1
|
Gray WP. Neuropeptide Y signalling on hippocampal stem cells in health and disease. Mol Cell Endocrinol 2008; 288:52-62. [PMID: 18403103 DOI: 10.1016/j.mce.2008.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 02/07/2008] [Accepted: 02/26/2008] [Indexed: 12/31/2022]
Abstract
Neuropeptides are emerging as key components in the hippocampal neurogenic niche in health and disease, regulating many aspects of neurogenesis and the synaptic integration of newly generated neurons. This review focuses on the role of neuropeptide Y in the control of stem/precursor cells in the postnatal and adult hippocampus. It is likely that neuropeptide Y releasing interneurons are key sensors of neural activity, modulating neurogenesis appropriately. This is likely to be a fruitful area of research for extending our understanding of the control of stem cells in the normal and diseased brain.
Collapse
Affiliation(s)
- William P Gray
- University Division of Clinical Neurosciences, Southampton Neurosciences Group, University of Southampton, South Academic Block, Southampton General Hospital, Southampton SO16 6YD, UK.
| |
Collapse
|
2
|
Abstract
Neuropeptide Y (NPY) is contained in at least four types of GABAergic interneurons in the dentate gyrus, many of which also contain somatostatin and give rise to the dense NPY innervation of the dentate outer molecular layer. In humans but not rats, minute amounts of NPY are also normally expressed in dentate granule cells, while seizure activity in rats induces robust NPY expression in granule cells. Y1 and Y2 receptors are the most abundant NPY receptors expressed in the dentate gyrus. Y1 receptors are postsynaptic receptors, primarily located on granule cell dendrites in the molecular layer and some interneurons, while Y2 receptors are presynaptic receptors mediating inhibition of glutamate release, and potentially that of NPY and GABA depending on their presynaptic localization, and may also be expressed on some hilar interneurons. In humans, monkeys and mice, Y2 receptors are also present on mossy fibers, but not in most rat species, though functional evidence suggests their presence. Hilar interneurons containing NPY degenerate in temporal lobe epilepsy and in Alzheimer's disease and reduced levels of NPY in dentate hilus are associated with depression. By activating Y1 receptors, NPY also exerts powerful neuroproliferative effects on subgranular zone progenitor cells, increasing the number of newly born granule cells in the adult dentate gyrus. Functionally, NPY exerts anticonvulsive actions mediated by Y2 receptors at mossy fiber terminals, but there are no presynaptic responses to NPY at perforant path inputs to dentate granule cells in rats or mice. NPY also has potentially complicated actions on NPY-containing interneurons. Elevated expression of NPY in mossy fibers of the rat, sprouting of NPY interneurons in the human dentate, and over-expression of Y2 receptors in mossy fibers indicate an anticonvulsive role of endogenous NPY in epilepsy. However, the physiological role of NPY in the healthy dentate gyrus remains unclear.
Collapse
Affiliation(s)
- Günther Sperk
- Department of Pharmacology, Medical University Innsbruck, Peter-Mayr-Str. 1a, 6020 Innsbruck, Austria.
| | | | | |
Collapse
|
3
|
Kharlamov EA, Kharlamov A, Kelly KM. Changes in neuropeptide Y protein expression following photothrombotic brain infarction and epileptogenesis. Brain Res 2006; 1127:151-62. [PMID: 17123484 PMCID: PMC1802128 DOI: 10.1016/j.brainres.2006.09.107] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 09/29/2006] [Accepted: 09/30/2006] [Indexed: 01/29/2023]
Abstract
This study characterized morphological changes in the cortex and hippocampus of Sprague-Dawley rats following photothrombotic infarction and epileptogenesis with emphasis on the distribution of neuropeptide Y (NPY) expression. Animals were lesioned in the left sensorimotor cortex and compared with age-matched naive and sham-operated controls by immunohistochemical techniques at 1, 3, 7, and 180 days post-lesioning (DPL). NPY immunostaining was assessed by light microscopy and quantified by the optical fractionator technique using unbiased stereological methods. At 1, 3, and 7 DPL, the number of NPY-positive somata in the lesioned cortex was increased significantly compared to controls and the contralateral cortex. At 180 DPL, lesioned epileptic animals with frequent seizure activity demonstrated significant increases of NPY expression in the cortex, CA1, CA3, hilar interneurons, and granule cells of the dentate gyrus. In addition to NPY immunostaining, neuronal degeneration, cell death/cell loss, and astroglial response were assessed with cell-specific markers. Nissl and NeuN staining showed reproducible infarctions at each investigated time point. FJB-positive somata were most abundant in the infarct core at 1 DPL, decreased markedly at 3 DPL, and virtually absent by 7 DPL. Activated astroglia were detected in the cortex and hippocampus following lesioning and the development of seizure activity. In summary, NPY protein expression and morphological changes following cortical photothrombosis were time-, region-, and pathologic state-dependent. Alterations in NPY expression may reflect reactive or compensatory responses of the rat brain to acute infarction and to the development and expression of epileptic seizures.
Collapse
Affiliation(s)
- Elena A. Kharlamov
- Department of Neurology, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA
| | - Alexander Kharlamov
- Department of Anesthesiology, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA
- Drexel University College of Medicine, Philadelphia, PA
| | - Kevin M. Kelly
- Department of Neurology, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA
- Drexel University College of Medicine, Philadelphia, PA
| |
Collapse
|
4
|
Schmandt T, Meents E, Gossrau G, Gornik V, Okabe S, Brüstle O. High-purity lineage selection of embryonic stem cell-derived neurons. Stem Cells Dev 2005; 14:55-64. [PMID: 15725744 DOI: 10.1089/scd.2005.14.55] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The derivation of somatic cell types from pluripotent and self-renewing embryonic stem (ES) cells offers attractive prospects for basic research, compound development, and regenerative medicine. A key prerequisite for biomedical applications of ES cells is the ability to differentiate and isolate defined somatic cell populations at high purity. In this study, we explore the potential of the Talpha1- enhanced green fluorescent protein (EGFP) transgene and polysialic acid (PSA)-neural cell adhesion molecule (NCAM) as lineage selection markers for the derivation of ES cell-derived neurons. Upon controlled in vitro differentiation, ES cells engineered to express EGFP under control of the Talpha1-tubulin promoter exhibited exclusive transgene expression in neurons. Similarly, PSA-NCAM expression during the early stages of ES cell differentiation was restricted to neuronal progeny. Talpha1- EGFP- and PSA-NCAM-positive neurons comprised both inhibitory and excitatory phenotypes. Compared to Talpha1-EGFP, the expression of PSA-NCAM was initiated at slightly earlier stages of neural differentiation. FACSorting of Talpha1-EGFP-positive cells and immunopanning of PSA-NCAMexpressing cells yielded neuronal populations at purities up to 99.6% and 96.9%, respectively. These findings depict Talpha1-EGFP and PSA-NCAM as suitable markers for high-purity selection of early ES cell-derived neurons.
Collapse
Affiliation(s)
- Tanja Schmandt
- Institute of Reconstructive Neurobiology, University of Bonn Medical Center and Hertie Foundation, Bonn, Germany
| | | | | | | | | | | |
Collapse
|
5
|
Howell OW, Doyle K, Goodman JH, Scharfman HE, Herzog H, Pringle A, Beck-Sickinger AG, Gray WP. Neuropeptide Y stimulates neuronal precursor proliferation in the post-natal and adult dentate gyrus. J Neurochem 2005; 93:560-70. [PMID: 15836615 DOI: 10.1111/j.1471-4159.2005.03057.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adult dentate neurogenesis is important for certain types of hippocampal-dependent learning and also appears to be important for the maintenance of normal mood and the behavioural effects of antidepressants. Neuropeptide Y (NPY), a peptide neurotransmitter released by interneurons in the dentate gyrus, has important effects on mood, anxiety-related behaviour and learning and memory. We report that adult NPY receptor knock-out mice have significantly reduced cell proliferation and significantly fewer immature doublecortin-positive neurons in the dentate gyrus. We also show that the neuroproliferative effect of NPY is dentate specific, is Y1-receptor mediated and involves extracellular signal-regulated kinase (ERK)1/2 activation. NPY did not exhibit any effect on cell survival in vitro but constitutive loss of the Y1 receptor in vivo resulted in greater survival of newly generated neurons and an unchanged total number of dentate granule cells. These results show that NPY stimulates neuronal precursor proliferation in the dentate gyrus and suggest that NPY-releasing interneurons may modulate dentate neurogenesis.
Collapse
Affiliation(s)
- Owain W Howell
- Division of Clinical Neurosciences, University of Southampton, Southampton, UK
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Silva AP, Xapelli S, Pinheiro PS, Ferreira R, Lourenço J, Cristóvão A, Grouzmann E, Cavadas C, Oliveira CR, Malva JO. Up-regulation of neuropeptide Y levels and modulation of glutamate release through neuropeptide Y receptors in the hippocampus of kainate-induced epileptic rats. J Neurochem 2005; 93:163-70. [PMID: 15773916 DOI: 10.1111/j.1471-4159.2004.03005.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Kainate-induced epilepsy has been shown to be associated with increased levels of neuropeptide Y (NPY) in the rat hippocampus. However, there is no information on how increased levels of this peptide might modulate excitation in kainate-induced epilepsy. In this work, we investigated the modulation of glutamate release by NPY receptors in hippocampal synaptosomes isolated from epileptic rats. In the acute phase of epilepsy, a transient decrease in the efficiency of NPY and selective NPY receptor agonists in inhibiting glutamate release was observed. Moreover, in the chronic epileptic hippocampus, a decrease in the efficiency of NPY and the Y(2) receptor agonist, NPY13-36, was also found. Simultaneously, we observed that the epileptic hippocampus expresses higher levels of NPY, which may account for an increased basal inhibition of glutamate release. Consistently, the blockade of Y(2) receptors increased KCl-evoked glutamate release, and there was an increase in Y(2) receptor mRNA levels 30 days after kainic acid injection, suggesting a basal effect of NPY through Y(2) receptors. Taken together, these results indicate that an increased function of the NPY modulatory system in the epileptic hippocampus may contribute to basal inhibition of glutamate release and control hyperexcitability.
Collapse
Affiliation(s)
- Ana P Silva
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
It is a central tenet of the epilepsy field that seizures result from the imbalance of excitation over inhibition (1). The bulk of excitation is mediated by the neurotransmitter glutamate, whereas inhibition results mainly from the actions of gamma-aminobutyric acid (GABA). In the neocortex and hippocampus, the intrinsic sources of GABA are the interneurons, which lately have come under intense scrutiny. It has become clear that a large number of distinct types of interneurons can be differentiated in part by the array of neuropeptides they coexpress (cf. (2)). Evidence is emerging that the neuropeptide complement of interneurons plays important roles in the way that interneurons regulate excitability. Here we discuss what is known about the relation of one well-characterized neuropeptide, neuropeptide Y (NPY), and epilepsy in experimental animals and humans, and suggest possible roles for the receptors as targets for the control of excessive excitation in epilepsy.
Collapse
Affiliation(s)
- William F. Colmers
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
8
|
Abstract
It is a central tenet of the epilepsy field that seizures result from the imbalance of excitation over inhibition ( 1 ). The bulk of excitation is mediated by the neurotransmitter glutamate, whereas inhibition results mainly from the actions of γ-aminobutyric acid (GABA). In the neocortex and hippocampus, the intrinsic sources of GABA are the interneurons, which lately have come under intense scrutiny. It has become clear that a large number of distinct types of interneurons can be differentiated in part by the array of neuropeptides they coexpress (cf. 2). Evidence is emerging that the neuropeptide complement of interneurons plays important roles in the way that interneurons regulate excitability. Here we discuss what is known about the relation of one well-characterized neuropeptide, neuropeptide Y (NPY), and epilepsy in experimental animals and humans, and suggest possible roles for the receptors as targets for the control of excessive excitation in epilepsy.
Collapse
Affiliation(s)
- William F. Colmers
- />Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Bouchaïb El Bahh
- />Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Abstract
Marked expression of neuropeptide Y (NPY) and its Y2 receptors in hippocampal mossy fibers has been reported in animal models of epilepsy. Because NPY can suppress glutamate release by activating presynaptic Y2 receptors, these changes have been proposed as an endogenous protective mechanism. Therefore, we investigated whether similar changes in the NPY system may also take place in human epilepsy. We investigated Y1 and Y2 receptor binding and NPY immunoreactivity in hippocampal specimens that were obtained at surgery from patients with temporal lobe epilepsy and in autopsy controls. Significant increases in Y2 receptor binding (by 43-48%) were observed in the dentate hilus, sectors CA1 to CA3, and subiculum of specimens with, but not in those without, hippocampal sclerosis. On the other hand, Y1 receptor binding was significantly reduced (by 62%) in the dentate molecular layer of sclerotic specimens. In the same patients, the total lengths of NPY immunoreactive (NPY-IR) fibers was markedly increased (by 115-958%) in the dentate molecular layer and hilus, in the stratum lucidum of CA3, and throughout sectors CA1 to CA3 and the subiculum, as compared with autopsies. In nonsclerotic specimens, increases in lengths of NPY-IR fibers were more moderate and statistically not significant. NPY mRNA was increased threefold in hilar interneurons of sclerotic and nonsclerotic specimens. It is suggested that abundant sprouting of NPY fibers, concomitant upregulation of Y2 receptors, and downregulation of Y1 receptors in the hippocampus of patients with Ammon's horn sclerosis may be endogenous anticonvulsant mechanisms.
Collapse
|
10
|
Grove KL, Campbell RE, Ffrench-Mullen JM, Cowley MA, Smith MS. Neuropeptide Y Y5 receptor protein in the cortical/limbic system and brainstem of the rat: expression on gamma-aminobutyric acid and corticotropin-releasing hormone neurons. Neuroscience 2001; 100:731-40. [PMID: 11036207 DOI: 10.1016/s0306-4522(00)00308-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Neuropeptide Y displays diverse modes of action in the CNS including the modulation of cortical/limbic function. Some of these physiological actions have been at least partially attributed to actions of neuropeptide Y on the Y5 receptor subtype. We utilized an antibody raised against the Y5 receptor to characterize the distribution of this receptor subtype in the rat cortical/limbic system and brainstem. Y5-like immunoreactivity was located primarily in neuronal cell bodies and proximal dendritic processes throughout the brain. In the cortex, Y5 immunoreactivity was limited to a subpopulation of small gamma-aminobutyric-acid interneurons (approximately 15 microm diameter) scattered throughout all cortical levels. Double label immunofluorescence was also used to demonstrate that all of the Y5 immunoreactive neurons in the cortex displayed intense corticotropin releasing hormone immunoreactivity. The most intense Y5 immunoreactive staining in the hippocampus was located in the pyramidal cell layer of the small CA2 subregion and the fasciola cinerea, with lower levels of staining in the hilar region of the dentate gyrus and CA3 subregion of the pyramidal cell layer. Nearly all of the Y5 immunoreactive neurons in the hilar region of the hippocampus displayed gamma-aminobutyric-acid immunoreactivity. In the brainstem, Y5 immunoreactivity was most intense in the Edinger-Westphal nucleus, locus coeruleus and the mesencephalic trigeminal nucleus. The present study provides neuroanatomical evidence for the possible sites of action of the neuropeptide Y/Y5 receptor system in the control of cortical/limbic function. The presence of Y5 immunoreactivity on cell bodies and proximal dendritic processes in specific regions of the hippocampus suggests that this receptor functions to modulate postsynaptic activity. These data also suggest that the neuropeptide Y/Y5 system may play a role in the modulation of a specific population of GABAergic neurons in the cortex, namely those that contain corticotropin-releasing hormone. The location of the Y5 receptor immunoreactivity fits with the known physiological actions of neuropeptide Y and this receptor.
Collapse
Affiliation(s)
- K L Grove
- Division of Neuroscience, Oregon Regional Primate Research Center, Oregon Health Sciences University, Beaverton, OR 97006, USA.
| | | | | | | | | |
Collapse
|
11
|
Li BS, Kramer PR, Zhao W, Ma W, Stenger DA, Zhang L. Molecular cloning, expression, and characterization of rat homolog of human AP-2alpha that stimulates neuropeptide Y transcription activity in response to nerve growth factor. Mol Endocrinol 2000; 14:837-47. [PMID: 10847586 DOI: 10.1210/mend.14.6.0468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neuropeptide Y (NPY) plays an important role in the central regulation of neuronal activity, endocrine and sexual behavior, and food intake. Although transcription activity of the NPY gene in PC12 cells is regulated by a number of agents such as nerve growth factor (NGF), the mechanism responsible for the NGF-elicited increase in the transcription of the NPY gene remains to be explored. In this study, we isolated and characterized a nuclear protein that is bound to NGF-response elements (NGFRE) that lie between nucleotide -87 and -33 of the rat NPY promoter gene. This nuclear protein is identical to the rat homolog of human transcription factor AP-2alpha. We further demonstrated that rat AP-2a promotes efficient NPY transcription activity in response to NGF. Finally, we provide direct evidence that the mice lacking transcription factor AP-2alpha exhibit reduced expression of NPY mRNA compared with wild-type mice, further supporting the hypothesis that AP-2alpha is an important transcription factor in regulating NPY transcription activity.
Collapse
Affiliation(s)
- B S Li
- Laboratory of Neurochemistry, NINDS, National Institutes of Health Bethesda, Maryland 20892-4130, USA
| | | | | | | | | | | |
Collapse
|
12
|
Vezzani A, Ravizza T, Moneta D, Conti M, Borroni A, Rizzi M, Samanin R, Maj R. Brain-derived neurotrophic factor immunoreactivity in the limbic system of rats after acute seizures and during spontaneous convulsions: temporal evolution of changes as compared to neuropeptide Y. Neuroscience 1999; 90:1445-61. [PMID: 10338311 DOI: 10.1016/s0306-4522(98)00553-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Seizures increase the synthesis of brain-derived neurotrophic factor in forebrain areas, suggesting this neurotrophin has biological actions in epileptic tissue. The understanding of these actions requires information on the sites and extent of brain-derived neurotrophic factor production in areas involved in seizures onset and their spread. In this study, we investigated by immunocytochemistry the changes in brain-derived neurotrophic factor in the hippocampus, entorhinal and perirhinal cortices of rats at increasing times after acute seizures eventually leading to spontaneous convulsions. We also tested the hypothesis that seizure-induced changes in brain-derived neurotrophic factor induce later modifications in neuropeptide Y expression by comparing, in each instance, their immunoreactive patterns. As early as 100 min after seizure induction, brain-derived neurotrophic factor immunoreactivity increased in CA1 pyramidal and granule neurons and in cells of layers II-III of the entorhinal cortex. At later times, immunoreactivity progressively decreased in somata while increasing in fibres in the hippocampus, the subicular complex and in specific layers of the entorhinal and perirhinal cortices. Changes in neuropeptide Y immunoreactivity were superimposed upon and closely followed those of brain-derived neurotrophic factor. One week after seizure induction, brain-derived neurotrophic factor and neuropeptide Y immunoreactivities were similar to controls in 50% of rats. In rats experiencing spontaneous convulsions, brain-derived neurotrophic factor and neuropeptide Y immunoreactivity was strongly enhanced in fibres in the hippocampus/parahippocampal gyrus and in the temporal cortex. In the dentate gyrus, changes in immunoreactivity depended on sprouting of mossy fibres as assessed by growth-associated protein-43-immunoreactivity. These modifications were inhibited by repeated anticonvulsant treatment with phenobarbital. The dynamic and temporally-linked alterations in brain-derived neurotrophic factor and neuropeptide Y in brain regions critically involved in epileptogenesis suggest a functional link between these two substances in the regulation of network excitability.
Collapse
Affiliation(s)
- A Vezzani
- Laboratory of Experimental Neurology, and Mario Negri Institute for Pharmacological Research, Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Vezzani A, Sperk G, Colmers WF. Neuropeptide Y: emerging evidence for a functional role in seizure modulation. Trends Neurosci 1999; 22:25-30. [PMID: 10088996 DOI: 10.1016/s0166-2236(98)01284-3] [Citation(s) in RCA: 376] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The high concentration of the tyrosine-rich polypeptide, neuropeptide Y (NPY), and the increase in the number of its receptor subtypes that have been characterized in the brain, raise the question of a functional role for NPY in the CNS. In addition to its peripheral actions on cardiovascular regulation, much attention has, therefore, been devoted to the CNS effects of NPY because of its stimulatory properties on food intake, its role in anxiolysis and its putative involvement in memory retention. Emerging evidence points to an important role for NPY in the regulation of neuronal activity both under physiological conditions and during pathological hyperactivity such as that which occurs during seizures. This article reviews recent studies that have shown the changes induced by seizures in the level and distribution of NPY, its receptor subtypes and their respective mRNAs in rat forebrain. Biochemical and electrophysiological findings in experimental models and tissue from human epilepsy sufferers suggest that NPY-mediated neurotransmission is altered by seizures. The pharmacological evidence and functional studies in NPY knockout mice highlight a crucial role for endogenous NPY, acting on different NPY receptors, in the control of seizures.
Collapse
Affiliation(s)
- A Vezzani
- Dept of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano, Italy
| | | | | |
Collapse
|
14
|
Abstract
Neuropeptide Y (NPY) inhibits excitatory synaptic transmission in the hippocampus and is implicated in control of limbic seizures. In the present study, we examined hippocampal function and the response to pharmacologically induced seizures in mutant mice lacking this peptide. In slice electrophysiology studies, no change in normal hippocampal function was observed in NPY-deficient mice compared with normal wild-type littermates. Kainic acid (KA) produced limbic seizures at a comparable latency and concentration in NPY-deficient mice compared with littermates. However, KA-induced seizures progressed uncontrollably and ultimately produced death in 93% of NPY-deficient mice, whereas death was rarely observed in wild-type littermates. Intracerebroventricular NPY infusion, before KA administration, prevented death in NPY-deficient mice. These results suggest a critical role for endogenous NPY in seizure control.
Collapse
|
15
|
|
16
|
Bamji SX, Miller FD. Comparison of the expression of a T alpha 1:nlacZ transgene and T alpha 1 alpha-tubulin mRNA in the mature central nervous system. J Comp Neurol 1996; 374:52-69. [PMID: 8891946 DOI: 10.1002/(sici)1096-9861(19961007)374:1<52::aid-cne4>3.0.co;2-m] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have previously demonstrated that one member of the alpha-tubulin multigene family, termed T alpha 1 in rats, is a panneuronal gene that is regulated as a function of neuronal growth and regeneration. Moreover, 1.1 kb of the 5' upstream region from this gene is sufficient to direct expression of a marker gene to growing neurons in transgenic mice. In this report, we have characterized the distribution of the T alpha 1:nlacZ transgene in the mature central nervous system in two lines of transgenic mice and have compared its expression to that of the endogenous T alpha 1 alpha-tubulin mRNA. These results demonstrate that the pattern of expression of the T alpha 1:nlacZ transgene is similar to that of T alpha 1 mRNA, with a few notable differences. Furthermore, expression of the transgene and the mRNA within the mature brain is panneuronal and, in many cases, is highest in those populations of neurons that show some capacity for morphological growth. These results, together with our previous studies on mature regenerating neurons (Gloster et al. [1994] J. Neurosci. 14:7319-7330; Wu et al. [1994] Soc. Neurosci. Abstr. 20:542) suggest that the T alpha 1:nlacZ transgene will provide a useful marker of growth-associated gene expression in the mature nervous system.
Collapse
Affiliation(s)
- S X Bamji
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Quebec, Canada
| | | |
Collapse
|