1
|
Sherman SM, Usrey WM. Transthalamic Pathways for Cortical Function. J Neurosci 2024; 44:e0909242024. [PMID: 39197951 PMCID: PMC11358609 DOI: 10.1523/jneurosci.0909-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/06/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
The cerebral cortex contains multiple, distinct areas that individually perform specific computations. A particular strength of the cortex is the communication of signals between cortical areas that allows the outputs of these compartmentalized computations to influence and build on each other, thereby dramatically increasing the processing power of the cortex and its role in sensation, action, and cognition. Determining how the cortex communicates signals between individual areas is, therefore, critical for understanding cortical function. Historically, corticocortical communication was thought to occur exclusively by direct anatomical connections between areas that often sequentially linked cortical areas in a hierarchical fashion. More recently, anatomical, physiological, and behavioral evidence is accumulating indicating a role for the higher-order thalamus in corticocortical communication. Specifically, the transthalamic pathway involves projections from one area of the cortex to neurons in the higher-order thalamus that, in turn, project to another area of the cortex. Here, we consider the evidence for and implications of having two routes for corticocortical communication with an emphasis on unique processing available in the transthalamic pathway and the consequences of disorders and diseases that affect transthalamic communication.
Collapse
Affiliation(s)
- S Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| | - W Martin Usrey
- Center for Neuroscience, University of California, Davis, California 95618
| |
Collapse
|
2
|
Song Y, Su Q, Yang Q, Zhao R, Yin G, Qin W, Iannetti GD, Yu C, Liang M. Feedforward and feedback pathways of nociceptive and tactile processing in human somatosensory system: A study of dynamic causal modeling of fMRI data. Neuroimage 2021; 234:117957. [PMID: 33744457 DOI: 10.1016/j.neuroimage.2021.117957] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022] Open
Abstract
Nociceptive and tactile information is processed in the somatosensory system via reciprocal (i.e., feedforward and feedback) projections between the thalamus, the primary (S1) and secondary (S2) somatosensory cortices. The exact hierarchy of nociceptive and tactile information processing within this 'thalamus-S1-S2' network and whether the processing hierarchy differs between the two somatosensory submodalities remains unclear. In particular, two questions related to the ascending and descending pathways have not been addressed. For the ascending pathways, whether tactile or nociceptive information is processed in parallel (i.e., 'thalamus-S1' and 'thalamus-S2') or in serial (i.e., 'thalamus-S1-S2') remains controversial. For the descending pathways, how corticothalamic feedback regulates nociceptive and tactile processing also remains elusive. Here, we aimed to investigate the hierarchical organization for the processing of nociceptive and tactile information in the 'thalamus-S1-S2' network using dynamic causal modeling (DCM) combined with high-temporal-resolution fMRI. We found that, for both nociceptive and tactile information processing, both S1 and S2 received inputs from thalamus, indicating a parallel structure of ascending pathways for nociceptive and tactile information processing. Furthermore, we observed distinct corticothalamic feedback regulations from S1 and S2, showing that S1 generally exerts inhibitory feedback regulation independent of external stimulation whereas S2 provides additional inhibition to the thalamic activity during nociceptive and tactile information processing in humans. These findings revealed that nociceptive and tactile information processing have similar hierarchical organization within the somatosensory system in the human brain.
Collapse
Affiliation(s)
- Yingchao Song
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China
| | - Qian Su
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin, China
| | - Qingqing Yang
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China
| | - Rui Zhao
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China; Department of Orthopedics Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Guotao Yin
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Gian Domenico Iannetti
- Neuroscience and Behaviour Laboratory, Italian Institute of Technology, Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China; Chinese Academy of Sciences (CAS) Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Meng Liang
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
3
|
Qi HX, Liao CC, Reed JL, Kaas JH. Reorganization of Higher-Order Somatosensory Cortex After Sensory Loss from Hand in Squirrel Monkeys. Cereb Cortex 2020; 29:4347-4365. [PMID: 30590401 DOI: 10.1093/cercor/bhy317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/18/2018] [Accepted: 11/20/2018] [Indexed: 12/31/2022] Open
Abstract
Unilateral dorsal column lesions (DCL) at the cervical spinal cord deprive the hand regions of somatosensory cortex of tactile activation. However, considerable cortical reactivation occurs over weeks to months of recovery. While most studies focused on the reactivation of primary somatosensory area 3b, here, for the first time, we address how the higher-order somatosensory cortex reactivates in the same monkeys after DCL that vary across cases in completeness, post-lesion recovery times, and types of treatments. We recorded neural responses to tactile stimulation in areas 3a, 3b, 1, secondary somatosensory cortex (S2), parietal ventral (PV), and occasionally areas 2/5. Our analysis emphasized comparisons of the responsiveness, somatotopy, and receptive field size between areas 3b, 1, and S2/PV across DCL conditions and recovery times. The results indicate that the extents of the reactivation in higher-order somatosensory areas 1 and S2/PV closely reflect the reactivation in primary somatosensory cortex. Responses in higher-order areas S2 and PV can be stronger than those in area 3b, thus suggesting converging or alternative sources of inputs. The results also provide evidence that both primary and higher-order fields are effectively activated after long recovery times as well as after behavioral and electrocutaneous stimulation interventions.
Collapse
Affiliation(s)
- Hui-Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Chia-Chi Liao
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Jamie L Reed
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
4
|
A Non-canonical Feedback Circuit for Rapid Interactions between Somatosensory Cortices. Cell Rep 2019; 23:2718-2731.e6. [PMID: 29847801 PMCID: PMC6004823 DOI: 10.1016/j.celrep.2018.04.115] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/20/2018] [Accepted: 04/26/2018] [Indexed: 12/17/2022] Open
Abstract
Sensory perception depends on interactions among cortical areas. These
interactions are mediated by canonical patterns of connectivity in which higher
areas send feedback projections to lower areas via neurons in superficial and
deep layers. Here, we probed the circuit basis of interactions among two areas
critical for touch perception in mice, whisker primary (wS1) and secondary (wS2)
somatosensory cortices. Neurons in layer 4 of wS2 (S2L4) formed a
major feedback pathway to wS1. Feedback from wS2 to wS1 was organized
somatotopically. Spikes evoked by whisker deflections occurred nearly as rapidly
in wS2 as in wS1, including among putative S2L4 → S1 feedback
neurons. Axons from S2L4 → S1 neurons sent stimulus
orientation-specific activity to wS1. Optogenetic excitation of S2L4
neurons modulated activity across both wS2 and wS1, while inhibition of
S2L4 reduced orientation tuning among wS1 neurons. Thus, a
non-canonical feedback circuit, originating in layer 4 of S2, rapidly modulates
early tactile processing.
Collapse
|
5
|
Delhaye BP, Long KH, Bensmaia SJ. Neural Basis of Touch and Proprioception in Primate Cortex. Compr Physiol 2018; 8:1575-1602. [PMID: 30215864 PMCID: PMC6330897 DOI: 10.1002/cphy.c170033] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The sense of proprioception allows us to keep track of our limb posture and movements and the sense of touch provides us with information about objects with which we come into contact. In both senses, mechanoreceptors convert the deformation of tissues-skin, muscles, tendons, ligaments, or joints-into neural signals. Tactile and proprioceptive signals are then relayed by the peripheral nerves to the central nervous system, where they are processed to give rise to percepts of objects and of the state of our body. In this review, we first examine briefly the receptors that mediate touch and proprioception, their associated nerve fibers, and pathways they follow to the cerebral cortex. We then provide an overview of the different cortical areas that process tactile and proprioceptive information. Next, we discuss how various features of objects-their shape, motion, and texture, for example-are encoded in the various cortical fields, and the susceptibility of these neural codes to attention and other forms of higher-order modulation. Finally, we summarize recent efforts to restore the senses of touch and proprioception by electrically stimulating somatosensory cortex. © 2018 American Physiological Society. Compr Physiol 8:1575-1602, 2018.
Collapse
Affiliation(s)
- Benoit P Delhaye
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, USA
| | - Katie H Long
- Committee on Computational Neuroscience, University of Chicago, Chicago, USA
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, USA.,Committee on Computational Neuroscience, University of Chicago, Chicago, USA
| |
Collapse
|
6
|
Abstract
Pain was considered to be integrated subcortically during most of the 20th century, and it was not until 1956 that focal injury to the parietal opercular-insular cortex was shown to produce selective loss of pain senses. The parietal operculum and adjacent posterior insula are the main recipients of spinothalamic afferents in primates. The innermost operculum appears functionally associated with the posterior insula and can be segregated histologically, somatotopically and neurochemically from the more lateral S2 areas. The Posterior Insula and Medial Operculum (PIMO) encompass functional networks essential to initiate cortical nociceptive processing. Destruction of this region selectively abates pain sensations; direct stimulation generates acute pain, and epileptic foci trigger painful seizures. Lesions of the PIMO have also high potential to develop central pain with dissociated loss of pain and temperature. The PIMO region behaves as a somatosensory area on its own, which handles phylogenetically old somesthetic capabilities based on thinly myelinated or unmyelinated inputs. It integrates spinothalamic-driven information - not only nociceptive but also innocuous heat and cold, crude touch, itch, and possibly viscero-somatic interoception. Conversely, proprioception, graphesthesia or stereognosis are not processed in this area but in S1 cortices. Given its anatomo-functional properties, thalamic connections, and tight relations with limbic and multisensory cortices, the region comprising the inner parietal operculum and posterior insula appears to contain a third somatosensory cortex contributing to the spinothalamic attributes of the final perceptual experience.
Collapse
Affiliation(s)
- Luis Garcia-Larrea
- NeuroPain Laboratory, Lyon Centre for Neuroscience, Inserm U1028 and University Claude Bernard, Lyon, France; Center for the Evaluation and Treatment of Pain, Hôpital Neurologique, Hospices Civils de Lyon, Lyon, France.
| | - François Mauguière
- NeuroPain Laboratory, Lyon Centre for Neuroscience, Inserm U1028 and University Claude Bernard, Lyon, France; Functional Neurology Service, Hôpital Neurologique, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
7
|
Garcia-Larrea L. The posterior insular-opercular region and the search of a primary cortex for pain. Neurophysiol Clin 2012; 42:299-313. [DOI: 10.1016/j.neucli.2012.06.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 06/01/2012] [Accepted: 06/10/2012] [Indexed: 01/15/2023] Open
|
8
|
Frot M, Magnin M, Mauguière F, Garcia-Larrea L. Cortical representation of pain in primary sensory-motor areas (S1/M1)--a study using intracortical recordings in humans. Hum Brain Mapp 2012; 34:2655-68. [PMID: 22706963 DOI: 10.1002/hbm.22097] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 03/12/2012] [Accepted: 03/14/2012] [Indexed: 11/06/2022] Open
Abstract
Intracortical evoked potentials to nonnoxious Aβ (electrical) and noxious Aδ (laser) stimuli within the human primary somatosensory (S1) and motor (M1) areas were recorded from 71 electrode sites in 9 epileptic patients. All cortical sites responding to specific noxious inputs also responded to nonnoxious stimuli, while the reverse was not always true. Evoked responses in S1 area 3b were systematic for nonnoxious inputs, but seen in only half of cases after nociceptive stimulation. Nociceptive responses were systematically recorded when electrode tracks reached the crown of the postcentral gyrus, consistent with an origin in somatosensory areas 1-2. Sites in the precentral cortex also exhibited noxious and nonnoxious responses with phase reversals indicating a local origin in area 4 (M1). We conclude that a representation of thermal nociceptive information does exist in human S1, although to a much lesser extent than the nonnociceptive one. Notably, area 3b, which responds massively to nonnoxious Aβ activation was less involved in the processing of noxious heat. S1 and M1 responses to noxious heat occurred at latencies comparable to those observed in the supra-sylvian opercular region of the same patients, suggesting a parallel, rather than hierarchical, processing of noxious inputs in S1, M1 and opercular cortex. This study provides the first direct evidence for a spinothalamic related input to the motor cortex in humans.
Collapse
Affiliation(s)
- Maud Frot
- Central Integration of Pain, INSERM, U1028, Lyon Neuroscience Research Center, Lyon, F-69000, France; University Lyon 1, Villeurbanne, F-69000, France
| | | | | | | |
Collapse
|
9
|
Liang M, Mouraux A, Iannetti GD. Parallel processing of nociceptive and non-nociceptive somatosensory information in the human primary and secondary somatosensory cortices: evidence from dynamic causal modeling of functional magnetic resonance imaging data. J Neurosci 2011; 31:8976-85. [PMID: 21677181 PMCID: PMC6622932 DOI: 10.1523/jneurosci.6207-10.2011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 04/15/2011] [Accepted: 04/19/2011] [Indexed: 01/11/2023] Open
Abstract
Several studies have suggested that, in higher primates, nociceptive somatosensory information is processed in parallel in the primary (S1) and secondary (S2) somatosensory cortices, whereas non-nociceptive somatosensory input is processed serially from S1 to S2. However, evidence suggesting that both nociceptive and non-nociceptive somatosensory inputs are processed in parallel in S1 and S2 also exists. Here, we aimed to clarify whether or not the hierarchical organization of nociceptive and non-nociceptive somatosensory processing in S1 and S2 differs in humans. To address this question, we applied dynamic causal modeling and Bayesian model selection to functional magnetic resonance imaging (fMRI) data collected during the selective stimulation of nociceptive and non-nociceptive somatosensory afferents in humans. This novel approach allowed us to explore how nociceptive and non-nociceptive somatosensory information flows within the somatosensory system. We found that the neural activities elicited by both nociceptive and non-nociceptive somatosensory stimuli are best explained by models in which the fMRI responses in both S1 and S2 depend on direct thalamocortical projections. These observations indicate that, in humans, both nociceptive and non-nociceptive information are processed in parallel in S1 and S2.
Collapse
Affiliation(s)
- Meng Liang
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
10
|
Abstract
In the present study, galago brains were sectioned in the coronal, sagittal, or horizontal planes, and sections were processed with several different histochemical and immunohistochemical procedures to reveal the architectonic characteristics of the various cortical areas. The histochemical methods used included the traditional Nissl, cytochrome oxidase, and myelin stains, as well as a zinc stain, which reveals free ionic zinc in the axon terminals of neurons. Immunohistochemical methods include parvalbumin (PV) and calbindin (CB), both calcium-binding proteins, and the vesicle glutamate transporter 2 (VGluT2). These different procedures revealed similar boundaries between areas, which suggests that functionally relevant borders were being detected. These results allowed a more precise demarcation of previously identified areas. As thalamocortical terminations lack free ionic zinc, primary cortical areas were most clearly revealed by the zinc stain, because of the poor zinc staining of layer 4. Area 17 was especially prominent, as the broad layer 4 was nearly free of zinc stain. However, this feature was less pronounced in the primary auditory and somatosensory cortex. As VGluT2 is expressed in thalamocortical terminations, layer 4 of primary sensory areas was darkly stained for VGluT2. Primary motor cortex had reduced VGluT2 staining, and increased zinc-enriched terminations in the poorly developed granular layer 4 compared to the adjacent primary somatosensory area. The middle temporal visual (MT) showed increased PV and VGluT2 staining compared to the surrounding cortical areas. The resulting architectonic maps of cortical areas in galagos can usefully guide future studies of cortical organizations and functions.
Collapse
Affiliation(s)
- Peiyan Wong
- Department of Psychology, Vanderbilt University, Nashville TN 37212
| | - Jon H. Kaas
- Department of Psychology, Vanderbilt University, Nashville TN 37212
| |
Collapse
|
11
|
Affiliation(s)
- Riitta Hari
- Brain Research Unit, Low Temperature Laboratory, Aalto University School of Science and Technology, AALTO, Espoo, Finland.
| | | | | |
Collapse
|
12
|
Differential modulatory influences between primary auditory cortex and the anterior auditory field. J Neurosci 2009; 29:8350-62. [PMID: 19571126 DOI: 10.1523/jneurosci.6001-08.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuroanatomical studies have revealed a vast network of corticocortical connections among the various fields that form cat auditory cortex. However, few studies have explored the functional communicative properties of these connections. The purpose of the present study was to examine the bidirectional processing contributions between the primary auditory cortex (A1) and the nonprimary anterior auditory field (AAF). Using acute recording techniques, multiunit neuronal activity was collected from the right hemisphere of nine mature cats. Cortical maps were generated, and the precise location of A1 and AAF was identified. Subsequently, the synaptic activity of A1 or AAF was suppressed with reversible thermal deactivation procedures while the neuronal response to tonal stimuli of the non-inactivated area (A1 or AAF) was measured. We examined response strength and latency, characteristic frequency, bandwidth, and neuronal threshold of A1 and AAF receptive fields before and during epochs of deactivation. Three major changes in A1 response properties were observed during AAF neuronal suppression: a decrease in response strength, an increase in neuronal thresholds, and a sharpening of receptive field bandwidths. In contrast, A1 deactivation did not produce any discernible changes in AAF neuronal responses. Collectively, these results suggest that the modulation of acoustic information between A1 and AAF in cat auditory cortex is dominated by a unidirectional AAF to A1 pathway.
Collapse
|
13
|
Abstract
Tree shrews are small mammals that bear some semblance to squirrels, but are actually close relatives of primates. Thus, they have been extensively studied as a model for the early stages of primate evolution. In this study, subdivisions of cortex were reconstructed from brain sections cut in the coronal, sagittal, or horizontal planes, and processed for parvalbumin, SMI-32-immunopositive neurofilament protein epitopes, vesicle glutamate transporter 2 (VGluT2), free ionic zinc, myelin, cytochrome oxidase, and Nissl substance. These different procedures revealed similar boundaries between areas, suggesting the detection of functionally relevant borders and allowed a more precise demarcation of cortical areal boundaries. Primary cortical areas were most clearly revealed by the zinc stain, because of the poor staining of layer 4, as thalamocortical terminations lack free ionic zinc. Area 17 (V1) was especially prominent, as the broad layer 4 was nearly free of zinc stain. However, this feature was less pronounced in primary auditory and somatosensory cortex. In primary sensory areas, thalamocortical terminations in layer 4 densely express VGluT2. Auditory cortex consists of two architectonically distinct subdivisions, a primary core region (Ac), surrounded by a belt region (Ab) that had a slightly less developed koniocellular appearance. Primary motor cortex (M1) was identified by the absence of VGluT2 staining in the poorly developed granular layer 4 and the presence of SMI-32-labeled pyramidal cells in layers 3 and 5. The presence of well-differentiated cortical areas in tree shrews indicates their usefulness in studies of cortical organization and function.
Collapse
Affiliation(s)
- Peiyan Wong
- Department of Psychology, Vanderbilt University, Nashville TN 37212
| | - Jon H. Kaas
- Department of Psychology, Vanderbilt University, Nashville TN 37212
| |
Collapse
|
14
|
Liao CC, Yen CT. Functional Connectivity of the Secondary Somatosensory Cortex of the Rat. Anat Rec (Hoboken) 2008; 291:960-73. [DOI: 10.1002/ar.20696] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Kaas JH, Qi HX, Iyengar S. Cortical network for representing the teeth and tongue in primates. ACTA ACUST UNITED AC 2006; 288:182-90. [PMID: 16411246 DOI: 10.1002/ar.a.20267] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sensory information from the tongue and teeth is used to evaluate and distinguish food and nonfood items in the mouth, reject some and masticate and swallow others. While it is known that primates have a complex array of 10 or more somatosensory areas that contribute to the analysis of sensory information from the hand, less is known about what cortical areas are involved in processing information from receptors of the tongue and teeth. The tongue contains taste receptors, as well as mechanoreceptors. Afferents from taste receptors and mechanoreceptors of the tongue access different ascending systems in the brainstem. However, it is uncertain how these two sources of information are processed in cortex. Here the parts of somatosensory areas 3b, 3a, and presumptive 1 that represent the mechanoreceptors of the teeth and tongue are identified, and evidence is presented that the representations of the tongue also get information from the taste nucleus of the thalamus, VPMpc. As areas 3b, 3a, and 1 project to other areas of somatosensory cortex, and those areas to additional areas, some or all of the currently defined somatosensory areas of cortex may be involved in processing gustatory, as well as tactile, information from the tongue and thus have a role in the biologically important function of evaluating food in the mouth.
Collapse
Affiliation(s)
- Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37240, USA.
| | | | | |
Collapse
|
16
|
Abstract
Inferences about how the complex somatosensory systems of anthropoid primates evolved are based on comparative studies of such systems in extant mammals. Experimental studies of members of the major clades of extant mammals suggest that somatosensory cortex of early mammals consisted of only a few areas, including a primary area, S1, bordered by strip-like rostral and caudal somatosensory fields, SR and SC. In addition, the second somatosensory area, S2, and the parietal ventral area, PV, were probably present. S1, S2, and PV were activated independently via parallel projections from the ventroposterior nucleus, VP. Little posterior parietal cortex existed, and it was unlikely that a separate primary motor area, M1, existed until placental mammals evolved. Early primates retained this basic organization and also had a larger posterior parietal region that mediated sensorimotor functions via connections with motor and premotor areas. The frontal cortex included M1, dorsal and ventral premotor areas, supplementary motor area, and cingulate motor fields. Ventroposterior superior and ventroposterior inferior nuclei were distinct from the ventroposterior nucleus in the thalamus. In early anthropoid primates, areas S1, SR, and SC had differentiated into the fields now recognized as areas 3b, 3a, and 1. Areas 3b and 1 contained parallel mirror-image representations of cutaneous receptors and a parallel representation in area 2 was probable. Serial processing became dominant, so that neurons in areas 1, S2, and PV became dependent on area 3b for activation. Posterior parietal cortex expanded into more areas that related to frontal cortex. Less is known about changes that might have occurred with the emergence of apes and humans, but their brains were larger and posed scaling problems most likely solved by increasing the number of cortical areas and reducing the proportion of long connections.
Collapse
Affiliation(s)
- Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37240, USA.
| |
Collapse
|
17
|
Abstract
Contrary to the traditional view that the cerebral cortex is not involved in pain perception an extensive cortical network associated with pain processing has been revealed during the past decades. This network consistently includes the primary (S1) and secondary somatosensory cortices (S2), the insular cortex, and the anterior cingulate cortex (ACC). These cortical areas are organized in parallel and contribute to different dimensions of pain experience. The S1 cortex is mainly involved in discriminative aspects of pain, while the S2 cortex seems to have an important role in cognitive aspects of pain perception. The insula has been proposed to be involved in autonomic reactions to noxious stimuli and in pain-related learning and memory. The ACC is closely related to pain affect and may subserve the integration of general affect, cognition, and response selection. Furthermore, first pain appears to be particularly related to activation of S1 whereas second pain is closely related to ACC activation.
Collapse
Affiliation(s)
- M Ploner
- Neurologische Klinik, Heinrich-Heine-Universität, Düsseldorf.
| | | |
Collapse
|
18
|
Garcia-Larrea L, Frot M, Valeriani M. Brain generators of laser-evoked potentials: from dipoles to functional significance. Neurophysiol Clin 2004; 33:279-92. [PMID: 14678842 DOI: 10.1016/j.neucli.2003.10.008] [Citation(s) in RCA: 415] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
In this work we review data on cortical generators of laser-evoked potentials (LEPs) in humans, as inferred from dipolar modelling of scalp EEG/MEG results, as well as from intracranial data recorded with subdural grids or intracortical electrodes. The cortical regions most consistently tagged as sources of scalp LERs are the suprasylvian region (parietal operculum, SII) and the anterior cingulate cortex (ACC). Variability in opercular sources across studies appear mainly in the anterior-posterior direction, where sources tend to follow the axis of the Sylvian fissure. As compared with parasylvian activation described in functional pain imaging studies, LEP opercular sources tended to cluster at more superior sites and not to involve the insula. The existence of suprasylvian opercular LEPs has been confirmed by both epicortical (subdural) and intracortical recordings. In dipole-modelling studies, these sources appear to become active less than 150 ms post-stimulus, and remain in action for longer than opercular responses recorded intracortically, thus suggesting that modelled opercular dipoles reflect a "lumped" activation of several sources in the suprasylvian region, including both the operculum and the insula. Participation of SI sources to explain LEP scalp distribution remains controversial, but evidence is emerging that both SI and opercular sources may be concomitantly activated by laser pulses, with very similar time courses. Should these data be confirmed, it would suggest that a parallel processing in SI and SII has remained functional in humans for noxious inputs, whereas hierarchical processing from SI toward SII has emerged for other somatosensory sub-modalities. The ACC has been described as a source of LEPs by virtually all EEG studies so far, with activation times roughly corresponding to scalp P2. Activation is generally confined to area 24 in the caudal ACC, and has been confirmed by subdural and intracortical recordings. The inability of most MEG studies to disclose such ACC activity may be due to the radial orientation of ACC currents relative to scalp. ACC dipole sources have been consistently located between the VAC and VPC lines of Talairach's space, near to the cingulate subsections activated by motor tasks involving control of the hand. Together with the fact that scalp activities at this latency are very sensitive to arousal and attention, this supports the hypothesis that laser-evoked ACC activity may underlie orienting reactions tightly coupled with limb withdrawal (or control of withdrawal). With much less consistency than the above-mentioned areas, posterior parietal, medial temporal and anterior insular regions have been occasionally tagged as possible contributors to LEPs. Dipoles ascribed to medial temporal lobe may be in some cases re-interpreted as being located at or near the insular cortex. This would make sense as the insular region has been shown to respond to thermal pain stimuli in both functional imaging and intracranial EEG studies.
Collapse
Affiliation(s)
- L Garcia-Larrea
- Inserm EMI-0342, Human Neuro. Laboratory at CERMEP, Hôpital Neurologique, 59 Boulevard Pinel, 69003 Lyon, France.
| | | | | |
Collapse
|
19
|
Wu CWH, Kaas JH. Somatosensory cortex of prosimian Galagos: physiological recording, cytoarchitecture, and corticocortical connections of anterior parietal cortex and cortex of the lateral sulcus. J Comp Neurol 2003; 457:263-92. [PMID: 12541310 DOI: 10.1002/cne.10542] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Compared with our growing understanding of the organization of somatosensory cortex in monkeys, little is known about prosimian primates, a major branch of primate evolution that diverged from anthropoid primates some 60 million years ago. Here we describe extensive results obtained from an African prosimian, Galago garnetti. Microelectrodes were used to record from large numbers of cortical sites in order to reveal regions of responsiveness to cutaneous stimuli and patterns of somatotopic organization. Injections of one to several distinguishable tracers were placed at physiologically identified sites in four different cortical areas to label corticortical connections. Both types of results were related to cortical architecture. Three systematic representations of cutaneous receptors were revealed by the microelectrode recordings, S1 proper or area 3b, S2, and the parietal ventral area (PV), as described in monkeys. Strips of cortex rostral (presumptive area 3a) and caudal (presumptive area 1-2) to area 3b responded poorly to tactile stimuli in anesthetized galagos, but connection patterns with area 3b indicated that parallel somatosensory representations exist in both of these regions. Area 3b also interconnected somatotopically with areas S2 and PV. Areas S2 and PV had connections with areas 3a, 3b, 1-2, each other, other regions of the lateral sulcus, motor cortex (M1), cingulate cortex, frontal cortex, orbital cortex, and inferior parietal cortex. Connection patterns and recordings provided evidence for several additional fields in the lateral sulcus, including a retroinsular area (Ri), a parietal rostral area (PR), and a ventral somatosensory area (VS). Galagos appear to have retained an ancestral preprimate arrangement of five basic areas (S1 proper, 3a, 1-2, S2, and PV). Some of the additional areas suggested for lateral parietal cortex may be primate specializations.
Collapse
Affiliation(s)
- Carolyn W-H Wu
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37240, USA
| | | |
Collapse
|
20
|
Barba C, Frot M, Mauguière F. Early secondary somatosensory area (SII) SEPs. Data from intracerebral recordings in humans. Clin Neurophysiol 2002; 113:1778-86. [PMID: 12417231 DOI: 10.1016/s1388-2457(02)00261-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To record somatosensory evoked potentials (SEPs) to median nerve stimulation by chronically implanted electrodes in the parieto-rolandic opercular area of 9 epileptic patients, in order to evaluate whether somatosensory evoked responses could be generated in the second somatosensory area (SII) earlier than 40 ms after stimulus. METHODS Nine patients (4 males, 5 females) with drug-resistant partial epileptic seizures were investigated using stereotactically implanted electrodes in the parietal cortex, posterior to vertical anterior commissure plane and in the frontal opercular region rostral to vertical anterior commissure (VAC). RESULTS The main finding of this study is the recording of an early somatosensory evoked potential, (N30op), by chronically implanted electrodes in the SII area of 8 epileptic patients. In 3 patients where SEPs were performed after ipsilateral median nerve (MN) stimulation, a N30op was recorded 5.8+/-2 ms later than contralateral one. CONCLUSIONS This is the first report of early SEPs recorded by electrodes implanted in SII area. The N30op potential, even if less consistent than later potentials, confirmed the important role of the SII area in the early processing of somatosensory inputs.
Collapse
Affiliation(s)
- Carmen Barba
- Department of Neurology, Catholic University, Largo A. Gemelli 8, 00168 Rome, Italy.
| | | | | |
Collapse
|
21
|
Tran TD, Inui K, Hoshiyama M, Lam K, Qiu Y, Kakigi R. Cerebral activation by the signals ascending through unmyelinated C-fibers in humans: a magnetoencephalographic study. Neuroscience 2002; 113:375-86. [PMID: 12127094 DOI: 10.1016/s0306-4522(02)00195-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cerebral processing of first pain, associated with A delta-fibers, has been studied intensively, but the cerebral processing associated with unmyelinated C-fibers, relating to second pain, remains to be investigated. This is the first study to clarify the primary cortical processing of second pain by magnetoencephalography, through the selective activation of C-fibers, by the stimulation of a tiny area of skin with a CO2 laser. In the hemisphere contralateral to the side stimulated, a one-source generator in the upper bank of the Sylvian fissure (secondary somatosensory cortex, SII) or two-source generators in SII and the hand area of the primary somatosensory cortex (SI) were the optimal configurations for the first component 1M. The onset and peak latency of the two sources in SI and SII were not significantly different. In the hemisphere ipsilateral to the stimulation, only one source was estimated in SII, and its peak latency was significantly (approximately 18 ms on average) longer than that of the SII source in the contralateral hemisphere. From our findings we suggest that parallel activation of SI and SII contralateral to the stimulation represents the first step in the cortical processing of C-fiber-related activities, probably related to second pain.
Collapse
Affiliation(s)
- T D Tran
- Department of Integrative Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Zhang HQ, Murray GM, Coleman GT, Turman AB, Zhang SP, Rowe MJ. Functional characteristics of the parallel SI- and SII-projecting neurons of the thalamic ventral posterior nucleus in the marmoset. J Neurophysiol 2001; 85:1805-22. [PMID: 11352998 DOI: 10.1152/jn.2001.85.5.1805] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The functional organization of the primate somatosensory system at thalamocortical levels has been a matter of controversy, in particular, over the extent to which the primary and secondary somatosensory cortical areas, SI and SII, are organized in parallel or serial neural networks for the processing of tactile information. This issue was investigated for the marmoset monkey by recording from 55 single tactile-sensitive neurons in the lateral division of the ventral posterior nucleus of the thalamus (VPL) with a projection to either SI or SII, identified with the use of the antidromic collision technique. Neurons activated from the hand and distal forearm were classified according to their peripheral source of input and characterized in terms of their functional capacities to determine whether the direct thalamic input can account for tactile processing in both SI and SII. Both the SI- and SII-projecting samples contained a slowly adapting (SA) class of neurons, sensitive to static skin displacement, and purely dynamically sensitive tactile neurons that could be subdivided into two classes. One was most sensitive to high-frequency (> or =100 Hz) cutaneous vibration whose input appeared to be derived from Pacinian sources, while the other was sensitive to lower frequency vibration (< or =100 Hz) or trains of rectangular mechanical pulse stimuli, that appeared to receive its input from rapidly adapting (RA) afferent fibers presumed to be associated with intradermal tactile receptors. There appeared to be no systematic differences in functional capacities between SI- and SII-projecting neurons of each of these three classes, based on receptive field characteristics, on the form of stimulus-response relations, and on measures derived from these relations. These measures included threshold and responsiveness values, bandwidths of vibrational sensitivity, and the capacity for responding to cutaneous vibrotactile stimuli with phase-locked, temporally patterned impulse activity. The analysis indicates that low-threshold, high-acuity tactile information is conveyed directly to both SI and SII from overlapping regions within the thalamic VP nucleus. This direct confirmation of a parallel functional projection to both SI and SII in the marmoset is consistent with our separate studies at the cortical level that demonstrate first, that tactile responsiveness in SII largely survives the SI inactivation and second, that SI responsiveness is largely independent of SII. It therefore reinforces the evidence that SI and SII occupy a hierarchically equivalent network for tactile processing.
Collapse
Affiliation(s)
- H Q Zhang
- School of Physiology and Pharmacology, The University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | |
Collapse
|
23
|
Zhang HQ, Zachariah MK, Coleman GT, Rowe MJ. Hierarchical Equivalence of Somatosensory Areas I and II for Tactile Processing in the Cerebral Cortex of the Marmoset Monkey. J Neurophysiol 2001; 85:1823-35. [PMID: 11352999 DOI: 10.1152/jn.2001.85.5.1823] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Responsiveness of the first somatosensory area (SI) of the cerebral cortex was investigated in the marmoset monkey ( Callithrix jacchus) in association with cooling-induced, reversible inactivation of the second somatosensory area, SII. The aim was to determine whether SI responsiveness to peripheral tactile stimulation depends on SII and therefore whether SI and SII in the marmoset occupy hierarchically equivalent positions in a parallel organizational scheme for thalamocortical tactile processing as appears to be the case in nonprimate mammals. Inactivation of SII was achieved when the temperature over SII was lowered to ≤12°C, as indicated by abolition of the SII-evoked potentials generated by brief tap stimuli to the hand or foot, and by abolition of tactile responses in single SII neurons located at the margin beneath the block. The effect of SII inactivation on SI-evoked potentials was examined in 16 experiments by simultaneous recording of the SI- and SII-evoked potentials. SI-evoked potentials were never abolished and remained unaffected in 11 cases. In three experiments there was a small reduction in amplitude and inconsistent effects in the remaining two. Responsiveness to controlled tactile stimuli was examined quantitatively in 31 individual SI neurons of different functional classes before, during, and after the inactivation of SII. Tactile responsiveness in individual SI neurons was never abolished by SII inactivation, remaining unchanged in 20 neurons (65%) while undergoing some reduction in the remaining 11 SI neurons (35%). This reduction of tactile responsiveness in one-third of SI neurons is most likely attributable to a removal of a facilitatory influence emanating from SII, based on the observation that background activity of the affected neurons was also reduced. Furthermore, phase locking of SI responses to vibrotactile stimulation was unchanged when SII was inactivated. The retention of responsiveness in SI neurons when SII was inactivated by cooling in the marmoset demonstrates that tactile inputs can reach SI without traversing an indirect, serially organized path through SII. The present results, together with our previous observations that responsiveness in the majority of SII neurons survived SI inactivation, demonstrate that there is a parallel organization of the SI and SII areas for tactile processing in the marmoset monkey and that SI and SII occupy hierarchically equivalent positions in a parallel processing network. There is therefore no longer justification for the view that there are fundamental differences in the organization of thalamocortical tactile processing for SI and SII between simian primates, in general, and other mammals.
Collapse
Affiliation(s)
- H Q Zhang
- School of Physiology and Pharmacology, The University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | |
Collapse
|
24
|
Abstract
The traditional view that the cerebral cortex is not involved in pain processing has been abandoned during the past decades based on anatomic and physiologic investigations in animals, and lesion, functional neuroimaging, and neurophysiologic studies in humans. These studies have revealed an extensive central network associated with nociception that consistently includes the thalamus, the primary (SI) and secondary (SII) somatosensory cortices, the insula, and the anterior cingulate cortex (ACC). Anatomic and electrophysiologic data show that these cortical regions receive direct nociceptive thalamic input. From the results of human studies there is growing evidence that these different cortical structures contribute to different dimensions of pain experience. The SI cortex appears to be mainly involved in sensory-discriminative aspects of pain. The SII cortex seems to have an important role in recognition, learning, and memory of painful events. The insula has been proposed to be involved in autonomic reactions to noxious stimuli and in affective aspects of pain-related learning and memory. The ACC is closely related to pain unpleasantness and may subserve the integration of general affect, cognition, and response selection. The authors review the evidence on which the proposed relationship between cortical areas, pain-related neural activations, and components of pain perception is based.
Collapse
Affiliation(s)
- A Schnitzler
- Department of Neurology, Heinrich-Heine University, Düsseldorf, Germany.
| | | |
Collapse
|
25
|
Wegner K, Forss N, Salenius S. Characteristics of the human contra- versus ipsilateral SII cortex. Clin Neurophysiol 2000; 111:894-900. [PMID: 10802461 DOI: 10.1016/s1388-2457(99)00319-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVES In order to study the interaction between left- and right-sided stimuli on the activation of cortical somatosensory areas, we recorded somatosensory evoked magnetic fields (SEFs) from 8 healthy subjects with a 122 channel whole-scalp SQUID gradiometer. METHODS Right and left median nerves were stimulated either alternately within the same run, with interstimulus intervals (ISIs) of 1.5 and 3 s, or separately in different runs with a 3 s ISI. In all conditions 4 cortical source areas were activated: the contralateral primary somatosensory cortex (SI), the contra- and ipsilateral secondary somatosensory cortices (SII) and the contralateral posterior parietal cortex (PPC). RESULTS The earliest activity starting at 20 ms was generated solely in the SI cortex, whereas longer-latency activity was detected from all 4 source areas. The mean peak latencies for SII responses were 86-96 ms for contralateral and 94-97 ms for ipsilateral stimuli. However, the activation of right and left SII areas started at 61+/-3 and 62+/-3 ms to contralateral stimuli and at 66+/-2 and 63+/-2 ms to ipsilateral stimuli, suggesting a simultaneous commencing of activation of the SII areas. PPC sources were activated between 70 and 110 ms in different subjects. The 1.5 s ISI alternating stimuli elicited smaller SII responses than the 3 s ISI non-alternating stimuli, suggesting that a considerable part of the neural population in SII responds both to contra- and ipsilateral stimuli. The earliest SI responses did not differ between the two conditions. There were no significant differences in source locations of SII responses to ipsi- and contralateral stimuli in either hemisphere. Subaverages of the responses in sets of 30 responses revealed that amplitudes of the SII responses gradually attenuated during repetitive stimulation, whereas the amplitudes of the SI responses were not changed. CONCLUSIONS The present results implicate that ipsi- and contralateral SII receive simultaneous input, and that a large part of SII neurons responds both to contra- and ipsilateral stimulation. The present data also highlight the different behavior of SI and SII cortices to repetitive stimuli.
Collapse
Affiliation(s)
- K Wegner
- Brain Research Unit, Low Temperature Laboratory, Helsinki University of Technology, P.O. Box 2200, FIN-02015 HUT, Espoo, Finland.
| | | | | |
Collapse
|
26
|
Kanda M, Nagamine T, Ikeda A, Ohara S, Kunieda T, Fujiwara N, Yazawa S, Sawamoto N, Matsumoto R, Taki W, Shibasaki H. Primary somatosensory cortex is actively involved in pain processing in human. Brain Res 2000; 853:282-9. [PMID: 10640625 DOI: 10.1016/s0006-8993(99)02274-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We recorded somatosensory evoked magnetic fields (SEFs) by a whole head magnetometer to elucidate cortical receptive areas involved in pain processing, focusing on the primary somatosensory cortex (SI), following painful CO(2) laser stimulation of the dorsum of the left hand in 12 healthy human subjects. In seven subjects, three spatially segregated cortical areas (contralateral SI and bilateral second (SII) somatosensory cortices) were simultaneously activated at around 210 ms after the stimulus, suggesting parallel processing of pain information in SI and SII. Equivalent current dipole (ECD) in SI pointed anteriorly in three subjects whereas posteriorly in the remaining four. We also recorded SEFs following electric stimulation of the left median nerve at wrist in three subjects. ECD of CO(2) laser stimulation was located medial-superior to that of electric stimulation in all three subjects. In addition, by direct recording of somatosensory evoked potentials (SEPs) from peri-Rolandic cortex by subdural electrodes in an epilepsy patient, we identified a response to the laser stimulation over the contralateral SI with the peak latency of 220 ms. Its distribution was similar to, but slightly wider than, that of P25 of electric SEPs. Taken together, it is postulated that the pain impulse is received in the crown of the postcentral gyrus in human.
Collapse
Affiliation(s)
- M Kanda
- Department of Brain Pathophysiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Forss N, Hietanen M, Salonen O, Hari R. Modified activation of somatosensory cortical network in patients with right-hemisphere stroke. Brain 1999; 122 ( Pt 10):1889-99. [PMID: 10506091 DOI: 10.1093/brain/122.10.1889] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To study the effects of parietal lesions on activation of the human somatosensory cortical network, we measured somatosensory evoked fields to electric median nerve stimuli, using a whole-scalp 122-channel neuromagnetometer, from six patients with cortical right-hemisphere stroke and from seven healthy control subjects. In the control subjects, unilateral stimuli elicited responses which were satisfactorily accounted for by modelled sources in the contralateral primary (SI) and bilateral secondary (SII) somatosensory cortices. In all patients, stimulation of the right median nerve also activated the SI and SII cortices of the healthy left hemisphere. However, the activation pattern was altered, suggesting diminished interhemispheric inhibition via callosal connections after right-sided stroke. Responses to left median nerve stimuli showed large interindividual variability due to the different extents of the lesions. The strength of the 20-ms response, originating in the SI cortex, roughly reflected the severity of the tactile impairment. Right SII responses were absent in patients with abnormal right SI responses, whereas the left SII was active in all patients, regardless of the responsiveness of the right SI and/or SII. Our results suggest that the human SI and SII cortices may be sequentially activated within one hemisphere, whereas SII ipsilateral to the stimulation may receive direct input from the periphery, at least when normal input from SI is interrupted.
Collapse
Affiliation(s)
- N Forss
- Brain Research Unit, Low Temperature Laboratory, Helsinki University of Technology, Espoo, Finland
| | | | | | | |
Collapse
|
28
|
Ploner M, Schmitz F, Freund HJ, Schnitzler A. Parallel activation of primary and secondary somatosensory cortices in human pain processing. J Neurophysiol 1999; 81:3100-4. [PMID: 10368426 DOI: 10.1152/jn.1999.81.6.3100] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cerebral processing of pain has been shown to involve primary (SI) and secondary (SII) somatosensory cortices. However, the temporal activation pattern of these cortices in nociceptive processing has not been demonstrated so far. We therefore used whole-head magnetoencephalography to record cortical responses to cutaneous laser stimuli in six healthy human subjects. By using selective nociceptive stimuli our results confirm involvement of contralateral SI and bilateral SII in human pain processing. Beyond they show for the first time simultaneous activation onset of contralateral SI and SII after approximately 130 ms, indicating parallel thalamocortical distribution of nociceptive information. This contrasts to the serial cortical organization of tactile processing in higher primates and instead corresponds to the parallel cortical organization in lower primates and nonprimates. Thus our finding suggests preservation of the basic mammalian parallel organizational scheme in human pain processing, whereas in the tactile modality parallel organization appears to be abandoned in favor of a serial processing scheme. Functionally, preservation of direct access to SII underscores the relevance of this area in human pain processing, probably reflecting an important role of SII in nociceptive learning and memory.
Collapse
Affiliation(s)
- M Ploner
- Department of Neurology, Heinrich-Heine University, D-40225 Dusseldorf, Germany
| | | | | | | |
Collapse
|
29
|
Karhu J, Tesche CD. Simultaneous early processing of sensory input in human primary (SI) and secondary (SII) somatosensory cortices. J Neurophysiol 1999; 81:2017-25. [PMID: 10322043 DOI: 10.1152/jn.1999.81.5.2017] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Simultaneous early processing of sensory input in human primary (SI) and secondary (SII) somatosensory cortices. The anatomic connectivity of the somatosensory system supports the simultaneous participation of widely separated cortical areas in the early processing of sensory input. We recorded evoked neuromagnetic responses noninvasively from human primary (SI) and secondary (SII) somatosensory cortices to unilateral median nerve stimulation. Brief current pulses were applied repetitively to the median nerve at the wrist at 2 Hz for 800-1,500 trials. A single pulse was omitted from the train at random intervals (15% of omissions). We observed synchronized neuronal population activity in contralateral SII area 20-30 ms after stimulation, coincident in time with the first responses generated in SI. Both contra- and ipsilateral SII areas showed prominent activity at 50-60 ms with an average delay of 13 ms for ipsilateral compared with contralateral responses. The refractory behavior of the early SII responses to the omissions differed from those observed at approximately 100 ms, indicative of distinct neuronal assemblies responding at each latency. These results indicate that SII and/or associated cortices in parietal operculum, often viewed as higher-order processing areas for somatosensory perception, are coactivated with SI during the early processing of intermittent somatosensory input.
Collapse
Affiliation(s)
- J Karhu
- Brain Research Unit, Low Temperature Laboratory, Helsinki University of Technology, FIN-02015 HUT, Finland
| | | |
Collapse
|
30
|
Coleman GT, Zhang HQ, Murray GM, Zachariah MK, Rowe MJ. Organization of somatosensory areas I and II in marsupial cerebral cortex: parallel processing in the possum sensory cortex. J Neurophysiol 1999; 81:2316-24. [PMID: 10322068 DOI: 10.1152/jn.1999.81.5.2316] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Organization of somatosensory areas I and II in marsupial cerebral cortex: parallel processing in the possum sensory cortex. Controversy exists over the organization of mammalian thalamocortical somatosensory networks. An issue of particular contention is whether the primary and secondary somatosensory areas of cortex (SI and SII) are organized in a parallel or serial scheme for processing tactile information. The current experiments were conducted in the anesthetized brush-tail possum (Trichosurus vulpecula) to determine which organizational scheme operates in marsupials, which have taken a quite different evolutionary path from the placental species studied in this respect. The effect of rapid reversible inactivation of SI, achieved by localized cortical cooling, was examined on both evoked potential and single neuron responses in SII. SI inactivation was without effect on the amplitude, latency, and time course of SII-evoked potentials, indicating that the transient inputs responsible for the SII-evoked potential reach SII directly from the thalamus rather than traversing an indirect serial route via SI. Tactile responsiveness was examined quantitatively before, during, and after SI inactivation in 16 SII neurons. Fourteen were unchanged in their responsiveness, and two showed some reduction, an effect probably attributable to the loss of a facilitatory influence exerted by SI on a small proportion of SII neurons. The temporal precision and pattern of SII responses to dynamic forms of mechanical stimuli were unaffected, and temporal dispersion in the SII response bursts was unchanged in association with SI inactivation. In conclusion, the results establish that, within this marsupial species, tactile inputs can reach SII directly from the thalamus and are not dependent on a serially organized path through SI. A predominantly parallel organizational scheme for SI and SII operates in this representative of the marsupial order, as it does in a range of placental mammals including the cat and rabbit, the tree shrew and prosimian galago, and at least one primate representative, the marmoset monkey.
Collapse
Affiliation(s)
- G T Coleman
- School of Physiology and Pharmacology, The University of New South Wales, Sydney 2052, Australia
| | | | | | | | | |
Collapse
|
31
|
Frot M, Rambaud L, Guénot M, Mauguière F. Intracortical recordings of early pain-related CO2-laser evoked potentials in the human second somatosensory (SII) area. Clin Neurophysiol 1999; 110:133-45. [PMID: 10348332 DOI: 10.1016/s0168-5597(98)00054-9] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We studied responses of the parieto-frontal opercular cortex to CO2-laser stimulation of A delta fiber endings, as recorded by intra-cortical electrodes during stereotactic-EEG (SEEG) presurgical assessment of patients with drug-resistant temporal lobe epilepsy. After CO2-laser stimulation of the skin at the dorsum of the hand, we consistently recorded in the upper bank of the sylvian fissure contralateral to stimulation, a negative response at a latency of 135 +/- 18 ms (N140), followed by a positivity peaking around 171 +/- 22 ms (P170). The stereotactic coordinates in the Talairach's atlas of the electrode contacts recording these early responses covered the pre- and post-rolandic part of the upper bank of the sylvian fissure (-27 < y < +12 mm; 31 < x < 57 mm; 4 < z < 23 mm), corresponding to the accepted localization of the SII area in man, possibly including the upper part of the insular cortex. The spatial distribution of these early contralateral responses in the SII-insular cortex fits wit that of the modeled sources of scalp CO2-laser evoked potentials (LEPs) and with PET data from pain activation studies. Moreover, this study showed the likely existence of dipolar sources radial to the scalp surface in SII, which are overlooked in magnetic recordings. Early responses also occurred in the SII area ipsilateral to stimulation peaking 15 ms later than in contralateral SII, suggesting a callosal transmission of nociceptive inputs between the two SII areas. Other pain responsive areas such as the anterior cingulate gyrus, the amygdala and the orbitofrontal cortex did not show early LEPs in the 200 ms post-stimulus. These findings suggest that activation of SII area contralateral to stimulation, possibly through direct thalamocortical projections, represents the first step in the cortical processing of peripheral A delta fiber pain inputs.
Collapse
Affiliation(s)
- M Frot
- Department of Functional Neurology and Epileptology, Hôpital Neurologique, Lyon, France
| | | | | | | |
Collapse
|
32
|
Mima T, Nagamine T, Nakamura K, Shibasaki H. Attention modulates both primary and second somatosensory cortical activities in humans: a magnetoencephalographic study. J Neurophysiol 1998; 80:2215-21. [PMID: 9772274 DOI: 10.1152/jn.1998.80.4.2215] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To clarify the role of primary and second somatosensory cortex (SI and SII) in somatosensory discrimination, we recorded somatosensory evoked magnetic fields during a stimulus strength discrimination task. The temporal pattern of cortical activation was analyzed by dipole source model coregistered with magnetic resonance image. Stimulus intensity was represented in SI as early as 20 ms after the stimulus presentation. The later components of SI response (latency 37.7 and 67.9 ms) were enhanced by rarely presented stimuli (stimulus deviancy) during passive and active attention. This supports an early haptic memory mechanism in human primary sensory cortex. Contra- and ipsilateral SII responses followed the SI responses (latency 124.6 and 138.3 ms, respectively) and were enhanced by attention more prominently than the SI responses. Active attention increased SII but not SI activity. These results are consistent with the concept of ventral somatosensory pathway that SI and SII are hierarchically organized for passive and active detection of discrete stimuli.
Collapse
Affiliation(s)
- T Mima
- Department of Brain Pathophysiology, Kyoto University School of Medicine, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
33
|
Rossetti Y. Implicit short-lived motor representations of space in brain damaged and healthy subjects. Conscious Cogn 1998; 7:520-58. [PMID: 9787059 DOI: 10.1006/ccog.1998.0370] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This article reviews experimental evidence for a specific sensorimotor function which can be dissociated from higher level representations of space. It attempts to delineate this function on the basis of results obtained by psychophysical experiments performed with brain damaged and healthy subjects. Eye and hand movement control exhibit automatic features, such that they are incompatible with conscious control. In addition, they rely on a reference frame different from the one used by conscious perception. Neuropsychological cases provide a strong support for this specific motor representation of space, which can be spared in patients with lesions of primary sensory systems who have lost conscious perception of visual, tactile or proprioceptive stimuli. Observation of these patients also showed that their motor behavior can be "attracted" by a goal only under specific conditions, that is, when the response is immediate and when no cognitive representation of this goal is elaborated at the same time. Beyond the issue of the dissociation between an implicit motor representation and more cognitive processing of spatial information, the issue of the interaction between these two systems is thus a matter of interest. It is suggested that the conscious, cognitive representation of a stimulus can contaminate or override the short-lived motor representation, but no reciprocal influence seem to occur. The interaction observed in patients can also be investigated in normals. The literature provides examples of interaction between sensorimotor and cognitive framing of space, which confirm that immediate action is not mediated by the same system as delayed action, and that elaborating a categorial representation of the action goal prevents the expression of the short-lived sensorimotor representation. It is concluded that action can be controlled by a sensory system which is specialized for on-line processing of relevant goal characteristics. The temporal constraints of this system are such that it can affect the action before a full sensory analysis of this goal has been completed. The performance obtained on the basis of this spatial sensory processing suggests that short-lived motor representations may rather be considered as real "presentation" of the action world, which share its metric properties.
Collapse
Affiliation(s)
- Y Rossetti
- Vision et Motricité, I.N.S.E.R.M. U. 94, 16 avenue doyen Lépine, F-69500 Bron, France.
| |
Collapse
|
34
|
Mauguière F, Merlet I, Forss N, Vanni S, Jousmäki V, Adeleine P, Hari R. Activation of a distributed somatosensory cortical network in the human brain. A dipole modelling study of magnetic fields evoked by median nerve stimulation. Part I: Location and activation timing of SEF sources. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1997; 104:281-9. [PMID: 9246065 DOI: 10.1016/s0013-4694(97)00006-0] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cortical areas responsive to somatosensory inputs were assessed by recording somatosensory evoked magnetic fields (SEF) to electrical stimulation of the left median nerve at wrist, using a 122-SQUID neuromagnetometer in various conditions of stimulus rate, attentional demand and detection task. Source modelling combined with magnetic resonance imaging (MRI) allowed localisation of six SEF sources on the outer aspect of the hemispheres located respectively: (1) in the posterior bank of the rolandic fissure (area SI), the upper bank of the sylvian fissure (parietal opercular area SII) and the banks of the intraparietal fissure contralateral to stimulation, (2) in the SII area ipsilateral to stimulation and (3) in the mid-frontal or inferior frontal gyri on both sides. All source areas were found to be simultaneously active at 70-140 ms after the stimulus, the SI source was the only one active already at 20-60 ms. The observed activation timing suggests that somatosensory input from SI is processed to higher-order areas through serial feedforward projections. However the long-lasting activations of all sources and their overlap in time is also compatible with a top-down control mediated via backward projections.
Collapse
Affiliation(s)
- F Mauguière
- Department of Functional Neurology and Epileptology, Hôpital Neurologique, Lyon, France.
| | | | | | | | | | | | | |
Collapse
|
35
|
Mackie PD, Zhang HQ, Schmidt RF, Rowe MJ. Parallel organization of proprioceptive inputs from joint receptors to cortical somatosensory areas I and II in the cat. J Physiol 1996; 494 ( Pt 2):529-37. [PMID: 8842010 PMCID: PMC1160653 DOI: 10.1113/jphysiol.1996.sp021511] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. Studies in monkeys indicate that proprioceptive and tactile inputs are conveyed from the thalamus to the primary somatosensory cortex (SI) and thence to the secondary somatosensory area (SII) in a serial scheme. In contrast, in the cat, tactile information is conveyed in parallel from the thalamus to SI and SII. The present study, in the cat, employed reversible inactivation of SI to determine whether proprioceptive inputs to SII from joint receptors depend on an indirect serial path via SI or are conveyed over a direct path from the thalamus. 2. SI and SII foci for knee joint inputs were determined with evoked potential mapping. Reversible inactivation of the SI focus by cooling had no effect on the amplitude, latency or time course of SII potentials evoked by joint inputs. There was also no consistent effect on the response levels of individual SII neurones examined during SI inactivation. Furthermore, there was no attenuation of the later components of the responses, and therefore no evidence that these depended on an indirect path to SII via SI. 3. Results demonstrate that proprioceptive inputs project directly from thalamus to SII over a pathway organized in parallel with that to SI, in contrast to the serial scheme reported for proprioceptive processing in primates.
Collapse
Affiliation(s)
- P D Mackie
- School of Physiology and Pharmacology, University of New South Wales, Sydney, Australia
| | | | | | | |
Collapse
|
36
|
Knecht S, Kunesch E, Schnitzler A. Parallel and serial processing of haptic information in man: effects of parietal lesions on sensorimotor hand function. Neuropsychologia 1996; 34:669-87. [PMID: 8783219 DOI: 10.1016/0028-3932(95)00148-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent animal studies have shown that there is an evolutionary shift within the order of primates from parallel to serial processing of haptic information. In an attempt to determine whether there is also evidence of serial processing in humans 10 patients with parietal cortical lesions, three patients with subcortical lesions and one patient after hemispherectomy, were examined. Case-by-case and across subject analysis of lesion type, sensorimotor profile and electrophysiological findings showed that in unihemispheric lesions: (a) there is little impairment of thermesthesia, nociception and vibration sense: (b) two-point discrimination and integrity of the N20 somatosensory component are highly correlated; (c) a loss of the N20 component is accompanied by a severe impairment of stereognosis; (d) conversely, in more posterior lesions astereognosis can occur with an intact N20 component; and (e) if the lesion is in the right hemisphere there is frequently impairment of graphesthesia in both hands. These data are taken to indicate serial processing from SI (as evidenced by an intact N20 component) to posterior parietal cortex allowing progressive spatial and temporal integration. In graphesthesia our data suggest an integrative function of the right parietal cortex for both sides of the body. Other sensory qualities like vibration nociception and thermesthesia are apparently processed in a non-serial, probably parallel way involving both hemispheres. The effects of cerebral lesions in our series suggest parallel as well as serial processing of somesthetic information in man underlying the perception of different haptic features.
Collapse
Affiliation(s)
- S Knecht
- Department of Neurology, University of Düsseldorf, Germany
| | | | | |
Collapse
|
37
|
Macchi G, Bentivoglio M, Minciacchi D, Molinari M. Trends in the anatomical organization and functional significance of the mammalian thalamus. ITALIAN JOURNAL OF NEUROLOGICAL SCIENCES 1996; 17:105-29. [PMID: 8797065 DOI: 10.1007/bf02000842] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The last decade has witnessed major changes in the experimental approach to the study of the thalamus and to the analysis of the anatomical and functional interrelations between thalamic nuclei and cortical areas. The present review focuses on the novel anatomical approaches to thalamo-cortical connections and thalamic functions in the historical framework of the classical studies on the thalamus. In the light of the most recent data it is here discussed that: a) the thalamus can subserve different functions according to functional changes in the cortical and subcortical afferent systems; b) the multifarious thalamic cellular entities play a crucial role in the different functional states.
Collapse
Affiliation(s)
- G Macchi
- Istituto di Neurologia, Università Cattolica, Roma, Italy
| | | | | | | |
Collapse
|
38
|
Barbaresi P, Guandalini P, Manzoni T. Laminar pattern of termination of the ipsilateral cortical projection from SII to SI in cats. J Comp Neurol 1995; 360:319-30. [PMID: 8522650 DOI: 10.1002/cne.903600209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The present light and electron microscopic experiments were carried out on the first somatic sensory area (SI) of cats to determine the laminar distribution of axon terminals from the ipsilateral second somatic sensory area (SII) and to identify the types of synapses between these terminals and the neuronal elements of SI. Phaseolus vulgaris-leucoagglutinin (PHA-L) was iontophoretically injected into multiple sites and at different cortical depths of the forepaw representation zone of SII. Fixed brain blocks containing the injected SII and ipsilateral SI were cut into slices and processed immunocytochemically to stain PHA-L-filled fibers and terminals. Light microscopic examination of SI revealed patches of anterograde labeling in the forepaw representation zone, concentrated mainly in supragranular layers. In these layers, thin immunolabeled fibers branched extensively and formed a dense plexus that was more prominent in layers II and I. Conversely, the infragranular layers contained fragments of vertically oriented thick fibers that rarely emitted axon collaterals. PHA-L-labeled axons had numerous swellings along their course, interpreted as boutons en passant, and stalked boutons. Of 19,661 labeled terminals (17,833 beads and 1,828 stalked boutons), 84.74% were observed in supragranular layers, with the highest concentration in layer II (33.15%) and lower in layers I (26.27%) and III (25.30%). The proportion of terminals was lower in layers IV (6.49%) and V (5.45%) and lowest in layer VI (3.32%). These counts also showed that boutons en passant were the majority (90.70%) and stalked boutons, the minority (9.30%). The ratio of these two types of presynaptic specializations was similar (9:1) in all six layers. Electron microscopic examination of the labeled regions of SI showed that both axon swellings and stalked boutons formed synapses of the asymmetric type with SI neuronal elements. The majority (85.37%) of a sample of 130 labeled terminals synapsed on SI neurons in layers I-III. The identified postsynaptic profiles were dendritic spines (61.11%) or medium-sized and small dendrites (38.89%). These results are discussed in relation to those of a companion study on the laminar pattern of the projection from SI to SII of cats (P. Barbaresi, A. Minelli, and T. Manzoni, 1994, J. Comp. Neurol. 343:582-596). Based on the anatomical organization of these reciprocal connections, there seems to be no clear hierarchicalal relationship between SI and SII in cats.
Collapse
Affiliation(s)
- P Barbaresi
- Institute of Human Physiology, University of Ancona, Italy
| | | | | |
Collapse
|
39
|
Forss N, Jousmäki V, Hari R. Interaction between afferent input from fingers in human somatosensory cortex. Brain Res 1995; 685:68-76. [PMID: 7583255 DOI: 10.1016/0006-8993(95)00424-o] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We recorded somatosensory evoked magnetic fields from eight healthy subjects with a 122-channel whole-scalp SQUID magnetometer. The stimulus sequence consisted of 'standard' stimuli (85%) delivered to palmar side of the left thumb with an interstimulus interval of 0.6 s and of 'deviants' (15%), randomly interspersed among the standards, to little finger, and vice versa. Both stimuli activated four source areas: the contralateral primary somatosensory cortex (SI), the contra-and ipsilateral secondary somatosensory cortices (SII), and the contralateral posterior parietal cortex (PPC). The short-latency (20-40 ms) responses originated in the SI cortex, whereas long-latency responses arose from all 4 areas. At SII and PPC, the deviant stimuli elicited larger responses when presented alone, without intervening standards, than among standards. This implies interaction between afferent impulses from the two fingers and/or partly intermingled cortical representations. Our findings show, in agreement with animal data, different excitatory/inhibitory balance in the various somatosensory areas.
Collapse
Affiliation(s)
- N Forss
- Low Temperature Laboratory, Helsinki University of Technology, Otakaari 3A, Espoo, Finland
| | | | | |
Collapse
|
40
|
Beck PD, Kaas JH. Interhemispheric connections in neonatal owl monkeys (Aotus trivirgatus) and galagos (Galago crassicaudatus). Brain Res 1994; 651:57-75. [PMID: 7922590 DOI: 10.1016/0006-8993(94)90680-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Interhemispheric connections were studied by injecting a mixture of horseradish peroxidase (HRP) and wheatgerm agglutinin conjugated with horseradish peroxidase (WGA-HRP) into multiple sites in dorsolateral occipital and parietal cortex of one cerebral hemisphere of three galagos (Galago crassicaudatus) and two owl monkeys (Aotus trivirgatus) within seven days of birth. Cortex was either separated from the rest of the brain, flattened and cut parallel to the surface to aid reconstructing surface-view patterns of labeled neurons and processes, or cut in standard coronal or parasagittal planes to better reveal laminar patterns of connections. In both primate species, the surface-view pattern of callosal connections in infants was remarkably adult-like. In infant owl monkeys, callosal connections were concentrated along the margin of area 18 with area 17, and only a few labeled cells were found within area 17. Other visual areas including the second visual area, V-II, and the middle temporal visual area, MT, had patchy distributions of labeled neurons that extended over large parts of the visual field representations. Primary motor, auditory, and somatosensory fields also had patchy distributions of labeled neurons, with regions of areas 3b and adjoining somatosensory fields having few callosal connections in portions that appeared to correspond with representations of the hand and foot. Results were very similar in galagos, except that newborn galagos, as in adults, had a patchy distribution of callosally projecting neurons that extended well within area 17. Furthermore, the labeled neurons were concentrated in patches that aligned with the cytochrome oxidase blobs of area 17. Finally, callosal connections were concentrated in cytochrome oxidase poor regions of area 3b.
Collapse
Affiliation(s)
- P D Beck
- Department of Psychology, Vanderbilt University, Nashville, TN 37240
| | | |
Collapse
|
41
|
Barbaresi P, Minelli A, Manzoni T. Topographical relations between ipsilateral cortical afferents and callosal neurons in the second somatic sensory area of cats. J Comp Neurol 1994; 343:582-96. [PMID: 8034789 DOI: 10.1002/cne.903430408] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Experiments were carried out on the second somatic sensory area (SII) of cats to study 1) the laminar distribution of axon terminals from the ipsilateral first somatic sensory cortex (SI); and 2) the topographical relations between their terminal field and the callosal neurons projecting to the contralateral homotopic cortex. To label simultaneously in SII both ipsilateral cortical afferents and callosal cells, cats were given iontophoretic injections of Phaseolus vulgaris-leucoagglutinin (PHA-L) in the forepaw zone of ipsilateral SI, and pressure injections of horseradish peroxidase (HRP) in the same zone of contralateral SII. The possibility that ipsilateral cortical axon terminals synapse callosal neurons was investigated with the electron microscope by combining lesion-induced degeneration with retrograde HRP labelling. Fibers and terminations immunolabelled with PHA-L from ipsilateral SI were distributed in SII in a typical patchy pattern and were mostly concentrated in supragranular layers. Labelled fibers formed a very dense plexus in layer III and ramified densely also in layers I and II. Labelled axon terminals were both en passant and single-stalked boutons. Counts of 8,303 PHA-L-labelled terminals of either type showed that 82.40% were in supragranular layers. The highest concentration was in layer III (43.99%), followed by layers II (30.32%) and I (8.09%). The remaining terminals were distributed among layers IV (6.96%), V (4.93%), and VI (5.68%). The same region of SII containing anterogradely labelled axons and terminals also contained numerous neurons retrogradely labelled with HRP from contralateral SII. Callosal projection neurons were pyramidal, dwelt mainly in layer III, and were distributed tangentially in periodic patches. Patches of anterograde and retrograde labelling either interdigitated or overlapped both areally and laminarly. In the zones of overlap, numerous PHA-L-labelled axon terminals were seen in close apposition to HRP-labelled pyramidal cell dendrites. Combined HRP-electron microscopic degeneration experiments showed that in SII axon terminals from ipsilateral SI form asymmetric synapses with HRP-labelled dendrites and dendritic spines pertaining to callosal projection neurons. These results are discussed in relation to the layering and function of the SI to SII projection, and to the evidence that SII neurons projecting to the homotopic area of the contralateral hemisphere have direct access to the sensory information transmitted from ipsilateral SI.
Collapse
Affiliation(s)
- P Barbaresi
- Institute of Human Physiology, University of Ancona, Italy
| | | | | |
Collapse
|
42
|
Krubitzer LA, Calford MB, Schmid LM. Connections of somatosensory cortex in megachiropteran bats: the evolution of cortical fields in mammals. J Comp Neurol 1993; 327:473-506. [PMID: 8440777 DOI: 10.1002/cne.903270403] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The cortical connections of the primary somatosensory area (SI or 3b), a caudal somatosensory field (area 1/2), the second somatosensory area (SII), the parietal ventral area (PV), the ventral somatosensory area (VS), and the lateral parietal area (LP) were investigated in grey headed flying foxes by injecting anatomical tracers into electrophysiologically identified locations in these fields. The receptive fields for clusters of neurons were mapped with sufficient density for injection sites to be related to the boundaries of fields, and to representations of specific body parts within the fields. In all cases, cortex was flattened and sectioned parallel to the cortical surface. Sections were stained for myelin and architectonic features of cortex were related to physiological mapping and connection patterns. We found patterns of topographic and nontopographic connections between 3b and adjacent anterior parietal fields 3a and 1/2, and fields caudolateral to 3b (SII and PV). Area 1/2 had both topographic and nontopographic connections with 3b, PP, and SII. Connections of SII and PV with areas 3b, 3a, and 1/2 were roughly topographic, although there was clear evidence for nontopographic connections between these fields. SII was most densely connected with area 1/2, while PV was most densely connected with 3b. SII had additional connections with fields in lateral parietal cortex and with subdivisions of motor cortex. Other connections of PV were with subdivisions of motor cortex and pyriform cortex. Laminar differences in connection patterns of SII and PV with surrounding cortex were also observed. Injections in the ventral somatosensory area revealed connections with SII, PV, area 1/2, auditory cortex, entorhinal cortex, and pyriform cortex. Finally, the lateral parietal field had very dense connections with posterior parietal cortex, caudal temporal cortex, and with subdivisions of motor cortex. Our results indicate that the 3b region is not homogeneous, but is composed of myelin dense and light regions, associated with 3b proper and invaginations of area 1/2, respectively. Connections of myelin dense 3b were different from invaginating portions of myelin light area 1/2. Our findings that 3b is densely interconnected with PV and moderately to lightly interconnected with SII supports the notion that SII and PV have been confused across mammals and across studies. Our connectional evidence provides further support for our hypothesis that area 1/2 is partially incorporated in 3b and has led to theories of the evolution of cortical fields in mammals.
Collapse
Affiliation(s)
- L A Krubitzer
- Department of Physiology and Pharmacology, University of Queensland, Australia
| | | | | |
Collapse
|
43
|
Krubitzer LA, Kaas JH. The somatosensory thalamus of monkeys: cortical connections and a redefinition of nuclei in marmosets. J Comp Neurol 1992; 319:123-40. [PMID: 1375605 DOI: 10.1002/cne.903190111] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Thalamic connections of three subdivisions of somatosensory cortex in marmosets were determined by placing wheatgerm agglutinin conjugated with horseradish peroxidase and fluorescent dyes as tracers into electrophysiologically identified sites in S-I (area 3b), S-II, and the parietal ventral area, PV. The relation of the resulting patterns of transported label to the cytoarchitecture and cytochrome oxidase architecture of the thalamus lead to three major conclusions. 1) The region traditionally described as the ventroposterior nucleus (VP) is a composite of VP proper and parts of the ventroposterior inferior nucleus (VPi). Much of the VP region consists of groups of densely stained, closely packed neurons that project to S-I. VPi includes a ventral oval of pale, less densely packed neurons and finger-like protrusions that extend into VP proper and separate clusters of VP neurons related to different body parts. Neurons in both parts of VPi project to S-II rather than S-I. Connection patterns indicate that the proper and the embedded parts of VPi combine to form a body representation paralleling that in VP. 2) VPi also provides the major thalamic input into PV. 3) In architecture, location, and cortical connections, the region traditionally described as the anterior pulvinar (AP) of monkeys resembles the medial posterior nucleus, Pom, of other mammals and we propose that all or most of AP is homologous to Pom. AP caps VP dorsomedially, has neurons that are moderately dense in Nissl staining, and reacts moderately in CO preparations. AP neurons project to S-I, S-II, and PV in somatotopic patterns.
Collapse
Affiliation(s)
- L A Krubitzer
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37240
| | | |
Collapse
|
44
|
Kaas JH, Garraghty PE. Hierarchical, parallel, and serial arrangements of sensory cortical areas: connection patterns and functional aspects. Curr Opin Neurobiol 1991; 1:248-51. [PMID: 1821188 DOI: 10.1016/0959-4388(91)90085-l] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recent studies have led to a better understanding of the organization and connections of somatosensory and visual cortex in a number of mammalian species. Lesion studies have provided information on the significance of particular connections. The variable effectiveness of cortical lesions in deactivating target areas suggests that serial processing may be emphasized in higher primates.
Collapse
Affiliation(s)
- J H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37240
| | | |
Collapse
|