1
|
Fujimori C, Sugimoto K, Ishida M, Yang C, Kayo D, Tomihara S, Sano K, Akazome Y, Oka Y, Kanda S. Long-lasting redundant gnrh1/3 expression in GnRH neurons enabled apparent switching of paralog usage during evolution. iScience 2024; 27:109304. [PMID: 38464591 PMCID: PMC10924128 DOI: 10.1016/j.isci.2024.109304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/08/2023] [Accepted: 02/16/2024] [Indexed: 03/12/2024] Open
Abstract
Expressed subtype of paralogous genes in functionally homologous cells sometimes show differences across species, the reasons for which have not been explained. The present study examined hypophysiotropic gonadotropin-releasing hormone (GnRH) neurons in vertebrates to investigate this mechanism. These neurons express either gnrh1 or gnrh3 paralogs, depending on the species, and apparent switching of the expressed paralogs in them occurred at least four times in vertebrate evolution. First, we found redundant expression of gnrh1 and gnrh3 in a single neuron in piranha and hypothesized that it may represent an ancestral GnRH system. Moreover, the gnrh1/gnrh3 enhancer of piranha induced reporter RFP/GFP co-expression in a single hypophysiotropic GnRH neuron in both zebrafish and medaka, whose GnRH neurons only express either gnrh3 or gnrh1. Thus, we propose that redundant expression of gnrh1/3 of relatively recent common ancestors may be the key to apparent switching of the paralog usage among present-day species.
Collapse
Affiliation(s)
- Chika Fujimori
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
- Optics and Imaging Facility, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Kohei Sugimoto
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mio Ishida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Christopher Yang
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Daichi Kayo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Soma Tomihara
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
- Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Kaori Sano
- Department of Chemistry, Faculty of Science, Josai University, Sakado, Saitama, Japan
| | - Yasuhisa Akazome
- Department of Anatomy, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shinji Kanda
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
2
|
Ogawa S, Yamamoto N, Hagio H, Oka Y, Parhar IS. Multiple gonadotropin-releasing hormone systems in non-mammalian vertebrates: Ontogeny, anatomy, and physiology. J Neuroendocrinol 2022; 34:e13068. [PMID: 34931380 DOI: 10.1111/jne.13068] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 01/08/2023]
Abstract
Three paralogous genes for gonadotropin-releasing hormone (GnRH; gnrh1, gnrh2, and gnrh3) and GnRH receptors exist in non-mammalian vertebrates. However, there are some vertebrate species in which one or two of these paralogous genes have become non-functional during evolution. The developmental migration of GnRH neurons in the brain is evolutionarily conserved in mammals, reptiles, birds, amphibians, and jawed teleost fish. The three GnRH paralogs have specific expression patterns in the brain and originate from multiple sites. In acanthopterygian teleosts (medaka, cichlid, etc.), the preoptic area (POA)-GnRH1 and terminal nerve (TN)-GnRH3 neuronal types originate from the olfactory regions. In other fish species (zebrafish, goldfish and salmon) with only two GnRH paralogs (GnRH2 and GnRH3), the TN- and POA-GnRH3 neuronal types share the same olfactory origin. However, the developmental origin of midbrain (MB)-GnRH2 neurons is debatable between mesencephalic or neural crest site. Each GnRH system has distinctive anatomical and physiological characteristics, and functions differently. The POA-GnRH1 neurons are hypophysiotropic in nature and function in the neuroendocrine control of reproduction. The non-hypophysiotropic GnRH2/GnRH3 neurons probably play neuromodulatory roles in metabolism (MB-GnRH2) and the control of motivational state for sexual behavior (TN-GnRH3).
Collapse
Affiliation(s)
- Satoshi Ogawa
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Naoyuki Yamamoto
- Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hanako Hagio
- Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Ishwar S Parhar
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
3
|
Zohar Y, Zmora N, Trudeau VL, Muñoz-Cueto JA, Golan M. A half century of fish gonadotropin-releasing hormones: Breaking paradigms. J Neuroendocrinol 2022; 34:e13069. [PMID: 34913529 DOI: 10.1111/jne.13069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
The field of fish gonadotropin-releasing hormones (GnRHs) is also celebrating its 50th anniversary this year. This review provides a chronological history of fish GnRH biology over the past five decades. It demonstrates how discoveries in fish regarding GnRH and GnRH receptor multiplicity, dynamic interactions between GnRH neurons, and additional neuroendocrine factors acting alongside GnRH, amongst others, have driven a paradigm shift in our understanding of GnRH systems and functions in vertebrates, including mammals. The role of technological innovations in enabling scientific discoveries is portrayed, as well as how fundamental research in fish GnRH led to translational outcomes in aquaculture. The interchange between fish and mammalian GnRH research is discussed, as is the value and utility of using fish models for advancing GnRH biology. Current challenges and future perspectives are presented, with the hope of expanding the dialogue and collaborations within the neuroendocrinology scientific community at large, capitalizing on diversifying model animals and the use of comparative strategies.
Collapse
Affiliation(s)
- Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Nilli Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences and University Institute of Marine Research (INMAR), University of Cádiz and European University of the Seas (SEA-EU), Puerto Real (Cádiz), Spain
| | - Matan Golan
- Institute of Animal Science, Agricultural Research Organization, Rishon Letziyon, Israel
| |
Collapse
|
4
|
Ogawa S, Parhar IS. Role of Habenula in Social and Reproductive Behaviors in Fish: Comparison With Mammals. Front Behav Neurosci 2022; 15:818782. [PMID: 35221943 PMCID: PMC8867168 DOI: 10.3389/fnbeh.2021.818782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023] Open
Abstract
Social behaviors such as mating, parenting, fighting, and avoiding are essential functions as a communication tool in social animals, and are critical for the survival of individuals and species. Social behaviors are controlled by a complex circuitry that comprises several key social brain regions, which is called the social behavior network (SBN). The SBN further integrates social information with external and internal factors to select appropriate behavioral responses to social circumstances, called social decision-making. The social decision-making network (SDMN) and SBN are structurally, neurochemically and functionally conserved in vertebrates. The social decision-making process is also closely influenced by emotional assessment. The habenula has recently been recognized as a crucial center for emotion-associated adaptation behaviors. Here we review the potential role of the habenula in social function with a special emphasis on fish studies. Further, based on evolutional, molecular, morphological, and behavioral perspectives, we discuss the crucial role of the habenula in the vertebrate SDMN.
Collapse
|
5
|
Ogawa S, Parhar IS. Functions of habenula in reproduction and socio-reproductive behaviours. Front Neuroendocrinol 2022; 64:100964. [PMID: 34793817 DOI: 10.1016/j.yfrne.2021.100964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/11/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022]
Abstract
Habenula is an evolutionarily conserved structure in the brain of vertebrates. Recent reports have drawn attention to the habenula as a processing centre for emotional decision-making and its role in psychiatric disorders. Emotional decision-making process is also known to be closely associated with reproductive conditions. The habenula receives innervations from reproductive centres within the brain and signals from key reproductive neuroendocrine regulators such as gonadal sex steroids, gonadotropin-releasing hormone (GnRH), and kisspeptin. In this review, based on morphological, biochemical, physiological, and pharmacological evidence we discuss an emerging role of the habenula in reproduction. Further, we discuss the modulatory role of reproductive endocrine factors in the habenula and their association with socio-reproductive behaviours such as mating, anxiety and aggression.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
6
|
Macedo-Garzón B, Loredo-Ranjel R, Chávez-Maldonado M, Jiménez-Flores JR, Villamar-Duque TE, Cárdenas R. Distribution and expression of GnRH 1, kiss receptor 2, and estradiol α and ß receptors in the anterior brain of females of Chirostoma humboldtianum. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:33-47. [PMID: 33118089 DOI: 10.1007/s10695-020-00891-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Reproduction in vertebrates is a complex process regulated by many hormones, and by paracrine factors and their receptors. This study aimed to examine the expression of pjGonadotropin-releasing hormone (GnRH 1), the kisspeptin receptor 2 (kissr2), and estradiol receptors α and β (ER α and ER β) during different stages of the sexual cycle and their distribution within the anterior brain of females of Chirostoma humboldtianum. Among these molecules, the kissr2 showed the maximal variation in expression, while GnRH 1 showed minimal variation of expression, and ERβ and ERα had intermediate variation of expression. The distribution of these molecules in the anterior brain was consistent with their levels of expression; kissr2 was widely distributed throughout the telencephalon and diencephalon, while ER and GnRH 1 showed more restricted distributions. No coexpression of kissr2 and ER in GnRH 1ergic neurons, suggesting that regulation of this GnRH variant is indirectly mediated by kisspeptin and estradiol.
Collapse
Affiliation(s)
- Beatriz Macedo-Garzón
- Laboratorio de Endocrinología de peces, Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios # 1, Los Reyes Iztacacala, 54090, Tlalnepantla, Edo. de México, México
| | - Rosaura Loredo-Ranjel
- Laboratorio de Endocrinología de peces, Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios # 1, Los Reyes Iztacacala, 54090, Tlalnepantla, Edo. de México, México
| | - Mónica Chávez-Maldonado
- Laboratorio de Endocrinología de peces, Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios # 1, Los Reyes Iztacacala, 54090, Tlalnepantla, Edo. de México, México
| | - J Rafael Jiménez-Flores
- Laboratorio de Inmunología, Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de lo Barrios # 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo. de México, México
| | - Tomás E Villamar-Duque
- Bioterio General, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios # 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo. de México, México
| | - Rodolfo Cárdenas
- Laboratorio de Endocrinología de peces, Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios # 1, Los Reyes Iztacacala, 54090, Tlalnepantla, Edo. de México, México.
| |
Collapse
|
7
|
Zohar Y. Fish reproductive biology - Reflecting on five decades of fundamental and translational research. Gen Comp Endocrinol 2021; 300:113544. [PMID: 32615136 PMCID: PMC7324349 DOI: 10.1016/j.ygcen.2020.113544] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
Driven by the broad diversity of species and physiologies and by reproduction-related bottlenecks in aquaculture, the field of fish reproductive biology has rapidly grown over the last five decades. This review provides my perspective on the field during this period, integrating fundamental and applied developments and milestones. Our basic understanding of the brain-pituitary-gonadal axis led to overcoming the failure of farmed fish to ovulate and spawn in captivity, allowing us to close the fish life cycle and establish a predictable, year-round production of eggs. Dissecting the molecular and hormonal mechanisms associated with sex determination and differentiation drove technologies for producing better performing mono-sex and reproductively-sterile fish. The growing contingent of passionate fish biologists, together with the availability of innovative platforms such as transgenesis and gene editing, as well as new models such as the zebrafish and medaka, have generated many discoveries, also leading to new insights of reproductive biology in higher vertebrates including humans. Consequently, fish have now been widely accepted as vertebrate reproductive models. Perhaps the best testament of the progress in our discipline is demonstrated at the International Symposia on Reproductive Physiology of Fish (ISRPF), at which our scientific family has convened every four years since the grandfather of the field, the late Ronald Billard, organized the inaugural 1977 meeting in Paimpont, France. As the one person who has been fortunate enough to attend all of these meetings since their inception, I have witnessed first-hand the astounding evolution of our field as we capitalized on the molecular and biotechnological revolutions in the life sciences, which enabled us to provide a higher resolution of fish reproductive and endocrine processes, answer more questions, and dive into deeper comprehension. Undoubtedly, the next (five) decades will be similarly exciting as we continue to integrate physiology with genomics, basic and translational research, and the small fish models with the aquacultured species.
Collapse
Affiliation(s)
- Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland, Baltimore County, Baltimore, MD 21202, United States
| |
Collapse
|
8
|
Muñoz-Cueto JA, Zmora N, Paullada-Salmerón JA, Marvel M, Mañanos E, Zohar Y. The gonadotropin-releasing hormones: Lessons from fish. Gen Comp Endocrinol 2020; 291:113422. [PMID: 32032603 DOI: 10.1016/j.ygcen.2020.113422] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 12/26/2022]
Abstract
Fish have been of paramount importance to our understanding of vertebrate comparative neuroendocrinology and the mechanisms underlying the physiology and evolution of gonadotropin-releasing hormones (GnRH) and their genes. This review integrates past and recent knowledge on the Gnrh system in the fish model. Multiple Gnrh isoforms (two or three forms) are present in all teleosts, as well as multiple Gnrh receptors (up to five types), which differ in neuroanatomical localization, pattern of projections, ontogeny and functions. The role of the different Gnrh forms in reproduction seems to also differ in teleost models possessing two versus three Gnrh forms, Gnrh3 being the main hypophysiotropic hormone in the former and Gnrh1 in the latter. Functions of the non-hypothalamic Gnrh isoforms are still unclear, although under suboptimal physiological conditions (e.g. fasting), Gnrh2 may increase in the pituitary to ensure the integrity of reproduction under these conditions. Recent developments in transgenesis and mutagenesis in fish models have permitted the generation of fish lines expressing fluorophores in Gnrh neurons and to elucidate the dynamics of the elaborate innervations of the different neuronal populations, thus enabling a more accurate delineation of their reproductive roles and regulations. Moreover, in combination with neuronal electrophysiology, these lines have clarified the Gnrh mode of actions in modulating Lh and Fsh activities. While loss of function and genome editing studies had the premise to elucidate the exact roles of the multiple Gnrhs in reproduction and other processes, they have instead evoked an ongoing debate about these roles and opened new avenues of research that will no doubt lead to new discoveries regarding the not-yet-fully-understood Gnrh system.
Collapse
Affiliation(s)
- José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, The European University of the Seas (SEA-EU), Puerto Real (Cádiz), Spain.
| | - Nilli Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - José A Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, The European University of the Seas (SEA-EU), Puerto Real (Cádiz), Spain
| | - Miranda Marvel
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Evaristo Mañanos
- Institute of Aquaculture of Torre de la Sal, CSIC, Castellón, Spain
| | - Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
9
|
Umatani C, Oka Y. Multiple functions of non-hypophysiotropic gonadotropin releasing hormone neurons in vertebrates. ZOOLOGICAL LETTERS 2019; 5:23. [PMID: 31367467 PMCID: PMC6647275 DOI: 10.1186/s40851-019-0138-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 06/19/2019] [Indexed: 06/10/2023]
Abstract
Gonadotropin releasing hormone (GnRH) is a hypophysiotropic hormone that is generally thought to be important for reproduction. This hormone is produced by hypothalamic GnRH neurons and stimulates the secretion of gonadotropins. On the other hand, vertebrates also have non-hypophysiotropic GnRH peptides, which are produced by extrahypothalamic GnRH neurons. They are mainly located in the terminal nerve, midbrain tegmentum, trigeminal nerve, and spinal cord (sympathetic preganglionic nerves). In vertebrates, there are typically three gnrh paralogues (gnrh1, gnrh2, gnrh3). GnRH-expression in the non-hypophysiotropic neurons (gnrh1 or gnrh3 in the terminal nerve and the trigeminal nerve, gnrh2 in the midbrain tegmentum) occurs from the early developmental stages. Recent studies have suggested that non-hypophysiotropic GnRH neurons play various functional roles. Here, we summarize their anatomical/physiological properties and discuss their possible functions, focusing on studies in vertebrates. GnRH neurons in the terminal nerve show different spontaneous firing properties during the developmental stages. These neurons in adulthood show regular pacemaker firing, and it has been suggested that these neurons show neuromodulatory function related to the regulation of behavioral motivation, etc. In addition to their recognized role in neuromodulation in adult, in juvenile fish, these neurons, which show more frequent burst firing than in adults, are suggested to have novel functions. GnRH neurons in the midbrain tegmentum show regular pacemaker firing similar to that of the adult terminal nerve and are suggested to be involved in modulations of feeding (teleosts) or nutrition-related sexual behaviors (musk shrew). GnRH neurons in the trigeminal nerve are suggested to be involved in nociception and chemosensory avoidance, although the literature on their electrophysiological properties is limited. Sympathetic preganglionic cells in the spinal cord were first reported as peptidergic modulatory neurons releasing GnRH with a putative function in coordinating interaction between vasomotor and exocrine outflow in the sympathetic nervous system. The functional role of non-hypophysiotropic GnRH neurons may thus be in the global modulation of neural circuits in a manner dependent on internal conditions or the external environment.
Collapse
Affiliation(s)
- Chie Umatani
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, 113-0033 Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, 113-0033 Japan
| |
Collapse
|
10
|
Amano M, Amiya N, Okubo K, Yamashita J, Kuriu A, Yasuta A, Yamamoto N, Sakakura Y. Localization of three forms of gonadotropin-releasing hormone in the brain and pituitary of the self-fertilizing fish, Kryptolebias marmoratus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:753-771. [PMID: 30617941 DOI: 10.1007/s10695-018-0601-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
The localization of gonadotropin-releasing hormone (GnRH) in the brain and pituitary of the self-fertilizing mangrove killifish Kryptolebias marmoratus was examined by immunohistochemistry and in situ hybridization to understand its neuroendocrine system. The genome assembly of K. marmoratus did not have any sequence encoding GnRH1, but sequences encoding GnRH2 (chicken GnRH-II) and GnRH3 (salmon GnRH) were found. Therefore, GnRH1 was identified by in silico cloning. The deduced amino acid sequence of the K. marmoratus GnRH1 (mature peptide) was identical to that of the medaka GnRH. GnRH1 neurons were detected in the ventral part of the preoptic nucleus by immunohistochemistry and in situ hybridization, and GnRH1-immunoreactive (ir) fibers were observed throughout the brain. GnRH1-ir fibers were in close contact with luteinizing hormone (LH)-ir cells in the pituitary using double immunohistochemistry. GnRH2 neurons were detected in the midbrain tegmentum by immunohistochemistry and in situ hybridization. Although GnRH2-ir fibers were observed throughout the brain, they were not detected in the pituitary. GnRH3 neurons were detected in the lateral part of the ventral telencephalic area by both methods. GnRH3-ir fibers were observed throughout the brain, and a few GnRH3-ir fibers were in close contact with LH-ir cells in the pituitary. These results indicate that GnRH1 and possibly GnRH3 are responsible for gonadal maturation through LH secretion and that all three forms of GnRH function as neurotransmitters or neuromodulators in the brain of K. marmoratus.
Collapse
Affiliation(s)
- Masafumi Amano
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan.
| | - Noriko Amiya
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan
| | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Junpei Yamashita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Ayae Kuriu
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan
| | - Ayano Yasuta
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan
| | - Naoyuki Yamamoto
- Laboratory of Fish Biology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Yoshitaka Sakakura
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| |
Collapse
|
11
|
Honji RM, Caneppele D, Pandolfi M, Lo Nostro FL, Moreira RG. Characterization of the gonadotropin-releasing hormone system in the Neotropical teleost, Steindachneridion parahybae during the annual reproductive cycle in captivity. Gen Comp Endocrinol 2019; 273:73-85. [PMID: 29775567 DOI: 10.1016/j.ygcen.2018.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/21/2018] [Accepted: 05/06/2018] [Indexed: 02/05/2023]
Abstract
This study evaluated by immunohistochemical and Western blot methods, the distribution of two distinct gonadotropin-releasing hormones (GnRHs), corresponding to catfish GnRH (cfGnRH or GnRH1) and chicken-II GnRH (cGnRH-II or GnRH2), in Steindachneridion parahybae females in captivity, focusing these analyses on the reproductive cycle by semi-quantification of optical density (OD). Further, we found that the GnRH neuronal systems co-localized with their respective GnRH-associated peptides (GAPs). A group of neurons immunoreactive (ir) to GnRH1 were identified along the ventral region of the olfactory bulb (vOB) in the telencephalon (vTel) and in the main areas of the diencephalon (especially the medial basal hypothalamus, HBM), including fibers extending into the pituitary gland. In contrast, GnRH2 neurons were confined to the midbrain tegmentum, close to the ventricular surface, without projections to the pituitary gland. Moreover, a cfGAP (GnRH1)-specific band (9 kDa) was identified in the brain and pituitary gland, while a cGAP-II (GnRH2)-specific band (26 kDa) was observed only in the brain extract. During the reproductive cycle, GnRH1-ir presented greater OD values at the vitellogenic and regression stages than at the previtellogenic stage and after artificially induced to spawn. Larger GnRH2-ir neurons were observed during the reproductive cycle, but a higher OD was identified only in the regression stage compared with the other maturation stages. Finally, GnRH1 axons were found to be directed towards the pituitary, and this GnRH type, which is probably the hypophysiotropic form, can contribute to the reproductive dysfunction that occurs in S. parahybae females in captivity, whereas GnRH2 may act as a neuromodulator and/or neurotransmitter.
Collapse
Affiliation(s)
- Renato Massaaki Honji
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, 321, 05508-090 São Paulo, SP, Brazil; Centro de Aquicultura, Universidade Estadual Paulista (UNESP), Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, S/N, 14884-900, Jaboticabal, São Paulo, Brazil.
| | - Danilo Caneppele
- Companhia Energética de São Paulo (CESP), Unidade de Hidrobiologia e Aquicultura, Rodovia dos Tamoios, km 38. 12260-000, Brazil
| | - Matias Pandolfi
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires & IBBEA, CONICET-UBA, Ciudad Universitaria (C1428EHA), Buenos Aires, Argentina
| | - Fabiana Laura Lo Nostro
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires & IBBEA, CONICET-UBA, Ciudad Universitaria (C1428EHA), Buenos Aires, Argentina
| | - Renata Guimarães Moreira
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, 321, 05508-090 São Paulo, SP, Brazil
| |
Collapse
|
12
|
Butler JM, Maruska KP. Expression of tachykinin3 and related reproductive markers in the brain of the African cichlid fish Astatotilapia burtoni. J Comp Neurol 2019; 527:1210-1227. [PMID: 30644550 DOI: 10.1002/cne.24622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 11/06/2022]
Abstract
Neurokinin B, encoded by the tachykinin3 gene, plays a crucial role in regulating reproduction in mammals via KNDy neurons and interaction with GnRH. Previous work in teleost fishes has focused on hypothalamic tac3 expression for its role in reproduction, but detailed studies on extra-hypothalamic tac3 expression are limited. Here, we identified two tac3 genes in the social African cichlid fish Astatotilapia burtoni, only one of which produces a functional protein containing the signature tachykinin motif. In situ hybridization for tac3a mRNA identified cell populations throughout the brain. Numerous tac3a cells lie in several thalamic and hypothalamic nuclei, including periventricular nucleus of posterior tuberculum, lateral tuberal nucleus (NLT), and nucleus of the lateral recess (NRL). Scattered tac3-expressing cells are also present in telencephalic parts, such as ventral (Vv) and supracomissural (Vs) part of ventral telencephalon. In contrast to other teleosts, tac3 expression was absent from the pituitary. Using double-fluorescent staining, we localized tac3a-expressing cells in relation to GnRH and kisspeptin cells. Although no GnRH-tac3a colabeled cells were observed, dense GnRH fibers surround and potentially synapse with tac3a cells in the preoptic area. Only minimal (<5%) colabeling of tac3a was observed in kiss2 cells. Despite tac3a expression in many nodes of the mesolimbic reward system, it was absent from tyrosine hydroxylase (TH)-expressing cells, but tac3a cells were located in areas with dense TH fibers. The presence of tac3a-expressing cells throughout the brain, including in socially relevant brain regions, suggest more diverse functions beyond regulation of reproductive physiology that may be conserved across vertebrates.
Collapse
Affiliation(s)
- Julie M Butler
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| |
Collapse
|
13
|
Shao YT, Tseng YC, Chang CH, Yan HY, Hwang PP, Borg B. GnRH mRNA levels in male three-spined sticklebacks, Gasterosteus aculeatus, under different reproductive conditions. Comp Biochem Physiol A Mol Integr Physiol 2015; 180:6-17. [DOI: 10.1016/j.cbpa.2014.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 10/09/2014] [Accepted: 10/16/2014] [Indexed: 11/27/2022]
|
14
|
Sukhan ZP, Kitano H, Selvaraj S, Yoneda M, Yamaguchi A, Matsuyama M. Identification and distribution of three gonadotropin-releasing hormone (GnRH) isoforms in the brain of a clupeiform fish, Engraulis japonicus. Zoolog Sci 2014; 30:1081-91. [PMID: 24320187 DOI: 10.2108/zsj.30.1081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To gain a better understanding of the reproductive endocrinology of a primitive order clupeiform fish (Japanese anchovy, Engraulis japonicus), cDNAs encoding three gonadotropin-releasing hormone (GnRH) isoforms were isolated from the brain, and their distribution was analyzed using insitu hybridization (ISH). The three GnRH isoforms include GnRH1 (herring GnRH), GnRH2 (chicken GnRH-ll) and GnRH3 (salmon GnRH), and their full-length cDNAs encode 88, 86, and 89 deduced amino acids (aa), respectively. Alignment analysis of Japanese anchovy GnRH isoforms showed lower identities with other teleost fish. The major population of GnRH1 neurons was localized in the ventral telencephalon (VT) and nucleus preopticus (NPO) of the preoptic area (POA) with minor population in the anterior olfactory bulb (OB). GnRH2 neurons were restricted to the midbrain tegmentum (MT), specific to the nucleus of the medial longitudinal fasciculus (nMLF). GnRH3 neurons were localized in the olfactory nerve (ON), ventral OB, and transitional area between OB and ON. Interestingly, GnRH1 neurons were also localized in the olfactory bulb, in addition to its major population in the preoptic area. These results indicate the differential distribution of three GnRH isoforms expressed in the brain of the Japanese anchovy.
Collapse
Affiliation(s)
- Zahid Parvez Sukhan
- 1 Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Amano M, Mizusawa N, Okubo K, Amiya N, Mizusawa K, Chiba H, Yamamoto N, Takahashi A. Cloning of corticotropin-releasing hormone (CRH) precursor cDNA and immunohistochemical detection of CRH peptide in the brain of the Japanese eel, paying special attention to gonadotropin-releasing hormone. Cell Tissue Res 2014; 356:243-51. [PMID: 24477796 DOI: 10.1007/s00441-013-1784-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/26/2013] [Indexed: 11/29/2022]
Abstract
The stress-related corticotropin-releasing hormone (CRH) was first identified by isolation of its cDNA from the brain of the Japanese eel Anguilla japonica. CRH cDNA encodes a signal peptide, a cryptic peptide and CRH (41 amino acids). The sequence homology to mammalian CRH is high. Next, the distribution of CRH-immunoreactive (ir) cell bodies and fibers in the brain and pituitary were examined by immunohistochemistry. CRH-ir cell bodies were detected in several brain regions, e.g., nucleus preopticus pars magnocellularis, nucleus preopticus pars gigantocellularis and formatio reticularis superius. In the brain, CRH-ir fibers were distributed not only in the hypothalamus but also in various regions. Some CRH-ir fibers projected to adrenocorticotropic hormone (ACTH) cells in the rostral pars distalis of the pituitary and also the α-melanocyte-stimulating hormone (α-MSH) cells in the pars intermedia of the pituitary. Finally, the neuroanatomical relationship between the CRH neurons and gonadotropin-releasing hormone (GnRH) neurons was examined by dual-label immunohistochemistry. CRH-ir fibers were found to be in close contact with GnRH-ir cell bodies in the hypothalamus and in the midbrain tegmentum and GnRH-ir fibers were in close contact with CRH-ir cell bodies in the nucleus preopticus pars magnocellularis. These results suggest that CRH has some physiological functions other than the stimulation of ACTH and α-MSH secretion and that reciprocal connections may exist between the CRH neurons and GnRH neurons in the brain of the Japanese eel.
Collapse
Affiliation(s)
- Masafumi Amano
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Karigo T, Oka Y. Neurobiological study of fish brains gives insights into the nature of gonadotropin-releasing hormone 1-3 neurons. Front Endocrinol (Lausanne) 2013; 4:177. [PMID: 24312079 PMCID: PMC3832842 DOI: 10.3389/fendo.2013.00177] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/31/2013] [Indexed: 01/30/2023] Open
Abstract
Accumulating evidence suggests that up to three different molecular species of GnRH peptides encoded by different paralogs of gnrh genes are expressed by anatomically distinct groups of GnRH neurons in the brain of one vertebrate species. They are called gnrh1, gnrh2, and gnrh3. Recent evidence from molecular, anatomical, and physiological experiments strongly suggests that each GnRH system functions differently. Here, we review recent advancement in the functional studies of the three different GnRH neuron systems, mainly focusing on the electrophysiological analysis of the GnRH-green fluorescent protein (GFP) transgenic animals. The introduction of GFP-transgenic animals for the electrophysiological analysis of GnRH neurons greatly advanced our knowledge on their anatomy and electrophysiology, especially of gnrh1 neurons, which has long defied detailed electrophysiological analysis of single neurons because of their small size and scattered distribution. Based on the results of recent studies, we propose that different electrophysiological properties, especially the spontaneous patterns of electrical activities and their time-dependent changes, and the axonal projections characterize the different functions of GnRH1-3 neurons; GnRH1 neurons act as hypophysiotropic neuroendocrine regulators, and GnRH2 and GnRH3 neurons act as neuromodulators in wide areas of the brain.
Collapse
Affiliation(s)
- Tomomi Karigo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- *Correspondence: Yoshitaka Oka, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan e-mail:
| |
Collapse
|
17
|
Fukaya K, Amano M, Ueda H. Diurnal changes in salmon GnRH secretion in the brain of masu salmon (Oncorhynchus masou). Gen Comp Endocrinol 2013; 192:77-80. [PMID: 23500009 DOI: 10.1016/j.ygcen.2013.02.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 11/23/2022]
Abstract
The day-night changes of salmon GnRH (sGnRH), which is secreted from various brain regions, were analyzed in maturing and matured masu salmon (Oncorhynchus masou). In maturing males, the levels of sGnRH secreted from the olfactory bulb (OB), terminal nerve (TN), and ventral telencephalon and preoptic area (VT+POA) were all significantly higher during midnight than daytime. However, the contents of sGnRH in the pituitary gland during midnight were not higher than those during daytime. In maturing females, the levels of sGnRH secreted from the VT+POA were higher during midnight than daytime, and the contents of sGnRH in the pituitary gland were also higher during midnight. In matured fish, the levels of sGnRH secreted from the OB, TN and VT+POA during midnight were significantly higher than those during daytime. There were also no significant differences in the contents of sGnRH in the pituitary gland. These results suggest that a short photoperiod may be involved in diurnal secretion rhythms of sGnRH in various brain regions and the pituitary gland.
Collapse
Affiliation(s)
- Kosuke Fukaya
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, North 9 West 9, Kita-ku, Sapporo, Hokkaido, Japan.
| | | | | |
Collapse
|
18
|
Zempo B, Kanda S, Okubo K, Akazome Y, Oka Y. Anatomical distribution of sex steroid hormone receptors in the brain of female medaka. J Comp Neurol 2013; 521:1760-80. [PMID: 23124931 DOI: 10.1002/cne.23255] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 01/27/2012] [Accepted: 10/25/2012] [Indexed: 12/19/2022]
Abstract
Estrogen and androgen play crucial roles in coordinating reproductive functions through estrogen receptors (ERs) and androgen receptors (ARs), respectively. These receptors are considered important for regulation of the hypothalamo-pituitary-gonadal (HPG) axis. Despite their biological importance, the distribution of sex steroid receptors has not been fully analyzed anatomically in the teleost brain. The teleosts have many characteristic features, which allow unique approaches toward an understanding of the regulatory mechanisms of reproductive functions. Medaka serves as a good model system for studying the mechanisms by which steroid receptor-mediated systems are regulated, because (1) their breeding conditions can be easily manipulated; (2) we can take advantage of the genome database; and 3) molecular genetic tools, such as transgenic techniques, are applicable. We analyzed the distribution of ERα, ERβ1, ERβ2, ARα, and ARβ mRNA by in situ hybridization in the brain of female medaka. We found that all subtypes of ERs and ARs were expressed in the following nuclei: the dorsal part of the ventral telencephalic area (Vd), supracommissural part of the ventral telencephalic area (Vs), postcommissural part of the ventral telencephalic area (Vp), preoptic area (POA), and nucleus ventralis tuberis (NVT). These regions are known to be involved in the regulation of sexual behavior (Vd, Vs, Vp, POA) or the HPG axis (NVT). These ER- and/or AR-expressing neurons may regulate sexual behavior or the HPG axis according to their axonal projections. Future analysis should be targeted to the neurons described in the present study to extend our understanding of the central regulatory mechanisms of reproduction.
Collapse
Affiliation(s)
- Buntaro Zempo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
19
|
Okita K, Takatani T, Nakayasu J, Yamazaki H, Sakiyama K, Ikeda K, Arakawa O, Sakakura Y. Comparison of the localization of tetrodotoxin between wild pufferfish Takifugu rubripes juveniles and hatchery-reared juveniles with tetrodotoxin administration. Toxicon 2013; 71:128-33. [PMID: 23747273 DOI: 10.1016/j.toxicon.2013.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/14/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
Abstract
To reveal the accumulation profile of tetrodotoxin (TTX) in pufferfish Takifugu rubripes juveniles, we compared the localization of TTX in various tissues among wild juveniles and hatchery-reared juveniles with or without TTX administration using immunohistochemical technique with anti-TTX monoclonal antibody. Immuno-positive reaction was observed in hepatic tissue, basal cell of skin and olfactory, olfactory epithelium, optic nerve and brain (optic tectum, cerebellum, medulla oblongata) of wild juveniles (body length: BL, 4.7-9.4 cm). TTX was detected in the same tissues as wild juveniles and epithelial cell layer of intestine of hatchery-reared juveniles (BL, 5.0-5.3 cm) to which TTX was orally administrated. No positive reaction was observed from the tissues of hatchery-reared juveniles without TTX administration. These results suggest that orally administrated TTX to the non-toxic cultured juveniles is accumulated in the same manner of wild juveniles. In addition, our study revealed that pufferfish accumulates TTX in the central nervous system.
Collapse
Affiliation(s)
- Kogen Okita
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, 1-14 Bunkyo-Machi, Nagasaki 852-8521, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
XU YONGJIANG, LIU XUEZHOU, LIAO MEIJIE, WANG HANPING, WANG QINGYIN. Molecular Cloning and Differential Expression of Three GnRH Genes during Ovarian Maturation of Spotted Halibut, Verasper variegatus. ACTA ACUST UNITED AC 2012; 317:434-46. [DOI: 10.1002/jez.1736] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 02/14/2012] [Accepted: 04/03/2012] [Indexed: 11/07/2022]
Affiliation(s)
| | - XUE-ZHOU LIU
- Yellow Sea Fisheries Research Institute; Chinese Academy of Fishery Sciences; Qingdao; Shandong; China
| | - MEI-JIE LIAO
- Yellow Sea Fisheries Research Institute; Chinese Academy of Fishery Sciences; Qingdao; Shandong; China
| | - HAN-PING WANG
- Aquaculture Genetics and Breeding Laboratory; The Ohio State University South Centers; Piketon; Ohio
| | - QING-YIN WANG
- Yellow Sea Fisheries Research Institute; Chinese Academy of Fishery Sciences; Qingdao; Shandong; China
| |
Collapse
|
21
|
Zhao Y, Wayne NL. Effects of kisspeptin1 on electrical activity of an extrahypothalamic population of gonadotropin-releasing hormone neurons in medaka (Oryzias latipes). PLoS One 2012; 7:e37909. [PMID: 22649563 PMCID: PMC3359290 DOI: 10.1371/journal.pone.0037909] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 04/30/2012] [Indexed: 11/18/2022] Open
Abstract
Kisspeptin (product of the kiss1 gene) is the most potent known activator of the hypothalamo-pituitary-gonadal axis. Both kiss1 and the kisspeptin receptor are highly expressed in the hypothalamus of vertebrates, and low doses of kisspeptin have a robust and long-lasting stimulatory effect on the rate of action potential firing of hypophysiotropic gonadotropin releasing hormone-1 (GnRH1) neurons in mice. Fish have multiple populations of GnRH neurons distinguished by their location in the brain and the GnRH gene that they express. GnRH3 neurons located in the terminal nerve (TN) associated with the olfactory bulb are neuromodulatory and do not play a direct role in regulating pituitary-gonadal function. In medaka fish, the electrical activity of TN-GnRH3 neurons is modulated by visual cues from conspecifics, and is thought to act as a transmitter of information from the external environment to the central nervous system. TN-GnRH3 neurons also play a role in sexual motivation and arousal states, making them an important population of neurons to study for understanding coordination of complex behaviors. We investigated the role of kisspeptin in regulating electrical activity of TN-GnRH3 neurons in adult medaka. Using electrophysiology in an intact brain preparation, we show that a relatively brief treatment with 100 nM of kisspeptin had a long-lasting stimulatory effect on the electrical activity of an extrahypothalamic population of GnRH neurons. Dose-response analysis suggests a relatively narrow activational range of this neuropeptide. Further, blocking action potential firing with tetrodotoxin and blocking synaptic transmission with a low Ca2+/high Mg2+ solution inhibited the stimulatory action of kisspeptin on electrical activity, indicating that kisspeptin is acting indirectly through synaptic regulation to excite TN-GnRH3 neurons. Our findings provide a new perspective on kisspeptin's broader functions within the central nervous system, through its regulation of an extrahypothalamic population of GnRH neurons involved in multiple neuromodulatory functions.
Collapse
Affiliation(s)
- Yali Zhao
- Department of Physiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Nancy L. Wayne
- Department of Physiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Chianese R, Chioccarelli T, Cacciola G, Ciaramella V, Fasano S, Pierantoni R, Meccariello R, Cobellis G. The contribution of lower vertebrate animal models in human reproduction research. Gen Comp Endocrinol 2011; 171:17-27. [PMID: 21192939 DOI: 10.1016/j.ygcen.2010.12.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/11/2010] [Accepted: 12/16/2010] [Indexed: 01/16/2023]
Abstract
Many advances have been carried out on the estrogens, GnRH and endocannabinoid system that have impact in the reproductive field. Indeed, estrogens, the generally accepted female hormones, have performed an unsuspected role in male sexual functions thanks to studies on non-mammalian vertebrates. Similarly, these animal models have provided important contributions to the identification of several GnRH ligand and receptor variants and their possible involvement in sexual behavior and gonadal function regulation. Moreover, the use of non-mammalian animal models has contributed to a better comprehension about the endocannabinoid system action in several mammalian reproductive events. We wish to highlight here how non-mammalian vertebrate animal model research contributes to advancements with implications on human health as well as providing a phylogenetic perspective on the evolution of reproductive systems in vertebrates.
Collapse
Affiliation(s)
- Rosanna Chianese
- Dipartimento di Medicina Sperimentale, Seconda Università degli Studi di Napoli, via Costantinopoli 16, 80138 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kawai T, Abe H, Akazome Y, Oka Y. Neuromodulatory Effect of GnRH on the Synaptic Transmission of the Olfactory Bulbar Neural Circuit in Goldfish, Carassius auratus. J Neurophysiol 2010; 104:3540-50. [DOI: 10.1152/jn.00639.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is well known as a hypophysiotropic hormone that is produced in the hypothalamus and facilitates the release of gonadotropins from the pituitary gonadotropes. On the other hand, the functions of extrahypothalamic GnRH systems still remain elusive. Here we examined whether the activity of the olfactory bulbar neural circuits is modulated by GnRH that originates mainly from the terminal nerve (TN) GnRH system in goldfish ( Carassius auratus). As the morphological basis, we first observed that goldfish TNs mainly express salmon GnRH (sGnRH) mRNA and that sGnRH-immunoreactive fibers are distributed in both the mitral and the granule cell layers. We then examined by extracellular recordings the effect of GnRH on the electrically evoked in vitro field potentials that arise from synaptic activities from mitral to granule cells. We found that GnRH enhances the amplitude of the field potentials. Furthermore, these effects were observed in both cases when the field potentials were evoked by stimulating either the lateral or the medial olfactory tract, conveying functionally different sensory information, separately, and suggesting that GnRH may modulate the responsiveness to wide categories of odorants in the olfactory bulb. Because GnRH also changed the paired-pulse ratio, it is suggested that the increased amplitude of the field potential results from changes in the presynaptic glutamate release of mitral cells rather than the increase in the glutamate receptor sensitivity of granule cells. These results suggest that TN regulates the olfactory responsiveness of animals appropriately by releasing sGnRH peptides in the olfactory bulbar neural circuits.
Collapse
Affiliation(s)
- Takafumi Kawai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hideki Abe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yasuhisa Akazome
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
24
|
Choi S, Lee CH, Park W, Kim DJ, Sohn YC. Effects of shortened photoperiod on gonadotropin-releasing hormone, gonadotropin, and vitellogenin gene expression associated with ovarian maturation in rainbow trout. Zoolog Sci 2010; 27:24-32. [PMID: 20064005 DOI: 10.2108/zsj.27.24] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Reproductive activities of salmonids are synchronized by changes in photoperiod, which control the endocrine system via the brain-pituitary-gonadal axis. Gonadotropin-releasing hormone (GnRH) in the brain regulates synthesis and release of the pituitary gonadotropins (GTHs; FSH and LH). FSH and LH in turn stimulate the production of sex steroids for oocyte growth and maturation-Inducing steroid hormones for oocyte maturation and ovulation, respectively, in female salmonids. To clarify effects of long-term photoperiod manipulations on the reproductive activity of salmonids from early recrudescence to ovulation, we Investigated the gene expression profiles of GnRH, GTHs, and vitellogenin (VTG), and plasma sex steroids in female rainbow trout (Oncorhynchus mykiss). In addition, the percentages of eyed embryos and hatched alevins were examined together with the number of ovulated eggs to evaluate the effects of photoperiod regimes on egg quality. During late summer, the mRNA levels of GnRHs, GTHalpha, and LHbeta, and the plasma level of a maturational steroid (17alpha,20beta-dihydroxy-4-pregnen-3-one; 17,20beta-P) were significantly elevated by a gradually shortened photoperiod under constant temperature, in accordance with accelerated sexual maturation. The percentages of eyed embryos and hatched alevins from fish ovulated in August were comparable to those of control fish observed in December. These results clearly indicate that syntheses of GnRHs, LH, VTG, and 17,20beta-P are effectively accelerated by a programmed long-short photoperiod regime in early recrudescent female rainbow trout, without a marked deterioration in egg quality.
Collapse
Affiliation(s)
- Sungchang Choi
- Department of Marine Molecular Biotechnology, Faculty of Marine Bioscience and Technology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | | | | | | | | |
Collapse
|
25
|
Selvaraj S, Kitano H, Fujinaga Y, Amano M, Takahashi A, Shimizu A, Yoneda M, Yamaguchi A, Matsuyama M. Immunological characterization and distribution of three GnRH forms in the brain and pituitary gland of chub mackerel (Scomber japonicus). Zoolog Sci 2010; 26:828-39. [PMID: 19968470 DOI: 10.2108/zsj.26.828] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The presence of three gonadotropin-releasing hormone (GnRH) forms in the brain of the chub mackerel, Scomber japonicus, namely, salmon GnRH (sGnRH), chicken GnRH-II (cGnRH-II), and seabream GnRH (sbGnRH), was confirmed by combined high performance liquid chromatography (HPLC) and time-resolved fluoroimmunoassay (TR-FIA). Immunocytochemical localization of the three GnRH forms in the brain was Investigated by using specific antisera, to elucidate possible roles of each GnRH form in reproduction in this species, and double immunolabeling was used to localize GnRH-ir (immunoreactive) fibers Innervating the pituitary. sGnRH-ir neurons were localized in the ventral olfactory bulb and terminal nerve ganglion region. Further, sGnRH-ir fibers were found in different regions of the brain, with prominent fibers running in parallel in the preoptic area (POA) without entering the pituitary. cGnRH-II-ir cell bodies were observed only in the midbrain tegmentum region, with a wide distribution of fibers, which were dense in the midbrain tegmentum and spinal cord. SbGnRH-ir cell bodies were localized in the nucleus preopticus of the POA, with fibers in the olfactory bulb, POA, and hypothalamus. Among the three GnRH forms, only SbGnRH-ir fibers innervated the pituitary gland from the preoptic-hypothalamic region, targeting follicle stimulating hormone (FSH) and luteinizing hormone (LH)-producing cells in the proximal pars distalis, as demonstrated by double immunocytochemistry. The localization of the GnRH-ir system was similar in male and female fish. These results demonstrate that multiple GnRH forms exist in the brain of the chub mackerel and suggest that they serve different functions, with SbGnRH having a significant role in reproduction in stimulating FSH- and LH-producing cells, and sGnRH and cGnRH-II serving as neurotransmitters or neuromodulators.
Collapse
Affiliation(s)
- Sethu Selvaraj
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kawai T, Oka Y, Eisthen H. The role of the terminal nerve and GnRH in olfactory system neuromodulation. Zoolog Sci 2010; 26:669-80. [PMID: 19832678 DOI: 10.2108/zsj.26.669] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Animals must regulate their sensory responsiveness appropriately with respect to their internal and external environments, which is accomplished in part via centrifugal modulatory pathways. In the olfactory sensory system, responsiveness is regulated by neuromodulators released from centrifugal fibers into the olfactory epithelium and bulb. Among the modulators known to modulate neural activity of the olfactory system, one of the best understood is gonadotropin-releasing hormone (GnRH). This is because GnRH derives mainly from the terminal nerve (TN), and the TN-GnRH system has been suggested to function as a neuromodulator in wide areas of the brain, including the olfactory bulb. In the present article we examine the modulatory roles of the TN and GnRH in the olfactory epithelium and bulb as a model for understanding the ways in which olfactory responses can be tuned to the internal and external environments.
Collapse
Affiliation(s)
- Takafumi Kawai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
27
|
Zohar Y, Muñoz-Cueto JA, Elizur A, Kah O. Neuroendocrinology of reproduction in teleost fish. Gen Comp Endocrinol 2010; 165:438-55. [PMID: 19393655 DOI: 10.1016/j.ygcen.2009.04.017] [Citation(s) in RCA: 506] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 04/08/2009] [Accepted: 04/17/2009] [Indexed: 11/28/2022]
Abstract
This review aims at synthesizing the most relevant information regarding the neuroendocrine circuits controlling reproduction, mainly gonadotropin release, in teleost fish. In teleosts, the pituitary receives a more or less direct innervation by neurons sending projections to the vicinity of the pituitary gonadotrophs. Among the neurotransmitters and neuropeptides released by these nerve endings are gonadotrophin-releasing hormones (GnRH) and dopamine, acting as stimulatory and inhibitory factors (in many but not all fish) on the liberation of LH and to a lesser extent that of FSH. The activity of the corresponding neurons depends on a complex interplay between external and internal factors that will ultimately influence the triggering of puberty and sexual maturation. Among these factors are sex steroids and other peripheral hormones and growth factors, but little is known regarding their targets. However, very recently a new actor has entered the field of reproductive physiology. KiSS1, first known as a tumor suppressor called metastin, and its receptor GPR54, are now central to the regulation of GnRH, and consequently LH and FSH secretion in mammals. The KiSS system is notably viewed as instrumental in integrating both environmental cues and metabolic signals and passing this information onto the reproductive axis. In fish, there are two KiSS genes, KiSS1 and KiSS2, expressed in neurons of the preoptic area and mediobasal hypothalamus. Pionneer studies indicate that KiSS and GPR54 expression seem to be activated at puberty. Although precise information as to the physiological effects of KiSS1 in fish, notably on GnRH neurons and gonadotropin release, is still limited, KiSS neurons may emerge as the "gatekeeper" of puberty and reproduction in fish as in mammals.
Collapse
Affiliation(s)
- Yonathan Zohar
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, MD, USA
| | | | | | | |
Collapse
|
28
|
Abraham E, Palevitch O, Gothilf Y, Zohar Y. The zebrafish as a model system for forebrain GnRH neuronal development. Gen Comp Endocrinol 2009; 164:151-60. [PMID: 19523393 DOI: 10.1016/j.ygcen.2009.01.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 12/31/2008] [Accepted: 01/20/2009] [Indexed: 01/18/2023]
Abstract
Development and function of the forebrain gonadotropin-releasing hormone (GnRH) neuronal system has long been the focus of study in various vertebrate species. This system is crucial for reproduction and an important model for studying tangential neuronal migration. In addition, the finding that multiple forms of GnRH exist in the CNS as well as in non-CNS tissues, coupled with the fact that GnRH fibers project to many CNS regions, implies that GnRH has a variety of functions in addition to its classic reproductive role. The study of the GnRH system and its functions is, however, limited by available model systems and methodologies. The transgenic (Tg) GnRH3:EGFP zebrafish line, in which GnRH3 neurons express EGFP, allows in vivo study of the GnRH3 system in the context of the entire animal. Coupling the use of this line with the attributes and molecular tools available in zebrafish has expanded our ability to study the forebrain GnRH system. Herein, we discuss the use of the Tg(GnRH3:EGFP) zebrafish line as a model for studying forebrain GnRH neurons, both in developing larvae and in sexually mature animals. We also discuss the potential use of this line to study regulation of GnRH3 system development.
Collapse
Affiliation(s)
- Eytan Abraham
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, MD, USA
| | | | | | | |
Collapse
|
29
|
Amano M, Amiya N, Hiramatsu M, Tomioka T, Oka Y. Interaction between neuropeptide Y immunoreactive neurons and galanin immunoreactive neurons in the brain of the masu salmon, Oncorhynchus masou. Neurosci Lett 2009; 462:33-8. [DOI: 10.1016/j.neulet.2009.06.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Revised: 06/18/2009] [Accepted: 06/19/2009] [Indexed: 10/20/2022]
|
30
|
Kim D, Kim Y, Aida K. Effects of gonadotropin‐releasing hormone onin vitrogonadotropin release in testosterone‐treated immature rainbow trout. Anim Cells Syst (Seoul) 2009. [DOI: 10.1080/19768354.2009.9647239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
31
|
Neurosecretory neurons of the nucleus preopticus (NPO) express salmon GnRH mRNA and show reproduction phase-related variation in the female Indian major carp, Cirrhinus cirrhosus. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:247-52. [DOI: 10.1016/j.cbpa.2008.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/03/2008] [Accepted: 07/07/2008] [Indexed: 11/22/2022]
|
32
|
Okubo K, Nagahama Y. Structural and functional evolution of gonadotropin-releasing hormone in vertebrates. Acta Physiol (Oxf) 2008; 193:3-15. [PMID: 18284378 DOI: 10.1111/j.1748-1716.2008.01832.x] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The neuropeptide gonadotropin-releasing hormone (GnRH) has a central role in the neural control of vertebrate reproduction. This review describes an overview of what is currently known about GnRH in vertebrates in the context of its structural and functional evolution. A large body of evidence has demonstrated the existence of three paralogous genes for GnRH (GnRH1, GnRH2 and GnRH3) in the vertebrate lineage. They are most probably the products of whole-genome duplications that occurred early in vertebrate evolution. Although GnRH3 has been identified only in teleosts, comparative genomic analyses indicated that GnRH3 has not arisen from a teleost-specific genome duplication, but has been derived from an earlier genome duplication in an ancestral vertebrate, followed by its loss in the tetrapod lineage. A loss of other paralogous genes has also occurred independently in different vertebrate lineages, leading to species-specific differences in the organization of the GnRH system. In addition to the GnRH3 gene, the GnRH2 gene has been deleted or silenced in certain mammalian species, while some teleosts seem to have lost the GnRH1 or GnRH3 gene. The duplicated GnRH genes have undergone subfunctionalization during the evolution of vertebrates; GnRH1 has become the major stimulator of gonadotropins and probably other pituitary hormones as well, whereas GnRH2 and GnRH3 would have functioned as neuromodulators, affecting reproductive behaviour. Conversely, in cases where a paralogous gene for GnRH has been lost, one of the remaining paralogues appears to have adopted its role.
Collapse
Affiliation(s)
- K Okubo
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan.
| | | |
Collapse
|
33
|
Kanda S, Akazome Y, Matsunaga T, Yamamoto N, Yamada S, Tsukamura H, Maeda KI, Oka Y. Identification of KiSS-1 product kisspeptin and steroid-sensitive sexually dimorphic kisspeptin neurons in medaka (oryzias latipes). Endocrinology 2008; 149:2467-76. [PMID: 18202129 DOI: 10.1210/en.2007-1503] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recently, a novel physiologically active peptide, kisspeptin (metastin), has been reported to facilitate sexual maturation and ovulation by directly stimulating GnRH neurons in several mammalian species. Despite its importance in the neuroendocrine regulation of reproduction, kisspeptin neurons have only been studied in mammals, and there has been no report on the kisspeptin or kisspeptin neuronal systems in nonmammalian vertebrates. We used medaka for the initial identification of the KiSS-1 gene and the anatomical distribution of KiSS-1 mRNA expressing neurons (KiSS-1 neurons) in the brain of nonmammalian species. In situ hybridization for the medaka KiSS-1 gene cloned here proved that two kisspeptin neuronal populations are localized in the hypothalamic nuclei, the nucleus posterioris periventricularis and the nucleus ventral tuberis (NVT). Furthermore, NVT KiSS-1 neurons were sexually dimorphic in number (male neurons >> female neurons) under the breeding conditions. We also found that the number of KiSS-1 neurons in the NVT but not that in the nucleus posterioris periventricularis was positively regulated by ovarian estrogens. The fact that there were clear differences in the number of NVT KiSS-1 neurons between the fish under the breeding and nonbreeding conditions strongly suggests that the steroid-sensitive changes in the KiSS-1 mRNA expression in the NVT occur physiologically, according to the changes in the reproductive state. From the present results, we conclude that the medaka KiSS-1 neuronal system is involved in the central regulation of reproductive functions, and, given many experimental advantages, the medaka brain may serve as a good model system to study its physiology.
Collapse
Affiliation(s)
- Shinji Kanda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Schneider JS, Rissman EF. Gonadotropin-releasing hormone II: a multi-purpose neuropeptide. Integr Comp Biol 2008; 48:588-95. [PMID: 21669818 DOI: 10.1093/icb/icn018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Close to 30 forms of gonadotropin releasing hormone (GnRH) and at least five GnRH receptors have been identified in a wide variety of vertebrates and some invertebrates. One form, now called GnRH II, has the broadest distribution and the most ancient and conserved phylogeny. The distribution of the neurons that produce this peptide are completely nonoverlapping with any other GnRH forms. Fibers that project from these neurons overlap with GnRH I cells and/or fibers in a few regions, but are primarily divergent. The musk shrew (Suncus murinus) continues to be the most tractable mammalian species to use for studies of the function of GnRH II. The brain of the musk shrew has two GnRH genes (I and II), two GnRH receptors (types-1 and -2), and two different behaviors can be influenced by central infusion of GnRH II, but not by GnRH I; receptivity and feeding. Here, we summarize research on the musk shrew relative to the behavioral functions of GnRH II. First, female musk shrews are continually sexually receptive by virtue of their lack of an ovarian and/or behavioral estrus cycle. This feature of their reproductive ecology may be related to their semi-tropical distribution and their breeding season is highly dependent on changes in the availability of food. When food is not abundant, females stop mating, but brief bouts of feeding reinstate reproductive behavior. Likewise, intake of food is related to GnRH II mRNA and peptide content in the brain; after mild food restriction both decline. When GnRH II is infused centrally, at times when its content is low, it can both enhance receptivity and inhibit food intake. Simultaneous administration of a type-1 antagonist does not change the effect of GnRH II and use of an analog (135-18) that is a specific GnRH II agonist as well as a type-1 antagonist has the same effect as the endogenous GnRH II peptide. We propose that GnRH II plays a critical role by orchestrating the coordination of reproduction with the availability of nutritional support for these activities. Humans are bombarded with copious nutritional opportunities and at present obesity is a larger threat to health in many parts of the world than is under nutrition. It is our hope that understanding neuropeptides such as GnRH II that regulate food intake can ultimately lead to products that may curb appetite and thus decrease obesity and related risks to health.
Collapse
Affiliation(s)
- Johanna S Schneider
- Department of Biochemistry and Molecular Genetics and Center for Research in Reproduction, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
35
|
Amano M, Oka Y, Nagai Y, Amiya N, Yamamori K. Immunohistochemical localization of a GnRH-like peptide in the brain of the cephalopod spear-squid, Loligo bleekeri. Gen Comp Endocrinol 2008; 156:277-84. [PMID: 18313672 DOI: 10.1016/j.ygcen.2008.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 12/24/2007] [Accepted: 01/04/2008] [Indexed: 11/23/2022]
Abstract
We examined whether a gonadotropin-releasing hormone (GnRH)-like peptide exists in the brain of the cephalopod spear-squid, Loligo bleekeri, by performing a time-resolved fluoroimmunoassay and immunohistochemistry. The displacement curve obtained for serially diluted extracts of the spear-squid brain paralleled the chicken GnRH-II (cGnRH-II) standard curve, indicating the existence of a cGnRH-II-like peptide in the brain. For immunohistochemistry, a mouse monoclonal antibody raised against the common amino acid sequence of GnRH (LRH13) and a rabbit polyclonal antibody raised against cGnRH-II were used. GnRH-like-immunoreactive (ir) cell bodies (that reacted with LRH13) were mainly detected in the central part of the ventral magnocellular lobe (vmL), and a few cell bodies were also detected in the olfactory lobe and palliovisceral lobe (pvL). Bundles of GnRH-like-ir axons were observed running from the vmL to the internal brain regions. GnRH-like-ir fibers were widely distributed in almost all the brain regions. cGnRH-II-ir cell bodies were localized in the optic gland, outer region of the vmL, and pvL. Further, cGnRH-II-ir fibers were distributed in the wide areas of the brain. These results suggest that at least two forms of GnRH-like peptidergic neuronal systems exist in the spear-squid brain.
Collapse
Affiliation(s)
- Masafumi Amano
- School of Fisheries Sciences, Kitasato University, Ofunato, Iwate, Japan.
| | | | | | | | | |
Collapse
|
36
|
Kah O, Lethimonier C, Somoza G, Guilgur LG, Vaillant C, Lareyre JJ. GnRH and GnRH receptors in metazoa: a historical, comparative, and evolutive perspective. Gen Comp Endocrinol 2007; 153:346-64. [PMID: 17350014 DOI: 10.1016/j.ygcen.2007.01.030] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 01/21/2007] [Indexed: 11/20/2022]
Abstract
About 50years after Harris's first demonstration of its existence, GnRH has strongly stimulated the interest and imagination of scientists, resulting in a high number of studies in an increasing number of species. For the endocrinologist, GnRH, via its actions on the synthesis and release of pituitary gonadotrophins, is first an essential hormone for the initiation and maintenance of the reproductive axis, but recent data suggest that GnRH emerged in animals lacking a pituitary. In this context, this review intends to explore the current status of knowledge on GnRH and GnRH receptors in metazoa in order to see if it is possible to draw an evolutive scenario according to which GnRH actions progressively evolved from the control of simple basic functions in early metazoa to an indirect mean of controlling gonadal activity in vertebrates through a sophisticated network of finely tuned neurons developing in a rather fascinating way. This review also intends to provide an evolutive scenario based on the recent advances of whole genome sequencing possibly explaining the number of GnRH and GnRH receptor variants according to the 2R and 3R theories accompanied by gene losses.
Collapse
Affiliation(s)
- O Kah
- Endocrinologie Moléculaire de la Reproduction, UMR CNRS 6026, Campus de Beaulieu, 35042 Rennes Cedex, France.
| | | | | | | | | | | |
Collapse
|
37
|
Folgueira M, Sueiro C, Rodríguez-Moldes I, Yáñez J, Anadón R. Organization of the torus longitudinalis in the rainbow trout (Oncorhynchus mykiss): an immunohistochemical study of the GABAergic system and a DiI tract-tracing study. J Comp Neurol 2007; 503:348-70. [PMID: 17492628 DOI: 10.1002/cne.21363] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The torus longitudinalis (TL) is a tectum-associated structure of actinopterygian fishes. The organization of the TL of rainbow trout was studied with Nissl staining, Golgi methods, immunocytochemistry with antibodies to gamma-aminobutyric acid (GABA), glutamic acid decarboxylase (GAD), and the GABA(A) receptor subunits delta and beta2/beta 3, and with tract tracing methods. Two types of neuron were characterized: medium-sized GABAergic neurons and small GABA-negative granule cells. GABA(A) receptor subunit delta-like immunoreactivity delineated two different TL regions, ventrolateral and central. Small GABAergic cells were also observed in marginal and periventricular strata of the optic tectum. These results indicate the presence of local GABAergic inhibitory circuits in the TL system. For tract-tracing, a lipophilic dye (DiI) was applied to the TL and to presumed toropetal nuclei or toral targets. Toropetal neurons were observed in the optic tectum, in pretectal (central, intermediate, and paracommissural) nuclei, in the subvalvular nucleus, and associated with the pretectocerebellar tract. Torofugal fibers were numerous in the stratum marginale of the optic tectum. Toropetal pretectal nuclei also project to the cerebellum, and a few TL cells project to the cerebellar corpus. The pyramidal cells of the trout tectum were also studied by Golgi methods and local DiI labeling. The connections of trout TL revealed here were more similar to those recently reported in carp and holocentrids (Ito et al. [2003] J. Comp. Neurol. 457:202-211; Xue et al. [2003] J. Comp. Neurol. 462:194-212), than to those reported in earlier studies. However, important differences in organization of toropetal nuclei were noted between salmonids and these other teleosts.
Collapse
Affiliation(s)
- Mónica Folgueira
- Department of Cell and Molecular Biology, University of A Coruña, 15007-A Coruña, Spain
| | | | | | | | | |
Collapse
|
38
|
Kinoshita M, Kobayashi S, Urano A, Ito E. Neuromodulatory effects of gonadotropin-releasing hormone on retinotectal synaptic transmission in the optic tectum of rainbow trout. Eur J Neurosci 2007; 25:480-4. [PMID: 17284189 DOI: 10.1111/j.1460-9568.2006.05294.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is a hypophysiotropic decapeptide that stimulates the release of gonadotropins from the pituitary. In addition, there are extra-hypothalamic GnRH neurons that project to all regions of the brain and whose function remains unknown. Here, we investigated the effects of GnRH on retinotectal synaptic transmission, the synapses of which are formed between retinal fibers and tectal periventricular neurons that express GnRH receptor mRNA. We used rainbow trout as our study model. The excitatory postsynaptic currents (EPSCs), which were evoked by electrical stimulation of the retinal fibers and recorded in periventricular neurons, were suppressed by antagonists of ionotropic glutamate receptors. EPSCs were increased by application of each of two types of GnRH (GnRH2 and GnRH3) in the trout tectum. Such facilitation lasted for at least 10 min after application of the GnRH. To our knowledge, this is the first report of GnRH modulating conventional synaptic transmission in the brain, suggesting that tectal GnRH enhances tectal sensitivity for retinal inputs. Furthermore, such long-lasting facilitation might occur across all the brain regions innervated by GnRH neurons, and GnRH might simultaneously switch neuronal activities in the brain regions relevant to reproductive behaviors.
Collapse
Affiliation(s)
- Masae Kinoshita
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | |
Collapse
|
39
|
Repérant J, Médina M, Ward R, Miceli D, Kenigfest N, Rio J, Vesselkin N. The evolution of the centrifugal visual system of vertebrates. A cladistic analysis and new hypotheses. ACTA ACUST UNITED AC 2007; 53:161-97. [DOI: 10.1016/j.brainresrev.2006.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 08/10/2006] [Accepted: 08/21/2006] [Indexed: 12/23/2022]
|
40
|
Kinoshita M, Ito E, Urano A, Ito H, Yamamoto N. Periventricular efferent neurons in the optic tectum of rainbow trout. J Comp Neurol 2006; 499:546-64. [PMID: 17029270 DOI: 10.1002/cne.21080] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The efferent connections and axonal and dendritic morphologies of periventricular neurons were examined in the optic tectum of rainbow trout to classify periventricular efferent neurons in salmonids. Among the target nuclei of tectal efferents, tracer injections to the following four structures labeled periventricular neurons: the area pretectalis pars dorsalis (APd), nucleus pretectalis superficialis pars magnocellularis (PSm), nucleus ventrolateralis of torus semicircularis (TS), and nucleus isthmi (NI). Two types of periventricular neurons were labeled by injections to the APd. One of them had an apical dendrite ramifying at the stratum fibrosum et griseum superficiale (SFGS), with an axon that bifurcated into two branches at the stratum griseum centrale (SGC), and the other had an apical dendrite ramifying at the SGC. Two types of periventricular neurons were labeled after injections to the TS. One of them had an apical dendrite ramifying at the boundary between the stratum opticum (SO) and the SFGS, and the other had dendritic branches restricted to the stratum album centrale or stratum periventriculare. Injections to the PSm and NI labeled periventricular neurons of the same type with an apical dendrite ramifying at the SO and a characteristic axon that split into superficial and deep branches projecting to the PSm and NI, respectively. This cell type also possessed axonal branches that terminated within the tectum. These results indicate that periventricular efferent neurons can be classified into at least five types that possess type-specific axonal and dendritic morphologies. We also describe other tectal neurons labeled by the present injections.
Collapse
Affiliation(s)
- Masae Kinoshita
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | |
Collapse
|
41
|
Vetillard A, Ferriere F, Jego P, Bailhache T. Regulation of salmon gonadotrophin-releasing hormone gene expression by sex steroids in rainbow trout brain. J Neuroendocrinol 2006; 18:445-53. [PMID: 16684134 DOI: 10.1111/j.1365-2826.2006.01432.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Salmon gonadotrophin-releasing hormone (sGnRH) is the major form of gonadotrophin-releasing hormone in the brain of Salmonids and is encoded by two different genes: sGnRH1 and sGnRH2. In the present study, we examined the expression patterns of these two genes during development and throughout the reproductive cycle of the female rainbow trout (Oncorhynchus mykiss), and also investigated the feedback action of sex steroids on brain mRNA levels. Both genes are expressed as early as 14 days postfertilisation and show a similar expression pattern during early life stages. In the adult female, sGnRH1 and sGnRH2 mRNAs are both present in neurones located in the ventral forebrain. This gene expression in the brain appears to be low during early vitellogenesis, and increases during oocyte maturation to reach a maximum after ovulation. The expression of sGnRH1 was not modified by in vivo steroid treatments in any experiment; however, testosterone and 5alpha-dihydrotestosterone down-regulate brain sGnRH2 gene in immature and adult ovariectomised females. Oestradiol treatment decreases sGnRH2 mRNA levels in the brain of adult ovariectomised females only. In the triploid fish brain, none of the steroids affect brain sGnRH mRNA levels. Our results suggest that, unlike sGnRH1, the sGnRH2 gene is under a strongly androgenic inhibitory control in the immature and adult female rainbow trout.
Collapse
Affiliation(s)
- A Vetillard
- MRC Toxicology Unit, Hodgkin Building, University of Leicester, Leicester, UK.
| | | | | | | |
Collapse
|
42
|
Guilgur LG, Moncaut NP, Canário AVM, Somoza GM. Evolution of GnRH ligands and receptors in gnathostomata. Comp Biochem Physiol A Mol Integr Physiol 2006; 144:272-83. [PMID: 16716622 DOI: 10.1016/j.cbpa.2006.02.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 01/19/2006] [Accepted: 02/14/2006] [Indexed: 10/24/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is the final common signaling molecule used by the brain to regulate reproduction in all vertebrates. Until now, a total of 24 GnRH structural variants have been characterized from vertebrate, protochordate and invertebrate nervous tissue. Almost all vertebrates already investigated have at least two GnRH forms coexisting in the central nervous system. Furthermore, it is now well accepted that three GnRH forms are present both in early and late evolved teleostean fishes. The number and taxonomic distribution of the different GnRH variants also raise questions about the phylogenetic relationships between them. Most of the GnRH phylogenetic analyses are in agreement with the widely accepted idea that the GnRH family can be divided into three main groups. However, the examination of the gnathostome GnRH phylogenetic relationships clearly shows the existence of two main paralogous GnRH lineages: the ''midbrain GnRH" group and the "forebrain GnRH" group. The first one, represented by chicken GnRH-II forms, and the second one composed of two paralogous lineages, the salmon GnRH cluster (only represented in teleostean fish species) and the hypophysotropic GnRH cluster, also present in tetrapods. This analysis suggests that the two forebrain clades share a common precursor and reinforces the idea that the salmon GnRH branch has originated from a duplication of the hypophysotropic lineage. GnRH ligands exert their activity through G protein-coupled receptors of the rhodopsin-like family. As with the ligands, multiple GnRHRs are expressed in individual vertebrate species and phylogenetic analyses have revealed that all vertebrate GnRHRs cluster into three main receptor types. However, new data and a new phylogenetic analysis propose a two GnRHR type model, in which different rounds of gene duplications may have occurred in different groups within each lineage.
Collapse
Affiliation(s)
- Leonardo G Guilgur
- Laboratorio de Ictiofisiología y Acuicultura, IIB-INTECH, CONICET-Universidad Nacional de General San Martín, IIB-INTECH, Camino de Circunvalación Laguna Km. 6, CC 164, B7130IWA, Chascomús, Provincia de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
43
|
Repérant J, Ward R, Miceli D, Rio JP, Médina M, Kenigfest NB, Vesselkin NP. The centrifugal visual system of vertebrates: a comparative analysis of its functional anatomical organization. ACTA ACUST UNITED AC 2006; 52:1-57. [PMID: 16469387 DOI: 10.1016/j.brainresrev.2005.11.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 11/24/2005] [Accepted: 11/30/2005] [Indexed: 10/25/2022]
Abstract
The present review is a detailed survey of our present knowledge of the centrifugal visual system (CVS) of vertebrates. Over the last 20 years, the use of experimental hodological and immunocytochemical techniques has led to a considerable augmentation of this knowledge. Contrary to long-held belief, the CVS is not a unique property of birds but a constant component of the central nervous system which appears to exist in all vertebrate groups. However, it does not form a single homogeneous entity but shows a high degree of variation from one group to the next. Thus, depending on the group in question, the somata of retinopetal neurons can be located in the septo-preoptic terminal nerve complex, the ventral or dorsal thalamus, the pretectum, the optic tectum, the mesencephalic tegmentum, the dorsal isthmus, the raphé, or other rhombencephalic areas. The centrifugal visual fibers are unmyelinated or myelinated, and their number varies by a factor of 1000 (10 or fewer in man, 10,000 or more in the chicken). They generally form divergent terminals in the retina and rarely convergent ones. Their retinal targets also vary, being primarily amacrine cells with various morphological and neurochemical properties, occasionally interplexiform cells and displaced retinal ganglion cells, and more rarely orthotopic ganglion cells and bipolar cells. The neurochemical signature of the centrifugal visual neurons also varies both between and within groups: thus, several neuroactive substances used by these neurons have been identified; GABA, glutamate, aspartate, acetylcholine, serotonin, dopamine, histamine, nitric oxide, GnRH, FMRF-amide-like peptides, Substance P, NPY and met-enkephalin. In some cases, the retinopetal neurons form part of a feedback loop, relaying information from a primary visual center back to the retina, while in other, cases they do not. The evolutionary significance of this variation remains to be elucidated, and, while many attempts have been made to explain the functional role of the CVS, opinions vary as to the manner in which retinal activity is modified by this system.
Collapse
Affiliation(s)
- J Repérant
- CNRS UMR 5166, MNHN USM 0501, Département Régulation, Développement et Diversité Moléculaire du Muséum National d'Histoire Naturelle, C. P. 32, 7 rue Cuvier, 75231 Paris cedex 05, France.
| | | | | | | | | | | | | |
Collapse
|
44
|
Neuromodulatory Functions of Terminal Nerve‐GnRH Neurons. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1546-5098(06)25011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
45
|
Kauffman AS, Rissman EF. Role of gonadotropin-releasing hormone II in the mammalian nervous system. Expert Rev Endocrinol Metab 2006; 1:133-145. [PMID: 30743776 DOI: 10.1586/17446651.1.1.133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is a small neuropeptide of which there are multiple structural variants. The first variant identified in mammals, GnRH I, controls the release of pituitary gonadotropins. More recently, a second isoform, GnRH II, first isolated in the bird, was identified in the mammalian brain and periphery. Although it is unlikely to be a primary regulator of gonadotropin release, GnRH II appears to have a wide array of physiological and behavioral functions. GnRH II-containing fibers are present in several nuclei known to regulate reproduction and/or feeding, and its concentration in several of these areas fluctuates in response to changes in food availability, and thus energetic status. In musk shrews, GnRH II acts as a permissive regulator of female reproductive behavior based on energy status, as well as an inhibitor of short-term food intake. In this regard, GnRH II is similar to leptin, neuropeptide Y and several other neurotransmitters that regulate both feeding and reproduction. At least two GnRH receptors are present in the mammalian brain, and increasing evidence suggests that the behavioral effects of GnRH II are mediated by receptor subtypes distinct from the type-1 GnRH receptor (which mediates GnRH I action); the most probable candidate is the type-2 GnRH receptor. GnRH II also regulates the density and/or activity of calcium and potassium channels in the nervous systems of amphibians and fish, a function that may also exist in mammalian neurons. It is likely that the highly conserved GnRH II system has been co-opted over evolutionary time to possess multiple regulatory functions in a broad range of neurobiological aspects.
Collapse
Affiliation(s)
- Alexander S Kauffman
- a Department of Physiology and Biophysics, PO Box 356460, University of Washington, Seattle, WA 98195, USA.
| | - Emilie F Rissman
- b Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, PO Box 800733, 1300 Jefferson Park Avenue, Charlottesville, VA 22908, USA.
| |
Collapse
|
46
|
Mohamed JS, Thomas P, Khan IA. Isolation, cloning, and expression of three prepro-GnRH mRNAs in Atlantic croaker brain and pituitary. J Comp Neurol 2005; 488:384-95. [PMID: 15973678 DOI: 10.1002/cne.20596] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Three prepro-gonadotropin-releasing hormones, seabream GnRH (sbGnRH), chicken GnRH-II (cGnRH-II), and salmon GnRH (sGnRH) were isolated by cDNA cloning from the brain of the Atlantic croaker, Micropogonias undulatus. The amino acid sequences of croaker GnRH precursors show greatest similarities to those of the gilthead and red sea breams and European sea bass. In situ hybridization of croaker brain sections revealed more abundant sbGnRH mRNA expression in the preoptic area (POA) than in other brain regions. sbGnRH mRNA expression was also observed in the olfactory bulb (OB; but not in the terminal nerve ganglion cells [TNgc]), ventral telencephalon (vTEL), and anterior hypothalamus. In addition, specific sbGnRH mRNA signals were detected in the pituitary. cGnRH-II mRNA expression was limited to the midbrain tegmentum. Neuronal elements expressing sGnRH mRNA were detected in the OB including the TNgc, vTEL, and POA, indicating an overlap of the sbGnRH and sGnRH systems in certain ventral forebrain areas. The results of quantitative reverse transcriptase-polymerase chain reaction of the three GnRH mRNAs in different brain areas and the pituitary are consistent with their localization by in situ hybridization. Interestingly, a few sbGnRH mRNA-expressing neuronal elements were observed arranged in a row in the anteroventral hypothalamus projecting toward the pituitary. The results provide a morphological basis for a putative role of sbGnRH as the gonadotropin-releasing hormone. Moreover, localization of sbGnRH mRNA in a teleost pituitary points to sbGnRH synthesis, and its potential role as a local regulator, within the pituitary, similar to the role of GnRH-I in mammals.
Collapse
Affiliation(s)
- J Shaik Mohamed
- Marine Science Institute, The University of Texas at Austin, Port Aransas, Texas 78373, USA.
| | | | | |
Collapse
|
47
|
Pandolfi M, Muñoz Cueto JA, Lo Nostro FL, Downs JL, Paz DA, Maggese MC, Urbanski HF. GnRH systems of Cichlasoma dimerus (Perciformes, Cichlidae) revisited: a localization study with antibodies and riboprobes to GnRH-associated peptides. Cell Tissue Res 2005; 321:219-32. [PMID: 15947973 DOI: 10.1007/s00441-004-1055-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 11/16/2004] [Indexed: 10/25/2022]
Abstract
The distribution of cells that express three prepro-gonadotropin-releasing hormones (GnRH), corresponding to salmon GnRH, sea bream GnRH (sbGnRH), and chicken II GnRH, was studied in the brain and pituitary of the South American cichlid fish, Cichlasoma dimerus. Although the ontogeny and distribution of GnRH neuronal systems have previously been examined immunohistochemically with antibodies and antisera against the various GnRH decapeptides, we have used antisera against various perciform GnRH-associated peptides (GAPs) and riboprobes to various perciform GnRH+GAPs. The results demonstrate that: (1) the GnRH neuronal populations in the forebrain (salmon and sea bream GAPs; sGAP and sbGAP, respectively) show an overlapping pattern along the olfactory bulbs, nucleus olfacto-retinalis, ventral telencephalon, and preoptic area; (2) projections with sGAP are mainly located in the forebrain and contribute to the pituitary innervation, with projections containing chicken GAP II being mainly distributed along the mid and hindbrain and not contributing to pituitary innervation, whereas sbGAP projections are restricted to the ventral forebrain, being the most important molecular form in relation to pituitary innervation; (3) sbGnRH (GnRH I) neurons have an olfactory origin; (4) GAP antibodies and GAP riboprobes are valuable tools for the study of various GnRH systems, by avoiding the cross-reactivity problems that occur when using GnRH antibodies and GnRH riboprobes alone.
Collapse
Affiliation(s)
- Matías Pandolfi
- Laboratorio de Embriología Animal, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Argentina
| | | | | | | | | | | | | |
Collapse
|
48
|
Folgueira M, Anadón R, Yáñez J. An experimental study of the connections of the telencephalon in the rainbow trout (Oncorhynchus mykiss). I: Olfactory bulb and ventral area. J Comp Neurol 2004; 480:180-203. [PMID: 15514934 DOI: 10.1002/cne.20340] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The fluorescent carbocyanine dye 1,1'-dioctadecyl 3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) was used in fixed tissue to comprehensively analyze the connections of the olfactory bulbs and the different regions of the ventral (V) area of the telencephalic lobes (subpallium) of the rainbow trout. With this goal, DiI was applied to the different telencephalic nuclei and zones, as well as to the olfactory nerve, the olfactory bulb, the retina, and to several structures in the diencephalon and brainstem of juvenile trout. The olfactory bulbs maintain reciprocal connections with several regions of the telencephalon [ventral nucleus of V (Vv), supracommissural nucleus (Vs), posterior zone of D (Dp), preoptic nucleus], and also project to the diencephalon (posterior tuberal nucleus, posterior hypothalamic lobe). Vv receives afferents from Vs, the dorsal nucleus of V (Vd), the preoptic nucleus, and from several nuclei in the diencephalon and brainstem (suprachiasmatic nucleus, anterior and lateral tuberal nuclei, preglomerular complex, tertiary gustatory nucleus, posterior tubercle, inferior hypothalamic lobes, thalamus, torus semicircularis, secondary gustatory nucleus, locus coeruleus, superior raphe nucleus, central gray, and reticular formation), and projects to dorsal (pallial) regions and most of the nuclei afferent to Vv. The dorsal nucleus of V (Vd) and Vs mainly project to the dorsal area. In an accompanying article (Folgueira et al., 2004), we present the results of application of DiI to dorsal (pallial) telencephalic regions, as well as of several experiments of tracer application to extratelencephalic regions. The results presented here, together with those of the accompanying article, reveal a complex connectional pattern of the rainbow trout ventral telencephalon, most of these connections having not been described previously in salmonids.
Collapse
Affiliation(s)
- Mónica Folgueira
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071 A Coruña, Spain
| | | | | |
Collapse
|
49
|
Haneda K, Oka Y. Selective modulation of voltage-gated calcium channels in the terminal nerve gonadotropin-releasing hormone neurons of a teleost, the dwarf gourami (Colisa lalia). Endocrinology 2004; 145:4489-99. [PMID: 15231709 DOI: 10.1210/en.2004-0353] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GnRH neurons in the terminal nerve (TN) have been suggested to function as a neuromodulatory system that regulates long-lasting changes in the animal behavior. Here we examined electrophysiological properties of TN-GnRH neurons in a teleost (dwarf gourami, Colisa lalia), focusing on the voltage-gated Ca2+ channels, which are thought to be coupled to several cellular events such as GnRH release. TN-GnRH neurons showed low-voltage activated (LVA) currents and three types of pharmacologically distinct high-voltage activated (HVA) currents. The L- and N-type currents constituted 30.7 +/- 3.1 and 41.0 +/- 3.9%, respectively, of HVA currents, which was recorded at the holding potential of -60 mV to inactivate the LVA currents. Although P/Q-type current was small and negligible, R-type current accounted for the remaining 23.6 +/- 1.6% of HVA currents. Next we examined the possibility of Ca2+ channel modulation induced by GnRH released in a paracrine/autocrine manner. HVA currents of up to 40% was inhibited by the application of salmon GnRH, which is the same molecular species of GnRH as is synthesized by TN-GnRH neurons themselves. However, salmon GnRH had no measurable effects on LVA currents. The inhibition of HVA currents had a dose dependence (EC50 was 11.5 nm) and type specificity among different HVA currents; N- and R-type currents were preferentially inhibited, but L-type currents had by far lower sensitivity. The physiological significance of different Ca2+ influx pathways, and their paracrine/autocrine regulation mechanisms in TN-GnRH neurons are discussed.
Collapse
Affiliation(s)
- Kosuke Haneda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
50
|
Wong TT, Gothilf Y, Zmora N, Kight KE, Meiri I, Elizur A, Zohar Y. Developmental Expression of Three Forms of Gonadotropin-Releasing Hormone and Ontogeny of the Hypothalamic-Pituitary-Gonadal Axis in Gilthead Seabream (Sparus aurata)1. Biol Reprod 2004; 71:1026-35. [PMID: 15163612 DOI: 10.1095/biolreprod.104.028019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
To address the complexity of the origin of the GnRH system in perciforms, we investigated the ontogenic expression of three GnRHs in gilthead seabream. Using in situ hybridization, chicken (c) GnRH-II mRNA-expressing cells were detected in the hindbrain at 1.5 days postfertilization (DPF) and in the midbrain at 2 DPF and thereafter; the hindbrain signals became undetectable after 10 DPF. Salmon (s) GnRH mRNA-expressing cells were first seen in the olfactory placode at 3 DPF, started caudal migration at 14 DPF, and reached the preoptic areas at 59 DPF. Seabream (sb) GnRH mRNA-expressing cells were first detected in the terminal nerve ganglion cells (TNgc), ventral part of the ventral telencephalon, nucleus preopticus parvocellularis, and thalamus at 39 DPF, and extended to the nucleus preopticus magnocellularis at 43 DPF, ventrolateral hypothalamus at 51 DPF, and nucleus lateralis tuberis and posterior tuberculum at 59 DPF. Coexpression of sbGnRH and sGnRH transcripts was found in the TNgc. Using real-time fluorescence-based quantitative polymerase chain reaction, transcript levels of cGnRH-II and sGnRH were first detected at 1 and 1.5 DPF, respectively, and increased and remained high thereafter. Transcript levels of sbGnRH remained low after first detection at 1 DPF. Furthermore, these GnRH expression profiles were correlated with the expression profiles of reproduction-related genes in which at least four concomitant increases of GnRH, GnRH receptor, gonadotropin, gonadotropin receptor, and Vasa transcripts were found at 5, 8, 14, and 28 DPF. Our data provide an expanded view of the ontogeny of the GnRH system and reproductive axis in perciforms.
Collapse
Affiliation(s)
- Ten-Tsao Wong
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21202, USA
| | | | | | | | | | | | | |
Collapse
|