1
|
Reiner A, Medina L, Abellan A, Deng Y, Toledo CA, Luksch H, Vega-Zuniga T, Riley NB, Hodos W, Karten HJ. Neurochemistry and circuit organization of the lateral spiriform nucleus of birds: A uniquely nonmammalian direct pathway component of the basal ganglia. J Comp Neurol 2024; 532:e25620. [PMID: 38733146 PMCID: PMC11090467 DOI: 10.1002/cne.25620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/24/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024]
Abstract
We used diverse methods to characterize the role of avian lateral spiriform nucleus (SpL) in basal ganglia motor function. Connectivity analysis showed that SpL receives input from globus pallidus (GP), and the intrapeduncular nucleus (INP) located ventromedial to GP, whose neurons express numerous striatal markers. SpL-projecting GP neurons were large and aspiny, while SpL-projecting INP neurons were medium sized and spiny. Connectivity analysis further showed that SpL receives inputs from subthalamic nucleus (STN) and substantia nigra pars reticulata (SNr), and that the SNr also receives inputs from GP, INP, and STN. Neurochemical analysis showed that SpL neurons express ENK, GAD, and a variety of pallidal neuron markers, and receive GABAergic terminals, some of which also contain DARPP32, consistent with GP pallidal and INP striatal inputs. Connectivity and neurochemical analysis showed that the SpL input to tectum prominently ends on GABAA receptor-enriched tectobulbar neurons. Behavioral studies showed that lesions of SpL impair visuomotor behaviors involving tracking and pecking moving targets. Our results suggest that SpL modulates brainstem-projecting tectobulbar neurons in a manner comparable to the demonstrated influence of GP internus on motor thalamus and of SNr on tectobulbar neurons in mammals. Given published data in amphibians and reptiles, it seems likely the SpL circuit represents a major direct pathway-type circuit by which the basal ganglia exerts its motor influence in nonmammalian tetrapods. The present studies also show that avian striatum is divided into three spatially segregated territories with differing connectivity, a medial striato-nigral territory, a dorsolateral striato-GP territory, and the ventrolateral INP motor territory.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163
| | - Loreta Medina
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida’s Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Catalonia, Spain
| | - Antonio Abellan
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida’s Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Catalonia, Spain
| | - Yunping Deng
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163
| | - Claudio A.B. Toledo
- Neuroscience Research Nucleus, Universidade Cidade de Sao Paulo, Sao Paulo 65057-420, Brazil
| | - Harald Luksch
- School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Tomas Vega-Zuniga
- School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Nell B. Riley
- Department of Psychology, University of Maryland College Park 20742-4411
| | - William Hodos
- Department of Psychology, University of Maryland College Park 20742-4411
| | - Harvey J. Karten
- Department of Neurosciences, University of California San Diego, San Diego, CA 92093-0608
| |
Collapse
|
2
|
Bruce LL, Erichsen JT, Reiner A. Neurochemical compartmentalization within the pigeon basal ganglia. J Chem Neuroanat 2016; 78:65-86. [PMID: 27562515 DOI: 10.1016/j.jchemneu.2016.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 01/20/2023]
Abstract
The goals of this study were to use multiple informative markers to define and characterize the neurochemically distinct compartments of the pigeon basal ganglia, especially striatum and accumbens. To this end, we used antibodies against 12 different neuropeptides, calcium-binding proteins or neurotransmitter-related enzymes that are enriched in the basal ganglia. Our results clarify boundaries between previously described basal ganglia subdivisions in birds, and reveal considerable novel heterogeneity within these previously described subdivisions. Sixteen regions were identified that each displayed a unique neurochemical organization. Four compartments were identified within the dorsal striatal region. The neurochemical characteristics support previous comparisons to part of the central extended amygdala, somatomotor striatum, and associational striatum of mammals, respectively. The medialmost part of the medial striatum, however, has several unique features, including prominent pallidal-like woolly fibers and thus may be a region unique to birds. Four neurochemically distinct regions were identified within the pigeon ventral striatum: the accumbens, paratubercular striatum, ventrocaudal striatum, and the ventral area of the lateral part of the medial striatum that is located adjacent to these regions. The pigeon accumbens is neurochemically similar to the mammalian rostral accumbens. The pigeon paratubercular and ventrocaudal striatal regions are similar to the mammalian accumbens shell. The ventral portions of the medial and lateral parts of the medial striatum, which are located adjacent to accumbens shell-like areas, have neurochemical characteristics as well as previously reported limbic connections that are comparable to the accumbens core. Comparisons to neurochemically identified compartments in reptiles, mammals, and amphibians indicate that, although most of the basic compartments of the basal ganglia were highly conserved during tetrapod evolution, uniquely avian compartments may exist as well.
Collapse
Affiliation(s)
- Laura L Bruce
- Department of Biomedical Sciences, Creighton University, Omaha NE, 68178, USA.
| | | | - Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
3
|
The Conservative Evolution of the Vertebrate Basal Ganglia. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/b978-0-12-802206-1.00004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
4
|
Vicario A, Abellán A, Medina L. Embryonic Origin of the Islet1 and Pax6 Neurons of the Chicken Central Extended Amygdala Using Cell Migration Assays and Relation to Different Neuropeptide-Containing Cells. BRAIN, BEHAVIOR AND EVOLUTION 2015; 85:139-69. [DOI: 10.1159/000381004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 02/12/2015] [Indexed: 11/19/2022]
Abstract
In a recent study, we tentatively identified different subdivisions of the central extended amygdala (EAce) in chicken based on the expression of region-specific transcription factors (including Pax6 and Islet1) and several phenotypic markers during embryonic development. Such a proposal was partially based on the suggestion that, similarly to the subdivisions of the EAce of mammals, the Pax6 and Islet1 neurons of the comparable chicken subdivisions derive from the dorsal (Std) or ventral striatal embryonic domains (Stv), respectively. To investigate whether this is true, in the present study, we carried out cell migration assays from chicken Std or Stv combined with immunofluorescence for Pax6 or Islet1. Our results showed that the cells of the proposed chicken EAce truly originate in either Std (expressing Pax6) or Stv (expressing Islet1). This includes lateral subdivisions previously compared to the intercalated amygdalar cells and the central amygdala of mammals, also rich in Std-derived Pax6 cells and/or Stv-derived Islet1 cells. In the medial region of the chicken EAce, the dorsal part of the lateral bed nucleus of the stria terminalis (BSTL) contains numerous cells expressing Nkx2.1 (mostly derived from the pallidal domain), but our migration assays showed that it also contains neuron subpopulations from the Stv (expressing Islet1) and Std (expressing Pax6), resembling the mouse BSTL. These findings, together with those previously published in different species of mammals, birds and reptiles, support the homology of the chicken EAce to that of other vertebrates, and reinforce the existence of several cell subcorridors inside the EAce. In addition, together with previously published data on neuropeptidergic cells, these results led us to propose the existence of at least seventeen neuron subtypes in the EAce in rodents and/or some birds (chicken and pigeon). The functional significance and the evolutionary origin of each subtype needs to be analyzed separately, and such studies are mandatory in order to understand the multifaceted modulation by the EAce of fear responses, ingestion, motivation and pain in different vertebrates.
Collapse
|
5
|
Vicario A, Abellán A, Desfilis E, Medina L. Genetic identification of the central nucleus and other components of the central extended amygdala in chicken during development. Front Neuroanat 2014; 8:90. [PMID: 25309337 PMCID: PMC4159986 DOI: 10.3389/fnana.2014.00090] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/19/2014] [Indexed: 01/11/2023] Open
Abstract
In mammals, the central extended amygdala shows a highly complex organization, and is essential for animal survival due to its implication in fear responses. However, many aspects of its evolution are still unknown, and this structure is especially poorly understood in birds. The aim of this study was to define the central extended amygdala in chicken, by means of a battery of region-specific transcription factors (Pax6, Islet1, Nkx2.1) and phenotypic markers that characterize these different subdivisions in mammals. Our results allowed the identification of at least six distinct subdivisions in the lateral part of the avian central extended amygdala: (1) capsular central subdivision; (2) a group of intercalated-like cell patches; (3) oval central nucleus; (4) peri-intrapeduncular (peri-INP) island field; (5) perioval zone; and (6) a rostral part of the subpallial extended amygdala. In addition, we identified three subdivisions of the laterodorsal bed nucleus of the stria terminalis (BSTLd) belonging to the medial region of the chicken central extended amygdala complex. Based on their genetic profile, cellular composition and apparent embryonic origin of the cells, we discuss the similarity of these different subdivisions of chicken with different parts of the mouse central amygdala and surrounding cell masses, including the intercalated amygdalar masses and the sublenticular part of the central extended amygdala. Most of the subdivisions include various subpopulations of cells that apparently originate in the dorsal striatal, ventral striatal, pallidal, and preoptic embryonic domains, reaching their final location by either radial or tangential migrations. Similarly to mammals, the central amygdala and BSTLd of chicken project to the hypothalamus, and include different neurons expressing proenkephalin, corticotropin-releasing factor, somatostatin or tyrosine hydroxylase, which may be involved in the control of different aspects of fear/anxiety-related behavior.
Collapse
Affiliation(s)
- Alba Vicario
- Department of Experimental Medicine, Laboratory of Brain Development and Evolution, Institute of Biomedical Research of Lleida, University of Lleida Lleida, Spain
| | - Antonio Abellán
- Department of Experimental Medicine, Laboratory of Brain Development and Evolution, Institute of Biomedical Research of Lleida, University of Lleida Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, Laboratory of Brain Development and Evolution, Institute of Biomedical Research of Lleida, University of Lleida Lleida, Spain
| | - Loreta Medina
- Department of Experimental Medicine, Laboratory of Brain Development and Evolution, Institute of Biomedical Research of Lleida, University of Lleida Lleida, Spain
| |
Collapse
|
6
|
Kuenzel WJ, Medina L, Csillag A, Perkel DJ, Reiner A. The avian subpallium: new insights into structural and functional subdivisions occupying the lateral subpallial wall and their embryological origins. Brain Res 2011; 1424:67-101. [PMID: 22015350 PMCID: PMC3378669 DOI: 10.1016/j.brainres.2011.09.037] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/16/2011] [Accepted: 09/17/2011] [Indexed: 12/18/2022]
Abstract
The subpallial region of the avian telencephalon contains neural systems whose functions are critical to the survival of individual vertebrates and their species. The subpallial neural structures can be grouped into five major functional systems, namely the dorsal somatomotor basal ganglia; ventral viscerolimbic basal ganglia; subpallial extended amygdala including the central and medial extended amygdala and bed nuclei of the stria terminalis; basal telencephalic cholinergic and non-cholinergic corticopetal systems; and septum. The paper provides an overview of the major developmental, neuroanatomical and functional characteristics of the first four of these neural systems, all of which belong to the lateral telencephalic wall. The review particularly focuses on new findings that have emerged since the identity, extent and terminology for the regions were considered by the Avian Brain Nomenclature Forum. New terminology is introduced as appropriate based on the new findings. The paper also addresses regional similarities and differences between birds and mammals, and notes areas where gaps in knowledge occur for birds.
Collapse
Affiliation(s)
- Wayne J Kuenzel
- Department of Poultry Science, Poultry Science Center, University of Arkansas, Fayetteville, Arkansas 72701, USA.
| | | | | | | | | |
Collapse
|
7
|
Reiner A. The Conservative Evolution of the Vertebrate Basal Ganglia. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2010. [DOI: 10.1016/b978-0-12-374767-9.00002-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Abellán A, Medina L. Subdivisions and derivatives of the chicken subpallium based on expression of LIM and other regulatory genes and markers of neuron subpopulations during development. J Comp Neurol 2009; 515:465-501. [DOI: 10.1002/cne.22083] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Rosinha M, Ferrari E, Toledo C. Immunohistochemical distribution of AMPA-type label in the pigeon (C. livia) hippocampus. Neuroscience 2009; 159:438-50. [DOI: 10.1016/j.neuroscience.2009.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 01/05/2009] [Accepted: 01/07/2009] [Indexed: 01/22/2023]
|
10
|
Moreno N, González A. The common organization of the amygdaloid complex in tetrapods: new concepts based on developmental, hodological and neurochemical data in anuran amphibians. Prog Neurobiol 2006; 78:61-90. [PMID: 16457938 DOI: 10.1016/j.pneurobio.2005.12.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 12/19/2005] [Accepted: 12/20/2005] [Indexed: 10/25/2022]
Abstract
Research over the last few years has demonstrated that the amygdaloid complex in amniotes shares basic developmental, hodological and neurochemical features. Furthermore, homolog territories of all main amygdaloid subdivisions have been recognized among amniotes, primarily highlighted by the common expression patterns for numerous developmental genes. With the achievement of new technical approaches, the study of the precise neuroanatomy of the telencephalon of the anuran amphibians has been possible, revealing that most of the structures present in amniotes are recognizable in these anamniotes. Thus, recent investigations have yielded enough results to support the notion that the organization of the anuran amygdaloid complex includes subdivisions with origin in ventral pallial and subpallial territories, a strong relationship with the vomeronasal and olfactory systems, abundant intra-amygdaloid connections, a main output center involved in the autonomic system, profuse amygdaloid fiber systems, and distinct chemoarchitecture. When all these new data about the development, connectivity and neurochemistry of the amygdaloid complex in anurans are taken into account, it becomes patent that a basic organization pattern is shared by both amniotic and anamniotic tetrapods.
Collapse
Affiliation(s)
- Nerea Moreno
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | | |
Collapse
|
11
|
Laverghetta AV, Toledo CAB, Veenman CL, Yamamoto K, Wang H, Reiner A. Cellular Localization of AMPA Type Glutamate Receptor Subunits in the Basal Ganglia of Pigeons (Columba livia). BRAIN, BEHAVIOR AND EVOLUTION 2006; 67:10-38. [PMID: 16219996 DOI: 10.1159/000088856] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Accepted: 05/24/2005] [Indexed: 11/19/2022]
Abstract
Corticostriatal and thalamostriatal projections utilize glutamate as a neurotransmitter in mammals and birds. The influence on striatum is mediated, in part, by ionotropic AMPA-type glutamate receptors, which are heteromers composed of GluR1-4 subunits. Although the cellular localization of AMPA-type subunits has been well characterized in mammalian basal ganglia, their localization in avian basal ganglia has not. We thus carried out light microscopic single- and double-label and electron microscopic single-label immunohistochemical studies of GluR1-4 distribution and cellular localization in pigeon basal ganglia. Single-label studies showed that the striatal neuropil is rich in GluR1, GluR2, and GluR2/3 immunolabeling, suggesting the localization of GluR1, GluR2 and/or GluR3 to the dendrites and spines of striatal projection neurons. Double-label studies and perikaryal size distribution determined from single-label material indicated that about 25% of enkephalinergic and 25% of substance P-containing striatal projection neuron perikarya contained GluR1, whereas GluR2 was present in about 75% of enkephalinergic neurons and all substance-P -containing neurons. The perikaryal size distribution for GluR2 compared to GluR2/3 suggested that enkephalinergic neurons might more commonly contain GluR3 than do substance P neurons. Parvalbuminergic and calretininergic striatal interneurons were rich in GluR1 and GluR4, a few cholinergic striatal interneurons possessed GluR2, but somatostatinergic striatal interneurons were devoid of all subunits. The projection neurons of globus pallidus all possessed GluR1, GluR2, GluR2/3 and GluR4 immunolabeling. Ultrastructural analysis of striatum revealed that GluR1 was preferentially localized to dendritic spines, whereas GluR2/3 was found in spines, dendrites, and perikarya. GluR2/3-rich spines were generally larger than GluR1 spines and more frequently possessed perforated post-synaptic densities. These results show that the diverse basal ganglia neuron types each display different combinations of AMPA subunit localization that shape their responses to excitatory input. For striatal projection neurons and parvalbuminergic interneurons, the combinations resemble those for the corresponding cell types in mammals, and thus their AMPA responses to glutamate are likely to be similar.
Collapse
Affiliation(s)
- Antonio V Laverghetta
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis, TN 38163, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Yamamoto K, Sun Z, Wang HB, Reiner A. Subpallial amygdala and nucleus taeniae in birds resemble extended amygdala and medial amygdala in mammals in their expression of markers of regional identity. Brain Res Bull 2005; 66:341-7. [PMID: 16144611 DOI: 10.1016/j.brainresbull.2005.02.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 11/01/2004] [Indexed: 10/25/2022]
Abstract
Two regions were recently recognized as subpallial amygdaloid nuclei in birds, the nucleus taeniae of the amygdala (TnA) and the newly identified subpallial amygdala (SpA). Here we further confirm these nuclei to be subpallial and amygdaloid and show similarity to specific mammalian subpallial amygdaloid nuclei. By its topological, connectional and neurochemical traits, avian TnA has been suggested to be comparable to mammalian medial amygdala (MeA) and SpA to be comparable to the sublenticular part of mammalian extended amygdala (ExA). We examined molecular traits of these areas using immunohistochemistry for limbic system-associated membrane protein (LAMP) and in situ hybridization for glutamic acid decarboxylase-65 (GAD65) and chicken ovalbumin upstream promoter-transcription factor II (COUP-TF II). Mammalian GAD65 is a subpallial marker and was enriched in ExA and MeA. Chick GAD65 was enriched in SpA and TnA, indicating that they are subpallial. LAMP, which is enriched in limbic regions such as mammalian ExA and MeA, was enriched in avian SpA and TnA. COUP-TF II was enriched in mammalian amygdala including MeA and ExA to a lesser extent. In birds, COUP-TF II was enriched in TnA and moderate in SpA. Overlap of these markers confirms avian TnA resembles mammalian MeA and SpA resembles ExA.
Collapse
Affiliation(s)
- Kei Yamamoto
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, 38163, USA.
| | | | | | | |
Collapse
|
13
|
Reiner A, Perkel DJ, Bruce LL, Butler AB, Csillag A, Kuenzel W, Medina L, Paxinos G, Shimizu T, Striedter G, Wild M, Ball GF, Durand S, Güntürkün O, Lee DW, Mello CV, Powers A, White SA, Hough G, Kubikova L, Smulders TV, Wada K, Dugas-Ford J, Husband S, Yamamoto K, Yu J, Siang C, Jarvis ED, Gütürkün O. Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol 2004; 473:377-414. [PMID: 15116397 PMCID: PMC2518311 DOI: 10.1002/cne.20118] [Citation(s) in RCA: 884] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The standard nomenclature that has been used for many telencephalic and related brainstem structures in birds is based on flawed assumptions of homology to mammals. In particular, the outdated terminology implies that most of the avian telencephalon is a hypertrophied basal ganglia, when it is now clear that most of the avian telencephalon is neurochemically, hodologically, and functionally comparable to the mammalian neocortex, claustrum, and pallial amygdala (all of which derive from the pallial sector of the developing telencephalon). Recognizing that this promotes misunderstanding of the functional organization of avian brains and their evolutionary relationship to mammalian brains, avian brain specialists began discussions to rectify this problem, culminating in the Avian Brain Nomenclature Forum held at Duke University in July 2002, which approved a new terminology for avian telencephalon and some allied brainstem cell groups. Details of this new terminology are presented here, as is a rationale for each name change and evidence for any homologies implied by the new names. Revisions for the brainstem focused on vocal control, catecholaminergic, cholinergic, and basal ganglia-related nuclei. For example, the Forum recognized that the hypoglossal nucleus had been incorrectly identified as the nucleus intermedius in the Karten and Hodos (1967) pigeon brain atlas, and what was identified as the hypoglossal nucleus in that atlas should instead be called the supraspinal nucleus. The locus ceruleus of this and other avian atlases was noted to consist of a caudal noradrenergic part homologous to the mammalian locus coeruleus and a rostral region corresponding to the mammalian A8 dopaminergic cell group. The midbrain dopaminergic cell group in birds known as the nucleus tegmenti pedunculopontinus pars compacta was recognized as homologous to the mammalian substantia nigra pars compacta and was renamed accordingly; a group of gamma-aminobutyric acid (GABA)ergic neurons at the lateral edge of this region was identified as homologous to the mammalian substantia nigra pars reticulata and was also renamed accordingly. A field of cholinergic neurons in the rostral avian hindbrain was named the nucleus pedunculopontinus tegmenti, whereas the anterior nucleus of the ansa lenticularis in the avian diencephalon was renamed the subthalamic nucleus, both for their evident mammalian homologues. For the basal (i.e., subpallial) telencephalon, the actual parts of the basal ganglia were given names reflecting their now evident homologues. For example, the lobus parolfactorius and paleostriatum augmentatum were acknowledged to make up the dorsal subdivision of the striatal part of the basal ganglia and were renamed as the medial and lateral striatum. The paleostriatum primitivum was recognized as homologous to the mammalian globus pallidus and renamed as such. Additionally, the rostroventral part of what was called the lobus parolfactorius was acknowledged as comparable to the mammalian nucleus accumbens, which, together with the olfactory tubercle, was noted to be part of the ventral striatum in birds. A ventral pallidum, a basal cholinergic cell group, and medial and lateral bed nuclei of the stria terminalis were also recognized. The dorsal (i.e., pallial) telencephalic regions that had been erroneously named to reflect presumed homology to striatal parts of mammalian basal ganglia were renamed as part of the pallium, using prefixes that retain most established abbreviations, to maintain continuity with the outdated nomenclature. We concluded, however, that one-to-one (i.e., discrete) homologies with mammals are still uncertain for most of the telencephalic pallium in birds and thus the new pallial terminology is largely devoid of assumptions of one-to-one homologies with mammals. The sectors of the hyperstriatum composing the Wulst (i.e., the hyperstriatum accessorium intermedium, and dorsale), the hyperstriatum ventrale, the neostriatum, and the archistriatum have been renamed (respectively) the hyperpallium (hypertrophied pallium), the mesopallium (middle pallium), the nidopallium (nest pallium), and the arcopallium (arched pallium). The posterior part of the archistriatum has been renamed the posterior pallial amygdala, the nucleus taeniae recognized as part of the avian amygdala, and a region inferior to the posterior paleostriatum primitivum included as a subpallial part of the avian amygdala. The names of some of the laminae and fiber tracts were also changed to reflect current understanding of the location of pallial and subpallial sectors of the avian telencephalon. Notably, the lamina medularis dorsalis has been renamed the pallial-subpallial lamina. We urge all to use this new terminology, because we believe it will promote better communication among neuroscientists. Further information is available at http://avianbrain.org
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy, University of Tennessee Health Science Center, Memphis 38163, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Reiner A, Laverghetta AV, Meade CA, Cuthbertson SL, Bottjer SW. An immunohistochemical and pathway tracing study of the striatopallidal organization of area X in the male zebra finch. J Comp Neurol 2004; 469:239-61. [PMID: 14694537 DOI: 10.1002/cne.11012] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Area X is a nucleus within songbird basal ganglia that is part of the anterior forebrain song learning circuit. It receives cortical song-related input and projects to the dorsolateral medial nucleus of thalamus (DLM). We carried out single- and double-labeled immunohistochemical and pathway tracing studies in male zebra finch to characterize the cellular organization and circuitry of area X. We found that 5.4% of area X neuronal perikarya are relatively large, possess aspiny dendrites, and are rich in the pallidal neuron/striatal interneuron marker Lys8-Asn9-neurotensin8-13 (LANT6). Many of these perikarya were found to project to the DLM, and their traits suggest that they are pallidal. Area X also contained several neuron types characteristic of the striatum, including interneurons co-containing LANT6 and the striatal interneuron marker parvalbumin (2% of area X neurons), interneurons containing parvalbumin but not LANT6 (4.8%), cholinergic interneurons (1.4%), and neurons containing the striatal spiny projection neuron marker dopamine- and adenosine 3',5'-monophosphate-regulated phosphoprotein (DARPP-32) (30%). Area X was rich in substance P (SP)-containing terminals, and many ended on area X neurons projecting to the DLM with the woolly fiber morphology characteristic of striatopallidal terminals. Although SP+ perikarya were not detected in area X, prior studies suggest it is likely that SP-synthesizing neurons are present and the source of the SP+ input to area X neurons projecting to the DLM. Area X was poor in enkephalinergic fibers and perikarya. The present data support the premise that area X contains both striatal and pallidal neurons, with the striatal neurons likely to include SP+ neurons that project to the pallidal neurons.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| | | | | | | | | |
Collapse
|
15
|
Reiner A. Functional circuitry of the avian basal ganglia: implications for basal ganglia organization in stem amniotes. Brain Res Bull 2002; 57:513-28. [PMID: 11923021 DOI: 10.1016/s0361-9230(01)00667-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Histochemical, pathway tracing, and neuropeptide/neurotransmitter localization studies in birds, reptiles and mammals during the 1970s and 80s clearly showed that the telencephalon in all amniotes consists of a prominent ventrally situated subpallial region termed the basal ganglia, and a large overlying region involved in higher order information processing termed the pallium or cortex. These studies also showed that the basal ganglia in all extant amniote groups possessed neurochemically and hodologically distinct striatal and pallidal territories. More recently, studies of the localization of genes controlling regional brain development have confirmed the homology of the basal ganglia among amniotes. In our ongoing studies, we have identified several aspects of the functional organization of the basal ganglia that birds also share with mammals. These include: (1) an extensive glutamatergic "cortico"-striatal input and distinctive, cell-type specific localization of glutamate receptor subtypes; (2) an extensive, presumptively glutamatergic intralaminar thalamic input to striatal neurons; (3) an extensive dopaminergic input from the midbrain targeting both substance P (SP) type and enkephalin (ENK) type striatal projection neurons, with SP-type striatal neurons seemingly richer in the D-1 type dopamine receptor; and (4) SP+ and ENK+ striatal outputs giving rise to functionally distinct so-called direct and indirect motor output pathways, with the direct pathway having a pallido-thalamo-motor cortex loop and the indirect pathway relaying back to the direct circuit via the subthalamic nucleus. These findings suggest that the major aspects of the cellular organization and functional circuitry of the basal ganglia in stem amniotes were already as observed in living amniotes, as therefore presumably was its key role in movement control. Because the organization of the basal ganglia of anamniotes is clearly less elaborate than in amniotes, and because the basal ganglia and cortex in amniotes are clearly extensively interconnected structures, it seems likely that stem amniotes were characterized by a major step forward in the grade of telencephalic organization of both the basal ganglia and the pallium.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy and Neurobiology, University of Tennessee-Memphis, Memphis, TN 38163, USA.
| |
Collapse
|
16
|
Sun Z, Reiner A. Localization of dopamine D1A and D1B receptor mRNAs in the forebrain and midbrain of the domestic chick. J Chem Neuroanat 2000; 19:211-24. [PMID: 11036238 DOI: 10.1016/s0891-0618(00)00069-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The distribution and cellular localization of dopamine D1A and D1B receptor mRNAs in the forebrain and midbrain of the domestic chick were examined using in situ hybridization histochemistry with 35[S]-dATP labeled oligonucleotide probes, visualized with film and emulsion autoradiography. Labeling for D1A receptor mRNA was intense in the medial and lateral striatum, and moderately abundant in the pallial regions termed the archistriatum and the neostriatum, in the hypothalamic paraventricular nucleus region, and in the superficial gray layer of optic tectum of the midbrain. D1B receptor mRNA was abundant in the medial and lateral striatum, and in the pallial region termed the hyperstriatum ventrale, and moderately abundant in the intralaminar dorsal and posterior thalamus and in the superficial gray of the optic tectum. At the cellular level, about 75% of neurons in the medial striatum and 59% of neurons in the lateral striatum were labeled for D1A receptor mRNA, whereas about 39% of the neurons in the medial striatum and 21% in the lateral striatum were labeled for D1B receptor mRNA. Large striatal neurons were not labeled for D1A or D1B receptor mRNA. The data suggest that while both D1A and D1B receptors mediate dopaminergic responses in many neurons of the avian striatum, primarily D1A receptors mediate dopaminergic responses in the archistriatum and the neostriatum, while primarily D1B receptors mediate dopaminergic responses in the hyperstriatum ventrale and the thalamus.
Collapse
Affiliation(s)
- Z Sun
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee-Memphis, The Health Sciences Center, 855 Monroe Avenue, Memphis, TN 38163, USA
| | | |
Collapse
|
17
|
Kameda Y, Miura M, Ohno S. Expression and development of the proenkephalin mRNA in the C cells of chicken ultimobranchial glands. Brain Res 2000; 852:453-62. [PMID: 10678773 DOI: 10.1016/s0006-8993(99)02213-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A large number of enkephalin-immunoreactive cells transiently appear in chick ultimobranchial glands during embryonic development. The expression and development of proenkephalin mRNA were examined in the ultimobranchial glands by in situ hybridization with digoxigenin (DIG)-labeled oligonucleotide probes, in comparison with those of calcitonin mRNA and enkephalin peptide. Proenkephalin mRNA, as well as calcitonin mRNA, appeared in some C cells at embryonal day 14 (E 14), and in many cells at E 16. Subsequently, there is a marked increase in the level of calcitonin mRNA around E 18-19; all C cells exhibited intense reaction for calcitonin mRNA. After hatching, intensity of calcitonin mRNA expression was more and more increased. Northern blot analysis with the calcitonin probe also indicated that calcitonin synthesis of the C cells progressively increased with developmental gradient, and reached to the adult level at 1 month after hatching. On the other hand, intensity of hybridization signal of proenkephalin mRNA was maintained moderately during development. In contrast to enkephalin immunoreactivity, which is markedly decreased after hatching, proenkephalin mRNA expression was consistently detected in many C cells of 1- and 2-month-old chickens. Reverse transcription-polymerase chain reaction (RT-PCR) analysis confirmed that proenkephalin mRNA was obtained in the ultimobranchial glands of not only embryos but also 1-day- and 1-month-old chickens. Furthermore, Northern blot analysis demonstrated that a single band for proenkephalin mRNA was obtained in the poly (A)+RNA isolated from the ultimobranchial gland of 1-day-old chicks. Thus, the present study evidences that proenkephalin mRNA is synthesized in almost all C cells of chicken ultimobranchial glands throughout life. Enkephalin may be essential for C cell function.
Collapse
Affiliation(s)
- Y Kameda
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | | | | |
Collapse
|
18
|
Reiner A, Medina L, Veenman CL. Structural and functional evolution of the basal ganglia in vertebrates. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 28:235-85. [PMID: 9858740 DOI: 10.1016/s0165-0173(98)00016-2] [Citation(s) in RCA: 261] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
While a basal ganglia with striatal and pallidal subdivisions is 1 clearly present in many extant anamniote species, this basal ganglia is cell sparse and receives only a relatively modest tegmental dopaminergic input and little if any cortical input. The major basal ganglia influence on motor functions in anamniotes appears to be exerted via output circuits to the tectum. In contrast, in modern mammals, birds, and reptiles (i.e., modern amniotes), the striatal and pallidal parts of the basal ganglia are very neuron-rich, both consist of the same basic populations of neurons in all amniotes, and the striatum receives abundant tegmental dopaminergic and cortical input. The functional circuitry of the basal ganglia also seems very similar in all amniotes, since the major basal ganglia influences on motor functions appear to be exerted via output circuits to both cerebral cortex and tectum in sauropsids (i.e., birds and reptiles) and mammals. The basal ganglia, output circuits to the cortex, however, appear to be considerably more developed in mammals than in birds and reptiles. The basal ganglia, thus, appears to have undergone a major elaboration during the evolutionary transition from amphibians to reptiles. This elaboration may have enabled amniotes to learn and/or execute a more sophisticated repertoire of behaviors and movements, and this ability may have been an important element of the successful adaptation of amniotes to a fully terrestrial habitat. The mammalian lineage appears, however, to have diverged somewhat from the sauropsid lineage with respect to the emergence of the cerebral cortex as the major target of the basal ganglia circuitry devoted to executing the basal ganglia-mediated control of movement.
Collapse
Affiliation(s)
- A Reiner
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee-Memphis, 855 Monroe Avenue, Memphis, TN 38163,
| | | | | |
Collapse
|
19
|
Casini G, Molnar M, Davis BM, Bagnoli P. Posthatching development of preproenkephalin mRNA-expressing cell populations in the pigeon telencephalon. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 84:233-44. [PMID: 7743643 DOI: 10.1016/0165-3806(94)00176-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Enkephalin peptides are highly expressed in the vertebrate telencephalon. Our previous investigations in the pigeon and in the chicken [26] suggested that the cellular distribution of these peptides is conserved in phylogenetically 'old' telencephalic regions (e.g. the basal ganglia), while it has species-specific organizations in areas (e.g. dorsomedial forebrain and bulbus olfactorius) that are likely to play important roles in species-specific behaviors. In the present study, we investigated the posthatching development of preproenkephalin (PPE) mRNA-containing cells in the pigeon forebrain using in situ hybridization histochemistry. These cells are densely distributed in the paleostriatal complex (corresponding to the mammalian caudate-putamen) at hatching, and their density progressively decreases during the first 9 days posthatching, when it is similar to that of adult pigeons. In the dorsomedial forebrain (corresponding to the mammalian hippocampus), PPE mRNA-expressing cells are present at hatching, and their density reaches a peak around the 6th day posthatching. In the bulbus olfactorius, the first PPE mRNA-containing cells are observed after 9 days posthatching. The developmental profile of PPE mRNA expression in these areas of the pigeon telencephalon shows remarkable similarities with the development of enkephalinergic cells in corresponding brain areas of mammals. As in the mammalian caudate-putamen, the developmental expression of enkephalin peptides in the paleostriatal complex is likely to be related to neuronal withdrawal from the mitotic cycle. The developmental pattern of expression of PPE mRNA in the dorsomedial forebrain suggests that enkephalin peptides contribute to the maturation of the behavioral functions of this area.
Collapse
Affiliation(s)
- G Casini
- Department of Environmental Sciences, Tuscia University, Viterbo, Italy
| | | | | | | |
Collapse
|