1
|
Zhang T, Wang X, Zhang Q, Yang D, Zhang X, Liu H, Wang Q, Dong Z, Zhao J. Interactive effects of multiple antibiotic residues and ocean acidification on physiology and metabolome of the bay scallops Argopecten irradians irradians. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168941. [PMID: 38056652 DOI: 10.1016/j.scitotenv.2023.168941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
Coastal areas are confronted with compounding threats arising from both climatic and non-climatic stressors. Antibiotic pollution and ocean acidification are two prevalently concurrent environmental stressors. Yet their interactive effects on marine biota have not been investigated adequately and the compound hazard remain obscure. In this study, bay scallops Argopecten irradians irradians were exposed to multiple antibiotics (sulfamethoxazole, tetracycline, oxytetracycline, norfloxacin, and erythromycin, each at a concentration of 1 μg/L) combined with/without acidic seawater (pH 7.6) for 35 days. The single and interactive effects of the two stressors on A. irradians irradians were determined from multidimensional bio-responses, including energetic physiological traits as well as the molecular underpinning (metabolome and expressions of key genes). Results showed that multiple antibiotics predominantly enhanced the process of DNA repair and replication via disturbing the purine metabolism pathway. This alternation is perhaps to cope with the DNA damage induced by oxidative stress. Ocean acidification mainly disrupted energy metabolism and ammonia metabolism of the scallops, as evidenced by the increased ammonia excretion rate, the decreased O:N ratio, and perturbations in amino acid metabolism pathways. Moreover, the antagonistic effects of multiple antibiotics and ocean acidification caused alternations in the relative abundance of neurotransmitter and gene expression of neurotransmitter receptors, which may lead to neurological disorders in scallops. Overall, the revealed alternations in physiological traits, metabolites and gene expressions provide insightful information for the health status of bivalves in a natural environmental condition under the climate change scenarios.
Collapse
Affiliation(s)
- Tianyu Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qianqian Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Dinglong Yang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Xiaoli Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Hui Liu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Qing Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Zhijun Dong
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China.
| |
Collapse
|
2
|
Chen YC, Martins TA, Marchica V, Panula P. Angiopoietin 1 and integrin beta 1b are vital for zebrafish brain development. Front Cell Neurosci 2024; 17:1289794. [PMID: 38235293 PMCID: PMC10792015 DOI: 10.3389/fncel.2023.1289794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Angiopoietin 1 (angpt1) is essential for angiogenesis. However, its role in neurogenesis is largely undiscovered. This study aimed to identify the role of angpt1 in brain development, the mode of action of angpt1, and its prime targets in the zebrafish brain. Methods We investigated the effects of embryonic brain angiogenesis and neural development using qPCR, in situ hybridization, microangiography, retrograde labeling, and immunostaining in the angpt1sa14264, itgb1bmi371, tekhu1667 mutant fish and transgenic overexpression of angpt1 in the zebrafish larval brains. Results We showed the co-localization of angpt1 with notch, delta, and nestin in the proliferation zone in the larval brain. Additionally, lack of angpt1 was associated with downregulation of TEK tyrosine kinase, endothelial (tek), and several neurogenic factors despite upregulation of integrin beta 1b (itgb1b), angpt2a, vascular endothelial growth factor aa (vegfaa), and glial markers. We further demonstrated that the targeted angpt1sa14264 and itgb1bmi371 mutant fish showed severely irregular cerebrovascular development, aberrant hindbrain patterning, expansion of the radial glial progenitors, downregulation of cell proliferation, deficiencies of dopaminergic, histaminergic, and GABAergic populations in the caudal hypothalamus. In contrast to angpt1sa14264 and itgb1bmi371 mutants, the tekhu1667 mutant fish regularly grew with no apparent phenotypes. Notably, the neural-specific angpt1 overexpression driven by the elavl3 (HuC) promoter significantly increased cell proliferation and neuronal progenitor cells but decreased GABAergic neurons, and this neurogenic activity was independent of its typical receptor tek. Discussion Our results prove that angpt1 and itgb1b, besides regulating vascular development, act as a neurogenic factor via notch and wnt signaling pathways in the neural proliferation zone in the developing brain, indicating a novel role of dual regulation of angpt1 in embryonic neurogenesis that supports the concept of angiopoietin-based therapeutics in neurological disorders.
Collapse
Affiliation(s)
- Yu-Chia Chen
- Department of Anatomy, University of Helsinki, Helsinki, Finland
- Zebrafish Unit, Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland
| | - Tomás A. Martins
- Department of Anatomy, University of Helsinki, Helsinki, Finland
- Zebrafish Unit, Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland
| | - Valentina Marchica
- Department of Anatomy, University of Helsinki, Helsinki, Finland
- Zebrafish Unit, Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland
| | - Pertti Panula
- Department of Anatomy, University of Helsinki, Helsinki, Finland
- Zebrafish Unit, Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland
| |
Collapse
|
3
|
Nikishchenko V, Kolotukhina N, Dyachuk V. Comparative Neuroanatomy of Pediveliger Larvae of Various Bivalves from the Sea of Japan. BIOLOGY 2023; 12:1341. [PMID: 37887051 PMCID: PMC10604817 DOI: 10.3390/biology12101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 10/28/2023]
Abstract
Here, we describe the nervous system structures from pediveligers of eight bivalve species (Callista brevisiphonata, Mactromeris polynyma, Crenomytilus grayanus, Kellia japonica, Mizuhopecten yessoensis, and Azumapecten farreri) with different modes of life in their adult stages, corresponding to the ecological niches that they occupy (burrowing, cemented, byssally attached, and mobile forms). We have identified neuromorphological features of the central and peripheral nervous systems in larval bivalves. We show that the unpaired sensory apical organ is still present in pediveligers along with the developing paired cerebral ganglia characteristic of an adult mollusk. Pediveligers have the pleural ganglia connected to the pedal ganglia via the pedal nerve cords and to the visceral ganglia via the lateral nerve cords. We have found a number of structures of the peripheral nervous system whose presence varies between pediveligers of different species. Mactromeris, Callista, and Pododesmus have 5-HT-immunopositive stomatogastric neurons, whereas the Yesso and Farrer's scallops have an FMRFamide-immunopositive enteric nervous system. The innervation of the anterior part of the velum is connected to a system of the apical organ and cerebral ganglia, and the innervation of the posterior part is connected to the visceral ganglia. Most differences in the structure of the peripheral elements of the nervous system are species-specific and weakly depend on the ecological niche that pediveligers occupy.
Collapse
Affiliation(s)
| | | | - Vyacheslav Dyachuk
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (V.N.); (N.K.)
| |
Collapse
|
4
|
Kniazkina M, Dyachuk V. Neurogenesis of the scallop Azumapecten farreri: from the first larval sensory neurons to the definitive nervous system of juveniles. Front Zool 2022; 19:22. [PMID: 35922810 PMCID: PMC9347173 DOI: 10.1186/s12983-022-00468-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Scallops are among the best-studied bivalve mollusks. However, adult nervous system and neurogenesis studies of scallops are limited. Here, we studied the localization of neurotransmitters (serotonin/5-HT, FMRFamide, catecholamines) in adult ganglia and larvae of Azumapecten farreri using histochemical and immunohistochemical methods. Results We found peptide FMRFamide in all adult scallop ganglia, whereas 5-HT-like immunoreactive (lir) somata were exclusively detected in the cerebropleural, pedal, and accessory ganglia. Scallop larval neurogenesis starts with the emergence of the 5-HT-lir neurons, which are part of the apical organ (AO) at the early veliger stage. Near the AO, paired anlagen of cerebral ganglion (CG) developed. 5-HT-lir neurites of the CG innervate the velum, ventral, and dorsal parts of the larva at the late veliger stage. Scallop pediveligers possess 5-HT-lir CG, pleural ganglia, and immunopositive signals in the developing enteric nervous system. FMRFamide-lir is first detected in dorsal, ventral, and AO cells of early veligers. Later, FMRFamide-lir extends to the visceral nervous cord, all ganglia, as well as in the enteric nervous system in pediveligers. Catecholaminergic neurons are detected near the larval mouth, in the vellum, and in the stomach in veligers. Conclusions We described the distribution of neurotransmitters of the ganglia in adult scallops and the larval neurodevelopment in A. farreri. Immunostaining of neurotransmitters showed that the gross anatomy of adult scallop ganglia, in general, is similar to that in other bivalves, but complicated by the complexity of the structure of the ganglia and the appearance of additional ganglia not described in other molluscs. A comparison of larval neuromorphology suggests that 5-HT-lir structures are more conservative than FMRF-lir structures in Bivalvia. Notably, the latter are much more distributed in scallop A. farreri larvae than in other studied bivalves. Supplementary Information The online version contains supplementary material available at 10.1186/s12983-022-00468-7.
Collapse
Affiliation(s)
- Marina Kniazkina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Vyacheslav Dyachuk
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia.
| |
Collapse
|
5
|
Abdel-Latif HMR, Dawood MAO, Menanteau-Ledouble S, El-Matbouli M. Environmental transformation of n-TiO 2 in the aquatic systems and their ecotoxicity in bivalve mollusks: A systematic review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110776. [PMID: 32474243 DOI: 10.1016/j.ecoenv.2020.110776] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Over the past decades, titanium dioxide nanoparticles (n-TiO2) have been extensively used in several industrial applications and the manufacture of novel consumer products. Although strict regulations have been put in place to limit their release into the aquatic environment, these nanoparticles can still be found at elevated levels within the environment, which can result in toxic effects on exposed organisms and has possible implications in term of public health. Bivalve mollusks are a unique and ideal group of shellfish for the study and monitoring the aquatic pollution by n-TiO2 because of their filter-feeding behaviour and ability to accumulate toxicants in their tissues. In these animals, exposure to n-TiO2 leads to oxidative stress, immunotoxicity, neurotoxicity, and genotoxicity, as well as behavioral and physiological changes. This review summarizes the uptake, accumulation, and fate of n-TiO2 in aquatic environments and the possible interactions between n-TiO2 and other contaminants such as heavy metals and organic pollutants. Moreover, the toxicological impacts and mechanisms of action are discussed for a wide range of bivalve mollusks. This data underlines the pressing need for additional knowledge and future research plans for the development of control strategies to mitigate the release of n-TiO2 to the aquatic environment to prevent the toxicological impacts on bivalves and protect public health.
Collapse
Affiliation(s)
- Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Behera province, Egypt.
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt; School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53204, USA.
| | | | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
6
|
Cerebral Dopamine Neurotrophic Factor Regulates Multiple Neuronal Subtypes and Behavior. J Neurosci 2020; 40:6146-6164. [PMID: 32631936 DOI: 10.1523/jneurosci.2636-19.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/23/2022] Open
Abstract
Cerebral dopamine neurotrophic factor (CDNF) protects dopaminergic neurons against toxic damage in the rodent brain and is in clinical trials to treat Parkinson's disease patients. Yet the underlying mechanism is poorly understood. To examine its significance for neural circuits and behavior, we examined the development of neurotransmitter systems from larval to male adult mutant zebrafish lacking cdnf Although a lack of cdnf did not affect overall brain dopamine levels, dopaminergic neuronal clusters showed significant abnormalities. The number of histamine neurons that surround the dopaminergic neurons was significantly reduced. Expression of tyrosine hydroxylase 2 in the brain was elevated in cdnf mutants throughout their lifespan. There were abnormally few GABA neurons in the hypothalamus in the mutant larvae, and expression of glutamate decarboxylase was reduced throughout the brain. cdnf mutant adults showed a range of behavioral phenotypes, including increased sensitivity to pentylenetetrazole-induced seizures. Shoaling behavior of mutant adults was abnormal, and they did not display social attraction to conspecifics. CDNF plays a profound role in shaping the neurotransmitter circuit structure, seizure susceptibility, and complex behaviors in zebrafish. These findings are informative for dissecting the diverse functions of this poorly understood factor in human conditions related to Parkinson's disease and complex behaviors.SIGNIFICANCE STATEMENT A zebrafish lacking cdnf grows normally and shows no overt morphologic phenotype throughout the life span. Remarkably, impaired social cohesion and increased seizure susceptibility were found in adult cdnf KO fish conceivably associated with significant changes of dopaminergic, GABAergic, and histaminergic systems in selective brain areas. These findings suggest that cdnf has broad effects on regulating neurogenesis and maturation of transmitter-specific neuronal types during development and throughout adulthood, rather than ones restricted to the dopaminergic systems.
Collapse
|
7
|
Kotsyuba E, Kalachev A, Kameneva P, Dyachuk V. Distribution of Molecules Related to Neurotransmission in the Nervous System of the Mussel Crenomytilus grayanus. Front Neuroanat 2020; 14:35. [PMID: 32714154 PMCID: PMC7344229 DOI: 10.3389/fnana.2020.00035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/02/2020] [Indexed: 11/13/2022] Open
Abstract
In bivalves neurotransmitters are involved in a variety of behaviors, but their diversity and distribution in the nervous system of these organisms remains somewhat unclear. Here, we first examined immunohistochemically the distributions of neurons containing different neurotransmitters, neuropeptides, and related enzymes, as well as the proliferative status of neurons in the ganglia of the mussel Crenomytilus grayanus. H-Phe-Met-Arg-Phe-NH2 (FMRFamide), choline acetyltransferase (ChAT), γ-aminobutyric acid (GABA) and tyrosine hydroxylase (TH) were found to be expressed by neurons in all the ganglia, whereas serotonin (5-HT) neurons were found only in the cerebropleural and pedal, but not visceral ganglia. Moreover, incubation of living mussels in the presence of a 5-HT precursor (5-HTP) confirmed the absence of 5-HT-containing neurons from the visceral ganglia, indicating that the "serotonin center" of the visceral nervous system is located in the cerebral ganglia. Furthermore, immunostaining of molecules related to neurotransmission together with α-acetylated tubulin demonstrated that this cytoskeletal protein may be a potential pan-neuronal marker in bivalves. Adult mussel neurons do not proliferate, but a population of proliferating PCNA-LIP cells which do not express any of the neurotransmitters examined, perhaps glia cells, was detected in the ganglia. These novel findings suggest that the nervous system of bivalves contains a broad variety of signal molecules most likely involved in the regulation of different physiological and behavioral processes. In addition, proliferating cells may maintain and renew glial cells and neurons throughout the lives of bivalves.
Collapse
Affiliation(s)
- Elena Kotsyuba
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Alexander Kalachev
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Polina Kameneva
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Vyacheslav Dyachuk
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Department of Nanophotonics and Metamaterials, ITMO University, St. Petersburg, Russia
| |
Collapse
|
8
|
Scaros AT, Andouche A, Baratte S, Croll RP. Histamine and histidine decarboxylase in the olfactory system and brain of the common cuttlefish Sepia officinalis (Linnaeus, 1758). J Comp Neurol 2019; 528:1095-1112. [PMID: 31721188 DOI: 10.1002/cne.24809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 02/05/2023]
Abstract
Cephalopods are radically different from any other invertebrate. Their molluscan heritage, innovative nervous system, and specialized behaviors create a unique blend of characteristics that are sometimes reminiscent of vertebrate features. For example, despite differences in the organization and development of their nervous systems, both vertebrates and cephalopods use many of the same neurotransmitters. One neurotransmitter, histamine (HA), has been well studied in both vertebrates and invertebrates, including molluscs. While HA was previously suggested to be present in the cephalopod central nervous system (CNS), Scaros, Croll, and Baratte only recently described the localization of HA in the olfactory system of the cuttlefish Sepia officinalis. Here, we describe the location of HA using an anti-HA antibody and a probe for histidine decarboxylase (HDC), a synthetic enzyme for HA. We extended previous descriptions of HA in the olfactory organ, nerve, and lobe, and describe HDC staining in the same regions. We found HDC-positive cell populations throughout the CNS, including the optic gland and the peduncle, optic, dorso-lateral, basal, subvertical, frontal, magnocellular, and buccal lobes. The distribution of HA in the olfactory system of S. officinalis is similar to the presence of HA in the chemosensory organs of gastropods but is different than the sensory systems in vertebrates or arthropods. However, HA's widespread abundance throughout the rest of the CNS of Sepia is a similarity shared with gastropods, vertebrates, and arthropods. Its widespread use with differing functions across Animalia provokes questions regarding the evolutionary history and adaptability of HA as a transmitter.
Collapse
Affiliation(s)
- Alexia T Scaros
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Aude Andouche
- Laboratoire de Biologie des Organismes et Ecosystemes Aquatiques (BOREA), MNHN, CNRS, SU, UCN, UA, Paris, France
| | - Sébastien Baratte
- Laboratoire de Biologie des Organismes et Ecosystemes Aquatiques (BOREA), MNHN, CNRS, SU, UCN, UA, Paris, France
| | - Roger P Croll
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
9
|
Guan X, Shi W, Zha S, Rong J, Su W, Liu G. Neurotoxic impact of acute TiO 2 nanoparticle exposure on a benthic marine bivalve mollusk, Tegillarca granosa. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:241-246. [PMID: 29778933 DOI: 10.1016/j.aquatox.2018.05.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
The release of nanoparticles (NPs) into the ocean inevitably poses a threat to marine organisms. However, to date, the neurotoxic effects of NPs remains poorly understood in marine bivalve species. Therefore, in order to gain a better understanding of the physiological effects of NPs, the impact of acute (96 h) TiO2 NP exposure on the in vivo concentrations of three major neurotransmitters, the activity of AChE, and the expression of neurotransmitter-related genes was investigated in the blood clam, Tegillarca granosa. The obtained results showed that the in vivo concentrations of the three tested neurotransmitters (DA, GABA, and ACh) were significantly increased when exposed to relatively high doses of TiO2 NPs (1 mg/L for DA and 10 mg/L for ACh and GABA). Additionally, clams exposed to seawater contaminated with TiO2 NP had significantly lower AChE activity. In addition, the expression of genes encoding modulatory enzymes (AChE, GABAT, and MAO) and receptors (mAChR3, GABAD, and DRD3) for the neurotransmitters tested were all significantly down-regulated after TiO2 NP exposure. Therefore, this study has demonstrated the evident neurotoxic impact of TiO2 NPs in T. granosa, which may have significant consequences for a number of the organism's physiological processes.
Collapse
Affiliation(s)
- Xiaofan Guan
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Wei Shi
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Shanjie Zha
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiahuan Rong
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Wenhao Su
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Guangxu Liu
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Webber MP, Thomson JWS, Buckland-Nicks J, Croll RP, Wyeth RC. GABA-, histamine-, and FMRFamide-immunoreactivity in the visual, vestibular and central nervous systems of Hermissenda crassicornis. J Comp Neurol 2017; 525:3514-3528. [PMID: 28726311 DOI: 10.1002/cne.24286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/23/2017] [Accepted: 02/28/2017] [Indexed: 11/12/2022]
Abstract
Hermissenda crassicornis is a model for studying the molecular and cellular basis for classical conditioning, based on its ability to associate light with vestibular stimulation. We used confocal microscopy to map histamine (HA), FMRF-amide, and γ-aminobutyric acid (GABA) immunoreactivity in the central nervous system (CNS), eyes, optic ganglia and statocysts of the nudibranchs. For HA immunoreactivity, we documented both consistently and variably labeled CNS structures across individuals. We also noted minor differences in GABA immunoreactivity in the CNS compared to previous work on Hermissenda. Contrary to expectations, we found no evidence for GABA inside the visual or vestibular systems. Instead, we found only FMRFamide- and HA immunoreactivity (FMRFamide: 4 optic ganglion cells, 4-5 hair cells; HA: 3 optic ganglion cells, 8 hair cells). Overall, our results can act as basis for comparisons of nervous systems across nudibranchs, and suggest further exploration of intraspecific plasticity versus evolutionary changes in gastropod nervous systems.
Collapse
Affiliation(s)
- Marissa P Webber
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - James W S Thomson
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Johnny Buckland-Nicks
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Roger P Croll
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Russell C Wyeth
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| |
Collapse
|
11
|
Clements JC, Hunt HL. Effects of CO 2-driven sediment acidification on infaunal marine bivalves: A synthesis. MARINE POLLUTION BULLETIN 2017; 117:6-16. [PMID: 28143647 DOI: 10.1016/j.marpolbul.2017.01.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 01/21/2017] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
While ocean acidification (OA) effects on marine organisms are well documented, impacts of sediment acidification on infaunal organisms are relatively understudied. Here we synthesize CO2-driven sediment acidification effects on infaunal marine bivalves. While sediment carbonate system conditions can already exceed near-future OA projections, sediments can become even more acidic as overlying seawater pH decreases. Evidence suggests that infaunal bivalves experience shell dissolution, more lesions, and increased mortality in more acidic sediments; effects on heavy metal accumulation appear complex and uncertain. Infaunal bivalves can avoid negative functional consequences of sediment acidification by reducing burrowing and increasing dispersal in more acidic sediments, irrespective of species or life stage; elevated temperature may compromise this avoidance behaviour. The combined effects of sediment acidification and other environmental stressors are virtually unknown. While it is evident that sediment acidification can impact infaunal marine bivalves, more research is needed to confidently predict effects under future ocean conditions.
Collapse
Affiliation(s)
- Jeff C Clements
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island C1A 4P3, Canada; Department of Biological Sciences, University of New Brunswick, 100 Tucker Park Road, PO Box 5050, Saint John, New Brunswick E2L4L5, Canada.
| | - Heather L Hunt
- Department of Biological Sciences, University of New Brunswick, 100 Tucker Park Road, PO Box 5050, Saint John, New Brunswick E2L4L5, Canada
| |
Collapse
|
12
|
Histamine Immunoreactive Elements in the Central and Peripheral Nervous Systems of the Snail, Biomphalaria spp., Intermediate Host for Schistosoma mansoni. PLoS One 2015; 10:e0129800. [PMID: 26086611 PMCID: PMC4472778 DOI: 10.1371/journal.pone.0129800] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/12/2015] [Indexed: 11/19/2022] Open
Abstract
Histamine appears to be an important transmitter throughout the Animal Kingdom. Gastropods, in particular, have been used in numerous studies establishing potential roles for this biogenic amine in the nervous system and showing its involvement in the generation of diverse behaviours. And yet, the distribution of histamine has only previously been described in a small number of molluscan species. The present study examined the localization of histamine-like immunoreactivity in the central and peripheral nervous systems of pulmonate snails of the genus Biomphalaria. This investigation demonstrates immunoreactive cells throughout the buccal, cerebral, pedal, left parietal and visceral ganglia, indicative of diverse regulatory functions in Biomphalaria. Immunoreactivity was also present in statocyst hair cells, supporting a role for histamine in graviception. In the periphery, dense innervation by immunoreactive fibers was observed in the anterior foot, perioral zone, and other regions of the body wall. This study thus shows that histamine is an abundant transmitter in these snails and its distribution suggest involvement in numerous neural circuits. In addition to providing novel subjects for comparative studies of histaminegic neurons in gastropods, Biomphalaria is also the major intermediate host for the digenetic trematode parasite, which causes human schistosomiasis. The study therefore provides a foundation for understanding potential roles for histamine in interactions between the snail hosts and their trematode parasites.
Collapse
|
13
|
Gunaratne CA, Sakurai A, Katz PS. Comparative mapping of GABA-immunoreactive neurons in the central nervous systems of nudibranch molluscs. J Comp Neurol 2014; 522:794-810. [PMID: 24638845 DOI: 10.1002/cne.23446] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 11/07/2022]
Abstract
The relative simplicity of certain invertebrate nervous systems, such as those of gastropod molluscs, allows behaviors to be dissected at the level of small neural circuits composed of individually identifiable neurons. Elucidating the neurotransmitter phenotype of neurons in neural circuits is important for understanding how those neural circuits function. In this study, we examined the distribution of γ-aminobutyric-acid;-immunoreactive (GABA-ir) neurons in four species of sea slugs (Mollusca, Gastropoda, Opisthobranchia, Nudibranchia): Tritonia diomedea, Melibe leonina, Dendronotus iris, and Hermissenda crassicornis. We found consistent patterns of GABA immunoreactivity in the pedal and cerebral-pleural ganglia across species. In particular, there were bilateral clusters in the lateral and medial regions of the dorsal surface of the cerebral ganglia as well as a cluster on the ventral surface of the pedal ganglia. There were also individual GABA-ir neurons that were recognizable across species. The invariant presence of these individual neurons and clusters suggests that they are homologous, although there were interspecies differences in the numbers of neurons in the clusters. The GABAergic system was largely restricted to the central nervous system, with the majority of axons confined to ganglionic connectives and commissures, suggesting a central, integrative role for GABA. GABA was a candidate inhibitory neurotransmitter for neurons in central pattern generator (CPG) circuits underlying swimming behaviors in these species, however none of the known swim CPG neurons were GABA-ir. Although the functions of these GABA-ir neurons are not known, it is clear that their presence has been strongly conserved across nudibranchs.
Collapse
Affiliation(s)
- Charuni A Gunaratne
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, 30302-5030
| | | | | |
Collapse
|
14
|
Sundvik M, Panula P. Organization of the histaminergic system in adult zebrafish (Danio rerio) brain: Neuron number, location, and cotransmitters. J Comp Neurol 2012; 520:3827-45. [DOI: 10.1002/cne.23126] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Chen YC, Sundvik M, Rozov S, Priyadarshini M, Panula P. MANF regulates dopaminergic neuron development in larval zebrafish. Dev Biol 2012; 370:237-49. [PMID: 22898306 DOI: 10.1016/j.ydbio.2012.07.030] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 06/08/2012] [Accepted: 07/31/2012] [Indexed: 11/24/2022]
Abstract
Mesencephalic astrocyte derived neurotrophic factor (MANF) is recognized as a dopaminergic neurotrophic factor, which can protect dopaminergic neurons from neurotoxic damage. However, little is known about the function of MANF during the vertebrate development. Here, we report that MANF expression is widespread during embryonic development and in adult organs analyzed by qPCR and in situ hybridization in zebrafish. Knockdown of MANF expression with antisense splice-blocking morpholino oligonucleotides resulted in no apparent abnormal phenotype. Nevertheless, the dopamine level of MANF morphants was lower than that of the wild type larvae, the expression levels of the two tyrosine hydroxylase gene transcripts were decreased and a decrease in neuron number in certain groups of th1 and th2 cells in the diencephalon region in MANF morphants was observed. These defects were rescued by injection of exogenous manf mRNA. Strikingly, manf mRNA could partly restore the decrease of th1 positive cells in Nr4a2-deficient larvae. These results suggest that MANF is involved in the regulation of the development of dopaminergic system in zebrafish.
Collapse
Affiliation(s)
- Y-C Chen
- Neuroscience Center and Institute of Biomedicine/AnatomyUniversity of Helsinki, Finland
| | | | | | | | | |
Collapse
|
16
|
Flores-Sanchez IJ, Pec J, Fei J, Choi YH, Dusek J, Verpoorte R. Elicitation studies in cell suspension cultures of Cannabis sativa L. J Biotechnol 2009; 143:157-68. [PMID: 19500620 DOI: 10.1016/j.jbiotec.2009.05.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 05/08/2009] [Accepted: 05/12/2009] [Indexed: 11/25/2022]
Abstract
Cannabis sativa L. plants produce a diverse array of secondary metabolites. Cannabis cell cultures were treated with biotic and abiotic elicitors to evaluate their effect on secondary metabolism. Metabolic profiles analysed by (1)H NMR spectroscopy and principal component analysis (PCA) showed variations in some of the metabolite pools. However, no cannabinoids were found in either control or elicited cannabis cell cultures. Tetrahydrocannabinolic acid (THCA) synthase gene expression was monitored during a time course. Results suggest that other components in the signaling pathway can be controlling the cannabinoid pathway.
Collapse
Affiliation(s)
- Isvett Josefina Flores-Sanchez
- Pharmacognosy Department/Metabolomics, Institute of Biology, Gorlaeus Laboratories, P.O. Box 9502, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
17
|
Gagné F, Cejka P, André C, Hausler R, Blaise C. Neurotoxicological effects of a primary and ozonated treated wastewater on freshwater mussels exposed to an experimental flow-through system. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:460-70. [PMID: 17662667 DOI: 10.1016/j.cbpc.2007.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 04/11/2007] [Accepted: 04/12/2007] [Indexed: 11/19/2022]
Abstract
The neurotoxic potential of a primary-treated and ozonated municipal effluent was examined using feral freshwater Elliptio complanata mussels. Specimens were exposed to increasing concentrations (0, 1, 3, 10 and 20% v/v) of a primary-treated effluent before and after treatment with 10 mg/L of ozone in a mesocosm-type experiment for 30 days. A suite of biomarkers was used to assess the potential neurotoxic stress of the wastewaters on these benthic invertebrates: opiate binding sites, gamma-aminobutyric acid (GABA) metabolism, monoamines levels (serotonin, dopamine), monoamine oxidase, acetylcholinesterase and lipid peroxidation. Gametogenic activity was also determined by the gonado-somatic index and by vitellogenin-like proteins. The results show that the number of opiate binding sites increased slightly, especially after ozonation. GABA metabolism was generally reduced, suggesting higher glutamate stimulation than GABA dampening effects in mussel ganglia. This excitatory state was further confirmed by decreased acetylcholinesterase activity in gonadal tissues. The turnover of dopamine was enhanced with increased serotonin levels, but accompanied by reduced catabolism, as evidenced by decreased monoamine oxidase activity. Moreover, oxidative stress was increased, as determined by lipid peroxidation in the gonad (containing ganglia), which was significantly correlated with acetylcholinesterase activity and dopamine metabolism. The gonado-somatic index was significantly reduced with increased levels of vitellogenin-like proteins, again confirming the estrogenic action of these wastewaters. The data suggest that exposure to a primary-treated municipal effluent before and after ozonation leads to an excitotoxic syndrome implicating perturbations in GABA, dopamine and acetylcholine signaling. The increase in dopamine metabolism may be associated with the occurrence of opiate-like compounds (i.e. morphine) in the effluent. In general, ozonation reduced the severity of the responses, indicating that this disinfection strategy does not increase neurotoxicity to mussels.
Collapse
Affiliation(s)
- F Gagné
- St. Lawrence Centre, Environment Canada, Montréal, Qc., Canada.
| | | | | | | | | |
Collapse
|
18
|
Hegedus E, Kaslin J, Hiripi L, Kiss T, Panula P, Elekes K. Histaminergic neurons in the central and peripheral nervous system of gastropods (Helix, Lymnaea): An immunocytochemical, biochemical, and electrophysiological approach. J Comp Neurol 2004; 475:391-405. [PMID: 15221953 DOI: 10.1002/cne.20171] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Distribution, chemical-neuroanatomy, concentration, and uptake-release properties of histamine (HA)-containing neurons and the possible physiological effects of HA in the central and peripheral nervous system of the pulmonate snails, Helix pomatia and Lymnaea stagnalis, are described. In the CNS of both species, the distribution pattern of HA-immunoreactive (HA-IR) neurons was similar. In both species the majority were located in the buccal, cerebral, and pedal ganglia. In Helix, approximately 400 HA-IR neurons were seen, whereas in Lymnaea approximately 130 labeled cells were visualized. The neuropils, connectives, commissures, several peripheral nerves, and a part of the peripheral tissues (lip and foot of both species and the upper tentacles of Helix) were innervated by HA-IR elements. Numerous sensory cells were found in the tentacles, lip, and statocysts. The HA concentration values assayed by HPLC ranged from 4.8 to 47.4 pmol/mg in the different central ganglia of Helix, and from 4.3 to 18.6 pmol/mg in Lymnaea CNS, whereas the peripheral tissues contained 0.33-1 pmol/mg HA in Helix and 0.26-0.46 pmol/mg in Lymnaea. In the Lymnaea CNS, a high-affinity (37.6 microM), single component 3H-HA uptake system was demonstrated. 3H-HA release evoked by either electrical stimulation or 100 mM K+ could be prevented in Ca2+-free physiological solution. Voltage-clamp experiments indicated specific changes caused by HA in the membrane conductance of identified central neurons of Helix and Lymnaea. Exogenously applied 10(-5) M HA resulted in the acceleration of locomotion (gliding by foot cilia) of Lymnaea. The findings suggest an important signaling role of HA, described here for the first time, in the nervous system of higher-order, pulmonate, gastropods, involving efferent, integrative, and sensory functions. The data can also be applied as a background for further specification of HA in the regulation of different behaviors in these species.
Collapse
Affiliation(s)
- Endre Hegedus
- Department of Zoology, Balaton Limnological Research Institute, Hungarian Academy of Sciences, H-8237 Tihany, Hungary
| | | | | | | | | | | |
Collapse
|
19
|
Leitch B, Judge S, Pitman RM. Octopaminergic modulation of synaptic transmission between an identified sensory afferent and flight motoneuron in the locust. J Comp Neurol 2003; 462:55-70. [PMID: 12761824 DOI: 10.1002/cne.10698] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The role of the biogenic amine octopamine in modulating cholinergic synaptic transmission between the locust forewing stretch receptor neuron (fSR) and the first basalar motoneuron (BA1) was investigated. The amines 5-hydroxytryptamine (5-HT, serotonin) and dopamine were also studied. Bath application of octopamine, 5-HT, and dopamine at concentrations of 10(-4) M reversibly decreased the amplitude of monosynaptic excitatory postsynaptic potentials (EPSPs) evoked in BA1 by electrically stimulating the fSR axon. These effects occurred without any detectable change in either input resistance or membrane potential of BA1. The amines also reversibly decreased the amplitude of responses to acetylcholine (ACh) pressure-applied to the soma of BA1. The muscarinic antagonist scopolamine (10(-6) M) had no significant effect on the octopamine-induced decrease in ACh responses. These observations suggest that these amines potentially could physiologically depress cholinergic transmission between fSR and BA1, at least in part, by altering nicotinic rather than muscarinic cholinergic receptor function. Although the octopaminergic agonists naphazoline and tolazoline both mimicked the actions of octopamine, the receptor responsible for octopamine-mediated modulation could not be characterized since amine receptor antagonists tested on the preparation had complex actions. Confocal immunocytochemistry revealed intense octopamine immunoreactivity in the anterior lateral association center, thus confirming the presence of octopamine in neuropil regions containing fSR/BA1 synapses and therefore supporting a role for this amine in the modulation of synaptic transmission between the fSR and BA1. 5-HT-immunoreactivity, conversely, was concentrated within the ventral association centers; very little staining was observed in the dorsal neuropil regions in which fSR/BA1 synapses are located.
Collapse
Affiliation(s)
- Beulah Leitch
- School of Biological and Biomedical Sciences, University of Durham, United Kingdom.
| | | | | |
Collapse
|
20
|
Kukko-Lukjanov TK, Panula P. Subcellular distribution of histamine, GABA and galanin in tuberomamillary neurons in vitro. J Chem Neuroanat 2003; 25:279-92. [PMID: 12842273 DOI: 10.1016/s0891-0618(03)00043-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Histamine acts as a neurotransmitter in the brain and regulates e.g. sleep, hibernation, vigilance, and release of several other transmitters. All histaminergic neurons are found in the tuberomamillary nucleus (TM), and send axons to almost all parts of the CNS. Despite the obvious importance of these neurons, their development, transmitter storage, and compartmentalization of cotransmitters are poorly known. Histaminergic neurons from fetal rat hypothalamus were studied in primary explant cultures and analyzed by confocal microscopy. Most histaminergic neurons were oval in shape, but round and triangular ones were also found. The average size of the 212 analyzed neurons was 19.2 microm (length), 12.5 microm (width) and 11.7 microm (thickness). The cells possessed two to five microtubule-associated protein (MAP2) positive processes, putative dendrites, and in general one MAP2-negative thin process, a putative axon. Granular histamine-immunoreactivity was found in the cell bodies, axons, and dendrites. In tuberomamillary neurons, most histamine-containing structures displayed immunoreactivity for vesicular monoamine transporter 2 (VMAT2), indicating that the two markers may coexist in the same structures. Lack of VMAT2 in some histamine-immunoreactive structures indicates that another transporter for histamine may exist. In the same neurons, gamma-aminobutyric acid (GABA)-immunoreactivity was found in structures, distinct from those containing histamine, indicating that the two transmitters may be differentially localized, regulated and released. Galanin-immunoreactivity in the cultured tuberomamillary neurons was partially located in the same structures as VMAT2. The results suggest that histamine and GABA, the two principal transmitters of tuberomamillary neurons, are not costored in the same structures in tuberomamillary neurons.
Collapse
|
21
|
Michel S, Schoch K, Stevenson PA. Amine and amino acid transmitters in the eye of the mollusc Bulla gouldiana: an immunocytochemical study. J Comp Neurol 2000; 425:244-56. [PMID: 10954843 DOI: 10.1002/1096-9861(20000918)425:2<244::aid-cne7>3.0.co;2-a] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We identified putative transmitters of the photoreceptors and circadian pacemaker neurons and found candidates for efferent control in the eye of the marine mollusc Bulla gouldiana. Established antisera against octopamine, dopamine, serotonin, histamine, glutamate, gamma-aminobutyric acid (GABA), and taurine were used, and central ganglia were processed in parallel to evaluate general staining quality. Photoreceptors and circadian pacemaker cells both expressed immunoreactivity for glutamate and taurine. The eye and its sheath were devoid of GABA-like immunoreactive material, and none of the antisera directed against biogenic amines labelled cells or processes in the nervous tissue of the eye. However, dopamine and octopamine antisera stained large spherical granules (diameter 2-3 microm) contained in granular cells that are located in the connective tissue encapsulating the eye and the optic nerve. The serotonin antiserum revealed a sparse distribution of varicose axon fibers in the optic nerve and eye sheath. No histamine-immunoreactive processes were revealed in the eye. The functional significance of these findings for the molluscan eye and its circadian clock is discussed.
Collapse
Affiliation(s)
- S Michel
- Institut für Zoologie, Universität Leipzig, 04103 Leipzig, Germany.
| | | | | |
Collapse
|
22
|
Abstract
Catecholamines have previously been detected in numerous tissues and are thought to control a wide variety of physiological functions in bivalve molluscs. In the present study, alumina extraction and high-performance liquid chromatography reveal the presence of significant concentrations of 3,4-dihydroxyphenylalanine (DOPA), dopamine, and 3,4-dihydroxyphenylacetic acid (DOPAC) in the hemolymph of the sea scallop, Placopecten magellanicus. The concentration of dopamine in the hemolymph averaged 223.8 ng/ml, (+/-48.4, SEM), equivalent to 10(-7) to 10(-6) M. Neither epinephrine nor norepinephrine was reliably detected in significant quantities. Previous studies have demonstrated physiological responses to dopamine with thresholds of 10(-9) to 10(-6) M, thus suggesting that this catecholamine may have an endocrine function. Furthermore, monitoring hemolymph concentrations of catechols might provide a sensitive measure of the physiological status of bivalves. For example, drugs known to affect catechol concentrations in other tissues also effect hemolymph levels. Administration of monoamine oxidase inhibitors such as pargyline, deprenyl, and clorgyline at 10(-4) M for 1 day of incubation followed by a 2-day wash resulted in decreased hemolymph concentrations of DOPAC and increased concentrations of its precursors, DOPA and dopamine. Incubation in 10(-4) M 3,5-dinitrocatechol, a catecholamine-O-methyl transferase blocker, for 1 day followed by a 2-day wash significantly increased the concentration of dopamine and DOPAC in the hemolymph. Scallops incubated in 10(-5) M alpha-methyl-p-tyrosine, a blocker of tyrosine hydroxylase, for 1 day followed by a 3-day wash in artificial seawater had significantly reduced concentrations of DOPA, dopamine, and DOPAC in the hemolymph. In addition to responding to pharmacological agents, dopamine levels also decreased significantly following thermal induction of spawning, thus suggesting that hemolymph concentrations of catechols might provide indices of reproductive activity and/or stress.
Collapse
Affiliation(s)
- A K Pani
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, B3H 4H7, Canada
| | | |
Collapse
|
23
|
Eriksson KS, Johnston RN, Shaw C, Halton DW, Panula PA. Widespread distribution of histamine in the nervous system of a trematode flatworm. J Comp Neurol 1996; 373:220-7. [PMID: 8889923 DOI: 10.1002/(sici)1096-9861(19960916)373:2<220::aid-cne5>3.0.co;2-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In general, most flatworms contain very little histamine (HA) and their nervous systems often lack, or contain very few, histaminergic elements. However, preliminary studies in our laboratory have revealed that the frog lung parasite, Haplometra cylindracea (Trematoda: Digenea), contains HA in a very high concentration. For this reason, the present study was undertaken to study the localization and synthesis of HA in this worm by using immunocytochemistry and high-pressure liquid chromatography (HPLC). Essentially all parts of the nervous system of H. cylindracea showed HA-like immunoreactivity. The paired cerebral ganglia and nerves emanating from these, including the longitudinal nerve cords, were intensely immunoreactive. The musculature of the pharynx, oral and ventral suckers, and those of the reproductive organs were all innervated by HA-immunoreactive fibers. Fiber plexuses beneath the tegument and throughout the parenchyma also showed HA-like immunoreactivity. HPLC studies revealed one of the highest HA concentrations in the animal kingdom, 6.49 +/- 1.36 nmole/mg protein, in the worm. The frog lung and blood contained very low concentrations of HA and could be excluded as sources for HA, while an enzyme assay revealed that the worm produces HA by decarboxylation of histidine. Thus, it is likely that H. cylindracea uses HA as a neurotransmitter or modulator.
Collapse
Affiliation(s)
- K S Eriksson
- Department of Biology, Abo Akademi University, Finland.
| | | | | | | | | |
Collapse
|
24
|
Eriksson KS, Maule AG, Halton DW, Panula PA, Shaw C. GABA in the nervous system of parasitic flatworms. Parasitology 1995; 110 ( Pt 3):339-46. [PMID: 7724241 DOI: 10.1017/s0031182000080926] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In an immunocytochemical study, using an antiserum and a monoclonal antibody specific for the amino acid, gamma-aminobutyric acid (GABA), GABA-like immunoreactivity (GLIR) has been demonstrated for the first time in parasitic flatworms. In Moniezia expansa (Cestoda), GLIR was seen in nerve nets which were closely associated with the body wall musculature and in the longitudinal nerve cords. In the liver fluke Fasciola hepatica (Trematoda), the GLIR occurred in the longitudinal nerve cords and lateral nerves in the posterior half of the worm. GLIR was also detected in subtegumental fibres in F. hepatica. The presence of GABA was verified, using high-pressure liquid chromatography coupled with fluorescence detection. The concentration of GABA (mean +/- S.D.) in M. expansa anterior region was 124.8 +/- 15.3 picomole/mg wet weight, while in F. hepatica it was 16.8 +/- 4.9 picomole/mg. Since several insecticides and antinematodal drugs are thought to interfere with GABA-receptors, the findings indicate that GABAergic neurotransmission may be a potential target for chemotherapy in flatworms too.
Collapse
Affiliation(s)
- K S Eriksson
- Department of Biology, Abo Akademi University, BioCity, Finland
| | | | | | | | | |
Collapse
|
25
|
Abstract
The amino acid gamma-aminobutyric acid (GABA) is an important inhibitory neurotransmitter in both vertebrates and invertebrates. Despite this, no reports of GABA in flatworms have to date been published. We have studied the presence of GABA in the planarian Dugesia tigrina with immunocytochemical methods and high-pressure liquid chromatography. Fibers showing GABA-like immunoreactivity (GABA-IR) were present in abundance in the longitudinal nerve cords and lateral nerves. GABA-IR was revealed in fibers forming commissures in the brain. The ventral part of the subepidermal plexus showed GABA-IR. No cell somata containing GABA-IR could be identified with certainty. The chromatographic analysis showed that the average GABA concentration in D. tigrina is 533.6 pmol/mg protein. This is substantially higher than the concentrations of dopamine (62.87 pmol/mg) and serotonin (233.20 pmol/mg). An enzyme assay confirmed the capacity for GABA-synthesis in D. tigrina. The results indicate that GABA-containing neurons appeared earlier in evolution than was previously thought and that GABA may serve an important role already in the flatworms.
Collapse
Affiliation(s)
- K S Eriksson
- Department of Biology, Abo Akademi University, Biocity, Finland
| | | |
Collapse
|