegeneration, and chemically sensitive individuals with asthma, migraine and MCS. In people with chemical sensitivity, these receptors are also sensitized, which is defined as a reduction in the threshold and an increase in the magnitude of a response to noxious stimulation. There is likely damage to the olfactory system in neurodegeneration and trigeminal nerve hypersensitivity in MCS, with different effects on olfactory processing. The associations of low vitamin D levels and protein kinase activity seen in neurodegeneration have not been studied in MCS. Table 2 presents a summary of neurodegeneration and MCS, comparing 16 distinctive genetic, pathophysiological and clinical features associated with air pollution exposures. There is significant overlap, suggesting potential comorbidity. Canadian Health Measures Survey data indicates an overlap between neurodegeneration and MCS (p < 0.05) that suggests comorbidity, but the extent of increased susceptibility to the other condition is not established. Nevertheless, the pathways to the development of these conditions likely involve TRPV1 and TRPA1 receptors, and so it is hypothesized that manifestation of neurodegeneration and/or MCS and possibly why there is divergence may be influenced by polymorphisms of these receptors, among other factors.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, North York, ON, Canada
| | | | | | - Riina I Bray
- Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Witika BA, Poka MS, Demana PH, Matafwali SK, Melamane S, Malungelo Khamanga SM, Makoni PA. Lipid-Based Nanocarriers for Neurological Disorders: A Review of the State-of-the-Art and Therapeutic Success to Date. Pharmaceutics 2022; 14:836. [PMID: 35456669 PMCID: PMC9031624 DOI: 10.3390/pharmaceutics14040836] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
Neurodegenerative disorders including Alzheimer's, Parkinson's, and dementia are chronic and advanced diseases that are associated with loss of neurons and other related pathologies. Furthermore, these disorders involve structural and functional defections of the blood-brain barrier (BBB). Consequently, advances in medicines and therapeutics have led to a better appreciation of various pathways associated with the development of neurodegenerative disorders, thus focusing on drug discovery and research for targeted drug therapy to the central nervous system (CNS). Although the BBB functions as a shield to prevent toxins in the blood from reaching the brain, drug delivery to the CNS is hindered by its presence. Owing to this, various formulation approaches, including the use of lipid-based nanocarriers, have been proposed to address shortcomings related to BBB permeation in CNS-targeted therapy, thus showing the potential of these carriers for translation into clinical use. Nevertheless, to date, none of these nanocarriers has been granted market authorization following the successful completion of all stages of clinical trials. While the aforementioned benefits of using lipid-based carriers underscores the need to fast-track their translational development into clinical practice, technological advances need to be initiated to achieve appropriate capacity for scale-up and the production of affordable dosage forms.
Collapse
Affiliation(s)
- Bwalya Angel Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (M.S.P.); (P.H.D.)
| | - Madan Sai Poka
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (M.S.P.); (P.H.D.)
| | - Patrick Hulisani Demana
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (M.S.P.); (P.H.D.)
| | - Scott Kaba Matafwali
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK;
| | - Siyabonga Melamane
- Stutterheim Hospital, No.1 Hospital Street, Stutterheim 4930, South Africa;
| | | | - Pedzisai Anotida Makoni
- Division of Pharmacology, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
6
|
Lesslar OJL, Smith PK. Itch Beyond the Skin-Mucosal Itch. FRONTIERS IN ALLERGY 2022; 2:700368. [PMID: 35386995 PMCID: PMC8974814 DOI: 10.3389/falgy.2021.700368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Itch is a nociceptive sensation linked with reflexes and cognitive motor actions. We traditionally think of itch as a sensation of the skin related to allergy, an insect sting or interestingly, anxiety and frustration. Less understood and considered are the physiological processes involved in the itching sensation that occurs at mucosal and junctional dermal sites, which is extraordinary as from an evolutionary point of view these sites serve important guardian roles, rich in sensory nerves and inflammatory cells. Despite itch being an ancient reflex and evolutionarily conserved phenomenon, better clinical understanding of the nuances between sites of itch sensation may lead to improved clinical outcomes. This review invites readers to appreciate itch beyond the skin by highlighting several specific itch patterns-nasal, oral, auricular, vulvovaginal, anal, and perineal itch-the pathophysiological mechanisms that underlie them, the clinical patterns these may cause, and some unique treatments.
Collapse
Affiliation(s)
- Olivia J Ly Lesslar
- LifeSpan Medicine, Los Angeles, CA, United States.,Cingulum Health, Sydney, NSW, Australia
| | - Peter K Smith
- Clinical Medicine, Griffith University, Southport, QLD, Australia
| |
Collapse
|
7
|
Kincaid AE. The Role of the Nasal Cavity in the Pathogenesis of Prion Diseases. Viruses 2021; 13:v13112287. [PMID: 34835094 PMCID: PMC8621399 DOI: 10.3390/v13112287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Prion diseases, or transmissible spongiform encephalopathies (TSEs), are a class of fatal neurodegenerative diseases caused by the entry and spread of infectious prion proteins (PrPSc) in the central nervous system (CNS). These diseases are endemic to certain mammalian animal species that use their sense of smell for a variety of purposes and therefore expose their nasal cavity (NC) to PrPSc in the environment. Prion diseases that affect humans are either inherited due to a mutation of the gene that encodes the prion protein, acquired by exposure to contaminated tissues or medical devices, or develop without a known cause (referred to as sporadic). The purpose of this review is to identify components of the NC that are involved in prion transport and to summarize the evidence that the NC serves as a route of entry (centripetal spread) and/or a source of shedding (centrifugal spread) of PrPSc, and thus plays a role in the pathogenesis of the TSEs.
Collapse
Affiliation(s)
- Anthony E Kincaid
- Departments of Pharmacy Sciences and Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
8
|
Tirassa P, Schirinzi T, Raspa M, Ralli M, Greco A, Polimeni A, Possenti R, Mercuri NB, Severini C. What substance P might tell us about the prognosis and mechanism of Parkinson's disease? Neurosci Biobehav Rev 2021; 131:899-911. [PMID: 34653503 DOI: 10.1016/j.neubiorev.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
The neuropeptide substance P (SP) plays an important role in neurodegenerative disorders, among which Parkinson's disease (PD). In the present work we have reviewed the involvement of SP and its preferred receptor (NK1-R) in motor and non-motor PD symptoms, in both PD animal models and patients. Despite PD is primarily a motor disorder, non-motor abnormalities, including olfactory deficits and gastrointestinal dysfunctions, can represent diagnostic PD predictors, according to the hypothesis that the olfactory and the enteric nervous system represent starting points of neurodegeneration, ascending to the brain via the sympathetic fibers and the vagus nerve. In PD patients, the α-synuclein aggregates in the olfactory bulb and the gastrointestinal tract, as well as in the dorsal motor nucleus of the vagus nerve often co-localize with SP, indicating SP-positive neurons as highly vulnerable sites of degeneration. Considering the involvement of the SP/NK1-R in both the periphery and specific brain areas, this system might represent a neuronal substrate for the symptom and disease progression, as well as a therapeutic target for PD.
Collapse
Affiliation(s)
- Paola Tirassa
- Institute of Biochemistry and Cell Biology, National Research Council, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy.
| | - Tommaso Schirinzi
- Department of Systems Medicine, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology, National Research Council, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Antonella Polimeni
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Roberta Possenti
- Department of Systems Medicine, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Cinzia Severini
- Institute of Biochemistry and Cell Biology, National Research Council, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy.
| |
Collapse
|
9
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
10
|
Kashiwadani H, Higa Y, Sugimura M, Kuwaki T. Linalool odor-induced analgesia is triggered by TRPA1-independent pathway in mice. Behav Brain Funct 2021; 17:3. [PMID: 33902628 PMCID: PMC8077846 DOI: 10.1186/s12993-021-00176-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/19/2021] [Indexed: 11/10/2022] Open
Abstract
We had recently reported that linalool odor exposure induced significant analgesic effects in mice and that the effects were disappeared in olfactory-deprived mice in which the olfactory epithelium was damaged, thus indicating that the effects were triggered by chemical senses evoked by linalool odor exposure. However, the peripheral neuronal mechanisms, including linalool receptors that contribute toward triggering the linalool odor-induced analgesia, still remain unexplored. In vitro studies have shown that the transient receptor potential ankyrin 1 (TRPA1) responded to linalool, thus raising the possibility that TRPA1 expressed on the trigeminal nerve terminal detects linalool odor inhaled into the nostril and triggers the analgesic effects. To address this hypothesis, we measured the behavioral pain threshold for noxious mechanical stimulation in TRPA1-deficient mice. In contrast to our expectation, we found a significant increase in the threshold after linalool odor exposure in TRPA1-deficient mice, indicating the analgesic effects of linalool odor even in TRPA1-deficient mice. Furthermore, intranasal application of TRPA1 selective antagonist did not alter the analgesic effect of linalool odor. These results showed that the linalool odor-induced analgesia was triggered by a TRPA1-independent pathway in mice.
Collapse
Affiliation(s)
- Hideki Kashiwadani
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Yurina Higa
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.,Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Mitsutaka Sugimura
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| |
Collapse
|
11
|
Ni F, Ogura T, Lin W. Electronic Cigarette Liquid Constituents Induce Nasal and Tracheal Sensory Irritation in Mice in Regionally Dependent Fashion. Nicotine Tob Res 2021; 22:S35-S44. [PMID: 33320249 PMCID: PMC7737480 DOI: 10.1093/ntr/ntaa174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/01/2020] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Electronic cigarettes (e-cigs) are currently used by millions of adults and adolescents worldwide. Major respiratory symptoms, such as coughing reported by e-cig users, including patients with e-cig, or vaping, product use-associated lung injury (EVALI), indicate e-cig constituent-induced sensory irritation. However, e-cig constituent-induced nociceptive activity in nasal and tracheal respiratory epithelia (RE) and neuronal activation in the trigeminal ganglia and brainstem nuclei, which receive airway chemosensory inputs have not been examined and compared. Comparisons of physiological responses between freebase nicotine and nicotine salts are also missing. AIMS AND METHODS Event-related potential (ERP) was recorded electrophysiologically to assess mouse nasal and tracheal RE chemosensory responses to various flavorings, nicotine, including freebase and nicotine salts, e-liquid mixtures, and tussigenic stimuli. Also, mice were subjected to inhalation exposure to aerosol of a vanilla-flavored e-liquid or air (control), and the activated-trigeminal nociceptive neurons and brainstem neurons were examined using immunohistochemistry. RESULTS Individual constituents and mixtures of e-liquids, capsaicin, and citric and acetic acids evoked significantly larger ERP in the nose than in the trachea with the exception of menthol. ERP responses to freebase nicotine were significantly larger than protonated nicotine. Four nicotine salts (benzoate, lactate, levulinate, and salicylate) induced similar responses. Compared with air-exposed mice, e-liquid aerosol-exposed mice showed a significant increase in numbers of activated trigeminal nociceptive neurons and brainstem neurons in the spinal trigeminal nucleus, paratrigeminal nucleus, and nucleus tractus solitarius. CONCLUSIONS E-liquid constituents region-dependently stimulate airway nociceptive chemosensory systems, and freebase nicotine is more potent than protonated nicotine. IMPLICATIONS Neural abnormalities have been implicated in the development of nasal and respiratory illnesses. The higher sensitivity of the nasal nociceptive chemosensory system to nicotine and flavorings may indicate a health risk for e-liquid aerosol-induced upper airway illnesses via neurogenic alteration and warrants further investigation.
Collapse
Affiliation(s)
- Fenge Ni
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD
| | - Tatsuya Ogura
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD
| | - Weihong Lin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD
| |
Collapse
|
12
|
Shaughness M, Acs D, Brabazon F, Hockenbury N, Byrnes KR. Role of Insulin in Neurotrauma and Neurodegeneration: A Review. Front Neurosci 2020; 14:547175. [PMID: 33100956 PMCID: PMC7546823 DOI: 10.3389/fnins.2020.547175] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Insulin is a hormone typically associated with pancreatic release and blood sugar regulation. The brain was long thought to be “insulin-independent,” but research has shown that insulin receptors (IR) are expressed on neurons, microglia and astrocytes, among other cells. The effects of insulin on cells within the central nervous system are varied, and can include both metabolic and non-metabolic functions. Emerging data suggests that insulin can improve neuronal survival or recovery after trauma or during neurodegenerative diseases. Further, data suggests a strong anti-inflammatory component of insulin, which may also play a role in both neurotrauma and neurodegeneration. As a result, administration of exogenous insulin, either via systemic or intranasal routes, is an increasing area of focus in research in neurotrauma and neurodegenerative disorders. This review will explore the literature to date on the role of insulin in neurotrauma and neurodegeneration, with a focus on traumatic brain injury (TBI), spinal cord injury (SCI), Alzheimer’s disease (AD) and Parkinson’s disease (PD).
Collapse
Affiliation(s)
- Michael Shaughness
- Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Deanna Acs
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Fiona Brabazon
- Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Nicole Hockenbury
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Kimberly R Byrnes
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
13
|
Panneton WM, Gan Q. The Mammalian Diving Response: Inroads to Its Neural Control. Front Neurosci 2020; 14:524. [PMID: 32581683 PMCID: PMC7290049 DOI: 10.3389/fnins.2020.00524] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/27/2020] [Indexed: 01/03/2023] Open
Abstract
The mammalian diving response (DR) is a remarkable behavior that was first formally studied by Laurence Irving and Per Scholander in the late 1930s. The DR is called such because it is most prominent in marine mammals such as seals, whales, and dolphins, but nevertheless is found in all mammals studied. It consists generally of breathing cessation (apnea), a dramatic slowing of heart rate (bradycardia), and an increase in peripheral vasoconstriction. The DR is thought to conserve vital oxygen stores and thus maintain life by directing perfusion to the two organs most essential for life-the heart and the brain. The DR is important, not only for its dramatic power over autonomic function, but also because it alters normal homeostatic reflexes such as the baroreceptor reflex and respiratory chemoreceptor reflex. The neurons driving the reflex circuits for the DR are contained within the medulla and spinal cord since the response remains after the brainstem transection at the pontomedullary junction. Neuroanatomical and physiological data suggesting brainstem areas important for the apnea, bradycardia, and peripheral vasoconstriction induced by underwater submersion are reviewed. Defining the brainstem circuit for the DR may open broad avenues for understanding the mechanisms of suprabulbar control of autonomic function in general, as well as implicate its role in some clinical states. Knowledge of the proposed diving circuit should facilitate studies on elite human divers performing breath-holding dives as well as investigations on sudden infant death syndrome (SIDS), stroke, migraine headache, and arrhythmias. We have speculated that the DR is the most powerful autonomic reflex known.
Collapse
Affiliation(s)
- W. Michael Panneton
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Qi Gan
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
14
|
Perivascular and Perineural Pathways Involved in Brain Delivery and Distribution of Drugs after Intranasal Administration. Pharmaceutics 2019; 11:pharmaceutics11110598. [PMID: 31726721 PMCID: PMC6921024 DOI: 10.3390/pharmaceutics11110598] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022] Open
Abstract
One of the most challenging aspects of treating disorders of the central nervous system (CNS) is the efficient delivery of drugs to their targets within the brain. Only a small fraction of drugs is able to cross the blood–brain barrier (BBB) under physiological conditions, and this observation has prompted investigation into the routes of administration that may potentially bypass the BBB and deliver drugs directly to the CNS. One such route is the intranasal (IN) route. Increasing evidence has suggested that intranasally-administered drugs are able to bypass the BBB and access the brain through anatomical pathways connecting the nasal cavity to the CNS. Though the exact mechanisms regulating the delivery of therapeutics following IN administration are not fully understood, current evidence suggests that the perineural and perivascular spaces of the olfactory and trigeminal nerves are involved in brain delivery and cerebral perivascular spaces are involved in widespread brain distribution. Here, we review evidence for these delivery and distribution pathways, and we address questions that should be resolved in order to optimize the IN route of administration as a viable strategy to treat CNS disease states.
Collapse
|
15
|
Maurer M, Papotto N, Sertel-Nakajima J, Schueler M, De Col R, Möhrlen F, Messlinger K, Frings S, Carr RW. Photoactivation of olfactory sensory neurons does not affect action potential conduction in individual trigeminal sensory axons innervating the rodent nasal cavity. PLoS One 2019; 14:e0211175. [PMID: 31412038 PMCID: PMC6693769 DOI: 10.1371/journal.pone.0211175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/25/2019] [Indexed: 12/28/2022] Open
Abstract
Olfactory and trigeminal chemosensory systems reside in parallel within the mammalian nose. Psychophysical studies in people indicate that these two systems interact at a perceptual level. Trigeminal sensations of pungency mask odour perception, while olfactory stimuli can influence trigeminal signal processing tasks such as odour localization. While imaging studies indicate overlap in limbic and cortical somatosensory areas activated by nasal trigeminal and olfactory stimuli, there is also potential cross-talk at the level of the olfactory epithelium, the olfactory bulb and trigeminal brainstem. Here we explored the influence of olfactory and trigeminal signaling in the nasal cavity. A forced choice water consumption paradigm was used to ascertain whether trigeminal and olfactory stimuli could influence behaviour in mice. Mice avoided water sources surrounded by both volatile TRPV1 (cyclohexanone) and TRPA1 (allyl isothiocyanate) irritants and the aversion to cyclohexanone was mitigated when combined with a pure odorant (rose fragrance, phenylethyl alcohol, PEA). To determine whether olfactory-trigeminal interactions within the nose could potentially account for this behavioural effect we recorded from single trigeminal sensory axons innervating the nasal respiratory and olfactory epithelium using an isolated in vitro preparation. To circumvent non-specific effects of chemical stimuli, optical stimulation was used to excite olfactory sensory neurons in mice expressing channel-rhodopsin (ChR2) under the olfactory marker protein (OMP) promoter. Photoactivation of olfactory sensory neurons produced no modulation of axonal action potential conduction in individual trigeminal axons. Similarly, no evidence was found for collateral branching of trigeminal axon that might serve as a conduit for cross-talk between the olfactory and respiratory epithelium and olfactory dura mater. Using direct assessment of action potential activity in trigeminal axons we observed neither paracrine nor axon reflex mediated cross-talk between olfactory and trigeminal sensory systems in the rodent nasal cavity. Our current results suggest that olfactory sensory neurons exert minimal influence on trigeminal signals within the nasal cavity.
Collapse
Affiliation(s)
- Margot Maurer
- Experimental Pain Research, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Nunzia Papotto
- Centre for Organismal Studies, University Heidelberg, Heidelberg, Germany
| | - Julika Sertel-Nakajima
- Institute for Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Markus Schueler
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Roberto De Col
- Institute for Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Frank Möhrlen
- Centre for Organismal Studies, University Heidelberg, Heidelberg, Germany
| | - Karl Messlinger
- Institute for Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Stephan Frings
- Centre for Organismal Studies, University Heidelberg, Heidelberg, Germany
| | - Richard W. Carr
- Experimental Pain Research, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
- * E-mail:
| |
Collapse
|
16
|
Henriques T, Agostinelli E, Hernandez-Clavijo A, Maurya DK, Rock JR, Harfe BD, Menini A, Pifferi S. TMEM16A calcium-activated chloride currents in supporting cells of the mouse olfactory epithelium. J Gen Physiol 2019; 151:954-966. [PMID: 31048412 PMCID: PMC6605691 DOI: 10.1085/jgp.201812310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/08/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022] Open
Abstract
Glial-like supporting (or sustentacular) cells are important constituents of the olfactory epithelium that are involved in several physiological processes such as production of endocannabinoids, insulin, and ATP and regulation of the ionic composition of the mucus layer that covers the apical surface of the olfactory epithelium. Supporting cells express metabotropic P2Y purinergic receptors that generate ATP-induced Ca2+ signaling through the activation of a PLC-mediated cascade. Recently, we reported that a subpopulation of supporting cells expresses also the Ca2+-activated Cl- channel TMEM16A. Here, we sought to extend our understanding of a possible physiological role of this channel in the olfactory system by asking whether Ca2+ can activate Cl- currents mediated by TMEM16A. We use whole-cell patch-clamp analysis in slices of the olfactory epithelium to measure dose-response relations in the presence of various intracellular Ca2+ concentrations, ion selectivity, and blockage. We find that knockout of TMEM16A abolishes Ca2+-activated Cl- currents, demonstrating that TMEM16A is essential for these currents in supporting cells. Also, by using extracellular ATP as physiological stimuli, we found that the stimulation of purinergic receptors activates a large TMEM16A-dependent Cl- current, indicating a possible role of TMEM16A in ATP-mediated signaling. Altogether, our results establish that TMEM16A-mediated currents are functional in olfactory supporting cells and provide a foundation for future work investigating the precise physiological role of TMEM16A in the olfactory system.
Collapse
Affiliation(s)
- Tiago Henriques
- Neurobiology Group, International School for Advanced Studies, Trieste, Italy
| | - Emilio Agostinelli
- Neurobiology Group, International School for Advanced Studies, Trieste, Italy
| | | | | | - Jason R Rock
- Center for Regenerative Medicine, Boston University School of Medicine, Boston, MA
| | - Brian D Harfe
- Department of Molecular Genetics and Microbiology Genetics Institute, University of Florida, College of Medicine, Gainesville, FL
| | - Anna Menini
- Neurobiology Group, International School for Advanced Studies, Trieste, Italy
| | - Simone Pifferi
- Neurobiology Group, International School for Advanced Studies, Trieste, Italy
| |
Collapse
|
17
|
Zhang L, Kunkler PE, Knopp KL, Oxford GS, Hurley JH. Role of intraganglionic transmission in the trigeminovascular pathway. Mol Pain 2019; 15:1744806919836570. [PMID: 30784351 PMCID: PMC6440047 DOI: 10.1177/1744806919836570] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 01/14/2023] Open
Abstract
Migraine is triggered by poor air quality and odors through unknown mechanisms. Activation of the trigeminovascular pathway by environmental irritants may occur via activation of transient receptor potential ankyrin 1 (TRPA1) receptors on nasal trigeminal neurons, but how that results in peripheral and central sensitization is unclear. The anatomy of the trigeminal ganglion suggests that noxious nasal stimuli are not being transduced to the meninges by axon reflex but likely through intraganglionic transmission. Consistent with this concept, we injected calcitonin gene-related peptide, adenosine triphosphate, or glutamate receptor antagonists or a gap junction channel blocker directly and exclusively into the trigeminal ganglion and blocked meningeal blood flow changes in response to acute nasal TRP agonists. Previously, we observed chronic sensitization of the trigeminovascular pathway after acrolein exposure, a known TRPA1 receptor agonist. To explore the mechanism of this sensitization, we utilized laser dissection microscopy to separately harvest nasal and meningeal trigeminal neuron populations in the absence or presence of acrolein exposure. mRNA levels of neurotransmitters important in migraine were then determined by reverse transcription polymerase chain reaction. TRPA1 message levels were significantly increased in meningeal cell populations following acrolein exposure compared to room air exposure. This was specific to TRPA1 message in meningeal cell populations as changes were not observed in either nasal trigeminal cell populations or dorsal root ganglion populations. Taken together, these data suggest an important role for intraganglionic transmission in acute activation of the trigeminovascular pathway. It also supports a role for upregulation of TRPA1 receptors in peripheral sensitization and a possible mechanism for chronification of migraine after environmental irritant exposure.
Collapse
Affiliation(s)
- LuJuan Zhang
- The Department of Biochemistry and Molecular Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Phillip Edward Kunkler
- The Department of Biochemistry and Molecular Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kelly L Knopp
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, IN, USA
| | - Gerry Stephen Oxford
- Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joyce Harts Hurley
- Department of Medical and Molecular Genetics, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
18
|
Carr R, Frings S. Neuropeptides in sensory signal processing. Cell Tissue Res 2018; 375:217-225. [PMID: 30377783 DOI: 10.1007/s00441-018-2946-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/09/2018] [Indexed: 12/21/2022]
Abstract
Peptides released from trigeminal fibers fulfill well-understood functions in neuroinflammatory processes and in the modulation of nociceptive signal processing. In particular, calcitonin gene-related peptide (CGRP) and substance P (SP), released from afferent nerve terminals, exert paracrine effects on the surrounding tissue and this has been recently highlighted by the prominent parcrine role of CGRP in the development of headache and migraine. Some recent communications suggest that these sensory neuropeptides may also modulate the workings of sensory organs and influence afferent signals from nose, tongue, eyes and ears. Here, we briefly review the evidence for modulatory effects of CGRP and SP in the sensory periphery.
Collapse
Affiliation(s)
- Richard Carr
- Department of Experimental Pain Research, Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany.
| | - Stephan Frings
- Department of Animal Physiology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
19
|
Ramos MF, Baker J, Atzpodien EA, Bach U, Brassard J, Cartwright J, Farman C, Fishman C, Jacobsen M, Junker-Walker U, Kuper F, Moreno MCR, Rittinghausen S, Schafer K, Tanaka K, Teixeira L, Yoshizawa K, Zhang H. Nonproliferative and Proliferative Lesions of the Ratand Mouse Special Sense Organs(Ocular [eye and glands], Olfactory and Otic). J Toxicol Pathol 2018; 31:97S-214S. [PMID: 30158741 PMCID: PMC6108092 DOI: 10.1293/tox.31.97s] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
| | - Julia Baker
- Member of eye subgroup
- Charles River Laboratories, Inc., Frederick, MD, USA
| | | | - Ute Bach
- Member of eye subgroup
- Bayer AG, Wuppertal, Germany
| | | | | | | | - Cindy Fishman
- Member of eye subgroup
- Member of glands of the eye subgroup
- GlaxoSmithKline, King of Prussia, PA, USA
| | | | | | - Frieke Kuper
- Member of olfactory subgroup
- Retired; formerly The Netherlands Organization for Applied
Scientific Research (TNO), Zeist, the Netherlands
| | | | | | - Ken Schafer
- Member of eye subgroup
- Member of otic subgroup
- Vet Path Services, Inc., Mason, OH, USA
| | - Kohji Tanaka
- Member of eye subgroup
- Nippon Boehringer Ingelheim, Japan
| | | | | | | |
Collapse
|
20
|
Rassu G, Soddu E, Posadino AM, Pintus G, Sarmento B, Giunchedi P, Gavini E. Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer's therapy. Colloids Surf B Biointerfaces 2017; 152:296-301. [PMID: 28126681 DOI: 10.1016/j.colsurfb.2017.01.031] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 01/08/2023]
Abstract
We designed a delivery system to obtain an efficient and optimal nose-to-brain transport of BACE1 siRNA, potentially useful in the treatment of Alzheimer's disease. We selected a cell-penetrating peptide, the short peptide derived from rabies virus glycoprotein known as RVG-9R, to increase the transcellular pathway in neuronal cells. The optimal molar ratio between RVG-9R and BACE1 siRNA was elucidated. The complex between the two was then encapsulated. We propose chitosan-coated and uncoated solid lipid nanoparticles (SLNs) as a nasal delivery system capable of exploiting both olfactory and trigeminal nerve pathways. The coating process had an effect on the zeta potential, obtaining positively-charged nanoparticles, and on siRNA protection. The positive charge of the coating formulation ensured mucoadhesiveness to the particles and also prolonged residence time in the nasal cavity. We studied the cellular transport of siRNA released from the SLNs using Caco-2 as a model of epithelial-like phenotypes. We found that siRNA permeates the monolayer to a greater extent when released from any of the studied formulations than from bare siRNA, and primarily from chitosan-coated SLNs.
Collapse
Affiliation(s)
- Giovanna Rassu
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23a, 07100, Sassari, Italy
| | - Elena Soddu
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23a, 07100, Sassari, Italy
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, viale San Pietro 43b, 07100, Sassari, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, College of Health Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Bruno Sarmento
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116, Gandra-PRD, Portugal; INEB, Instituto de Engenharia Biomédica, Rua do Campo Alegre, 823, 4150-180, Porto, Portugal
| | - Paolo Giunchedi
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23a, 07100, Sassari, Italy
| | - Elisabetta Gavini
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23a, 07100, Sassari, Italy.
| |
Collapse
|
21
|
Genovese F, Bauersachs HG, Gräßer I, Kupke J, Magin L, Daiber P, Nakajima J, Möhrlen F, Messlinger K, Frings S. Possible role of calcitonin gene-related peptide in trigeminal modulation of glomerular microcircuits of the rodent olfactory bulb. Eur J Neurosci 2016; 45:587-600. [PMID: 27891688 DOI: 10.1111/ejn.13490] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 11/29/2022]
Abstract
Chemosensation in the mammalian nose comprises detection of odorants, irritants and pheromones. While the traditional view assigned one distinct sub-system to each stimulus type, recent research has produced a more complex picture. Odorants are not only detected by olfactory sensory neurons but also by the trigeminal system. Irritants, in turn, may have a distinct odor, and some pheromones are detected by the olfactory epithelium. Moreover, it is well established that irritants change odor perception and vice versa. A wealth of psychophysical evidence on olfactory-trigeminal interactions in humans contrasts with a paucity of structural insight. In particular, it is unclear whether the two systems communicate just by sharing stimuli, or whether neuronal connections mediate cross-modal signaling. One connection could exist in the olfactory bulb that performs the primary processing of olfactory signals and receives trigeminal innervation. In the present study, neuroanatomical tracing of the mouse ethmoid system illustrates how peptidergic fibers enter the glomerular layer of the olfactory bulb, where local microcircuits process and filter the afferent signal. Biochemical assays reveal release of calcitonin gene-related peptide from olfactory bulb slices and attenuation of cAMP signaling by the neuropeptide. In the non-stimulated tissue, the neuropeptide specifically inhibited the basal activity of calbindin-expressing periglomerular interneurons, but did not affect the basal activity of neurons expressing calretinin, parvalbumin, or tyrosine hydroxylase, nor the activity of astrocytes. This study represents a first step towards understanding trigeminal neuromodulation of olfactory-bulb microcircuits and provides a working hypothesis for trigeminal inhibition of olfactory signal processing. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Federica Genovese
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Hanke Gwendolyn Bauersachs
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Ines Gräßer
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Janina Kupke
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Laila Magin
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Philipp Daiber
- Interfacultary Biomedical Faculty, Heidelberg University, Heidelberg, Germany
| | - Julika Nakajima
- Institute of Physiology and Pathophysiology, University of Erlangen-Nuernberg, Erlangen, Germany
| | - Frank Möhrlen
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, University of Erlangen-Nuernberg, Erlangen, Germany
| | - Stephan Frings
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
22
|
Rassu G, Soddu E, Cossu M, Gavini E, Giunchedi P, Dalpiaz A. Particulate formulations based on chitosan for nose-to-brain delivery of drugs. A review. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2015.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Dalpiaz A, Fogagnolo M, Ferraro L, Capuzzo A, Pavan B, Rassu G, Salis A, Giunchedi P, Gavini E. Nasal chitosan microparticles target a zidovudine prodrug to brain HIV sanctuaries. Antiviral Res 2015; 123:146-57. [DOI: 10.1016/j.antiviral.2015.09.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/18/2015] [Accepted: 09/28/2015] [Indexed: 01/23/2023]
|
24
|
Nasal Chemesthesis: Similarities Between Humans and Rats Observed in In Vivo Experiments. CHEMOSENS PERCEPT 2015. [DOI: 10.1007/s12078-015-9189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Ruigrok MJR, de Lange ECM. Emerging Insights for Translational Pharmacokinetic and Pharmacokinetic-Pharmacodynamic Studies: Towards Prediction of Nose-to-Brain Transport in Humans. AAPS JOURNAL 2015; 17:493-505. [PMID: 25693488 PMCID: PMC4406961 DOI: 10.1208/s12248-015-9724-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/27/2015] [Indexed: 01/03/2023]
Abstract
To investigate the potential added value of intranasal drug administration, preclinical studies to date have typically used the area under the curve (AUC) in brain tissue or cerebrospinal fluid (CSF) compared to plasma following intranasal and intravenous administration to calculate measures of extent like drug targeting efficiencies (%DTE) and nose-to-brain transport percentages (%DTP). However, CSF does not necessarily provide direct information on the target site concentrations, while total brain concentrations are not specific to that end either as non-specific binding is not explicitly considered. Moreover, to predict nose-to-brain transport in humans, the use of descriptive analysis of preclinical data does not suffice. Therefore, nose-to-brain research should be performed translationally and focus on preclinical studies to obtain specific information on absorption from the nose, and distinguish between the different transport routes to the brain (absorption directly from the nose to the brain, absorption from the nose into the systemic circulation, and distribution between the systemic circulation and the brain), in terms of extent as well as rate. This can be accomplished by the use of unbound concentrations obtained from plasma and brain, with subsequent advanced mathematical modeling. To that end, brain extracellular fluid (ECF) is a preferred sampling site as it represents most closely the site of action for many targets. Furthermore, differences in nose characteristics between preclinical species and humans should be considered. Finally, pharmacodynamic measurements that can be obtained in both animals and humans should be included to further improve the prediction of the pharmacokinetic-pharmacodynamic relationship of intranasally administered CNS drugs in humans.
Collapse
Affiliation(s)
- Mitchel J R Ruigrok
- Division of Pharmacology, Leiden Academic Centre of Drug Research, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | | |
Collapse
|
26
|
Quintana DS, Alvares GA, Hickie IB, Guastella AJ. Do delivery routes of intranasally administered oxytocin account for observed effects on social cognition and behavior? A two-level model. Neurosci Biobehav Rev 2014; 49:182-92. [PMID: 25526824 DOI: 10.1016/j.neubiorev.2014.12.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 12/02/2014] [Accepted: 12/09/2014] [Indexed: 01/28/2023]
Abstract
Accumulating evidence demonstrates the important role of oxytocin (OT) in the modulation of social cognition and behavior. This has led many to suggest that the intranasal administration of OT may benefit psychiatric disorders characterized by social dysfunction, such as autism spectrum disorders and schizophrenia. Here, we review nasal anatomy and OT pathways to central and peripheral destinations, along with the impact of OT delivery to these destinations on social behavior and cognition. The primary goal of this review is to describe how these identified pathways may contribute to mechanisms of OT action on social cognition and behavior (that is, modulation of social information processing, anxiolytic effects, increases in approach-behaviors). We propose a two-level model involving three pathways to account for responses observed in both social cognition and behavior after intranasal OT administration and suggest avenues for future research to advance this research field.
Collapse
Affiliation(s)
- Daniel S Quintana
- Brain & Mind Research Institute, University of Sydney, Camperdown, NSW, 2050, Australia.
| | - Gail A Alvares
- Brain & Mind Research Institute, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Ian B Hickie
- Brain & Mind Research Institute, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Adam J Guastella
- Brain & Mind Research Institute, University of Sydney, Camperdown, NSW, 2050, Australia
| |
Collapse
|
27
|
Dando SJ, Mackay-Sim A, Norton R, Currie BJ, St John JA, Ekberg JAK, Batzloff M, Ulett GC, Beacham IR. Pathogens penetrating the central nervous system: infection pathways and the cellular and molecular mechanisms of invasion. Clin Microbiol Rev 2014; 27:691-726. [PMID: 25278572 PMCID: PMC4187632 DOI: 10.1128/cmr.00118-13] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The brain is well protected against microbial invasion by cellular barriers, such as the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). In addition, cells within the central nervous system (CNS) are capable of producing an immune response against invading pathogens. Nonetheless, a range of pathogenic microbes make their way to the CNS, and the resulting infections can cause significant morbidity and mortality. Bacteria, amoebae, fungi, and viruses are capable of CNS invasion, with the latter using axonal transport as a common route of infection. In this review, we compare the mechanisms by which bacterial pathogens reach the CNS and infect the brain. In particular, we focus on recent data regarding mechanisms of bacterial translocation from the nasal mucosa to the brain, which represents a little explored pathway of bacterial invasion but has been proposed as being particularly important in explaining how infection with Burkholderia pseudomallei can result in melioidosis encephalomyelitis.
Collapse
Affiliation(s)
- Samantha J Dando
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Alan Mackay-Sim
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Robert Norton
- Townsville Hospital, Townsville, Queensland, Australia
| | - Bart J Currie
- Menzies School of Health Research and Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - James A St John
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Jenny A K Ekberg
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Michael Batzloff
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Glen C Ulett
- School of Medical Science and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Ifor R Beacham
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
28
|
Chitosan in nasal delivery systems for therapeutic drugs. J Control Release 2014; 190:189-200. [DOI: 10.1016/j.jconrel.2014.05.003] [Citation(s) in RCA: 273] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/25/2014] [Accepted: 05/02/2014] [Indexed: 01/07/2023]
|
29
|
Panneton WM, Gan Q. Direct reticular projections of trigeminal sensory fibers immunoreactive to CGRP: potential monosynaptic somatoautonomic projections. Front Neurosci 2014; 8:136. [PMID: 24926231 PMCID: PMC4046267 DOI: 10.3389/fnins.2014.00136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/14/2014] [Indexed: 11/30/2022] Open
Abstract
Few trigeminal sensory fibers project centrally beyond the trigeminal sensory complex, with only projections of fibers carried in its sensory anterior ethmoidal (AEN) and intraoral nerves described. Fibers of the AEN project into the brainstem reticular formation where immunoreactivity against substance P and CGRP are found. We investigated whether the source of these peptides could be from trigeminal ganglion neurons by performing unilateral rhizotomies of the trigeminal root and looking for absence of label. After an 8–14 days survival, substance P immunoreactivity in the trigeminal sensory complex was diminished, but we could not conclude that the sole source of this peptide in the lateral parabrachial area and lateral reticular formation arises from primary afferent fibers. Immunoreactivity to CGRP after rhizotomy however was greatly diminished in the trigeminal sensory complex, confirming the observations of others. Moreover, CGRP immunoreactivity was nearly eliminated in fibers in the lateral parabrachial area, the caudal ventrolateral medulla, both the peri-ambiguus and ventral parts of the rostral ventrolateral medulla, in the external formation of the nucleus ambiguus, and diminished in the caudal pressor area. The nearly complete elimination of CGRP in the lateral reticular formation after rhizotomy suggests this peptide is carried in primary afferent fibers. Moreover, the arborization of CGRP immunoreactive fibers in these areas mimics that of direct projections from the AEN. Since electrical stimulation of the AEN induces cardiorespiratory adjustments including an apnea, peripheral vasoconstriction, and bradycardia similar to those seen in the mammalian diving response, we suggest these perturbations of autonomic behavior are enhanced by direct somatic primary afferent projections to these reticular neurons. We believe this to be first description of potential direct somatoautonomic projections to brainstem neurons regulating autonomic activity.
Collapse
Affiliation(s)
- W Michael Panneton
- Department of Pharmacological and Physiological Science, St. Louis University Medical School , St. Louis, MO, USA
| | - Qi Gan
- Department of Pharmacological and Physiological Science, St. Louis University Medical School , St. Louis, MO, USA
| |
Collapse
|
30
|
Cholinergic neurotransmission links solitary chemosensory cells to nasal inflammation. Proc Natl Acad Sci U S A 2014; 111:6075-80. [PMID: 24711432 DOI: 10.1073/pnas.1402251111] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Solitary chemosensory cells (SCCs) of the nasal cavity are specialized epithelial chemosensors that respond to irritants through the canonical taste transduction cascade involving Gα-gustducin and transient receptor potential melastatin 5. When stimulated, SCCs trigger peptidergic nociceptive (or pain) nerve fibers, causing an alteration of the respiratory rate indicative of trigeminal activation. Direct chemical excitation of trigeminal pain fibers by capsaicin evokes neurogenic inflammation in the surrounding epithelium. In the current study, we test whether activation of nasal SCCs can trigger similar local inflammatory responses, specifically mast cell degranulation and plasma leakage. The prototypical bitter compound, denatonium, a well-established activator of SCCs, caused significant inflammatory responses in WT mice but not mice with a genetic deletion of elements of the canonical taste transduction cascade, showing that activation of taste signaling components is sufficient to trigger local inflammation. Chemical ablation of peptidergic trigeminal fibers prevented the SCC-induced nasal inflammation, indicating that SCCs evoke inflammation only by neural activity and not by release of local inflammatory mediators. Additionally, blocking nicotinic, but not muscarinic, acetylcholine receptors prevents SCC-mediated neurogenic inflammation for both denatonium and the bacterial signaling molecule 3-oxo-C12-homoserine lactone, showing the necessity for cholinergic transmission. Finally, we show that the neurokinin 1 receptor for substance P is required for SCC-mediated inflammation, suggesting that release of substance P from nerve fibers triggers the inflammatory events. Taken together, these results show that SCCs use cholinergic neurotransmission to trigger peptidergic trigeminal nociceptors, which link SCCs to the neurogenic inflammatory pathway.
Collapse
|
31
|
Panneton WM. The mammalian diving response: an enigmatic reflex to preserve life? Physiology (Bethesda) 2014; 28:284-97. [PMID: 23997188 DOI: 10.1152/physiol.00020.2013] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mammalian diving response is a remarkable behavior that overrides basic homeostatic reflexes. It is most studied in large aquatic mammals but is seen in all vertebrates. Pelagic mammals have developed several physiological adaptations to conserve intrinsic oxygen stores, but the apnea, bradycardia, and vasoconstriction is shared with those terrestrial and is neurally mediated. The adaptations of aquatic mammals are reviewed here as well as the neural control of cardiorespiratory physiology during diving in rodents.
Collapse
Affiliation(s)
- W Michael Panneton
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
32
|
|
33
|
Dunston D, Ashby S, Krosnowski K, Ogura T, Lin W. An effective manual deboning method to prepare intact mouse nasal tissue with preserved anatomical organization. J Vis Exp 2013. [PMID: 23963491 DOI: 10.3791/50538] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The mammalian nose is a multi-functional organ with intricate internal structures. The nasal cavity is lined with various epithelia such as olfactory, respiratory, and squamous epithelia which differ markedly in anatomical locations, morphology, and functions. In adult mice, the nose is covered with various skull bones, limiting experimental access to internal structures, especially those in the posterior such as the main olfactory epithelium (MOE). Here we describe an effective method for obtaining almost the entire and intact nasal tissues with preserved anatomical organization. Using surgical tools under a dissecting microscope, we sequentially remove the skull bones surrounding the nasal tissue. This procedure can be performed on both paraformaldehyde-fixed and freshly dissected, skinned mouse heads. The entire deboning procedure takes about 20-30 min, which is significantly shorter than the experimental time required for conventional chemical-based decalcification. In addition, we present an easy method to remove air bubbles trapped between turbinates, which is critical for obtaining intact thin horizontal or coronal or sagittal sections from the nasal tissue preparation. Nasal tissue prepared using our method can be used for whole mount observation of the entire epithelia, as well as morphological, immunocytochemical, RNA in situ hybridization, and physiological studies, especially in studies where region-specific examination and comparison are of interest.
Collapse
Affiliation(s)
- David Dunston
- Biological Sciences, University of Maryland Baltimore County, USA
| | | | | | | | | |
Collapse
|
34
|
Olfaction and olfactory-mediated behaviour in psychiatric disease models. Cell Tissue Res 2013; 354:69-80. [DOI: 10.1007/s00441-013-1617-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/12/2013] [Indexed: 12/26/2022]
|
35
|
Daiber P, Genovese F, Schriever VA, Hummel T, Möhrlen F, Frings S. Neuropeptide receptors provide a signalling pathway for trigeminal modulation of olfactory transduction. Eur J Neurosci 2012. [PMID: 23205840 DOI: 10.1111/ejn.12066] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The mammalian olfactory epithelium contains olfactory receptor neurons and trigeminal sensory endings. The former mediate odor detection, the latter the detection of irritants. The two apparently parallel chemosensory systems are in reality interdependent in various well-documented ways. Psychophysical studies have shown that virtually all odorants can act as irritants, and that most irritants have an odor. Thus, the sensory perception of odorants and irritants is based on simultaneous input from the two systems. Moreover, functional interactions between the olfactory system and the trigeminal system exist on both peripheral and central levels. Here we examine the impact of trigeminal stimulation on the odor response of olfactory receptor neurons. Using an odorant with low trigeminal potency (phenylethyl alcohol) and a non-odorous irritant (CO(2) ), we have explored this interaction in psychophysical experiments with human subjects and in electroolfactogram (EOG) recordings from rats. We have demonstrated that simultaneous activation of the trigeminal system attenuates the perception of odor intensity and distorts the EOG response. On the molecular level, we have identified a route for this cross-modal interaction. The neuropeptide calcitonin-gene related peptide (CGRP), which is released from trigeminal sensory fibres upon irritant stimulation, inhibits the odor response of olfactory receptor neurons. CGRP receptors expressed by these neurons mediate this neuromodulatory effect. This study demonstrates a site of trigeminal-olfactory interaction in the periphery. It reveals a pathway for trigeminal impact on olfactory signal processing that influences odor perception.
Collapse
Affiliation(s)
- Philipp Daiber
- Department of Molecular Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Dauner K, Lissmann J, Jeridi S, Frings S, Möhrlen F. Expression patterns of anoctamin 1 and anoctamin 2 chloride channels in the mammalian nose. Cell Tissue Res 2012; 347:327-41. [PMID: 22314846 DOI: 10.1007/s00441-012-1324-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/09/2012] [Indexed: 02/01/2023]
Abstract
Calcium-activated chloride channels are expressed in chemosensory neurons of the nose and contribute to secretory processes and sensory signal transduction. These channels are thought to be members of the family of anoctamins (alternative name: TMEM16 proteins), which are opened by micromolar concentrations of intracellular Ca(2+). Two family members,ANO 1 (TMEM16A) and ANO 2 (TMEM16B), are expressed in the various sensory and respiratory tissues of the nose.We have examined the tissue specificity and sub-cellular localization of these channels in the nasal respiratory epithelium and in the five chemosensory organs of the nose: the main olfactory epithelium, the septal organ of Masera, the vomeronasal organ, the Grueneberg ganglion and the trigeminal system. We have found that the two channels show mutually exclusive expression patterns. ANO 1 is present in the apical membranes of various secretory epithelia in which it is co-localized with the water channel aquaporin 5. It has also been detected in acinar cells and duct cells of subepithelial glands and in the supporting cells of sensory epithelia. In contrast, ANO 2 expression is restricted to chemosensory neurons in which it has been detected in microvillar and ciliary surface structures. The different expression patterns of ANO 1 and ANO 2 have been observed in the olfactory, vomeronasal and respiratory epithelia. No expression has been detected in the Grueneberg ganglion or trigeminal sensory fibers. On the basis of this differential expression, we derive the main functional features of ANO 1 and ANO 2 chloride channels in the nose and suggest their significance for nasal physiology.
Collapse
Affiliation(s)
- Kristin Dauner
- Department of Molecular Physiology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
37
|
Lucero MT. Peripheral modulation of smell: fact or fiction? Semin Cell Dev Biol 2012; 24:58-70. [PMID: 22986099 DOI: 10.1016/j.semcdb.2012.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 09/06/2012] [Indexed: 01/01/2023]
Abstract
Despite studies dating back 30 or more years showing modulation of odorant responses at the level of the olfactory epithelium, most descriptions of the olfactory system infer that odorant signals make their way from detection by cilia on olfactory sensory neurons to the olfactory bulb unaltered. Recent identification of multiple subtypes of microvillar cells and identification of neuropeptide and neurotransmitter expression in the olfactory mucosa add to the growing body of literature for peripheral modulation in the sense of smell. Complex mechanisms including perireceptor events, modulation of sniff rates, and changes in the properties of sensory neurons match the sensitivity of olfactory sensory neurons to the external odorant environment, internal nutritional status, reproductive status, and levels of arousal or stress. By furthering our understanding of the players mediating peripheral olfaction, we may open the door to novel approaches for modulating the sense of smell in both health and disease.
Collapse
Affiliation(s)
- Mary T Lucero
- Department of Physiology, School of Medicine, University of Utah, 420 Chipeta Way Ste, 1700 Salt Lake City, UT 84108, USA.
| |
Collapse
|
38
|
Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 2012; 64:614-28. [PMID: 22119441 DOI: 10.1016/j.addr.2011.11.002] [Citation(s) in RCA: 744] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/03/2011] [Accepted: 11/07/2011] [Indexed: 12/28/2022]
Abstract
Treatment of central nervous system (CNS) diseases is very difficult due to the blood-brain barrier's (BBB) ability to severely restrict entry of all but small, non-polar compounds. Intranasal administration is a non-invasive method of drug delivery which may bypass the BBB to allow therapeutic substances direct access to the CNS. Intranasal delivery of large molecular weight biologics such as proteins, gene vectors, and stem cells is a potentially useful strategy to treat a variety of diseases/disorders of the CNS including stroke, Parkinson's disease, multiple sclerosis, Alzheimer's disease, epilepsy, and psychiatric disorders. Here we give an overview of relevant nasal anatomy and physiology and discuss the pathways and mechanisms likely involved in drug transport from the nasal epithelium to the CNS. Finally we review both pre-clinical and clinical studies involving intranasal delivery of biologics to the CNS.
Collapse
Affiliation(s)
- Jeffrey J Lochhead
- Pharmaceutical Sciences Division, University of Wisconsin-Madison School of Pharmacy, Madison, WI 53705, USA
| | | |
Collapse
|
39
|
Krasteva G, Hartmann P, Papadakis T, Bodenbenner M, Wessels L, Weihe E, Schütz B, Langheinrich AC, Chubanov V, Gudermann T, Ibanez-Tallon I, Kummer W. Cholinergic chemosensory cells in the auditory tube. Histochem Cell Biol 2012; 137:483-97. [PMID: 22261922 DOI: 10.1007/s00418-012-0911-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2012] [Indexed: 02/06/2023]
Abstract
The luminal composition of the auditory tube influences its function. The mechanisms involved in the monitoring are currently not known. For the lower respiratory epithelium, such a sentinel role is carried out by cholinergic brush cells. Here, using two different mouse strains expressing eGFP under the control of the promoter of choline acetyltransferase (ChAT), we show the presence of solitary cholinergic villin-positive brush cells also in the mouse auditory tube epithelium. They express the vesicular acetylcholine (ACh) transporter and proteins of the taste transduction pathway such as α-gustducin, phospholipase C beta 2 (PLC(β2)) and transient receptor potential cation channel subfamily M member 5 (TRPM5). Immunoreactivity for TRPM5 and PLCβ2 was found regularly, whereas α-gustducin was absent in approximately 15% of the brush cells. Messenger RNA for the umami taste receptors (TasR), Tas1R1 and 3, and for the bitter receptors, Tas2R105 and Tas2R108, involved in perception of cycloheximide and denatonium were detected in the auditory tube. Using a transgenic mouse that expresses eGFP under the promotor of the nicotinic ACh receptor α3-subunit, we identified cholinoceptive nerve fibers that establish direct contacts to brush cells in the auditory tube. A subpopulation of these fibers displayed also CGRP immunoreactivity. Collectively, we show for the first time the presence of brush cells in the auditory tube. These cells are equipped with all proteins essential for sensing the composition of the luminal microenvironment and for communication of the changes to the CNS via attached sensory nerve fibers.
Collapse
Affiliation(s)
- G Krasteva
- Institute of Anatomy and Cell Biology, ECCPS, UGMLC, Justus-Liebig-University, Giessen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Dooley R, Mashukova A, Toetter B, Hatt H, Neuhaus EM. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium. BMC Neurosci 2011; 12:86. [PMID: 21859486 PMCID: PMC3176191 DOI: 10.1186/1471-2202-12-86] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 08/22/2011] [Indexed: 11/22/2022] Open
Abstract
Background Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. Results Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. Conclusion Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.
Collapse
Affiliation(s)
- Ruth Dooley
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | | | | | | | | |
Collapse
|
41
|
Ogura T, Szebenyi SA, Krosnowski K, Sathyanesan A, Jackson J, Lin W. Cholinergic microvillous cells in the mouse main olfactory epithelium and effect of acetylcholine on olfactory sensory neurons and supporting cells. J Neurophysiol 2011; 106:1274-87. [PMID: 21676931 DOI: 10.1152/jn.00186.2011] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mammalian olfactory epithelium is made up of ciliated olfactory sensory neurons (OSNs), supporting cells, basal cells, and microvillous cells. Previously, we reported that a population of nonneuronal microvillous cells expresses transient receptor potential channel M5 (TRPM5). Using transgenic mice and immunocytochemical labeling, we identify that these cells are cholinergic, expressing the signature markers of choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter. This result suggests that acetylcholine (ACh) can be synthesized and released locally to modulate activities of neighboring supporting cells and OSNs. In Ca(2+) imaging experiments, ACh induced increases in intracellular Ca(2+) levels in 78% of isolated supporting cells tested in a concentration-dependent manner. Atropine, a muscarinic ACh receptor (mAChR) antagonist suppressed the ACh responses. In contrast, ACh did not induce or potentiate Ca(2+) increases in OSNs. Instead ACh suppressed the Ca(2+) increases induced by the adenylyl cyclase activator forskolin in some OSNs. Supporting these results, we found differential expression of mAChR subtypes in supporting cells and OSNs using subtype-specific antibodies against M(1) through M(5) mAChRs. Furthermore, we found that various chemicals, bacterial lysate, and cold saline induced Ca(2+) increases in TRPM5/ChAT-expressing microvillous cells. Taken together, our data suggest that TRPM5/ChAT-expressing microvillous cells react to certain chemical or thermal stimuli and release ACh to modulate activities of neighboring supporting cells and OSNs via mAChRs. Our studies reveal an intrinsic and potentially potent mechanism linking external stimulation to cholinergic modulation of activities in the olfactory epithelium.
Collapse
Affiliation(s)
- Tatsuya Ogura
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
The role of bitter taste receptors has changed considerably over the past years. While initially considered to have predominantly, or even exclusively, gustatory functions, numerous recent reports addressed nongustatory actions of TAS2R s. One site of extraoral bitter taste receptor expression is the respiratory system. It was demonstrated that bitter taste receptors are located in the nasal respiratory epithelium, as well as in ciliated cells of lung epithelium, where they affect respiratory functions in response to noxious stimuli. Another site of TAS2R gene expression is the gastrointestinal tract. Here, bitter compounds are suspected to regulate via activation of TAS2Rs metabolic and digestive functions.The present article focuses on general pharmacological features and signal transduction components of mammalian TAS2Rs and summarizes current knowledge on Tas2r gene function in respiratory and gastrointestinal systems on the expense of a detailed description of gustatory bitter taste perception, which has been the subject of recent reviews.
Collapse
|
43
|
Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc Natl Acad Sci U S A 2010; 107:3210-5. [PMID: 20133764 DOI: 10.1073/pnas.0911934107] [Citation(s) in RCA: 308] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The upper respiratory tract is continually assaulted with harmful dusts and xenobiotics carried on the incoming airstream. Detection of such irritants by the trigeminal nerve evokes protective reflexes, including sneezing, apnea, and local neurogenic inflammation of the mucosa. Although free intra-epithelial nerve endings can detect certain lipophilic irritants (e.g., mints, ammonia), the epithelium also houses a population of trigeminally innervated solitary chemosensory cells (SCCs) that express T2R bitter taste receptors along with their downstream signaling components. These SCCs have been postulated to enhance the chemoresponsive capabilities of the trigeminal irritant-detection system. Here we show that transduction by the intranasal solitary chemosensory cells is necessary to evoke trigeminally mediated reflex reactions to some irritants including acyl-homoserine lactone bacterial quorum-sensing molecules, which activate the downstream signaling effectors associated with bitter taste transduction. Isolated nasal chemosensory cells respond to the classic bitter ligand denatonium as well as to the bacterial signals by increasing intracellular Ca(2+). Furthermore, these same substances evoke changes in respiration indicative of trigeminal activation. Genetic ablation of either G alpha-gustducin or TrpM5, essential elements of the T2R transduction cascade, eliminates the trigeminal response. Because acyl-homoserine lactones serve as quorum-sensing molecules for gram-negative pathogenic bacteria, detection of these substances by airway chemoreceptors offers a means by which the airway epithelium may trigger an epithelial inflammatory response before the bacteria reach population densities capable of forming destructive biofilms.
Collapse
|
44
|
Panneton WM, Gan Q, Juric R. The rat: a laboratory model for studies of the diving response. J Appl Physiol (1985) 2010; 108:811-20. [PMID: 20093670 DOI: 10.1152/japplphysiol.00600.2009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Underwater submersion in mammals induces apnea, parasympathetically mediated bradycardia, and sympathetically mediated peripheral vasoconstriction. These effects are collectively termed the diving response, potentially the most powerful autonomic reflex known. Although these physiological responses are directed by neurons in the brain, study of neural control of the diving response has been hampered since 1) it is difficult to study the brains of animals while they are underwater, 2) feral marine mammals are usually large and have brains of variable size, and 3) there are but few references on the brains of naturally diving species. Similar responses are elicited in anesthetized rodents after stimulation of their nasal mucosa, but this nasopharyngeal reflex has not been compared directly with natural diving behavior in the rat. In the present study, we compared hemodynamic responses elicited in awake rats during volitional underwater submersion with those of rats swimming on the water's surface, rats involuntarily submerged, and rats either anesthetized or decerebrate and stimulated nasally with ammonia vapors. We show that the hemodynamic changes to voluntary diving in the rat are similar to those of naturally diving marine mammals. We also show that the responses of voluntary diving rats are 1) significantly different from those seen during swimming, 2) generally similar to those elicited in trained rats involuntarily "dunked" underwater, and 3) generally different from those seen from dunking naive rats underwater. Nasal stimulation of anesthetized rats differed most from the hemodynamic variables of rats trained to dive voluntarily. We propose that the rat trained to dive underwater is an excellent laboratory model to study neural control of the mammalian diving response, and also suggest that some investigations may be done with nasal stimulation of decerebrate preparations to decipher such control.
Collapse
Affiliation(s)
- W Michael Panneton
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri 63104-1028, USA.
| | | | | |
Collapse
|
45
|
Silver WL, Finger TE. The anatomical and electrophysiological basis of peripheral nasal trigeminal chemoreception. Ann N Y Acad Sci 2009; 1170:202-5. [PMID: 19686138 DOI: 10.1111/j.1749-6632.2009.03894.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The trigeminal nerve (TN) provides sensory information from the eyes, nose, and mouth. A subset of trigeminal nerve fibers, particularly those containing the neuropeptides substance P and calcitonin gene-related peptide (CGRP), responds to chemical irritants in the environment. Axons in the ethmoid and nasopalatine branches of the trigeminal nerve innervate the nasal mucosa where they ramify repeatedly. TN endings extend close to the nasal epithelial surface stopping at the line of tight junctions only a few micrometers from the surface. A single ethmoid nerve axon may send branches to the nasal mucosa, olfactory bulb, and the spinal trigeminal complex. Traditionally, irritants are thought to stimulate free TN endings in the nasal epithelium. Recently, however, solitary chemoreceptor cells (SCCs) have been found scattered throughout the nasal cavity. The SCCs are contacted by TN fibers and may express T2R ''bitter-taste'' receptors alpha-gustducin, and TRPM5. Peripheral trigeminal electrophysiological recordings in response to irritants have been obtained from the mucosa (negative mucosal potential, NMP) and the nerve to analyze characteristics of trigeminal stimuli. Responses to a wide variety of irritants have been recorded from the ethmoid nerve. In general, the more lipid soluble the compound, the lower the threshold. Nerve recordings have also suggested several mechanisms by which irritants elicit responses. Bitter substances elicit responses from the ethmoid nerve and cause a change in respiration indicating stimulation via SCCs. SCCs themselves respond to chemical stimuli and may be contributing to the detection of nasal irritants.
Collapse
Affiliation(s)
- Wayne L Silver
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109, USA.
| | | |
Collapse
|
46
|
Housley GD, Bringmann A, Reichenbach A. Purinergic signaling in special senses. Trends Neurosci 2009; 32:128-41. [DOI: 10.1016/j.tins.2009.01.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 12/22/2008] [Accepted: 01/05/2009] [Indexed: 02/06/2023]
|
47
|
Hansen A, Finger TE. Is TrpM5 a reliable marker for chemosensory cells? Multiple types of microvillous cells in the main olfactory epithelium of mice. BMC Neurosci 2008; 9:115. [PMID: 19055837 PMCID: PMC2629774 DOI: 10.1186/1471-2202-9-115] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 12/04/2008] [Indexed: 11/17/2022] Open
Abstract
Background In the past, ciliated receptor neurons, basal cells, and supporting cells were considered the principal components of the main olfactory epithelium. Several studies reported the presence of microvillous cells but their function is unknown. A recent report showed cells in the main olfactory epithelium that express the transient receptor potential channel TrpM5 claiming that these cells are chemosensory and that TrpM5 is an intrinsic signaling component of mammalian chemosensory organs. We asked whether the TrpM5-positive cells in the olfactory epithelium are microvillous and whether they belong to a chemosensory system, i.e. are olfactory neurons or trigeminally-innervated solitary chemosensory cells. Results We investigated the main olfactory epithelium of mice at the light and electron microscopic level and describe several subpopulations of microvillous cells. The ultrastructure of the microvillous cells reveals at least three morphologically different types two of which express the TrpM5 channel. None of these cells have an axon that projects to the olfactory bulb. Tests with a large panel of cell markers indicate that the TrpM5-positive cells are not sensory since they express neither neuronal markers nor are contacted by trigeminal nerve fibers. Conclusion We conclude that TrpM5 is not a reliable marker for chemosensory cells. The TrpM5-positive cells of the olfactory epithelium are microvillous and may be chemoresponsive albeit not part of the sensory apparatus. Activity of these microvillous cells may however influence functionality of local elements of the olfactory system.
Collapse
Affiliation(s)
- Anne Hansen
- Rocky Mountain Taste and Smell Center, Dept. of Cell and Developmental Biology, School of Medicine, University of Colorado Denver, Aurora, 80045, USA.
| | | |
Collapse
|
48
|
Doty RL, Cometto-Muñiz JE, Jalowayski AA, Dalton P, Kendal-Reed M, Hodgson M. Assessment of Upper Respiratory Tract and Ocular Irritative Effects of Volatile Chemicals in Humans. Crit Rev Toxicol 2008; 34:85-142. [PMID: 15112751 DOI: 10.1080/10408440490269586] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Accurate assessment of upper respiratory tract and ocular irritation is critical for identifying and remedying problems related to overexposure to volatile chemicals, as well as for establishing parameters of irritation useful for regulatory purposes. This article (a) describes the basic anatomy and physiology of the human upper respiratory tract and ocular mucosae, (b) discusses how airborne chemicals induce irritative sensations, and (c) reviews practical means employed for assessing such phenomena, including psychophysical (e.g., threshold and suprathreshold perceptual measures), physiological (e.g., cardiovascular responses), electrophysiological (e.g., event-related potentials), and imaging (e.g., magnetic resonance imaging) techniques. Although traditionally animal models have been used as the first step in assessing such irritation, they are not addressed here since (a) there are numerous reviews available on this topic and (b) many rodents and rabbits are obligate nose breathers whose nasal passages differ considerably from those of humans, potentially limiting generalization of animal-based data to humans. A major goal of this compendium is to inform the reader of procedures for assessing irritation in humans and to provide information of value in the continued interpretation and development of empirical databases upon which future reasoned regulatory health decisions can be made.
Collapse
Affiliation(s)
- Richard L Doty
- Smell & Taste Center, University of Pennsylvania, Medical Center, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Gulbransen BD, Clapp TR, Finger TE, Kinnamon SC. Nasal solitary chemoreceptor cell responses to bitter and trigeminal stimulants in vitro. J Neurophysiol 2008; 99:2929-37. [PMID: 18417634 DOI: 10.1152/jn.00066.2008] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nasal trigeminal chemosensitivity in mice and rats is mediated in part by epithelial solitary chemoreceptor (chemosensory) cells (SCCs), but the exact role of these cells in chemoreception is unclear. Histological evidence suggests that SCCs express elements of the bitter taste transduction pathway including T2R (bitter taste) receptors, the G protein alpha-gustducin, PLCbeta2, and TRPM5, leading to speculation that SCCs are the receptor cells that mediate trigeminal nerve responses to bitter taste receptor ligands. To test this hypothesis, we used calcium imaging to determine whether SCCs respond to classic bitter-tasting or trigeminal stimulants. SCCs from the anterior nasal cavity were isolated from transgenic mice in which green fluorescent protein (GFP) expression was driven by either TRPM5 or gustducin. Isolated cells were exposed to a variety of test stimuli to determine which substances caused an increase in intracellular Ca2+ ([Ca2+]i). GFP-positive cells respond with increased [Ca2+]i to the bitter receptor ligand denatonium and this response is blocked by the PLC inhibitor U73122. In addition, GFP+ cells respond to the neuromodulators adenosine 5'-triphosphate and acetylcholine but only very rarely to other bitter-tasting or trigeminal stimuli. Our results demonstrate that TRPM5- and gustducin-expressing nasal SCCs respond to the T2R agonist denatonium via a PLC-coupled transduction cascade typical of T2Rs in the taste system.
Collapse
Affiliation(s)
- Brian D Gulbransen
- Rocky Mountain Taste and Smell Center, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA.
| | | | | | | |
Collapse
|
50
|
Lin W, Ogura T, Margolskee RF, Finger TE, Restrepo D. TRPM5-Expressing Solitary Chemosensory Cells Respond to Odorous Irritants. J Neurophysiol 2008; 99:1451-60. [DOI: 10.1152/jn.01195.2007] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inhaled airborne irritants elicit sensory responses in trigeminal nerves innervating the nasal epithelium, leading to protective reflexes. The sensory mechanisms involved in the detection of odorous irritants are poorly understood. We identified a large population of solitary chemosensory cells expressing the transient receptor potential channel M5 (TRPM5) using transgenic mice where the promoter of TRPM5 drives the expression of green fluorescent protein (GFP). Most of these solitary chemosensory cells lie in the anterior nasal cavity. These GFP-labeled solitary chemosensory cells exhibited immunoreactivity for synaptobrevin-2, a vesicle-associated membrane protein important for synaptic transmission. Concomitantly, we found trigeminal nerve fibers apposed closely to the solitary chemosensory cells, indicating potential transmission of sensory information to trigeminal fibers. In addition, stimulation of the nasal cavity with high concentrations (0.5–5 mM) of a variety of odorants elicited event-related potentials (ERPs) in areas rich in TRPM5-expressing solitary chemosensory cells. Furthermore, odorous chemicals and trigeminal stimuli induced changes in intracellular Ca2+ levels in isolated TRPM5-expressing solitary chemosensory cells in a concentration-dependent manner. Together, our data show that the TRPM5-expressing cells respond to a variety of chemicals at high exposure levels typical of irritants and are positioned in the nasal cavity appropriately to monitor inhaled air quality.
Collapse
|