1
|
Maraslioglu-Sperber A, Pizzi E, Fisch JO, Kattler K, Ritter T, Friauf E. Molecular and functional profiling of cell diversity and identity in the lateral superior olive, an auditory brainstem center with ascending and descending projections. Front Cell Neurosci 2024; 18:1354520. [PMID: 38846638 PMCID: PMC11153811 DOI: 10.3389/fncel.2024.1354520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/15/2024] [Indexed: 06/09/2024] Open
Abstract
The lateral superior olive (LSO), a prominent integration center in the auditory brainstem, contains a remarkably heterogeneous population of neurons. Ascending neurons, predominantly principal neurons (pLSOs), process interaural level differences for sound localization. Descending neurons (lateral olivocochlear neurons, LOCs) provide feedback into the cochlea and are thought to protect against acoustic overload. The molecular determinants of the neuronal diversity in the LSO are largely unknown. Here, we used patch-seq analysis in mice at postnatal days P10-12 to classify developing LSO neurons according to their functional and molecular profiles. Across the entire sample (n = 86 neurons), genes involved in ATP synthesis were particularly highly expressed, confirming the energy expenditure of auditory neurons. Two clusters were identified, pLSOs and LOCs. They were distinguished by 353 differentially expressed genes (DEGs), most of which were novel for the LSO. Electrophysiological analysis confirmed the transcriptomic clustering. We focused on genes affecting neuronal input-output properties and validated some of them by immunohistochemistry, electrophysiology, and pharmacology. These genes encode proteins such as osteopontin, Kv11.3, and Kvβ3 (pLSO-specific), calcitonin-gene-related peptide (LOC-specific), or Kv7.2 and Kv7.3 (no DEGs). We identified 12 "Super DEGs" and 12 genes showing "Cluster similarity." Collectively, we provide fundamental and comprehensive insights into the molecular composition of individual ascending and descending neurons in the juvenile auditory brainstem and how this may relate to their specific functions, including developmental aspects.
Collapse
Affiliation(s)
- Ayse Maraslioglu-Sperber
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Erika Pizzi
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Jonas O. Fisch
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Kathrin Kattler
- Genetics/Epigenetics Group, Department of Biological Sciences, Saarland University, Saarbrücken, Germany
| | - Tamara Ritter
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
2
|
Iida I, Konno K, Natsume R, Abe M, Watanabe M, Sakimura K, Terunuma M. Behavioral analysis of kainate receptor KO mice and the role of GluK3 subunit in anxiety. Sci Rep 2024; 14:4521. [PMID: 38402313 PMCID: PMC10894277 DOI: 10.1038/s41598-024-55063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/20/2024] [Indexed: 02/26/2024] Open
Abstract
Kainate receptors (KARs) are one of the ionotropic glutamate receptors in the central nervous system (CNS) comprised of five subunits, GluK1-GluK5. There is a growing interest in the association between KARs and psychiatric disorders, and there have been several studies investigating the behavioral phenotypes of KAR deficient mice, however, the difference in the genetic background has been found to affect phenotype in multiple mouse models of human diseases. Here, we examined GluK1-5 single KO mice in a pure C57BL/6N background and identified that GluK3 KO mice specifically express anxiolytic-like behavior with an alteration in dopamine D2 receptor (D2R)-induced anxiety, and reduced D2R expression in the striatum. Biochemical studies in the mouse cortex confirmed that GluK3 subunits do not assemble with GluK4 and GluK5 subunits, that can be activated by lower concentration of agonists. Overall, we found that GluK3-containing KARs function to express anxiety, which may represent promising anti-anxiety medication targets.
Collapse
Affiliation(s)
- Izumi Iida
- Division of Oral Biochemistry, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8514, Japan
- Research Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8514, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, 153-8902, Japan
| | - Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Rie Natsume
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan.
| | - Miho Terunuma
- Division of Oral Biochemistry, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8514, Japan.
| |
Collapse
|
3
|
Vaidya B, Padhy DS, Joshi HC, Sharma SS, Singh JN. Ion Channels and Metal Ions in Parkinson's Disease: Historical Perspective to the Current Scenario. Methods Mol Biol 2024; 2761:529-557. [PMID: 38427260 DOI: 10.1007/978-1-0716-3662-6_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative condition linked to the deterioration of motor and cognitive performance. It produces degeneration of the dopaminergic neurons along the nigrostriatal pathway in the central nervous system (CNS), which leads to symptoms such as bradykinesias, tremors, rigidity, and postural instability. There are several medications currently approved for the therapy of PD, but a permanent cure for it remains elusive. With the aging population set to increase, a number of PD cases are expected to shoot up in the coming times. Hence, there is a need to look for new molecular targets that could be investigated both preclinically and clinically for PD treatment. Among these, several ion channels and metal ions are being studied for their effects on PD pathology and the functioning of dopaminergic neurons. Ion channels such as N-methyl-D-aspartate (NMDA), γ-aminobutyric acid A (GABAA), voltage-gated calcium channels, potassium channels, HCN channels, Hv1 proton channels, and voltage-gated sodium channels and metal ions such as mercury, zinc, copper, iron, manganese, calcium, and lead showed prominent involvement in PD. Pharmacological agents have been used to target these ion channels and metal ions to prevent or treat PD. Hence, in the present review, we summarize the pathophysiological events linked to PD with an emphasis on the role of ions and ion channels in PD pathology, and pharmacological agents targeting these ion channels have also been listed.
Collapse
Affiliation(s)
- Bhupesh Vaidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Dibya S Padhy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Hem C Joshi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Shyam S Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India.
| | - Jitendra Narain Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India.
| |
Collapse
|
4
|
Yucel BP, Al Momany EM, Evans AJ, Seager R, Wilkinson KA, Henley JM. Coordinated interplay between palmitoylation, phosphorylation and SUMOylation regulates kainate receptor surface expression. Front Mol Neurosci 2023; 16:1270849. [PMID: 37868810 PMCID: PMC10585046 DOI: 10.3389/fnmol.2023.1270849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
Kainate receptors (KARs) are key regulators of neuronal excitability and synaptic transmission. KAR surface expression is tightly controlled in part by post-translational modifications (PTMs) of the GluK2 subunit. We have shown previously that agonist activation of GluK2-containing KARs leads to phosphorylation of GluK2 at S868, which promotes subsequent SUMOylation at K886 and receptor endocytosis. Furthermore, GluK2 has been shown to be palmitoylated. However, how the interplay between palmitoylation, phosphorylation and SUMOylation orchestrate KAR trafficking remains unclear. Here, we used a library of site-specific GluK2 mutants to investigate the interrelationship between GluK2 PTMs, and their impact on KAR surface expression. We show that GluK2 is basally palmitoylated and that this is decreased by kainate (KA) stimulation. Moreover, a non-palmitoylatable GluK2 mutant (C858/C871A) shows enhanced S868 phosphorylation and K886 SUMOylation under basal conditions and is insensitive to KA-induced internalisation. These results indicate that GluK2 palmitoylation contributes to stabilising KAR surface expression and that dynamic depalmitoylation promotes downstream phosphorylation and SUMOylation to mediate activity-dependent KAR endocytosis.
Collapse
Affiliation(s)
| | | | | | | | - Kevin A. Wilkinson
- Centre for Synaptic Plasticity, School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Jeremy M. Henley
- Centre for Synaptic Plasticity, School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
5
|
Focusing on the Emerging Role of Kainate Receptors in the Dorsal Cochlear Nucleus (DCN) and Cerebellum. Int J Mol Sci 2023; 24:ijms24021718. [PMID: 36675230 PMCID: PMC9865595 DOI: 10.3390/ijms24021718] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/17/2023] Open
Abstract
Mammals have a dorsal cochlear nucleus (DCN), which is thought to be a cerebellum-like structure with similar features in terms of structure and microcircuitry to the cerebellum. Both the DCN and cerebellum perform their functions depending on synaptic and neuronal networks mediated by various glutamate receptors. Kainate receptors (KARs) are one class of the glutamate receptor family and are strongly expressed in the hippocampus, the cerebellum, and cerebellum-like structures. The cellular distribution and the potential role of KARs in the hippocampus have been extensively investigated. However, the cellular distribution and the potential role of KARs in cerebellum-like structures, including the DCN and cerebellum, are poorly understood. In this review, we summarize the similarity between the DCN and cerebellum at the levels of structure, circuitry, and cell type as well as the investigations referring to the expression patterns of KARs in the DCN and cerebellum according to previous studies. Recent studies on the role of KARs have shown that KARs mediate a bidirectional modulatory effect at parallel fiber (PF)-Purkinje cell (PC) synapses in the cerebellum, implying insights into their roles in cerebellum-like structures, including the DCN, that remain to be explored in the coming years.
Collapse
|
6
|
Poulie CBM, Larsen Y, Leteneur C, Barthet G, Bjørn-Yoshimoto WE, Malhaire F, Nielsen B, Pin JP, Mulle C, Pickering DS, Bunch L. ( S)-2-Mercaptohistidine: A First Selective Orthosteric GluK3 Antagonist. ACS Chem Neurosci 2022; 13:1580-1587. [PMID: 35475632 DOI: 10.1021/acschemneuro.2c00162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The development of tool compounds for the ionotropic glutamate receptors (iGluRs) remains an important research objective, as these are essential for the study and understanding of the roles of these receptors in health and disease. Herein, we report on the pharmacological characterization of (S)-2-hydroxyhistidine (2a) and (S)-2-mercaptohistidine (2b) as mediators of glutamatergic neurotransmission. While 2a displayed negligible binding affinity or activity at all glutamate receptors and transporters investigated, 2b displayed selectivity for homomeric GluK3 with binding affinities in the low micromolar range (Ki = 6.42 ± 0.74 μM). The iGluR subtype selectivity ratio for 2b was calculated at ∼30-fold for GluK1/GluK3, GluA3/GluK3, and GluA4/GluK3 and >100-fold for GluK2/GluK3, GluA1/GluK3, and GluA2/GluK3. Unexpectedly, functional characterization of 2b revealed that the compound is an antagonist (Kb = 7.6 μM) at homomeric GluK3 receptors while exhibiting only weak agonist activity at GluA2 (EC50 = 3.25 ± 0.55 mM). The functional properties of 2b were explored further in electrophysiological recordings of mouse hippocampal neurons.
Collapse
Affiliation(s)
- Christian B. M. Poulie
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Younes Larsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Cindie Leteneur
- Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Université de Bordeaux, CNRS, F-33000 Bordeaux, France
| | - Gaël Barthet
- Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Université de Bordeaux, CNRS, F-33000 Bordeaux, France
| | - Walden E. Bjørn-Yoshimoto
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Fanny Malhaire
- IGF, INSERM, Université de Montpellier, CNRS, F-34094 Montpellier, France
| | - Birgitte Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jean-Phillippe Pin
- IGF, INSERM, Université de Montpellier, CNRS, F-34094 Montpellier, France
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Université de Bordeaux, CNRS, F-33000 Bordeaux, France
| | - Darryl S. Pickering
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Lennart Bunch
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
7
|
Structural and compositional diversity in the kainate receptor family. Cell Rep 2021; 37:109891. [PMID: 34706237 PMCID: PMC8581553 DOI: 10.1016/j.celrep.2021.109891] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/10/2021] [Accepted: 10/05/2021] [Indexed: 01/17/2023] Open
Abstract
The kainate receptors (KARs) are members of the ionotropic glutamate receptor family and assemble into tetramers from a pool of five subunit types (GluK1–5). Each subunit confers distinct functional properties to a receptor, but the compositional and stoichiometric diversity of KAR tetramers is not well understood. To address this, we first solve the structure of the GluK1 homomer, which enables a systematic assessment of structural compatibility among KAR subunits. Next, we analyze single-cell RNA sequencing data, which reveal extreme diversity in the combinations of two or more KAR subunits co-expressed within the same cell. We then investigate the composition of individual receptor complexes using single-molecule fluorescence techniques and find that di-heteromers assembled from GluK1, GluK2, or GluK3 can form with all possible stoichiometries, while GluK1/K5, GluK2/K5, and GluK3/K5 can form 3:1 or 2:2 complexes. Finally, using three-color single-molecule imaging, we discover that KARs can form tri- and tetra-heteromers. Selvakumar et al. use cryo-electron microscopy, single-cell RNA sequencing analysis, and single-molecule fluorescence techniques to investigate the stoichiometric and assembly diversity of kainate receptors (KARs). The work gives insight into KAR molecular diversity and expands the potential KAR subunit combinations to include a variety of di-, tri-, and tetra-heteromers.
Collapse
|
8
|
Falcón-Moya R, Martínez-Gallego I, Rodríguez-Moreno A. Kainate receptor modulation of glutamatergic synaptic transmission in the CA2 region of the hippocampus. J Neurochem 2021; 158:1083-1093. [PMID: 34293825 DOI: 10.1111/jnc.15481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/30/2022]
Abstract
Kainate (KA) receptors (KARs) are important modulators of synaptic transmission. We studied here the role of KARs on glutamatergic synaptic transmission in the CA2 region of the hippocampus where the actions of these receptors are unknown. We observed that KA depresses glutamatergic synaptic transmission at Schaffer collateral-CA2 synapses; an effect that was antagonized by NBQX (a KA/AMPA receptors antagonist) under condition where AMPA receptors were previously blocked. The study of paired-pulse facilitation ratio, miniature responses, and fluctuation analysis indicated a presynaptic locus of action for KAR. Additionally, we determined the action mechanism for this depression of glutamate release mediated by the activation of KARs. We found that inhibition of protein kinase A suppressed the effect of KAR activation on evoked excitatory post-synaptic current, an effect that was not suppressed by protein kinase C inhibitors. Furthermore, in the presence of Pertussis toxin, the depression of glutamate release mediated by KAR activation was not present, invoking the participation of a Gi/o protein in this modulation. Finally, the KAR-mediated depression of glutamate release was not suppressed by treatments that affect calcium entry trough voltage-dependent calcium channels or calcium release from intracellular stores. We conclude that KARs present at these synapses mediate a depression of glutamate release through a mechanism that involves the activation of G protein and protein kinase A.
Collapse
Affiliation(s)
- Rafael Falcón-Moya
- Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain
| | - Irene Martínez-Gallego
- Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain
| | - Antonio Rodríguez-Moreno
- Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain
| |
Collapse
|
9
|
Lothmann K, Amunts K, Herold C. The Neurotransmitter Receptor Architecture of the Mouse Olfactory System. Front Neuroanat 2021; 15:632549. [PMID: 33967704 PMCID: PMC8102831 DOI: 10.3389/fnana.2021.632549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
The uptake, transmission and processing of sensory olfactory information is modulated by inhibitory and excitatory receptors in the olfactory system. Previous studies have focused on the function of individual receptors in distinct brain areas, but the receptor architecture of the whole system remains unclear. Here, we analyzed the receptor profiles of the whole olfactory system of adult male mice. We examined the distribution patterns of glutamatergic (AMPA, kainate, mGlu2/3, and NMDA), GABAergic (GABAA, GABAA(BZ), and GABAB), dopaminergic (D1/5) and noradrenergic (α1 and α2) neurotransmitter receptors by quantitative in vitro receptor autoradiography combined with an analysis of the cyto- and myelo-architecture. We observed that each subarea of the olfactory system is characterized by individual densities of distinct neurotransmitter receptor types, leading to a region- and layer-specific receptor profile. Thereby, the investigated receptors in the respective areas and strata showed a heterogeneous expression. Generally, we detected high densities of mGlu2/3Rs, GABAA(BZ)Rs and GABABRs. Noradrenergic receptors revealed a highly heterogenic distribution, while the dopaminergic receptor D1/5 displayed low concentrations, except in the olfactory tubercle and the dorsal endopiriform nucleus. The similarities and dissimilarities of the area-specific multireceptor profiles were analyzed by a hierarchical cluster analysis. A three-cluster solution was found that divided the areas into the (1) olfactory relay stations (main and accessory olfactory bulb), (2) the olfactory cortex (anterior olfactory cortex, dorsal peduncular cortex, taenia tecta, piriform cortex, endopiriform nucleus, entorhinal cortex, orbitofrontal cortex) and the (3) olfactory tubercle, constituting its own cluster. The multimodal receptor-architectonic analysis of each component of the olfactory system provides new insights into its neurochemical organization and future possibilities for pharmaceutic targeting.
Collapse
Affiliation(s)
- Kimberley Lothmann
- C. & O. Vogt-Institute of Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- C. & O. Vogt-Institute of Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, Jülich, Germany
| | - Christina Herold
- C. & O. Vogt-Institute of Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
10
|
Khanra N, Brown PMGE, Perozzo AM, Bowie D, Meyerson JR. Architecture and structural dynamics of the heteromeric GluK2/K5 kainate receptor. eLife 2021; 10:e66097. [PMID: 33724189 PMCID: PMC7997659 DOI: 10.7554/elife.66097] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
Kainate receptors (KARs) are L-glutamate-gated ion channels that regulate synaptic transmission and modulate neuronal circuits. KARs have strict assembly rules and primarily function as heteromeric receptors in the brain. A longstanding question is how KAR heteromer subunits organize and coordinate together to fulfill their signature physiological roles. Here we report structures of the GluK2/GluK5 heteromer in apo, antagonist-bound, and desensitized states. The receptor assembles with two copies of each subunit, ligand binding domains arranged as two heterodimers and GluK5 subunits proximal to the channel. Strikingly, during desensitization, GluK2, but not GluK5, subunits undergo major structural rearrangements to facilitate channel closure. We show how the large conformational differences between antagonist-bound and desensitized states are mediated by the linkers connecting the pore helices to the ligand binding domains. This work presents the first KAR heteromer structure, reveals how its subunits are organized, and resolves how the heteromer can accommodate functionally distinct closed channel structures.
Collapse
Affiliation(s)
- Nandish Khanra
- Department of Physiology and Biophysics, Weill Cornell Medical CollegeNew YorkUnited States
| | - Patricia MGE Brown
- Department of Pharmacology and Therapeutics, McGill UniversityMontréalCanada
| | - Amanda M Perozzo
- Department of Pharmacology and Therapeutics, McGill UniversityMontréalCanada
| | - Derek Bowie
- Department of Pharmacology and Therapeutics, McGill UniversityMontréalCanada
| | - Joel R Meyerson
- Department of Physiology and Biophysics, Weill Cornell Medical CollegeNew YorkUnited States
| |
Collapse
|
11
|
Synapse type-specific proteomic dissection identifies IgSF8 as a hippocampal CA3 microcircuit organizer. Nat Commun 2020; 11:5171. [PMID: 33057002 PMCID: PMC7560607 DOI: 10.1038/s41467-020-18956-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022] Open
Abstract
Excitatory and inhibitory neurons are connected into microcircuits that generate circuit output. Central in the hippocampal CA3 microcircuit is the mossy fiber (MF) synapse, which provides powerful direct excitatory input and indirect feedforward inhibition to CA3 pyramidal neurons. Here, we dissect its cell-surface protein (CSP) composition to discover novel regulators of MF synaptic connectivity. Proteomic profiling of isolated MF synaptosomes uncovers a rich CSP composition, including many CSPs without synaptic function and several that are uncharacterized. Cell-surface interactome screening identifies IgSF8 as a neuronal receptor enriched in the MF pathway. Presynaptic Igsf8 deletion impairs MF synaptic architecture and robustly decreases the density of bouton filopodia that provide feedforward inhibition. Consequently, IgSF8 loss impairs excitation/inhibition balance and increases excitability of CA3 pyramidal neurons. Our results provide insight into the CSP landscape and interactome of a specific excitatory synapse and reveal IgSF8 as a critical regulator of CA3 microcircuit connectivity and function. Mossy fiber synapses are key in CA3 microcircuit function. Here, the authors profile the mossy fiber synapse proteome and cell-surface interactome. They uncover a diverse repertoire of cell-surface proteins and identify the receptor IgSF8 as a regulator of CA3 microcircuit connectivity and function.
Collapse
|
12
|
Immunohistochemical Evidence for Glutamatergic Regulation of Nesfatin-1 Neurons in the Rat Hypothalamus. Brain Sci 2020; 10:brainsci10090630. [PMID: 32932902 PMCID: PMC7564322 DOI: 10.3390/brainsci10090630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/03/2022] Open
Abstract
Nesfatin-1, identified as an anorexigenic peptide, regulates the energy metabolism by suppressing food intake. The majority of nesfatin-1-synthesizing neurons are concentrated in various hypothalamic nuclei, especially in the supraoptic (SON), arcuate (ARC) and paraventricular nuclei (PVN). We tested the hypothesis that the glutamatergic system regulates nesfatin-1 neurons through glutamate receptors. Therefore, the first aim of the proposed studies was to examine effects of different glutamate agonists in the activation of nesfatin-1 neurons using c-Fos double immunohistochemical labeling. Experimental groups were formed containing male and female rats which received intraperitoneal injections of glutamate agonists kainic acid, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) while the control rats received vehicle. The significant increase in the number of c-Fos-expressing nesfatin-1 neurons after agonist injections were observed both in female and male subjects and some of these effects were found to be sexually dimorphic. In addition, treatment with specific glutamate antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) or dizocilpine (MK-801) before each of the three agonist injections caused a statistically significant reduction in the number of activated nesfatin-1 neurons in the hypothalamic nuclei including supraoptic, paraventricular and arcuate nuclei. The second aim of the study was to determine the expression of glutamate receptor subunit proteins in the nesfatin-1 neurons by using a double immunofluorescence technique. The results showed that the glutamate receptor subunits, which may form homomeric or heteromeric functional receptor channels, were expressed in the nesfatin-1 neurons. In conclusion, the results of this study suggest that nesfatin-1 neurons respond to glutamatergic signals in the form of neuronal activation and that the glutamate receptors that are synthesized by nesfatin-1 neurons may participate in the glutamatergic regulation of these neurons.
Collapse
|
13
|
Blakemore LJ, Trombley PQ. Zinc Modulates Olfactory Bulb Kainate Receptors. Neuroscience 2020; 428:252-268. [PMID: 31874243 PMCID: PMC7193548 DOI: 10.1016/j.neuroscience.2019.11.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 10/25/2022]
Abstract
Kainate receptors (KARs) are glutamate receptors with ionotropic and metabotropic activity composed of the GluK1-GluK5 subunits. We previously reported that KARs modulate excitatory and inhibitory transmission in the olfactory bulb (OB). Zinc, which is highly concentrated in the OB, also appears to modulate OB synaptic transmission via actions at other ionotropic glutamate receptors (i.e., AMPA, NMDA). However, few reports of effects of zinc on recombinant and/or native KARs exist and none have involved the OB. In the present study, we investigated the effects of exogenously applied zinc on OB KARs expressed by mitral/tufted (M/T) cells. We found that 100 µM zinc inhibits currents evoked by various combinations of KAR agonists (kainate or SYM 2081) and the AMPA receptor antagonist SYM 2206. The greatest degree of zinc-mediated inhibition was observed with coapplication of zinc with the GluK1- and GluK2-preferring agonist SYM 2081 plus SYM 2206. This finding is consistent with prior reports of zinc's inhibitory effects on some recombinant (homomeric GluK1 and GluK2 and heteromeric GluK2/GluK4 and GluK2/GluK5) KARs, although potentiation of other (GluK3, GluK2/3) KARs has also been described. It is also of potential importance given our previously reported molecular data suggesting that OB neurons express relatively high levels of GluK1 and GluK2. Our present findings suggest that a physiologically relevant concentration of zinc modulates KARs expressed by M/T cells. As M/T cells are targets of zinc-containing olfactory sensory neurons, synaptically released zinc may influence odor information-encoding synaptic circuits in the OB via actions at KARs.
Collapse
Affiliation(s)
- Laura J Blakemore
- Program in Neuroscience, Florida State University, Tallahassee, FL, USA; Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Paul Q Trombley
- Program in Neuroscience, Florida State University, Tallahassee, FL, USA; Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
14
|
Dai Q, Provost MP, Raburn DJ, Price TM. Progesterone Increases Mitochondria Membrane Potential in Non-human Primate Oocytes and Embryos. Reprod Sci 2020; 27:1206-1214. [PMID: 32046426 DOI: 10.1007/s43032-019-00132-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022]
Abstract
Mitochondrial activity is critical and correlates with embryo development. The identification of a novel human mitochondrial progesterone receptor (PR-M) that increases cellular respiration brings into question a role for progesterone in oocyte and preimplantation embryo development. Oocytes and embryos were generated from three Rhesus non-human primates (Macaca mulatta) undergoing in vitro fertilization. Immunohistochemical (IHC) staining for the progesterone receptor and mitochondria, RT-PCR with product sequencing for a mitochondrial progesterone receptor, and mitochondrial membrane determination with JC-1 staining were performed. IHC staining with selective antibodies to the progesterone receptor showed non-nuclear staining. Staining was absent in mouse control embryos. RT-PCR with product sequencing demonstrated PR-M transcript in Rhesus oocytes and embryos, which was absent in mouse embryos. Treatment of Rhesus oocytes and embryos with progesterone showed increased mitochondrial membrane potential, which was absent in mouse embryos. Our results support that progesterone increases mitochondrial membrane potential in oocytes and developing embryos. This is likely an in vivo mechanism to support preimplantation embryo development, and brings up the possibility of in vitro manipulation of culture media for optimization of growth.
Collapse
Affiliation(s)
- Qunsheng Dai
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Duke University, Durham, NC, USA
| | - Meredith P Provost
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Duke University, Durham, NC, USA.,, 10610 N Pennsylvania St #101, Indianapolis, IN, 46280, USA
| | - Douglas J Raburn
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Duke University, Durham, NC, USA
| | - Thomas M Price
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Duke University, Durham, NC, USA.
| |
Collapse
|
15
|
Kainate Receptor-Mediated Depression of Glutamate Release Involves Protein Kinase A in the Cerebellum. Int J Mol Sci 2019; 20:ijms20174124. [PMID: 31450867 PMCID: PMC6747159 DOI: 10.3390/ijms20174124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 12/02/2022] Open
Abstract
Kainate (KA) receptors (KAR) have important modulatory roles of synaptic transmission. In the cerebellum, the action mechanisms of KAR-mediated glutamatergic depression are unknown. We studied these mechanisms by recording evoked excitatory postsynaptic currents (eEPSCs) from cerebellar slices using the whole-cell configuration of the patch-clamp technique. We observed that 3 μM KA decreased the amplitude of eEPSCs and increased the number of failures at the synapses established between parallel fibers (PF) and Purkinje neurons, and the effect was antagonized by NBQX under the condition where AMPA receptors were previously blocked. The inhibition of protein kinase A (PKA) suppressed the effect of KAR activation on eEPSC, and effect was not prevented by protein kinase C inhibitors. Furthermore, in the presence of Pertussis toxin, the depression of glutamate release mediated by KAR activation was prevented, invoking the participation of a Gi/o protein in this modulation. Finally, the KAR-mediated depression of glutamate release was not prevented by blocking calcium-permeable KARs or by treatments that affect calcium release from intracellular stores. We conclude that KARs present at these synapses mediate an inhibition of glutamate release through a mechanism that involves the activation of G-protein and protein kinase A.
Collapse
|
16
|
Di S, Jiang Z, Wang S, Harrison LM, Castro-Echeverry E, Stuart TC, Wolf ME, Tasker JG. Labile Calcium-Permeable AMPA Receptors Constitute New Glutamate Synapses Formed in Hypothalamic Neuroendocrine Cells during Salt Loading. eNeuro 2019; 6:ENEURO.0112-19.2019. [PMID: 31300543 PMCID: PMC6675872 DOI: 10.1523/eneuro.0112-19.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/13/2019] [Accepted: 06/21/2019] [Indexed: 11/21/2022] Open
Abstract
Magnocellular neuroendocrine cells (MNCs) of the hypothalamus play a critical role in the regulation of fluid and electrolyte homeostasis. They undergo a dramatic structural and functional plasticity under sustained hyperosmotic conditions, including an increase in afferent glutamatergic synaptic innervation. We tested for a postulated increase in glutamate AMPA receptor expression and signaling in magnocellular neurons of the male rat hypothalamic supraoptic nucleus (SON) induced by chronic salt loading. While without effect on GluA1-4 subunit mRNA, salt loading with 2% saline for 5-7 d resulted in a selective increase in AMPA receptor GluA1 protein expression in the SON, with no change in GluA2-4 protein expression, suggesting an increase in the ratio of GluA1 to GluA2 subunits. Salt loading induced a corresponding increase in EPSCs in both oxytocin (OT) and vasopressin (VP) neurons, with properties characteristic of calcium-permeable AMPA receptor-mediated currents. Unexpectedly, the emergent AMPA synaptic currents were silenced by blocking protein synthesis and mammalian target of rapamycin (mTOR) activity in the slices, suggesting that the new glutamate synapses induced by salt loading require continuous dendritic protein synthesis for maintenance. These findings indicate that chronic salt loading leads to the induction of highly labile glutamate synapses in OT and VP neurons that are comprised of calcium-permeable homomeric GluA1 AMPA receptors. The glutamate-induced calcium influx via calcium-permeable AMPA receptors would be expected to play a key role in the induction and/or maintenance of activity-dependent synaptic plasticity that occurs in the magnocellular neurons during chronic osmotic stimulation.
Collapse
Affiliation(s)
- Shi Di
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118
| | - ZhiYing Jiang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118
| | - Sen Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118
| | - Laura M Harrison
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118
| | | | - Thomas C Stuart
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118
| | - Marina E Wolf
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
| | - Jeffrey G Tasker
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118
| |
Collapse
|
17
|
Jack A, Hamad MIK, Gonda S, Gralla S, Pahl S, Hollmann M, Wahle P. Development of Cortical Pyramidal Cell and Interneuronal Dendrites: a Role for Kainate Receptor Subunits and NETO1. Mol Neurobiol 2019; 56:4960-4979. [PMID: 30421168 DOI: 10.1007/s12035-018-1414-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/25/2018] [Indexed: 12/18/2022]
Abstract
During neuronal development, AMPA receptors (AMPARs) and NMDA receptors (NMDARs) are important for neuronal differentiation. Kainate receptors (KARs) are closely related to AMPARs and involved in the regulation of cortical network activity. However, their role for neurite growth and differentiation of cortical neurons is unclear. Here, we used KAR agonists and overexpression of selected KAR subunits and their auxiliary neuropilin and tolloid-like proteins, NETOs, to investigate their influence on dendritic growth and network activity in organotypic cultures of rat visual cortex. Kainate at 500 nM enhanced network activity and promoted development of dendrites in layer II/III pyramidal cells, but not interneurons. GluK2 overexpression promoted dendritic growth in pyramidal cells and interneurons. GluK2 transfectants were highly active and acted as drivers for network activity. GluK1 and NETO1 specifically promoted dendritic growth of interneurons. Our study provides new insights for the roles of KARs and NETOs in the morphological and physiological development of the visual cortex.
Collapse
Affiliation(s)
- Alexander Jack
- Faculty for Biology and Biotechnology ND 6/72, Developmental Neurobiology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Mohammad I K Hamad
- Faculty for Biology and Biotechnology ND 6/72, Developmental Neurobiology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
- Medical Faculty, Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Steffen Gonda
- Faculty for Biology and Biotechnology ND 6/72, Developmental Neurobiology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Sebastian Gralla
- Faculty for Biology and Biotechnology ND 6/72, Developmental Neurobiology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Steffen Pahl
- Faculty of Chemistry and Biochemistry, Biochemistry I-Receptor Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Michael Hollmann
- Faculty of Chemistry and Biochemistry, Biochemistry I-Receptor Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Petra Wahle
- Faculty for Biology and Biotechnology ND 6/72, Developmental Neurobiology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| |
Collapse
|
18
|
Localization of AMPA, kainate, and NMDA receptor mRNAs in the pigeon cerebellum. J Chem Neuroanat 2019; 98:71-79. [PMID: 30978490 DOI: 10.1016/j.jchemneu.2019.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 01/20/2023]
Abstract
In the present study, we investigated the location of mRNAs for three types of ionotropic glutamate receptors (iGluRs) in the pigeon cerebellum and then compared the results with those of mammals. The following nine iGluRs subunits were analyzed by in situ hybridization: AMPA receptors (GluA1, GluA2, GluA3, and GluA4), kainate receptors (GluK1, GluK2, and GluK4), and NMDA receptors (GluN1 and GluN2A). Subunit hybridization revealed expression in different cell types of the cerebellar cortex: Purkinje cells expressed most subunits, including AMPA receptors (GluA1, GluA2, and GluA3), kainate receptors (GluK1 and GluK4), and NMDA receptors (GluN1); granule cells expressed four subunits of kainate (GluK1 and GluK2) and NMDA receptors (GluN1 and GluN2A); stellate and basket cells expressed GluK1, GluK2, and GluN1; Golgi cells expressed GluA1, GluA3, and GluN1; and Bergmann glial cells expressed only AMPA receptors (GluA2 and GluA4). Cerebellar nuclei showed no AMPA subunit signals, whereas kainate and NMDA receptors were observed in the five cerebellar nuclei divisions (CbL, CbMic, CbMim, CbMin, and CbMvm). The five divisions showed weak expression of GluK1, GluK2, and GluN2A; moderate to intense expression of GluK4; and intense expression of GluN1. These results demonstrate that in pigeons the cerebellar cortex expresses AMPA, kainate, and NMDA receptors, while the cerebellar nuclei express kainate and NMDA receptors. Taken together, these findings provide anatomical data for further analysis of the functions of iGluR-expressing neurons in glutamatergic circuits of the avian cerebellum.
Collapse
|
19
|
Atoji Y, Sarkar S. Gene expression of AMPA, kainate, and NMDA receptor subunits in the pigeon spinal cord. J Chem Neuroanat 2019; 96:148-156. [DOI: 10.1016/j.jchemneu.2018.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/01/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022]
|
20
|
Gurung S, Evans AJ, Wilkinson KA, Henley JM. ADAR2-mediated Q/R editing of GluK2 regulates kainate receptor upscaling in response to suppression of synaptic activity. J Cell Sci 2018; 131:jcs222273. [PMID: 30559217 PMCID: PMC6307878 DOI: 10.1242/jcs.222273] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022] Open
Abstract
Kainate receptors (KARs) regulate neuronal excitability and network function. Most KARs contain the subunit GluK2 (also known as GRIK2), and the properties of these receptors are determined in part by ADAR2 (also known as ADARB1)-mediated mRNA editing of GluK2, which changes a genomically encoded glutamine residue into an arginine residue (Q/R editing). Suppression of synaptic activity reduces ADAR2-dependent Q/R editing of GluK2 with a consequential increase in GluK2-containing KAR surface expression. However, the mechanism underlying this reduction in GluK2 editing has not been addressed. Here, we show that induction of KAR upscaling, a phenomenon in which surface expression of receptors is increased in response to a chronic decrease in synaptic activity, results in proteasomal degradation of ADAR2, which reduces GluK2 Q/R editing. Because KARs incorporating unedited GluK2(Q) assemble and exit the ER more efficiently, this leads to an upscaling of KAR surface expression. Consistent with this, we demonstrate that partial ADAR2 knockdown phenocopies and occludes KAR upscaling. Moreover, we show that although the AMPA receptor (AMPAR) subunit GluA2 (also known as GRIA2) also undergoes ADAR2-dependent Q/R editing, this process does not mediate AMPAR upscaling. These data demonstrate that activity-dependent regulation of ADAR2 proteostasis and GluK2 Q/R editing are key determinants of KAR, but not AMPAR, trafficking and upscaling.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sonam Gurung
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Ashley J Evans
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
21
|
Scholefield CL, Atlason PT, Jane DE, Molnár E. Assembly and Trafficking of Homomeric and Heteromeric Kainate Receptors with Impaired Ligand Binding Sites. Neurochem Res 2018; 44:585-599. [PMID: 30302614 PMCID: PMC6420462 DOI: 10.1007/s11064-018-2654-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 10/28/2022]
Abstract
Kainate receptors (KARs) are a subfamily of ionotropic glutamate receptors (iGluRs) mediating excitatory synaptic transmission. Cell surface expressed KARs modulate the excitability of neuronal networks. The transfer of iGluRs from the endoplasmic reticulum (ER) to the cell surface requires occupation of the agonist binding sites. Here we used molecular modelling to produce a range of ligand binding domain (LBD) point mutants of GluK1-3 KAR subunits with and without altered agonist efficacy to further investigate the role of glutamate binding in surface trafficking and activation of homomeric and heteromeric KARs using endoglycosidase digestion, cell surface biotinylation and imaging of changes in intracellular Ca2+ concentration [Ca2+]i. Mutations of conserved amino acid residues in the LBD that disrupt agonist binding to GluK1-3 (GluK1-T675V, GluK2-A487L, GluK2-T659V and GluK3-T661V) reduced both the total expression levels and cell surface delivery of all of these mutant subunits compared to the corresponding wild type in transiently transfected human embryonic kidney 293 (HEK293) cells. In contrast, the exchange of non-conserved residues in the LBD that convert antagonist selectivity of GluK1-3 (GluK1-T503A, GluK2-A487T, GluK3-T489A, GluK1-N705S/S706N, GluK2-S689N/N690S, GluK3-N691S) did not alter the biosynthesis and trafficking of subunit proteins. Co-assembly of mutant GluK2 with an impaired LBD and wild type GluK5 subunits enables the cell surface expression of both subunits. However, [Ca2+]i imaging indicates that the occupancy of both GluK2 and GluK5 LBDs is required for the full activation of GluK2/GluK5 heteromeric KAR channels.
Collapse
Affiliation(s)
- Caroline L Scholefield
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Palmi T Atlason
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - David E Jane
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Elek Molnár
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
22
|
Blakemore LJ, Corthell JT, Trombley PQ. Kainate Receptors Play a Role in Modulating Synaptic Transmission in the Olfactory Bulb. Neuroscience 2018; 391:25-49. [PMID: 30213766 DOI: 10.1016/j.neuroscience.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023]
Abstract
Glutamate is the neurotransmitter used at most excitatory synapses in the mammalian brain, including those in the olfactory bulb (OB). There, ionotropic glutamate receptors including N-methyl-d-aspartate receptors (NMDARs) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) play a role in processes such as reciprocal inhibition and glomerular synchronization. Kainate receptors (KARs) represent another type of ionotropic glutamate receptor, which are composed of five (GluK1-GluK5) subunits. Whereas KARs appear to be heterogeneously expressed in the OB, evidence as to whether these KARs are functional, found at synapses, or modify synaptic transmission is limited. In the present study, coapplication of KAR agonists (kainate, SYM 2081) and AMPAR antagonists (GYKI 52466, SYM 2206) demonstrated that functional KARs are expressed by OB neurons, with a subset of receptors located at synapses. Application of kainate and the GluK1-selective agonist ATPA had modulatory effects on excitatory postsynaptic currents (EPSCs) evoked by stimulation of the olfactory nerve layer. Application of kainate and ATPA also had modulatory effects on reciprocal inhibitory postsynaptic currents (IPSCs) evoked using a protocol that evokes dendrodendritic inhibition. The latter finding suggests that KARs, with relatively slow kinetics, may play a role in circuits in which the relatively brief duration of AMPAR-mediated currents limits the role of AMPARs in synaptic transmission (e.g., reciprocal inhibition at dendrodendritic synapses). Collectively, our findings suggest that KARs, including those containing the GluK1 subunit, modulate excitatory and inhibitory transmission in the OB. These data further suggest that KARs participate in the regulation of synaptic circuits that encode odor information.
Collapse
Affiliation(s)
- Laura J Blakemore
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States; Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - John T Corthell
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States; Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Paul Q Trombley
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States; Department of Biological Science, Florida State University, Tallahassee, FL, United States.
| |
Collapse
|
23
|
Falcón-Moya R, Losada-Ruiz P, Sihra TS, Rodríguez-Moreno A. Cerebellar Kainate Receptor-Mediated Facilitation of Glutamate Release Requires Ca 2+-Calmodulin and PKA. Front Mol Neurosci 2018; 11:195. [PMID: 29928192 PMCID: PMC5997777 DOI: 10.3389/fnmol.2018.00195] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 05/16/2018] [Indexed: 12/29/2022] Open
Abstract
We elucidated the mechanisms underlying the kainate receptor (KAR)-mediated facilitatory modulation of synaptic transmission in the cerebellum. In cerebellar slices, KA (3 μM) increased the amplitude of evoked excitatory postsynaptic currents (eEPSCs) at synapses between axon terminals of parallel fibers (PF) and Purkinje neurons. KA-mediated facilitation was antagonized by NBQX under condition where AMPA receptors were previously antagonized. Inhibition of protein kinase A (PKA) suppressed the effect of KA on glutamate release, which was also obviated by the prior stimulation of adenylyl cyclase (AC). KAR-mediated facilitation of synaptic transmission was prevented by blocking Ca2+ permeant KARs using philanthotoxin. Furthermore, depletion of intracellular Ca2+ stores by thapsigargin, or inhibition of Ca2+-induced Ca2+-release by ryanodine, abrogated the synaptic facilitation by KA. Thus, the KA-mediated modulation was conditional on extracellular Ca2+ entry through Ca2+-permeable KARs, as well as and mobilization of Ca2+ from intracellular stores. Finally, KAR-mediated facilitation was sensitive to calmodulin inhibitors, W-7 and calmidazolium, indicating that the increased cytosolic [Ca2+] sustaining KAR-mediated facilitation of synaptic transmission operates through a downstream Ca2+/calmodulin coupling. We conclude that, at cerebellar parallel fiber-Purkinje cell synapses, presynaptic KARs mediate glutamate release facilitation, and thereby enhance synaptic transmission through Ca2+-calmodulin dependent activation of adenylyl cyclase/cAMP/protein kinase A signaling.
Collapse
Affiliation(s)
- Rafael Falcón-Moya
- Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain
| | - Pilar Losada-Ruiz
- Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain
| | - Talvinder S Sihra
- Department of Physiology, Pharmacology and Neuroscience, University College London, London, United Kingdom
| | - Antonio Rodríguez-Moreno
- Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain
| |
Collapse
|
24
|
Pre- and postsynaptic ionotropic glutamate receptors in the auditory system of mammals. Hear Res 2018; 362:1-13. [DOI: 10.1016/j.heares.2018.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/16/2018] [Accepted: 02/21/2018] [Indexed: 01/22/2023]
|
25
|
Paramo T, Brown PMGE, Musgaard M, Bowie D, Biggin PC. Functional Validation of Heteromeric Kainate Receptor Models. Biophys J 2017; 113:2173-2177. [PMID: 28935133 PMCID: PMC5700254 DOI: 10.1016/j.bpj.2017.08.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 01/31/2023] Open
Abstract
Kainate receptors require the presence of external ions for gating. Most work thus far has been performed on homomeric GluK2 but, in vivo, kainate receptors are likely heterotetramers. Agonists bind to the ligand-binding domain (LBD) which is arranged as a dimer of dimers as exemplified in homomeric structures, but no high-resolution structure currently exists of heteromeric kainate receptors. In a full-length heterotetramer, the LBDs could potentially be arranged either as a GluK2 homomer alongside a GluK5 homomer or as two GluK2/K5 heterodimers. We have constructed models of the LBD dimers based on the GluK2 LBD crystal structures and investigated their stability with molecular dynamics simulations. We have then used the models to make predictions about the functional behavior of the full-length GluK2/K5 receptor, which we confirmed via electrophysiological recordings. A key prediction and observation is that lithium ions bind to the dimer interface of GluK2/K5 heteromers and slow their desensitization.
Collapse
Affiliation(s)
- Teresa Paramo
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Patricia M G E Brown
- Integrated Program in Neurosciences, McGill University, Montréal, Québec, Canada
| | - Maria Musgaard
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Derek Bowie
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
26
|
Zhao H, Lomash S, Chittori S, Glasser C, Mayer ML, Schuck P. Preferential assembly of heteromeric kainate and AMPA receptor amino terminal domains. eLife 2017; 6:32056. [PMID: 29058671 PMCID: PMC5665649 DOI: 10.7554/elife.32056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/22/2017] [Indexed: 12/29/2022] Open
Abstract
Ion conductivity and the gating characteristics of tetrameric glutamate receptor ion channels are determined by their subunit composition. Competitive homo- and hetero-dimerization of their amino-terminal domains (ATDs) is a key step controlling assembly. Here we measured systematically the thermodynamic stabilities of homodimers and heterodimers of kainate and AMPA receptors using fluorescence-detected sedimentation velocity analytical ultracentrifugation. Measured affinities span many orders of magnitude, and complexes show large differences in kinetic stabilities. The association of kainate receptor ATD dimers is generally weaker than the association of AMPA receptor ATD dimers, but both show a general pattern of increased heterodimer stability as compared to the homodimers of their constituents, matching well physiologically observed receptor combinations. The free energy maps of AMPA and kainate receptor ATD dimers provide a framework for the interpretation of observed receptor subtype combinations and possible assembly pathways.
Collapse
Affiliation(s)
- Huaying Zhao
- Dynamics of Molecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering Institutes of Health, National Institutes of Health, Bethesda, United States
| | - Suvendu Lomash
- Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Sagar Chittori
- Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Carla Glasser
- Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Mark L Mayer
- Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Peter Schuck
- Dynamics of Molecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering Institutes of Health, National Institutes of Health, Bethesda, United States
| |
Collapse
|
27
|
Hadzic M, Jack A, Wahle P. Ionotropic glutamate receptors: Which ones, when, and where in the mammalian neocortex. J Comp Neurol 2016; 525:976-1033. [PMID: 27560295 DOI: 10.1002/cne.24103] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 12/14/2022]
Abstract
A multitude of 18 iGluR receptor subunits, many of which are diversified by splicing and RNA editing, localize to >20 excitatory and inhibitory neocortical neuron types defined by physiology, morphology, and transcriptome in addition to various types of glial, endothelial, and blood cells. Here we have compiled the published expression of iGluR subunits in the areas and cell types of developing and adult cortex of rat, mouse, carnivore, bovine, monkey, and human as determined with antibody- and mRNA-based techniques. iGluRs are differentially expressed in the cortical areas and in the species, and all have a unique developmental pattern. Differences are quantitative rather than a mere absence/presence of expression. iGluR are too ubiquitously expressed and of limited use as markers for areas or layers. A focus has been the iGluR profile of cortical interneuron types. For instance, GluK1 and GluN3A are enriched in, but not specific for, interneurons; moreover, the interneurons expressing these subunits belong to different types. Adressing the types is still a major hurdle because type-specific markers are lacking, and the frequently used neuropeptide/CaBP signatures are subject to regulation by age and activity and vary as well between species and areas. RNA-seq reveals almost all subunits in the two morphofunctionally characterized interneuron types of adult cortical layer I, suggesting a fairly broad expression at the RNA level. It remains to be determined whether all proteins are synthesized, to which pre- or postsynaptic subdomains in a given neuron type they localize, and whether all are involved in synaptic transmission. J. Comp. Neurol. 525:976-1033, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Minela Hadzic
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| | - Alexander Jack
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| | - Petra Wahle
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| |
Collapse
|
28
|
Møllerud S, Kastrup JS, Pickering DS. A pharmacological profile of the high-affinity GluK5 kainate receptor. Eur J Pharmacol 2016; 788:315-320. [PMID: 27373850 DOI: 10.1016/j.ejphar.2016.06.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 11/16/2022]
Abstract
Mouse GluK5 was expressed in Sf9 insect cells and radiolabelled with [(3)H]-kainate in receptor binding assays (Kd=6.9nM). Western immunoblotting indicated an Sf9 GluK5 band doublet corresponding to the glycosylated (128kDa) and deglycosylated (111kDa) protein, which was identical to the band pattern of native rat brain GluK5. A pharmacological profile of the high-affinity kainate receptor GluK5 is described which is distinct from the profiles of other kainate receptors (GluK1-3). The 27 tested ligands generally show a preferential affinity to GluK1 over GluK5, the exceptions being: dihydrokainate, (S)-5-fluorowillardiine, (S)-glutamate and quisqualate, where the affinity is similar at GluK1 and GluK5. In contrast, quisqualate shows 40-fold higher affinity at GluK5 over GluK3 whereas (S)-1-(2'-amino-2'-caboxyethyl)thienol[3,4-d]pyrimidin-2,4-dione (NF1231), (RS)-2-amino-3-(5-tert-butyl-3-hydroxyisoxazol-4-yl)propionate (ATPA), dihydrokainate and (2S,4R)-4-methyl-glutamate (SYM2081) have higher affinity at GluK3 compared to GluK5. Since some studies have indicated that GluK5 is associated with various diseases in the central nervous system (e.g. schizophrenia, temporal lobe epilepsy, bipolar disorder), selective GluK5 ligands could have therapeutic potential. The distinct pharmacological profile of GluK5 suggests that it would be possible to design ligands with selectivity towards GluK5.
Collapse
Key Words
- AMPA, PubChem CID: 1221
- ATPA, PubChem CID: 2253
- Affinity
- CNQX, PubChem CID: 3721046
- Domoic acid, PubChem CID: 5282253
- Glycosylation
- Ionotropic glutamate receptor
- Kainic acid, PubChem CID: 10255
- Kinetics
- L-Glutamic acid, PubChem CID: 33032
- Quisqualic acid, PubChem CID: 40539
- Radioligand binding
- SYM2081, PubChem CID: 21117106
- Sf9
- UBP310, PubChem CID: 6420160
- Willardiine, PubChem CID: 440053
Collapse
Affiliation(s)
- Stine Møllerud
- Dept. of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| | - Jette Sandholm Kastrup
- Dept. of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| | - Darryl S Pickering
- Dept. of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
29
|
Straub C, Noam Y, Nomura T, Yamasaki M, Yan D, Fernandes HB, Zhang P, Howe JR, Watanabe M, Contractor A, Tomita S. Distinct Subunit Domains Govern Synaptic Stability and Specificity of the Kainate Receptor. Cell Rep 2016; 16:531-544. [PMID: 27346345 DOI: 10.1016/j.celrep.2016.05.093] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 04/28/2016] [Accepted: 05/26/2016] [Indexed: 12/01/2022] Open
Abstract
Synaptic communication between neurons requires the precise localization of neurotransmitter receptors to the correct synapse type. Kainate-type glutamate receptors restrict synaptic localization that is determined by the afferent presynaptic connection. The mechanisms that govern this input-specific synaptic localization remain unclear. Here, we examine how subunit composition and specific subunit domains contribute to synaptic localization of kainate receptors. The cytoplasmic domain of the GluK2 low-affinity subunit stabilizes kainate receptors at synapses. In contrast, the extracellular domain of the GluK4/5 high-affinity subunit synergistically controls the synaptic specificity of kainate receptors through interaction with C1q-like proteins. Thus, the input-specific synaptic localization of the native kainate receptor complex involves two mechanisms that underlie specificity and stabilization of the receptor at synapses.
Collapse
Affiliation(s)
- Christoph Straub
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA; CNNR Program, Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yoav Noam
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA; CNNR Program, Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Toshihiro Nomura
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Miwako Yamasaki
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Dan Yan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA; CNNR Program, Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Herman B Fernandes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ping Zhang
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - James R Howe
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Anis Contractor
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Susumu Tomita
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA; CNNR Program, Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
30
|
Matsuda K, Budisantoso T, Mitakidis N, Sugaya Y, Miura E, Kakegawa W, Yamasaki M, Konno K, Uchigashima M, Abe M, Watanabe I, Kano M, Watanabe M, Sakimura K, Aricescu A, Yuzaki M. Transsynaptic Modulation of Kainate Receptor Functions by C1q-like Proteins. Neuron 2016; 90:752-67. [DOI: 10.1016/j.neuron.2016.04.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/29/2016] [Accepted: 03/30/2016] [Indexed: 12/31/2022]
|
31
|
Abstract
Cerebellar disorders trigger the symptoms of movement problems, imbalance, incoordination, and frequent fall. Cerebellar disorders are shown in various CNS illnesses including a drinking disorder called alcoholism. Alcoholism is manifested as an inability to control drinking in spite of adverse consequences. Human and animal studies have shown that cerebellar symptoms persist even after complete abstinence from drinking. In particular, the abrupt termination (ethanol withdrawal) of long-term excessive ethanol consumption has shown to provoke a variety of neuronal and mitochondrial damage to the cerebellum. Upon ethanol withdrawal, excitatory neurotransmitter molecules such as glutamate are overly released in brain areas including cerebellum. This is particularly relevant to the cerebellar neuronal network as glutamate signals are projected to Purkinje neurons through granular cells that are the most populated neuronal type in CNS. This excitatory neuronal signal may be elevated by ethanol withdrawal stress, which promotes an increase in intracellular Ca(2+) level and a decrease in a Ca(2+)-binding protein, both of which result in the excessive entry of Ca(2+) to the mitochondria. Subsequently, mitochondria undergo a prolonged opening of mitochondrial permeability transition pore and the overproduction of harmful free radicals, impeding adenosine triphosphate (ATP)-generating function. This in turn provokes the leakage of mitochondrial molecule cytochrome c to the cytosol, which triggers a cascade of adverse cytosol reactions. Upstream to this pathway, cerebellum under the condition of ethanol withdrawal has shown aberrant gene modifications through altered DNA methylation, histone acetylation, or microRNA expression. Interplay between these events and molecules may result in functional damage to cerebellar mitochondria and consequent neuronal degeneration, thereby contributing to motoric deficit. Mitochondria-targeting research may help develop a powerful new therapy to manage cerebellar disorders associated with hyperexcitatory CNS disorders like ethanol withdrawal.
Collapse
Affiliation(s)
- Marianna E Jung
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107-2699, USA,
| |
Collapse
|
32
|
Levitz J, Popescu AT, Reiner A, Isacoff EY. A Toolkit for Orthogonal and in vivo Optical Manipulation of Ionotropic Glutamate Receptors. Front Mol Neurosci 2016; 9:2. [PMID: 26869877 PMCID: PMC4735401 DOI: 10.3389/fnmol.2016.00002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/06/2016] [Indexed: 12/16/2022] Open
Abstract
The ability to optically manipulate specific neuronal signaling proteins with genetic precision paves the way for the dissection of their roles in brain function, behavior, and disease. Chemical optogenetic control with photoswitchable tethered ligands (PTLs) enables rapid, reversible and reproducible activation or block of specific neurotransmitter-gated receptors and ion channels in specific cells. In this study, we further engineered and characterized the light-activated GluK2 kainate receptor, LiGluR, to develop a toolbox of LiGluR variants. Low-affinity LiGluRs allow for efficient optical control of GluK2 while removing activation by native glutamate, whereas variant RNA edited versions enable the synaptic role of receptors with high and low Ca2+ permeability to be assessed and spectral variant photoswitches provide flexibility in illumination. Importantly, we establish that LiGluR works efficiently in the cortex of awake, adult mice using standard optogenetic techniques, thus opening the door to probing the role of specific synaptic receptors and cellular signals in the neural circuit operations of the mammalian brain in normal conditions and in disease. The principals developed in this study are widely relevant to the engineering and in vivo use of optically controllable proteins, including other neurotransmitter receptors.
Collapse
Affiliation(s)
- Joshua Levitz
- Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, CA, USA
| | - Andrei T Popescu
- Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, CA, USA
| | - Andreas Reiner
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeley, CA, USA; Department of Biology and Biotechnology, Ruhr-University BochumBochum, Germany
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeley, CA, USA; Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeley, CA, USA; Physical Bioscience Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
| |
Collapse
|
33
|
Bell RL, Hauser SR, McClintick J, Rahman S, Edenberg HJ, Szumlinski KK, McBride WJ. Ethanol-Associated Changes in Glutamate Reward Neurocircuitry: A Minireview of Clinical and Preclinical Genetic Findings. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:41-85. [PMID: 26809998 DOI: 10.1016/bs.pmbts.2015.10.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Herein, we have reviewed the role of glutamate, the major excitatory neurotransmitter in the brain, in a number of neurochemical, -physiological, and -behavioral processes mediating the development of alcohol dependence. The findings discussed include results from both preclinical as well as neuroimaging and postmortem clinical studies. Expression levels for a number of glutamate-associated genes and/or proteins are modulated by alcohol abuse and dependence. These changes in expression include metabotropic receptors and ionotropic receptor subunits as well as different glutamate transporters. Moreover, these changes in gene expression parallel the pharmacologic manipulation of these same receptors and transporters. Some of these gene expression changes may have predated alcohol abuse and dependence because a number of glutamate-associated polymorphisms are related to a genetic predisposition to develop alcohol dependence. Other glutamate-associated polymorphisms are linked to age at the onset of alcohol-dependence and initial level of response/sensitivity to alcohol. Finally, findings of innate and/or ethanol-induced glutamate-associated gene expression differences/changes observed in a genetic animal model of alcoholism, the P rat, are summarized. Overall, the existing literature indicates that changes in glutamate receptors, transporters, enzymes, and scaffolding proteins are crucial for the development of alcohol dependence and there is a substantial genetic component to these effects. This indicates that continued research into the genetic underpinnings of these glutamate-associated effects will provide important novel molecular targets for treating alcohol abuse and dependence.
Collapse
Affiliation(s)
- Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | - Sheketha R Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jeanette McClintick
- Departments of Biochemistry and Molecular Biology and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana , USA
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Howard J Edenberg
- Departments of Biochemistry and Molecular Biology and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana , USA
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California, USA
| | - William J McBride
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
34
|
Evanson NK, Herman JP. Role of Paraventricular Nucleus Glutamate Signaling in Regulation of HPA Axis Stress Responses. ACTA ACUST UNITED AC 2015; 21:253-260. [PMID: 26472933 DOI: 10.4036/iis.2015.b.10] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The hypothalamus-pituitary-adrenal (HPA) axis is the main neuroendocrine arm of the stress response, activation of which leads to the production of glucocorticoid hormones. Glucocorticoids are steroid hormones that are secreted from the adrenal cortex, and have a variety of effects on the body, including modulation of the immune system, suppression of reproductive hormones maintenance of blood glucose levels, and maintenance of blood pressure. Glutamate plays an important role in coordination of HPA axis output. There is strong evidence that glutamate drives HPA axis stress responses through excitatory signaling via ionotropic glutamate receptor signaling. However, glutamate signaling via kainate receptors and group I metabotropic receptors inhibit HPA drive, probably via presynaptic inhibitory mechanisms. Notably, kainate receptors are also localized in the median eminence, and appear to play an excitatory role in control of CRH release at the nerve terminals. Finally, glutamate innervation of the PVN undergoes neuroplastic changes under conditions of chronic stress, and may be involved in sensitization of HPA axis responses. Altogether, the data suggest that glutamate plays a complex role in excitation of CRH neurons, acting at multiple levels to both drive HPA axis responses and limit over-activation.
Collapse
Affiliation(s)
- Nathan K Evanson
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Pediatric rehabilitation division. 3333 Burnet Ave, MLC 4009, Cincinnati, OH, USA. 45229
| | - James P Herman
- Department of Psychiatry, University of Cincinnati. 2170 E. Galbraith Road, Cincinnati, OH, USA. 45237
| |
Collapse
|
35
|
Mancuso JJ, Cheng J, Yin Z, Gilliam JC, Xia X, Li X, Wong STC. Integration of multiscale dendritic spine structure and function data into systems biology models. Front Neuroanat 2014; 8:130. [PMID: 25429262 PMCID: PMC4228840 DOI: 10.3389/fnana.2014.00130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/22/2014] [Indexed: 12/27/2022] Open
Abstract
Comprising 1011 neurons with 1014 synaptic connections the human brain is the ultimate systems biology puzzle. An increasing body of evidence highlights the observation that changes in brain function, both normal and pathological, consistently correlate with dynamic changes in neuronal anatomy. Anatomical changes occur on a full range of scales from the trafficking of individual proteins, to alterations in synaptic morphology both individually and on a systems level, to reductions in long distance connectivity and brain volume. The major sites of contact for synapsing neurons are dendritic spines, which provide an excellent metric for the number and strength of signaling connections between elements of functional neuronal circuits. A comprehensive model of anatomical changes and their functional consequences would be a holy grail for the field of systems neuroscience but its realization appears far on the horizon. Various imaging technologies have advanced to allow for multi-scale visualization of brain plasticity and pathology, but computational analysis of the big data sets involved forms the bottleneck toward the creation of multiscale models of brain structure and function. While a full accounting of techniques and progress toward a comprehensive model of brain anatomy and function is beyond the scope of this or any other single paper, this review serves to highlight the opportunities for analysis of neuronal spine anatomy and function provided by new imaging technologies and the high-throughput application of older technologies while surveying the strengths and weaknesses of currently available computational analytical tools and room for future improvement.
Collapse
Affiliation(s)
- James J Mancuso
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute Houston, TX, USA ; TT and WF Chao Center for Bioinformatics Research and Imaging for Neurosciences, Houston Methodist Research Institute Houston, TX, USA
| | - Jie Cheng
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute Houston, TX, USA ; TT and WF Chao Center for Bioinformatics Research and Imaging for Neurosciences, Houston Methodist Research Institute Houston, TX, USA
| | - Zheng Yin
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute Houston, TX, USA ; TT and WF Chao Center for Bioinformatics Research and Imaging for Neurosciences, Houston Methodist Research Institute Houston, TX, USA
| | - Jared C Gilliam
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute Houston, TX, USA ; TT and WF Chao Center for Bioinformatics Research and Imaging for Neurosciences, Houston Methodist Research Institute Houston, TX, USA
| | - Xiaofeng Xia
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute Houston, TX, USA ; TT and WF Chao Center for Bioinformatics Research and Imaging for Neurosciences, Houston Methodist Research Institute Houston, TX, USA
| | - Xuping Li
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute Houston, TX, USA ; TT and WF Chao Center for Bioinformatics Research and Imaging for Neurosciences, Houston Methodist Research Institute Houston, TX, USA
| | - Stephen T C Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute Houston, TX, USA ; TT and WF Chao Center for Bioinformatics Research and Imaging for Neurosciences, Houston Methodist Research Institute Houston, TX, USA
| |
Collapse
|
36
|
Fisher MT, Fisher JL. Contributions of different kainate receptor subunits to the properties of recombinant homomeric and heteromeric receptors. Neuroscience 2014; 278:70-80. [PMID: 25139762 PMCID: PMC4172534 DOI: 10.1016/j.neuroscience.2014.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/11/2014] [Accepted: 08/11/2014] [Indexed: 01/20/2023]
Abstract
The tetrameric kainate receptors can be assembled from a combination of five different subunit subtypes. While GluK1-3 subunits can form homomeric receptors, GluK4 and GluK5 require a heteromeric partner to assemble, traffic to the membrane surface, and produce a functional channel. Previous studies have shown that incorporation of a GluK4 or GluK5 subunit changes both receptor pharmacology and channel kinetics. We directly compared the functional characteristics of recombinant receptors containing either GluK4 or GluK5 in combination with the GluK1 or GluK2 subunit. In addition, we took advantage of mutations within the agonist binding sites of GluK1, GluK2, or GluK5 to isolate the response of the wild-type partner within the heteromeric receptor. Our results suggest that GluK1 and GluK2 differ primarily in their pharmacological properties, but that GluK4 and GluK5 have distinct functional characteristics. In particular, while binding of agonist to only the GluK5 subunit appears to activate the channel to a non-desensitizing state, binding to GluK4 does produce some desensitization. This suggests that GluK4 and GluK5 differ fundamentally in their contribution to receptor desensitization. In addition, mutation of the agonist binding site of GluK5 results in a heteromeric receptor with a glutamate sensitivity similar to homomeric GluK1 or GluK2 receptors, but which requires higher agonist concentrations to produce desensitization. This suggests that onset of desensitization in heteromeric receptors is determined more by the number of subunits bound to agonist than by the identity of those subunits. The distinct, concentration-dependent properties observed with heteromeric receptors in response to glutamate or kainate are consistent with a model in which either subunit can activate the channel, but in which occupancy of both subunits within a dimer is needed to allow desensitization of GluK2/K5 receptors.
Collapse
Affiliation(s)
- M T Fisher
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - J L Fisher
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
37
|
Elston GN, Fujita I. Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology. Front Neuroanat 2014; 8:78. [PMID: 25161611 PMCID: PMC4130200 DOI: 10.3389/fnana.2014.00078] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 07/22/2014] [Indexed: 01/12/2023] Open
Abstract
Here we review recent findings related to postnatal spinogenesis, dendritic and axon growth, pruning and electrophysiology of neocortical pyramidal cells in the developing primate brain. Pyramidal cells in sensory, association and executive cortex grow dendrites, spines and axons at different rates, and vary in the degree of pruning. Of particular note is the fact that pyramidal cells in primary visual area (V1) prune more spines than they grow during postnatal development, whereas those in inferotemporal (TEO and TE) and granular prefrontal cortex (gPFC; Brodmann's area 12) grow more than they prune. Moreover, pyramidal cells in TEO, TE and the gPFC continue to grow larger dendritic territories from birth into adulthood, replete with spines, whereas those in V1 become smaller during this time. The developmental profile of intrinsic axons also varies between cortical areas: those in V1, for example, undergo an early proliferation followed by pruning and local consolidation into adulthood, whereas those in area TE tend to establish their territory and consolidate it into adulthood with little pruning. We correlate the anatomical findings with the electrophysiological properties of cells in the different cortical areas, including membrane time constant, depolarizing sag, duration of individual action potentials, and spike-frequency adaptation. All of the electrophysiological variables ramped up before 7 months of age in V1, but continued to ramp up over a protracted period of time in area TE. These data suggest that the anatomical and electrophysiological profiles of pyramidal cells vary among cortical areas at birth, and continue to diverge into adulthood. Moreover, the data reveal that the “use it or lose it” notion of synaptic reinforcement may speak to only part of the story, “use it but you still might lose it” may be just as prevalent in the cerebral cortex.
Collapse
Affiliation(s)
- Guy N Elston
- Centre for Cognitive Neuroscience Sunshine Coast, QLD, Australia
| | - Ichiro Fujita
- Graduate School of Frontier Biosciences and Center for Information and Neural Networks, Osaka University and National Institute of Communication Technology Suita, Japan
| |
Collapse
|
38
|
Galvan A, Hu X, Rommelfanger KS, Pare JF, Khan ZU, Smith Y, Wichmann T. Localization and function of dopamine receptors in the subthalamic nucleus of normal and parkinsonian monkeys. J Neurophysiol 2014; 112:467-79. [PMID: 24760789 DOI: 10.1152/jn.00849.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The subthalamic nucleus (STN) receives a dopaminergic innervation from the substantia nigra pars compacta, but the role of this projection remains poorly understood, particularly in primates. To address this issue, we used immuno-electron microscopy to localize D1, D2, and D5 dopamine receptors in the STN of rhesus macaques and studied the electrophysiological effects of activating D1-like or D2-like receptors in normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated parkinsonian monkeys. Labeling of D1 and D2 receptors was primarily found presynaptically, on preterminal axons and putative glutamatergic and GABAergic terminals, while D5 receptors were more significantly expressed postsynaptically, on dendritic shafts of STN neurons. The electrical spiking activity of STN neurons, recorded with standard extracellular recording methods, was studied before, during, and after intra-STN administration of the dopamine D1-like receptor agonist SKF82958, the D2-like receptor agonist quinpirole, or artificial cerebrospinal fluid (control injections). In normal animals, administration of SKF82958 significantly reduced the spontaneous firing but increased the rate of intraburst firing and the proportion of pause-burst sequences of firing. Quinpirole only increased the proportion of such pause-burst sequences in STN neurons of normal monkeys. In MPTP-treated monkeys, the D1-like receptor agonist also reduced the firing rate and increased the proportion of pause-burst sequences, while the D2-like receptor agonist did not change any of the chosen descriptors of the firing pattern of STN neurons. Our data suggest that dopamine receptor activation can directly modulate the electrical activity of STN neurons by pre- and postsynaptic mechanisms in both normal and parkinsonian states, predominantly via activation of D1 receptors.
Collapse
Affiliation(s)
- Adriana Galvan
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia; Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia;
| | - Xing Hu
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
| | - Karen S Rommelfanger
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia; Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia
| | - Jean-Francois Pare
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
| | - Zafar U Khan
- Laboratory of Neurobiology at CIMES, Faculty of Medicine, University of Malaga, Malaga, Spain; Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain; and CIBERNED, Institute of Health Carlos III, Madrid, Spain
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia; Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia
| | - Thomas Wichmann
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia; Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia
| |
Collapse
|
39
|
Elston GN, Manger P. Pyramidal cells in V1 of African rodents are bigger, more branched and more spiny than those in primates. Front Neuroanat 2014; 8:4. [PMID: 24574977 PMCID: PMC3918685 DOI: 10.3389/fnana.2014.00004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/20/2014] [Indexed: 01/21/2023] Open
Abstract
Pyramidal cells are characterized by markedly different sized dendritic trees, branching patterns, and spine density across the cortical mantle. Moreover, pyramidal cells have been shown to differ in structure among homologous cortical areas in different species; however, most of these studies have been conducted in primates. Whilst pyramidal cells have been quantified in a few cortical areas in some other species there are, as yet, no uniform comparative data on pyramidal cell structure in a homologous cortical area among species in different Orders. Here we studied layer III pyramidal cells in V1 of three species of rodents, the greater cane rat, highveld gerbil, and four-striped mouse, by the same methodology used to sample data from layer III pyramidal cells in primates. The data reveal markedly different trends between rodents and primates: there is an appreciable increase in the size, branching complexity, and number of spines in the dendritic trees of pyramidal cells with increasing size of V1 in the brain in rodents, whereas there is relatively little difference in primates. Moreover, pyramidal cells in rodents are larger, more branched and more spinous than those in primates. For example, the dendritic trees of pyramidal cells in V1 of the adult cane rat are nearly three times larger, and have more than 10 times the number of spines in their basal dendritic trees, than those in V1 of the adult macaque (7900 and 600, respectively), which has a V1 40 times the size that of the cane rat. It remains to be determined to what extent these differences may result from development or reflect evolutionary and/or processing specializations.
Collapse
Affiliation(s)
- Guy N Elston
- Centre for Cognitive Neuroscience Sunshine Coast, QLD, Australia
| | - Paul Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand Johannesburg, South Africa
| |
Collapse
|
40
|
Ionotropic glutamate receptors and voltage-gated Ca²⁺ channels in long-term potentiation of spinal dorsal horn synapses and pain hypersensitivity. Neural Plast 2013; 2013:654257. [PMID: 24224102 PMCID: PMC3808892 DOI: 10.1155/2013/654257] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 12/18/2022] Open
Abstract
Over the last twenty years of research on cellular mechanisms of pain hypersensitivity, long-term potentiation (LTP) of synaptic transmission in the spinal cord dorsal horn (DH) has emerged as an important contributor to pain pathology. Mechanisms that underlie LTP of spinal DH neurons include changes in the numbers, activity, and properties of ionotropic glutamate receptors (AMPA and NMDA receptors) and of voltage-gated Ca2+ channels. Here, we review the roles and mechanisms of these channels in the induction and expression of spinal DH LTP, and we present this within the framework of the anatomical organization and synaptic circuitry of the spinal DH. Moreover, we compare synaptic plasticity in the spinal DH with classical LTP described for hippocampal synapses.
Collapse
|
41
|
Fisher JL, Mott DD. Modulation of homomeric and heteromeric kainate receptors by the auxiliary subunit Neto1. J Physiol 2013; 591:4711-24. [PMID: 23798491 DOI: 10.1113/jphysiol.2013.256776] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The ionotropic glutamate receptors are primary mediators of fast excitatory neurotransmission, and their properties are determined both by their subunit composition and their association with auxiliary subunits. The neuropilin and tolloid-like 1 and 2 proteins (Neto1 and Neto2) have been recently identified as auxiliary subunits for kainate-type glutamate receptors. Heteromeric kainate receptors (KARs) can be assembled from varying combinations of low-affinity (GluK1-GluK3) and high-affinity (GluK4-GluK5) subunits. To better understand the functional impact of auxiliary subunits on KARs, we examined the effect of Neto1 on the responses of recombinant homomeric and heteromeric KARs to varying concentrations of glutamate. We found that co-expression of Neto1 with homomeric GluK2 receptors had a small effect on sensitivity of the receptors to glutamate, but decreased the onset of desensitization while speeding recovery from desensitization. In the absence of Neto1, addition of GluK5 subunits to form GluK2/GluK5 heteromeric receptors slowed the onset of desensitization at low glutamate concentrations, compared with GluK2 homomers. Co-expression of Neto1 with GluK2/GluK5 receptors further enhanced these effects, essentially eliminating desensitization at μm glutamate concentrations without altering the EC50 for activation by glutamate. In addition, a prominent rebound current was observed upon removal of the agonist. The rate of recovery from desensitization was increased to the same degree by Neto1 for both homomeric GluK2 and heteromeric GluK2/GluK5 receptors. Expression of Neto1 with GluK1/GluK5, GluK3/GluK5 or GluK2/GluK4 receptors produced qualitatively similar effects on whole-cell currents, suggesting that the impact of Neto1 on the desensitization properties of heteromeric receptors was not subunit dependent. These results provide greater insight into the functional effects of the auxiliary subunit Neto1 on both homomeric and heteromeric KARs. Alteration of the characteristics of desensitization at both sub-maximal and saturating glutamate concentrations could influence the responsiveness of these receptors to repeated stimuli. As a result, assembly of KARs with the Neto auxiliary subunits could change the kinetic properties of the neuronal response to glutamatergic input.
Collapse
Affiliation(s)
- Janet L Fisher
- J. L. Fisher: USC-School of Medicine, Department of Pharmacology, Physiology and Neuroscience, 6439 Garners Ferry Road, Columbia, SC 29209, USA.
| | | |
Collapse
|
42
|
Andrade-Talavera Y, Duque-Feria P, Sihra TS, Rodríguez-Moreno A. Pre-synaptic kainate receptor-mediated facilitation of glutamate release involves PKA and Ca(2+) -calmodulin at thalamocortical synapses. J Neurochem 2013; 126:565-78. [PMID: 23692284 DOI: 10.1111/jnc.12310] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/24/2013] [Accepted: 05/17/2013] [Indexed: 12/01/2022]
Abstract
We have investigated the mechanisms underlying the facilitatory modulation mediated by kainate receptor (KAR) activation in the cortex, using isolated nerve terminals (synaptosomes) and slice preparations. In cortical nerve terminals, kainate (KA, 100 μM) produced an increase in 4-aminopyridine (4-AP)-evoked glutamate release. In thalamocortical slices, KA (1 μM) produced an increase in the amplitude of evoked excitatory post-synaptic currents (eEPSCs) at synapses established between thalamic axon terminals from the ventrobasal nucleus onto stellate neurons of L4 of the somatosensory cortex. In both, synaptosomes and slices, the effect of KA was antagonized by 6-cyano-7-nitroquinoxaline-2,3-dione, and persisted after pre-treatment with a cocktail of antagonists of other receptors whose activation could potentially have produced facilitation of release indirectly. Mechanistically, the observed effects of KA appear to be congruent in synaptosomal and slice preparations. Thus, the facilitation by KA of synaptosomal glutamate release and thalamocortical synaptic transmission were suppressed by the inhibition of protein kinase A and occluded by the stimulation of adenylyl cyclase. Dissecting this G-protein-independent regulation further in thalamocortical slices, the KAR-mediated facilitation of synaptic transmission was found to be sensitive to the block of Ca(2+) permeant KARs by philanthotoxin. Intriguingly, the synaptic facilitation was abrogated by depletion of intracellular Ca(2+) stores by thapsigargin, or inhibition of Ca(2+) -induced Ca(2+) -release by ryanodine. Thus, the KA-mediated modulation was contingent on both Ca(2+) entry through Ca(2+) -permeable KARs and liberation of intracellular Ca(2+) stores. Finally, sensitivity to W-7 indicated that the increased cytosolic [Ca(2+) ] underpinning KAR-mediated regulation of synaptic transmission at thalamocortical synapses, requires downstream activation of calmodulin. We conclude that neocortical pre-synaptic KARs mediate the facilitation of glutamate release and synaptic transmission by a Ca(2+) -calmodulin dependent activation of an adenylyl cyclase/cAMP/protein kinase A signalling cascade, independent of G-protein involvement.
Collapse
Affiliation(s)
- Yuniesky Andrade-Talavera
- Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain
| | | | | | | |
Collapse
|
43
|
Ruiz AJ, Kullmann DM. Ionotropic receptors at hippocampal mossy fibers: roles in axonal excitability, synaptic transmission, and plasticity. Front Neural Circuits 2013; 6:112. [PMID: 23316138 PMCID: PMC3540408 DOI: 10.3389/fncir.2012.00112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/10/2012] [Indexed: 11/30/2022] Open
Abstract
Dentate granule cells process information from the enthorinal cortex en route to the hippocampus proper. These neurons have a very negative resting membrane potential and are relatively silent in the slice preparation. They are also subject to strong feed-forward inhibition. Their unmyelinated axon or mossy fiber ramifies extensively in the hilus and projects to stratum lucidum where it makes giant en-passant boutons with CA3 pyramidal neurons. There is compelling evidence that mossy fiber boutons express presynaptic GABAA receptors, which are commonly found in granule cell dendrites. There is also suggestive evidence for the presence of other ionotropic receptors, including glycine, NMDA, and kainate receptors, in mossy fiber boutons. These presynaptic receptors have been proposed to lead to mossy fiber membrane depolarization. How this phenomenon alters the excitability of synaptic boutons, the shape of presynaptic action potentials, Ca2+ influx and neurotransmitter release has remained elusive, but high-resolution live imaging of individual varicosities and direct patch-clamp recordings have begun to shed light on these phenomena. Presynaptic GABAA and kainate receptors have also been reported to facilitate the induction of long-term potentiation at mossy fiber—CA3 synapses. Although mossy fibers are highly specialized, some of the principles emerging at this connection may apply elsewhere in the CNS.
Collapse
Affiliation(s)
- Arnaud J Ruiz
- Department of Pharmacology, UCL School of Pharmacy London, UK
| | | |
Collapse
|
44
|
Dancing partners at the synapse: auxiliary subunits that shape kainate receptor function. Nat Rev Neurosci 2012; 13:675-86. [PMID: 22948074 DOI: 10.1038/nrn3335] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Kainate receptors are a family of ionotropic glutamate receptors whose physiological roles differ from those of other subtypes of glutamate receptors in that they predominantly serve as modulators, rather than mediators, of synaptic transmission. Neuronal kainate receptors exhibit unusually slow kinetic properties that have been difficult to reconcile with the behaviour of recombinant kainate receptors. Recently, however, the neuropilin and tolloid-like 1 (NETO1) and NETO2 proteins were identified as auxiliary kainate receptor subunits that shape both the biophysical properties and synaptic localization of these receptors.
Collapse
|
45
|
Bhangoo SK, Swanson GT. Kainate receptor signaling in pain pathways. Mol Pharmacol 2012; 83:307-15. [PMID: 23095167 DOI: 10.1124/mol.112.081398] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Receptors and channels that underlie nociceptive signaling constitute potential sites of intervention for treatment of chronic pain states. The kainate receptor family of glutamate-gated ion channels represents one such candidate set of molecules. They have a prominent role in modulation of excitatory signaling between sensory and spinal cord neurons. Kainate receptors are also expressed throughout central pain neuraxis, where their functional contributions to neural integration are less clearly defined. Pharmacological inhibition or genetic ablation of kainate receptor activity reduces pain behaviors in a number of animal models of chronic pain, and small clinical trials have been conducted using several orthosteric antagonists. This review will cover kainate receptor function and participation in pain signaling as well as the pharmacological studies supporting further consideration as potential targets for therapeutic development.
Collapse
Affiliation(s)
- Sonia K Bhangoo
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
46
|
Abstract
X-ray crystal structures for the soluble amino-terminal and ligand-binding domains of glutamate receptor ion channels, combined with a 3.6-Å-resolution structure of the full-length AMPA receptor GluA2 homotetramer, provide unique insights into the mechanisms of the assembly and function of glutamate receptor ion channels. Increasingly sophisticated biochemical, computational, and electrophysiological experiments are beginning to reveal the mechanism of action of partial agonists and suggest new models for the mechanism of action of allosteric modulators. Newly identified NMDA receptor ligands acting at novel sites offer hope for the development of subtype-selective modulators. The many unresolved issues include the role of the amino-terminal domain in AMPA receptor signaling and the mechanisms by which auxiliary proteins regulate receptor activity. The structural basis for ion permeation and ion channel block also remain areas of uncertainty, and despite substantial progress, molecular dynamics simulations have yet to reveal how glutamate binding opens the ion channel pore.
Collapse
Affiliation(s)
- Janesh Kumar
- Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, NICHD, NIH, DHHS, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
47
|
Abstract
Ionotropic glutamate receptors assemble as homo- or heterotetramers. One well-studied heteromeric complex is formed by the kainate receptor subunits GluK2 and GluK5. Retention motifs prevent trafficking of GluK5 homomers to the plasma membrane, but coassembly with GluK2 yields functional heteromeric receptors. Additional control over GluK2/GluK5 assembly seems to be exerted by the aminoterminal domains, which preferentially assemble into heterodimers as isolated domains. However,the stoichiometry of the full-length GluK2/GluK5 receptor complex has yet to be determined, as is the case for all non-NMDA glutamate receptors. Here, we address this question, using a single-molecule imaging technique that enables direct counting of the number of each GluK subunit type in homomeric and heteromeric receptors in the plasma membranes of live cells. We show that GluK2 and GluK5 assemble with 2:2 stoichiometry. This is an important step toward understanding the assembly mechanism, architecture, and functional consequences of heteromer formation in ionotropic glutamate receptors.
Collapse
Affiliation(s)
- Andreas Reiner
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| | - Ryan J. Arant
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| | - Ehud Y. Isacoff
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
48
|
|
49
|
Leuze C, Kimura Y, Kershaw J, Shibata S, Saga T, Chuang KH, Shimoyama I, Aoki I. Quantitative measurement of changes in calcium channel activity in vivo utilizing dynamic manganese-enhanced MRI (dMEMRI). Neuroimage 2011; 60:392-9. [PMID: 22227885 DOI: 10.1016/j.neuroimage.2011.12.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/24/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022] Open
Abstract
The ability of manganese ions (Mn(2+)) to enter cells through calcium ion (Ca(2+)) channels has been used for depolarization dependent brain functional imaging with manganese-enhanced MRI (MEMRI). The purpose of this study was to quantify changes to Mn(2+) uptake in rat brain using a dynamic manganese-enhanced MRI (dMEMRI) scanning protocol with the Patlak and Logan graphical analysis methods. The graphical analysis was based on a three-compartment model describing the tissue and plasma concentration of Mn. Mn(2+) uptake was characterized by the total distribution volume of manganese (Mn) inside tissue (V(T)) and the unidirectional influx constant of Mn(2+) from plasma to tissue (K(i)). The measurements were performed on the anterior (APit) and posterior (PPit) parts of the pituitary gland, a region with an incomplete blood brain barrier. Modulation of Ca(2+) channel activity was performed by administration of the stimulant glutamate and the inhibitor verapamil. It was found that the APit and PPit showed different Mn(2+) uptake characteristics. While the influx of Mn(2+) into the PPit was reversible, Mn(2+) was found to be irreversibly trapped in the APit during the course of the experiment. In the PPit, an increase of Mn(2+) uptake led to an increase in V(T) (from 2.8±0.3 ml/cm(3) to 4.6±1.2 ml/cm(3)) while a decrease of Mn(2+) uptake corresponded to a decrease in V(T) (from 2.8±0.3 ml/cm(3) to 1.4±0.3 ml/cm(3)). In the APit, an increase of Mn(2+) uptake led to an increase in K(i) (from 0.034±0.009 min(-1) to 0.049±0.012 min(-1)) while a decrease of Mn(2+) uptake corresponded to a decrease in K(i) (from 0.034±0.009 min(-1) to 0.019±0.003 min(-1)). This work demonstrates that graphical analysis applied to dMEMRI data can quantitatively measure changes to Mn(2+) uptake following modulation of neural activity.
Collapse
Affiliation(s)
- Christoph Leuze
- Molecular Imaging Centre, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Fisher JL, Mott DD. Distinct functional roles of subunits within the heteromeric kainate receptor. J Neurosci 2011; 31:17113-22. [PMID: 22114280 PMCID: PMC3237056 DOI: 10.1523/jneurosci.3685-11.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/16/2011] [Accepted: 10/03/2011] [Indexed: 11/21/2022] Open
Abstract
Kainate receptors (KARs) have been implicated in a number of neurological disorders, including epilepsy. KARs are tetrameric, composed of a combination of GluK1-GluK5 subunits. We examined the contribution of GluK2 and GluK5 subunits to activation and desensitization of the heteromeric receptor. Heteromeric GluK2/K5 receptors expressed in HEK-293T cells showed markedly higher glutamate sensitivity than GluK2 homomers and did not desensitize at low glutamate concentrations. Mutation of residue E738 in GluK2 substantially lowered its glutamate sensitivity. However, heteromeric KARs containing this mutant GluK2 [GluK2(E738D)] assembled with wild-type GluK5 showed no change in glutamate EC(50) compared with wild-type heteromeric KARs. Instead, higher concentrations of glutamate were required to produce desensitization. This suggested that, within the heteromeric receptor, glutamate binding to the high-affinity GluK5 subunit alone was sufficient for channel activation but not desensitization, whereas agonist binding to the low-affinity GluK2 subunit was not necessary to open the channel but instead caused the channel to enter a closed, desensitized state. To test this hypothesis in wild-type receptors, we used the competitive antagonist kynurenate, which has higher affinity for the GluK2 than the GluK5 subunit. Coapplication of kynurenate with glutamate to heteromeric receptors reduced the onset of desensitization without affecting the peak current response, consistent with our hypothesis. Our results suggest that GluK2 and GluK5 subunits can be individually activated within the heteromeric receptor and that these subunits serve dramatically different functional roles.
Collapse
Affiliation(s)
- Janet L. Fisher
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29208
| | - David D. Mott
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29208
| |
Collapse
|