1
|
Scekic-Zahirovic J, Oussini HE, Mersmann S, Drenner K, Wagner M, Sun Y, Allmeroth K, Dieterlé S, Sinniger J, Dirrig-Grosch S, René F, Dormann D, Haass C, Ludolph AC, Lagier-Tourenne C, Storkebaum E, Dupuis L. Motor neuron intrinsic and extrinsic mechanisms contribute to the pathogenesis of FUS-associated amyotrophic lateral sclerosis. Acta Neuropathol 2017; 133:887-906. [PMID: 28243725 PMCID: PMC5427169 DOI: 10.1007/s00401-017-1687-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/08/2017] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
Motor neuron-extrinsic mechanisms have been shown to participate in the pathogenesis of ALS-SOD1, one familial form of amyotrophic lateral sclerosis (ALS). It remains unclear whether such mechanisms contribute to other familial forms, such as TDP-43 and FUS-associated ALS. Here, we characterize a single-copy mouse model of ALS-FUS that conditionally expresses a disease-relevant truncating FUS mutant from the endogenous murine Fus gene. We show that these mice, but not mice heterozygous for a Fus null allele, develop similar pathology as ALS-FUS patients and a mild motor neuron phenotype. Most importantly, CRE-mediated rescue of the Fus mutation within motor neurons prevented degeneration of motor neuron cell bodies, but only delayed appearance of motor symptoms. Indeed, we observed downregulation of multiple myelin-related genes, and increased numbers of oligodendrocytes in the spinal cord supporting their contribution to behavioral deficits. In all, we show that mutant FUS triggers toxic events in both motor neurons and neighboring cells to elicit motor neuron disease.
Collapse
|
2
|
Kulbatski I, Mothe AJ, Parr AM, Kim H, Kang CE, Bozkurt G, Tator CH. Glial precursor cell transplantation therapy for neurotrauma and multiple sclerosis. ACTA ACUST UNITED AC 2008; 43:123-76. [PMID: 18706353 DOI: 10.1016/j.proghi.2008.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Accepted: 04/07/2008] [Indexed: 12/18/2022]
Abstract
Traumatic injury to the brain or spinal cord and multiple sclerosis (MS) share a common pathophysiology with regard to axonal demyelination. Despite advances in central nervous system (CNS) repair in experimental animal models, adequate functional recovery has yet to be achieved in patients in response to any of the current strategies. Functional recovery is dependent, in large part, upon remyelination of spared or regenerating axons. The mammalian CNS maintains an endogenous reservoir of glial precursor cells (GPCs), capable of generating new oligodendrocytes and astrocytes. These GPCs are upregulated following traumatic or demyelinating lesions, followed by their differentiation into oligodendrocytes. However, this innate response does not adequately promote remyelination. As a result, researchers have been focusing their efforts on harvesting, culturing, characterizing, and transplanting GPCs into injured regions of the adult mammalian CNS in a variety of animal models of CNS trauma or demyelinating disease. The technical and logistic considerations for transplanting GPCs are extensive and crucial for optimizing and maintaining cell survival before and after transplantation, promoting myelination, and tracking the fate of transplanted cells. This is especially true in trials of GPC transplantation in combination with other strategies such as neutralization of inhibitors to axonal regeneration or remyelination. Overall, such studies improve our understanding and approach to developing clinically relevant therapies for axonal remyelination following traumatic brain injury (TBI) or spinal cord injury (SCI) and demyelinating diseases such as MS.
Collapse
Affiliation(s)
- Iris Kulbatski
- Krembil Neuroscience Centre, Toronto Western Research Institute, 399 Bathurst Street, McLaughlin Pavilion #12-423, Toronto, Ontario, Canada M5T-2S8.
| | | | | | | | | | | | | |
Collapse
|
3
|
Harsan LA, Poulet P, Guignard B, Parizel N, Skoff RP, Ghandour MS. Astrocytic hypertrophy in dysmyelination influences the diffusion anisotropy of white matter. J Neurosci Res 2007; 85:935-44. [PMID: 17278151 DOI: 10.1002/jnr.21201] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effect of a proteolipid protein (PLP) mutation on the developing white matter anisotropy was examined by diffusion tensor magnetic resonance imaging (DT-MRI) in a noninvasive study of a mouse model of Pelizaeus-Merzbacher disease (PMD). The jimpy PLP mutation in mice produces an irreversible dysmyelination in jimpy males, whereas heterozygous females exhibit a transient hypomyelination, as assessed by a longitudinal study of the same mice during development. Modifications of the different individual DT-MRI parameters were highlighted by specific changes in tissue structures caused by the mutation that includes the hypomyelination, axonal abnormalities, and recovery. Astrocytic hypertrophy is a striking cellular event in dysmyelinated jimpy brain, where most axons or bundles of fibers are entirely wrapped by astrocyte cytoplasmic processes, so its influences on DT-MRI parameters in dysmyelination were examined for the first time. DT-MRI data of the jimpy brain were compared with those obtained from dysmyelination of (oligo-TTK) transgenic mice, induced by oligodendrocyte killing, which have a mild astrocyte hypertrophy (Jalabi et al., 2005), and from recovering jimpy females, which have reduced astrocyte hypertrophy. The unique morphological feature of astrocytes in jimpy males coupled with an increase in the water channel protein aquaporin 4 (AQP4) was found to facilitate the directional water diffusion in the white matter. In addition to the major changes of DT-MRI parameters in the two dysmyelinated mice caused by the myelin loss and axonal modifications, the amplified magnitude of radial and axial diffusions in jimpy males was attributed principally to the strongly pronounced astrocyte hypertrophy.
Collapse
Affiliation(s)
- Laura A Harsan
- UMR 7004 CNRS/ULP, Institut de Physique Biologique, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
4
|
Petrov T, Kreipke C, Alilain W, Nantwi KD. Differential expression of adenosine A1 and A2A receptors after upper cervical (C2) spinal cord hemisection in adult rats. J Spinal Cord Med 2007; 30:331-7. [PMID: 17853654 PMCID: PMC2031933 DOI: 10.1080/10790268.2007.11753948] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND In an animal model of spinal cord injury, a latent respiratory motor pathway can be pharmacologically activated via adenosine receptors to restore respiratory function after cervical (C2) spinal cord hemisection that paralyzes the hemidiaphragm ipsilateral to injury. Although spinal phrenic motoneurons immunopositive for adenosine receptors have been demonstrated (C3-C5), it is unclear if adenosine receptor protein levels are altered after C2 hemisection and theophylline administration. OBJECTIVE To assess the effects of C2 spinal cord hemisection and theophylline administration on the expression of adenosine receptor proteins. METHODS Adenosine A1 and A2A receptor protein levels were assessed in adult rats classified as (a) noninjured and theophylline treated, (b) C2 hemisected, (c) C2 hemisected and administered theophylline orally (3x daily) for 3 days only, and (d) C2 hemisected and administered theophylline (3x daily for 3 days) and assessed 12 days after drug administration. Assessment of A1 protein levels was carried out via immunohistochemistry and A2A protein levels by densitometry. RESULTS Adenosine A1 protein levels decreased significantly (both ipsilateral and contralateral to injury) after C2 hemisection; however, the decrease was attenuated in hemisected and theophylline-treated animals. Attenuation in adenosine A1 receptor protein levels persisted when theophylline administration was stopped for 12 days prior to assessment. Adenosine A2A protein levels were unchanged by C2 hemisection; however, theophylline reduced the levels within the phrenic motoneurons. Furthermore, the decrease in A2A levels persisted 12 days after theophylline was withdrawn. CONCLUSION Our findings suggest that theophylline mitigates the effects of C2 hemisection by attenuating the C2 hemisection-induced decrease in A1 protein levels. Furthermore, A2A protein levels are unaltered by C2 hemisection but decrease after continuous or interrupted theophylline administration. The effects on protein levels may underlie the stimulant actions of theophylline.
Collapse
Affiliation(s)
- Theodor Petrov
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan
| | - Christian Kreipke
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan
| | - Warren Alilain
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan
| | - Kwaku D Nantwi
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan
- Please address correspondence to Kwaku D. Nantwi, PhD, Wayne State University, Department of Anatomy and Cell Biology, 8326 Scott Hall, 540 East Canfield, Detroit, MI 48202; phone: 313.577.7925; fax: 313.577.3125 (e-mail: )
| |
Collapse
|
5
|
Jalabi W, Boehm N, Grucker D, Ghandour MS. Recovery of myelin after induction of oligodendrocyte cell death in postnatal brain. J Neurosci 2006; 25:2885-94. [PMID: 15772348 PMCID: PMC6725149 DOI: 10.1523/jneurosci.2748-04.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A transgenic mouse line (Oligo-TTK) was established to monitor oligodendrocyte cell death and myelin formation in the CNS. The expression of a conditionally toxic gene, the herpes simplex virus-1 thymidine kinase (HSV1-TK), was made under control of the MBP (myelin basic protein) gene promoter. A truncated form of the HSV1-TK (TTK) gene was used to avoid both bystander effect resulting from leaking in thymidine kinase activity and sterility in transgenic males observed in previous transgenic mice. The transgene was expressed in the CNS with a restricted localization in oligodendrocytes. Oligodendrocyte proliferation and myelin formation are therefore tightly controlled experimentally by administration of ganciclovir (GCV) via the induction of oligodendrocyte cell death. The most severe and irreversible hypomyelination was obtained when GCV was given daily from postnatal day 1 (P1) to P30. Oligodendrocyte plasticity and myelin recovery were analyzed in another phenotype generated by GCV treatment from P1 to P15. In this model, after dysmyelination, an apparent normal behavior was restored with no visible pathological symptoms by P30. Proliferating cells, which may be implicated in myelin repair in this model, are detected primarily in myelin tracts expressing the oligodendrocyte phenotype. Therefore, the endogenous potential of oligodendrocytes to remyelinate was clearly demonstrated in the mice of this study.
Collapse
MESH Headings
- Age Factors
- Analysis of Variance
- Animals
- Animals, Newborn
- Antiviral Agents/pharmacology
- Brain/cytology
- Brain/growth & development
- Bromodeoxyuridine/metabolism
- Cell Death/drug effects
- Cell Death/physiology
- Demyelinating Diseases/chemically induced
- Demyelinating Diseases/metabolism
- Disease Models, Animal
- Ganciclovir/pharmacology
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/genetics
- Gene Expression Regulation, Developmental/physiology
- Herpesvirus 1, Human/physiology
- Immunohistochemistry/methods
- In Situ Hybridization/methods
- Male
- Mice
- Mice, Transgenic
- Microscopy, Electron, Transmission/methods
- Myelin Basic Protein/genetics
- Myelin Basic Protein/metabolism
- Myelin Sheath/metabolism
- Oligodendroglia/drug effects
- Oligodendroglia/physiology
- Promoter Regions, Genetic/physiology
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Thymidine Kinase/genetics
Collapse
Affiliation(s)
- Walid Jalabi
- Institut de Physique Biologique, Unité Mixte de Recherche 7004, Université Louis Pasteur/Centre National de la Recherche Scientifique, Faculté de Médecine, 67085 Strasbourg, France
| | | | | | | |
Collapse
|
6
|
Franco-Pons N, Virgos C, Vogel WF, Ureña JM, Soriano E, del Rio JA, Vilella E. Expression of discoidin domain receptor 1 during mouse brain development follows the progress of myelination. Neuroscience 2006; 140:463-75. [PMID: 16603319 DOI: 10.1016/j.neuroscience.2006.02.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 02/06/2006] [Accepted: 02/10/2006] [Indexed: 11/27/2022]
Abstract
Discoidin domain receptor 1 is a tyrosine kinase receptor expressed in a variety of tissues including the brain. This study describes mRNA and protein expression of discoidin domain receptor 1 in mouse brain during development and provides new insights into its role during gliogenesis and neurogenesis. We performed in situ hybridization for discoidin domain receptor 1 in mouse brains at embryonic day 18, postnatal days 5, 9, 15, 21 and adulthood and observed a diffuse pattern in the proliferative areas during embryogenesis. From postnatal day 5 onwards, a defined cellular expression pattern of discoidin domain receptor 1 was observed, mainly located in white matter tracts and following a spatio-temporal pattern that overlapped the progress of myelination. Next, we performed double-labeling reactions (in situ hybridization followed by immunohistochemistry) that confirmed that discoidin domain receptor 1 was expressed by mature oligodendrocytes. We observed that cells positive for discoidin domain receptor 1 also expressed carnosine and anti-adenomatous polyposis coli, two mature oligodendrocyte markers. Based on the localization of discoidin domain receptor 1 specifically in the white matter fiber tracts during postnatal development, we suggest that discoidin domain receptor 1 participates in the development and maintenance of the myelin sheath.
Collapse
Affiliation(s)
- N Franco-Pons
- Unitat de Psiquiatria i Psicologia Mèdica, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, and Departament de Formació i Investigació, Hospital Psiquiàtric Universitari Institut Pere Mata, Reus, Spain
| | | | | | | | | | | | | |
Collapse
|
7
|
Marin-Husstege M, Muggironi M, Raban D, Skoff RP, Casaccia-Bonnefil P. Oligodendrocyte progenitor proliferation and maturation is differentially regulated by male and female sex steroid hormones. Dev Neurosci 2005; 26:245-54. [PMID: 15711064 DOI: 10.1159/000082141] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Accepted: 07/07/2004] [Indexed: 11/19/2022] Open
Abstract
Using primary cultures of oligodendrocyte progenitors isolated from male and female neonatal rodent brains, we observed more oligodendrocytes in female-derived compared to male-derived cultures. To determine whether the observed differences were due to a differential effect of sex hormones on proliferation, we treated cultures with increasing doses of 17beta-estradiol, testosterone or progesterone and labeled cells with bromodeoxyuridine to identify cells in S phase. Treatment with 17beta-estradiol, but not progesterone or testosterone, delayed the exit of oligodendrocyte progenitor cells from the cell cycle. In addition, 17beta-estradiol treatment enhanced membrane sheet formation, while progesterone increased cellular branching. Interestingly, the estrogen modulator tamoxifen mimicked the effect of 17beta-estradiol on cell cycle exit, but not on membrane formation. Immunocytochemical localization of estrogen receptors (ERs) showed ERbeta mainly localized to the cytoplasm of oligodendrocytes, suggesting that the effect of 17beta-estradiol on membrane formation could be mediated by interaction with this receptor. We conclude that sex steroids differentially regulate oligodendrocyte progenitor number and myelin formation, possibly contributing to gender-specific differences in repair.
Collapse
|
8
|
Henmi C, Sawa H, Iwata H, Orba Y, Tanaka S, Nagashima K. Establishment of an immunoscreening system using recombinant VP1 protein for the isolation of a monoclonal antibody that blocks JC virus infection. Biochem Biophys Res Commun 2005; 327:242-51. [PMID: 15629455 PMCID: PMC7117536 DOI: 10.1016/j.bbrc.2004.11.158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Indexed: 11/24/2022]
Abstract
Polyomavirus JC (JCV) infection causes the fatal human demyelinating disease, progressive multifocal leukoencephalopathy. Although the initial interaction of JCV with host cells occurs through direct binding of the major viral capsid protein (VP1) with cell-surface molecules possessing sialic acid, these molecules have not yet been identified. In order to isolate monoclonal antibodies which inhibit attachment of JCV, we established an immunoscreening system using virus-like particles consisting of the VP1. Using this system, among monoclonal antibodies against the cell membrane fraction from JCV-permissive human neuroblastoma IMR-32 cells, we isolated a monoclonal antibody designated as 24D2 that specifically inhibited attachment and infection of JCV to IMR-32 cells. The antibody 24D2 recognized a single molecule of around 60 kDa in molecular weight in the IMR-32 membrane fraction. Immunohistochemical staining with 24D2 demonstrated immunoreactivity in the cell membrane of JCV-permissive cell lines and glial cells of the human brain. These results suggested that the molecule recognized by 24D2 plays a role in JCV infection, and that it might participate as a receptor or a co-receptor in JCV attachment and entry into the cells.
Collapse
Affiliation(s)
- Chizuka Henmi
- Laboratory of Molecular and Cellular Pathology, Hokkaido University School of Medicine, CREST, JST, Sapporo 060-8638, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Zaidi AU, Bessert DA, Ong JE, Xu H, Barks JDE, Silverstein FS, Skoff RP. New oligodendrocytes are generated after neonatal hypoxic-ischemic brain injury in rodents. Glia 2004; 46:380-90. [PMID: 15095368 DOI: 10.1002/glia.20013] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neonatal hypoxic-ischemic (HI) white matter injury is a major contributor to chronic neurological dysfunction. Immature oligodendrocytes (OLGs) are highly vulnerable to HI injury. As little is known about in vivo OLG repair mechanisms in neonates, we studied whether new OLGs are generated after HI injury in P7 rats. Rats received daily BrdU injections at P12-14 or P21-22 and sacrificed at P14 to study the level of cell proliferation or at P35 to permit dividing OLG precursors to differentiate. In P14 HI-injured animals, the number of BrdU+ cells in the injured hemisphere is consistently greater than controls. At P35, sections were double-labeled for BrdU and markers for OLGs, astrocytes, and microglia. Double-labeled BrdU+/myelin basic protein+ and BrdU+/carbonic anhydrase+ OLGs are abundant in the injured striatum, corpus callosum, and the infarct core. Quantitative studies show four times as many OLGs are generated from P21-35 in HI corpora callosa than controls. Surprisingly, the infarct core contains many newly generated OLGs in addition to hypertrophied astrocytes and activated microglia. These glia and non-CNS cells may stimulate OLG progenitor proliferation or induce their migration. At P35, astrogliosis and microgliosis are dramatic ipsilaterally but only a few microglia and some astrocytes are BrdU+. This finding indicates microglial and astrocytic hyperplasia occurs shortly after HI but before the P21 BrdU injections. Although the neonatal brain undergoes massive cell death and atrophy the first week after injury, it retains the potential to generate new OLGs up to 4 weeks after injury within and surrounding the infarct.
Collapse
Affiliation(s)
- Aliya U Zaidi
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Edgar JM, Anderson TJ, Dickinson PJ, Barrie JA, McCulloch MC, Nave KA, Griffiths IR. Survival of, and competition between, oligodendrocytes expressing different alleles of the Plp gene. J Cell Biol 2002; 158:719-29. [PMID: 12177040 PMCID: PMC2174021 DOI: 10.1083/jcb.200202124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations in the X-linked Plp gene lead to dysmyelinating phenotypes and oligodendrocyte cell death. Here, we exploit the X inactivation phenomenon to show that a hierarchy exists in the influence of different mutant Plp alleles on oligodendrocyte survival. We used compound heterozygote mice to study the long-term fate of oligodendrocytes expressing either the jimpy or rumpshaker allele against a background of cells expressing a Plp-null allele. Although mutant and null oligodendrocytes were generated in equal numbers, the proportion expressing the mutant allele subsequently declined, but whereas those expressing the rumpshaker allele formed a reduced but stable population, the number of jimpy cells fell progressively. The age of decline in the jimpy cells in different regions of the CNS correlated with the temporal sequence of myelination. In compound heterozygotes expressing rumpshaker and jimpy alleles, oligodendrocytes expressing the former predominated and were more abundant than when the rumpshaker and null alleles were in competition. Thus, oligodendrocyte survival is not determined solely by cell intrinsic factors, such as the conformation of the misfolded PLP, but is influenced by neighboring cells, possibly competing for cell survival factors.
Collapse
Affiliation(s)
- J M Edgar
- Applied Neurobiology Group, Institute of Comparative Medicine, University of Glasgow, Bearsden, Glasgow G61 1QH, Scotland
| | | | | | | | | | | | | |
Collapse
|
11
|
Jamin N, Junier MP, Grannec G, Cadusseau J. Two temporal stages of oligodendroglial response to excitotoxic lesion in the gray matter of the adult rat brain. Exp Neurol 2001; 172:17-28. [PMID: 11681837 DOI: 10.1006/exnr.2001.7752] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Excitotoxic lesions in the gray matter induce profuse demyelination of passage and afferent fibers in areas of neuronal loss, independent of Wallerian degeneration. The time course of this phenomenon, which extends over weeks after the excitotoxin injection, suggests that demyelination is not related only to a direct effect of the toxin. In order to define mechanisms at work, a parallel study of myelin and oligodendrocytes was carried out following kainate injections into the adult rat thalamus. Within the 1st day postlesion, myelin alteration appeared throughout the area exhibiting neuronal loss, while the number of oligodendrocytes fell by 45%. No apoptotic oligodendrocytes were identified at that time. Over the following 2 days, there was no further loss of myelin and oligodendrocytes, but there was an increase in the number of oligodendrocytes displaying typical signs of apoptosis as revealed with TUNEL-end-labeled nuclei, Hoechst-labeled condensed chromatin bodies, or bax immunoreactivity. This resulted in a second, progressive loss of both myelin and oligodendrocytes leading to their almost complete disappearance 2 weeks postlesion. These results demonstrate two temporal stages of oligodendroglial cell death. The excitotoxin injection resulted in the rapid destruction of a first oligodendroglial population, most probably by necrosis. A second population died in a delayed manner from apoptosis. This second wave of death coincided with an activated microglia/macrophage invasion of the lesion, suggesting that delayed oligodendroglial death results from toxic microglia/macrophage effects. In addition, the longest surviving oligodendrocytes were located next to reactive astrocytes, suggesting the existence of trophic interactions between these two glial populations.
Collapse
Affiliation(s)
- N Jamin
- Faculté de Médecine, INSERM U421, 8 Rue du Général Sarrail, 94010 Créteil Cedex, France
| | | | | | | |
Collapse
|
12
|
Feutz AC, Pham-Dinh D, Allinquant B, Miehe M, Ghandour MS. An immortalized jimpy oligodendrocyte cell line: defects in cell cycle and cAMP pathway. Glia 2001; 34:241-52. [PMID: 11360297 DOI: 10.1002/glia.1058] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Normal and jimpy oligodendrocytes in secondary cultures were transfected with plasmids containing the SV40 T-antigen gene expressed under the control of the mouse metallothionein-I promoter. Two immortalized stable cell lines, a normal (158N) and jimpy (158JP) cell line, expressed transcripts and proteins of oligodendrocyte markers, including proteolipid protein (PLP), myelin basic protein (MBP), and carbonic anhydrase II (CAII). Galactocerebroside and sulfatide were also detected with immunocytochemistry. Immunoelectron microscopy using gold particles showed that the truncated endogenous jimpy PLP was distributed throughout the cytoplasm and in association with the plasma membrane of cell bodies and processes. The length of the cell cycle in the jimpy oligodendrocytes in the absence of zinc was 31 h, about a 4-h longer cell cycle than the normal line. In the presence of 100 microM zinc, the cell cycle became 3 h shorter for both cell lines, with the jimpy cell cycle duration remaining 4 h longer than the normal line. Interestingly, the jimpy cell line showed a significant deficiency in stimulation via the cAMP pathway. While the level of oligodendrocyte markers (PLP, MBP, and CAII) were significantly increased by dibutyryl cAMP (dbcAMP) treatment in the normal cell line, no changes were observed in the jimpy cell lines. This observation, together with previous results showing jimpy oligodendrocyte's failure to respond to basic fibroblast growth factor (bFGF), suggests a role for PLP in a signal transduction pathway. Jimpy and normal oligodendrocytes transfected with the SV40T antigen gene, driven by the wild-type promoter of mouse metallothionein-I, continue to express properties of oligodendrocytes and therefore provide a powerful model to explore the function of myelin proteins and to dissect the complexity of the jimpy phenotype.
Collapse
Affiliation(s)
- A C Feutz
- CNRS-ER 2072, Institut de Chimie Biologique, Faculté de Médecine, Strasbourg, France
| | | | | | | | | |
Collapse
|
13
|
Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 2001; 81:871-927. [PMID: 11274346 DOI: 10.1152/physrev.2001.81.2.871] [Citation(s) in RCA: 1243] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Oligodendrocytes, the myelin-forming cells of the central nervous system (CNS), and astrocytes constitute macroglia. This review deals with the recent progress related to the origin and differentiation of the oligodendrocytes, their relationships to other neural cells, and functional neuroglial interactions under physiological conditions and in demyelinating diseases. One of the problems in studies of the CNS is to find components, i.e., markers, for the identification of the different cells, in intact tissues or cultures. In recent years, specific biochemical, immunological, and molecular markers have been identified. Many components specific to differentiating oligodendrocytes and to myelin are now available to aid their study. Transgenic mice and spontaneous mutants have led to a better understanding of the targets of specific dys- or demyelinating diseases. The best examples are the studies concerning the effects of the mutations affecting the most abundant protein in the central nervous myelin, the proteolipid protein, which lead to dysmyelinating diseases in animals and human (jimpy mutation and Pelizaeus-Merzbacher disease or spastic paraplegia, respectively). Oligodendrocytes, as astrocytes, are able to respond to changes in the cellular and extracellular environment, possibly in relation to a glial network. There is also a remarkable plasticity of the oligodendrocyte lineage, even in the adult with a certain potentiality for myelin repair after experimental demyelination or human diseases.
Collapse
Affiliation(s)
- N Baumann
- Institut National de la Santé et de la Recherche Médicale U. 495, Biology of Neuron-Glia Interactions, Salpêtrière Hospital, Paris, France.
| | | |
Collapse
|
14
|
Southwood C, Gow A. Molecular pathways of oligodendrocyte apoptosis revealed by mutations in the proteolipid protein gene. Microsc Res Tech 2001; 52:700-8. [PMID: 11276122 DOI: 10.1002/jemt.1054] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A decade after the genetic link was established between mutations in the proteolipid protein gene and two leukodystrophies, Pelizaeus-Merzbacher disease and spastic paraplegia, the molecular mechanisms underlying pathogenesis are beginning to come to light. Data from animal models of these diseases suggest that the absence of proteolipid protein gene products in the central nervous system confers a relatively mild phenotype while missense mutations in and duplications of this gene give rise to mild or severe forms of disease. Previously, we have interpreted the disease process in terms of the accumulation of the mutant proteins in the secretory pathway and, herein, we review the evidence in favor of such a cellular mechanism. Furthermore, on the basis of recent data we suggest that the unfolded protein response may be involved in the pathogenesis of Pelizaeus-Merzbacher disease and spastic paraplegia through a kinase signaling cascade that links the accumulation of mutant proteins in the endoplasmic reticulum of oligodendrocytes with changes in gene regulation, protein synthesis, and possibly apoptosis.
Collapse
Affiliation(s)
- C Southwood
- Brookdale Center for Developmental and Molecular Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
15
|
Yool DA, Klugmann M, McLaughlin M, Vouyiouklis DA, Dimou L, Barrie JA, McCulloch MC, Nave KA, Griffiths IR. Myelin proteolipid proteins promote the interaction of oligodendrocytes and axons. J Neurosci Res 2001; 63:151-64. [PMID: 11169625 DOI: 10.1002/1097-4547(20010115)63:2<151::aid-jnr1007>3.0.co;2-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although proteolipid protein (PLP) and its DM20 isoform are the major membrane proteins of CNS myelin, their absence causes surprisingly few developmental defects. In comparison, missense mutations of the X-linked Plp gene cause severe dysmyelination. Previous studies have established roles for PLP/DM20 in the formation of the intraperiod line and in maintaining axonal integrity. We now show that a normal number of oligodendrocytes are present in mice lacking PLP/DM20. However, in heterozygous females, which are natural chimeras for X-linked genes, oligodendrocytes lacking PLP/DM20 are in direct competition with wild-type oligodendrocytes that have a distinct advantage. PLP+ oligodendrocytes and PLP+ myelin sheaths make up the greater majority, and this feature is generalised in the CNS throughout life. Moreover, in the absence of PLP/DM20, a proportion of small-diameter axons fails to myelinate, remaining ensheathed but lacking a compact sheath, or show delayed myelination. These findings suggest that PLP/DM20 is also involved in the early stages of axon-oligodendrocyte interaction and wrapping of the axon.
Collapse
Affiliation(s)
- D A Yool
- Applied Neurobiology Group, Department of Veterinary Clinical Studies, University of Glasgow, Bearsden, Glasgow C61 1QH, Scotland
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ghandour MS, Parkkila AK, Parkkila S, Waheed A, Sly WS. Mitochondrial carbonic anhydrase in the nervous system: expression in neuronal and glial cells. J Neurochem 2000; 75:2212-20. [PMID: 11032910 DOI: 10.1046/j.1471-4159.2000.0752212.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Carbonic anhydrase (CA) V is a mitochondrial enzyme that has been reported in several tissues of the gastrointestinal tract. In liver, it participates in ureagenesis and gluconeogenesis by providing bicarbonate ions for two other mitochondrial enzymes: carbamyl phosphate synthetase I and pyruvate carboxylase. This study presents evidence of immunohistochemical localization of CA V in the rodent nervous tissue. Polyclonal rabbit antisera against a polypeptide of 17 C-terminal amino acids of rat CA V and against purified recombinant mouse isozyme were used in western blotting and immunoperoxidase stainings. Immunohistochemistry showed that CA V is expressed in astrocytes and neurons but not in oligodendrocytes, which are rich in CA II, or capillary endothelial cells, which express CA IV on their plasma face. The specificity of the immunohistochemical results was confirmed by western blotting, which identified a major 30-kDa polypeptide band of CA V in mouse cerebral cortex, hippocampus, cerebellum, spinal cord, and sciatic nerve. The expression of CA V in astrocytes and neurons suggests that this isozyme has a cell-specific, physiological role in the nervous system. In astrocytes, CA V may play an important role in gluconeogenesis by providing bicarbonate ions for the pyruvate carboxylase. The neuronal CA V could be involved in the regulation of the intramitochondrial calcium level, thus contributing to the stability of the intracellular calcium concentration. CA V may also participate in bicarbonate ion-induced GABA responses by regulating the bicarbonate homeostasis in neurons, and its inhibition could be the basis of some neurotropic effects of carbonic anhydrase inhibitors.
Collapse
Affiliation(s)
- M S Ghandour
- LNMIC (ER 2072), Institut de Chimie Biologique, Faculté de Médecine, Strasbourg, France
| | | | | | | | | |
Collapse
|
17
|
Baas D, Prüfer K, Ittel ME, Kuchler-Bopp S, Labourdette G, Sarliève LL, Brachet P. Rat oligodendrocytes express the vitamin D(3) receptor and respond to 1,25-dihydroxyvitamin D(3). Glia 2000; 31:59-68. [PMID: 10816607 DOI: 10.1002/(sici)1098-1136(200007)31:1<59::aid-glia60>3.0.co;2-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present study investigates the presence of vitamin D receptor (VDR) in cells of the rat oligodendrocyte (OL) lineage. VDR transcripts were detected by in situ hybridization in a fraction of rat OL in secondary cultures. The VDR protein was shown to be co-localized in cells that are also recognized by an anti-myelin basic protein (MBP) antibody. Likewise, in vivo, VDR-positive cells were found in the brain white matter, such as the internal capsule of the striatum or the corpus callosum but also in the spinal cord. At least part of these positive cells in vivo correspond to OL, since they were co-stained by an anti-carbonic anhydrase II antiserum. Northern blot analyses of the CG-4 OL cell line demonstrated that the VDR transcripts are already found in the O-2A precursors. There was a two-fold increase in the relative abundance of these transcripts in differentiated OL or in type-2 astrocytes. 1, 25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)] increased the pool of transcripts encoding its own receptor, the VDR. The hormone also enhanced the abundance of the mRNA of the nerve growth factor (NGF) and of its low-affinity receptor, the p75(NTR) protein. By contrast, the hormone had no effect on the levels of MBP or proteolipid protein (PLP) mRNA. This finding suggests that unlike retinoic acid (RA) or thyroid hormone, 1,25-(OH)(2)D(3) has no regulatory action on the synthesis of myelin proteins.
Collapse
Affiliation(s)
- D Baas
- Institut de Chimie Biologique, CNRS ER 2072, Faculté de Médecine, Strasbourg, France.
| | | | | | | | | | | | | |
Collapse
|
18
|
Vouyiouklis DA, Barrie JA, Griffiths IR, Thomson CE. A proteolipid protein-specific pre-mRNA (Ppm-1) contains intron 3 and is up-regulated during myelination in the CNS. J Neurochem 2000; 74:940-8. [PMID: 10693924 DOI: 10.1046/j.1471-4159.2000.0740940.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alternative splicing of the precursor for messenger RNA (pre-mRNA) is a common process utilised by higher eukaryotes to modulate gene expression. A single primary transcript may generate several proteins with distinct functions, expressed in tissue-specific, developmental patterns. This article describes an oligodendrocyte-specific pre-mRNA product of proteolipid protein gene (P/p) transcription, which is the precursor for P/p but not Dm20 mRNA in the CNS. This P/p-specific pre-mRNA (Ppm-1) includes the intact intron 3 of the P/p gene. It is first expressed during active myelination, and it localises to the nucleus of oligodendrocytes, in both normal and jimpy (jp) murine CNS. In addition to mouse, Ppm-1 is found also in rat and dog, but not toad or trout. Our work suggests that alternative splicing of the P/p gene primary transcript follows a branching pattern, resulting in the presence of at least one P/p isoform-specific pre-mRNA molecule, Ppm-1. Therefore, Dm20 mRNA may be the product of a divergent set of pre-mRNA splicing events.
Collapse
Affiliation(s)
- D A Vouyiouklis
- Department of Veterinary Clinical Studies, University of Glasgow Veterinary School, Scotland.
| | | | | | | |
Collapse
|
19
|
Lehman DM, Hale DE, Cody JT, Harrison JM, Leach RJ. Molecular, morphometric and functional analyses demonstrate that the growth hormone deficient little mouse is not hypomyelinated. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 116:191-9. [PMID: 10521563 DOI: 10.1016/s0165-3806(99)00081-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To study the effects of naturally occurring growth hormone deficiency type I on CNS myelination, we compared the myelination of brains from little and wild-type littermate mice using molecular, histological, morphometric, and functional analyses. The little mouse produces only 6-8% of normal levels of growth hormone (GH) and approximately 20% of normal circulating levels of insulin-like growth factor 1 (IGF-1). Our data show that the expression of myelin basic protein (MBP) and proteolipid protein (PLP) of the little brain exhibit the same temporal pattern and amount as that of the wild-type brain. Furthermore, the density and size of myelinated axons and the myelin sheath thickness in the corpus callosum, anterior commissure and the optic nerve are comparable in the little and wild-type brains. These regions are reduced in size in the little mouse brain proportionate to the overall reduction in brain size implying a reduction in the total number of neurons. Therefore, it follows that the total myelin content is reduced, but when normalized to brain size, the myelin concentration is unchanged. Myelin staining patterns of whole brains were identical. Moreover, functional analysis of the visual pathway indicated no difference between the little and control mice. These results are inconsistent with previous reports of hypomyelination in the little mouse and suggest that this form of GH deficiency does not adversely affect the myelination process except possibly through neuronal proliferation. However, since axon size and density are maintained, the neuronal growth may conversely be inherently limited by other restricted brain growth.
Collapse
Affiliation(s)
- D M Lehman
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX 78284-7762, USA
| | | | | | | | | |
Collapse
|
20
|
Cuddon PA, Lipsitz D, Duncan ID. Myelin mosaicism and brain plasticity in heterozygous females of a canine X-linked trait. Ann Neurol 1998; 44:771-9. [PMID: 9818933 DOI: 10.1002/ana.410440511] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The shaking (sh) pup, an animal model of Pelizaeus-Merzbacher disease, is characterized by severe central nervous system dysmyelination in affected males, and myelin mosaicism in some female heterozygotes as a result of X-linked inactivation. Heterozygous females develop a tremor of varying severity that usually disappears at 4 to 6 weeks, whereas male hemizygotes have severe, generalized tremor that persists throughout life. We have used these two myelin-deficient models to study the potential for recovery with time as reflected by brainstem auditory evoked responses (BAERs). At set time points, the state of myelination in the trapezoid body was studied microscopically. Sequential BAERs demonstrated consistently prolonged interpeak latencies during the period of gross tremor in heterozygotes, with the trend continuing to a lesser extent after tremor cessation. The random nature of X-linked inactivation resulted in variable myelin mosaicism that was reflected in variations in BAER changes within animals in the same litter. In most heterozygotes, the tremor resolved with time, the BAERs returned to near normal, and myelin mosaicism was lost. In contrast, in the affected males, the severity of tremor and lack of recovery was demonstrated by consistent abnormalities in BAER waves at all times studied, and severe and persistent myelin deficiency in the trapezoid body. These findings show that despite the normal tightly programmed temporal development of myelin in the brain in the heterozygous mosaic state, sufficient plasticity persists during the neonatal period for late-stage myelination to occur.
Collapse
Affiliation(s)
- P A Cuddon
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, USA
| | | | | |
Collapse
|
21
|
Abstract
Proteolipid protein (PLP) and its smaller isoform DM20 constitute the major myelin proteins of the CNS. Mutations of the X-linked Plp gene cause the heterogeneous syndromes of Pelizaeus-Merzbacher disease (PMD) and spastic paraplegia (SPG) in man and similar dysmyelinating disorders in a range of animal species. A variety of mutations including missense mutations, deletions, and duplications are responsible. Missense mutations cause a predicted alteration in primary structure of the encoded protein(s) and are generally associated with early onset of signs and generalised dysmyelination. The severity of the phenotype varies according to the particular codon involved and the influence of uncharacterised modifying genes. There is some evidence that the dysmyelination results from the altered protein acquiring a novel function deleterious to the oligodendrocyte's function. Transgenic mice carrying extra copies of the Plp gene provide a valid model of PMD/SPG due to gene duplication. Depending on the gene dosage, the phenotype can vary from early onset of severe and lethal dysmyelination through to a very late onset of a tract-specific demyelination and axonal degeneration. Mice with a null mutation of the Plp gene assemble and maintain normal amounts of myelin but develop a progressive axonopathy, again demonstrating tract specificity. The results indicate that the functions of PLP are far from clear. There is good evidence that it is involved in the formation of the intraperiod line of myelin, and the results from the knockout and transgenic mice suggest a role in the interaction of oligodendrocyte and axon.
Collapse
Affiliation(s)
- I Griffiths
- Department of Veterinary Clinical Studies, University of Glasgow, Bearsden, Scotland.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
A large number of genetic mutants that are missing a particular myelin protein or that have an aberrant myelin protein composition have been described. These mutations usually cause dysmyelination in the PNS or CNS. Similarly, the nervous system of animals experimentally altered to block synthesis of myelin proteins have recently been generated that show aberrations in the myelin sheath. For both groups of animals, the numbers of myelinating cells remain relatively stable and glial cell death is minimal. The exception is animals with mutations in the proteolipid protein (PLP) gene which exhibit extensive death of oligodendrocytes (OLs). The degree of OL death in the PLP mutants generally correlates with the amount of dysmyelination. Dying OLs in the PLP mutants exhibit the classical features of apoptotic cells. Programmed cell death (PCD) is often, but not necessarily, manifested by cleavage of DNA into abundant oligonucleosomal fragments. Detection of these abundant DNA fragments was examined in normal and jimpy (jp) mice using the TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) method. In normal spinal cord and brain, at least twice as many cells exhibited DNA fragmentation when compared to numbers of pyknotic glia observed microscopically. In jp spinal cord and brain, roughly one-half of cells exhibited DNA fragmentation when compared to numbers of pyknotic glia observed microscopically. PCD of cells in normal development involving DNA fragmentation has been previously described and our results support that conclusion.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R P Skoff
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|