1
|
Bennati L, Puppini G, Giambruno V, Luciani GB, Vergara C. Image-Based Computational Fluid Dynamics to Compare Two Repair Techniques for Mitral Valve Prolapse. Ann Biomed Eng 2024; 52:3295-3311. [PMID: 39120769 PMCID: PMC11561035 DOI: 10.1007/s10439-024-03597-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE : The treatment of mitral valve prolapse involves two distinct repair techniques: chordal replacement (Neochordae technique) and leaflet resection (Resection technique). However, there is still a debate in the literature about which is the optimal one. In this context, we performed an image-based computational fluid dynamic study to evaluate blood dynamics in the two surgical techniques. METHODS : We considered a healthy subject (H) and two patients (N and R) who underwent surgery for prolapse of the posterior leaflet and were operated with the Neochordae and Resection technique, respectively. Computational Fluid Dynamics (CFD) was employed with prescribed motion of the entire left heart coming from cine-MRI images, with a Large Eddy Simulation model to describe the transition to turbulence and a resistive method for managing valve dynamics. We created three different virtual scenarios where the operated mitral valves were inserted in the same left heart geometry of the healthy subject to study the differences attributed only to the two techniques. RESULTS : We compared the three scenarios by quantitatively analyzing ventricular velocity patterns and pressures, transition to turbulence, and the ventricle ability to prevent thrombi formation. From these results, we found that the operative techniques affected the ventricular blood dynamics in different ways, with variations attributed to the reduced mobility of the Resection posterior leaflet. Specifically, the Resection technique resulted in turbulent forces, related with the risk of hemolysis formation, up to 640 Pa, while the other two scenarios exhibited a maximum of 240 Pa. Moreover, in correspondence of the ventricular apex, the Resection technique reduced the areas with low velocity to 15%, whereas the healthy case and the Neochordae case maintained these areas at 30 and 48%, respectively. Our findings suggest that the Neochordae technique developed a more physiological flow with respect to the Resection technique. CONCLUSION: Resection technique gives rise to a different direction of the mitral jet during diastole increasing the ability to washout the ventricular apex preventing from thrombi formation, but at the same time it promotes turbulence formation that is associated with ventricular effort and risk of hemolysis.
Collapse
Affiliation(s)
- Lorenzo Bennati
- Department of Surgery, Dentistry, Pediatrics, and Obstetrics/Gynecology, University of Verona, Piazzale Ludovico Antonio Scuro 10, Verona, 37134, Italy
| | - Giovanni Puppini
- Department of Radiology, University of Verona, Piazzale Stefani 1, Verona, 37126, Italy
| | - Vincenzo Giambruno
- Division of Cardiac Surgery, Department of Surgery, Dentistry, Pediatrics, and Obstetrics/Gynecology, University of Verona, Piazzale Stefani 1, Verona, 37126, Italy
| | - Giovanni Battista Luciani
- Division of Cardiac Surgery, Department of Surgery, Dentistry, Pediatrics, and Obstetrics/Gynecology, University of Verona, Piazzale Stefani 1, Verona, 37126, Italy
| | - Christian Vergara
- LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy.
| |
Collapse
|
2
|
Kara R, Vergara C. Assessing turbulent effects in ascending aorta in presence of bicuspid aortic valve. Comput Methods Biomech Biomed Engin 2024; 27:2349-2361. [PMID: 37950490 DOI: 10.1080/10255842.2023.2279938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 10/10/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Aortic valves with bicuspids have two rather than three leaflets, which is a congenital heart condition. About 0.5-2% of people have a bicuspid aortic valve. Blood flow through the aorta is commonly believed to be laminar, although aortic valve disorders can cause turbulent transitions. Understanding the impact of turbulence is crucial for foreseeing how the disease will progress. The study's objective was use large eddy simulation to provide a thorough analysis of the turbulence in bicuspid aortic valve dysfunction. Using a large eddy simulation, the blood flow patterns of the bicuspid and tricuspid aortic valves were compared, and significant discrepancies were found. The velocity field in flow in bicuspid configurations was asymmetrically distributed toward the ascending aorta. In tricuspid aortic valve (TAV) the flow, on the other hand, was symmetrical within the same aortic segment. Moreover, we looked into standard deviation, Q-criterion, viscosity ratio and wall shear stresses for each cases to understand transition to turbulence. Our findings indicate that in the bicuspid aortic valve (BAV) case, the fluid-dynamic abnormalities increase. The global turbulent kinetic energy and time-averaged wall shear stress for the TAV and BAV scenarios were also examined. We discovered that the global turbulent kinetic energy was higher in the BAV case compared to TAV, in addition to the increased wall shear stress induced by the BAV in the ascending aorta.
Collapse
Affiliation(s)
- Rukiye Kara
- Department of Mathematics, Mimar Sinan Fine Arts University, Istanbul, Turkey
| | - Christian Vergara
- LABS - Dipartimento di Chimica, Materiali e Ingegneria Chimica" Giulio Natta" - Politecnico di Milano, Milan, Italy
| |
Collapse
|
3
|
Govindarajan V, Wanna C, Johnson NP, Kolanjiyil AV, Kim H, Kitkungvan D, McPherson DM, Grande-Allen J, Chandran KB, Estrera A, Ramzy D, Prakash S. Unraveling aortic hemodynamics using fluid structure interaction: biomechanical insights into bicuspid aortic valve dynamics with multiple aortic lesions. Biomech Model Mechanobiol 2024:10.1007/s10237-024-01892-w. [PMID: 39365514 DOI: 10.1007/s10237-024-01892-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/22/2024] [Indexed: 10/05/2024]
Abstract
Aortic lesions, exemplified by bicuspid aortic valves (BAVs), can complicate congenital heart defects, particularly in Turner syndrome patients. The combination of BAV, dilated ascending aorta, and an elongated aortic arch presents complex hemodynamics, requiring detailed analysis for tailored treatment strategies. While current clinical decision-making relies on imaging modalities offering limited biomechanical insights, integrating high-performance computing and fluid-structure interaction algorithms with patient data enables comprehensive evaluation of diseased anatomy and planned intervention. In this study, a patient-specific workflow was utilized to biomechanically assess a Turner syndrome patient's BAV, dilated ascending aorta, and elongated arch. Results showed significant improvements in valve function (effective orifice area, EOA increased approximately twofold) and reduction in valve stress (~ 1.8-fold) following virtual commissurotomy, leading to enhanced flow dynamics and decreased viscous dissipation (~ twofold) particularly in the ascending aorta. However, increased viscous dissipation in the distal transverse aortic arch offset its local reduction in the AAo post-intervention, emphasizing the elongated arch's role in aortic hemodynamics. Our findings highlight the importance of comprehensive biomechanical evaluation and integrating patient-specific modeling with conventional imaging techniques for improved disease assessment, risk stratification, and treatment planning, ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Vijay Govindarajan
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1881 East Road, Houston, TX, 77054, USA.
- Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Charles Wanna
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1881 East Road, Houston, TX, 77054, USA
| | - Nils P Johnson
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1881 East Road, Houston, TX, 77054, USA
| | | | | | - Danai Kitkungvan
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1881 East Road, Houston, TX, 77054, USA
| | - David M McPherson
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1881 East Road, Houston, TX, 77054, USA
| | | | - Krishnan B Chandran
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1881 East Road, Houston, TX, 77054, USA
- The University of Iowa, Iowa City, IA, USA
| | - Antony Estrera
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1881 East Road, Houston, TX, 77054, USA
| | - Danny Ramzy
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1881 East Road, Houston, TX, 77054, USA
| | - Siddharth Prakash
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1881 East Road, Houston, TX, 77054, USA
| |
Collapse
|
4
|
El-Nashar H, Sabry M, Tseng YT, Francis N, Latif N, Parker KH, Moore JE, Yacoub MH. Multiscale structure and function of the aortic valve apparatus. Physiol Rev 2024; 104:1487-1532. [PMID: 37732828 PMCID: PMC11495199 DOI: 10.1152/physrev.00038.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023] Open
Abstract
Whereas studying the aortic valve in isolation has facilitated the development of life-saving procedures and technologies, the dynamic interplay of the aortic valve and its surrounding structures is vital to preserving their function across the wide range of conditions encountered in an active lifestyle. Our view is that these structures should be viewed as an integrated functional unit, here referred to as the aortic valve apparatus (AVA). The coupling of the aortic valve and root, left ventricular outflow tract, and blood circulation is crucial for AVA's functions: unidirectional flow out of the left ventricle, coronary perfusion, reservoir function, and support of left ventricular function. In this review, we explore the multiscale biological and physical phenomena that underlie the simultaneous fulfillment of these functions. A brief overview of the tools used to investigate the AVA, such as medical imaging modalities, experimental methods, and computational modeling, specifically fluid-structure interaction (FSI) simulations, is included. Some pathologies affecting the AVA are explored, and insights are provided on treatments and interventions that aim to maintain quality of life. The concepts explained in this article support the idea of AVA being an integrated functional unit and help identify unanswered research questions. Incorporating phenomena through the molecular, micro, meso, and whole tissue scales is crucial for understanding the sophisticated normal functions and diseases of the AVA.
Collapse
Affiliation(s)
- Hussam El-Nashar
- Aswan Heart Research Centre, Magdi Yacoub Foundation, Cairo, Egypt
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Malak Sabry
- Aswan Heart Research Centre, Magdi Yacoub Foundation, Cairo, Egypt
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - Yuan-Tsan Tseng
- Heart Science Centre, Magdi Yacoub Institute, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nadine Francis
- Aswan Heart Research Centre, Magdi Yacoub Foundation, Cairo, Egypt
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Najma Latif
- Heart Science Centre, Magdi Yacoub Institute, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kim H Parker
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - James E Moore
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Magdi H Yacoub
- Aswan Heart Research Centre, Magdi Yacoub Foundation, Cairo, Egypt
- Heart Science Centre, Magdi Yacoub Institute, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Xie M, Cao H, Qiao W, Yan G, Qian X, Zhang Y, Xu L, Wen S, Shi J, Cheng M, Dong N. Shear stress activates the Piezo1 channel to facilitate valvular endothelium-oriented differentiation and maturation of human induced pluripotent stem cells. Acta Biomater 2024; 178:181-195. [PMID: 38447808 DOI: 10.1016/j.actbio.2024.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Valvular endothelial cells (VECs) derived from human induced pluripotent stem cells (hiPSCs) provide an unlimited cell source for tissue engineering heart valves (TEHVs); however, they are limited by their low differentiation efficiency and immature function. In our study, we applied unidirectional shear stress to promote hiPSCs differentiation into valvular endothelial-like cells (VELs). Compared to the static group, shear stress efficiently promoted the differentiation and functional maturation of hiPSC-VELs, as demonstrated by the efficiency of endothelial differentiation reaching 98.3% in the high shear stress group (45 dyn/cm2). Furthermore, we found that Piezo1 served as a crucial mechanosensor for the differentiation and maturation of VELs. Mechanistically, the activation of Piezo1 by shear stress resulted in the influx of calcium ions, which in turn initiated the Akt signaling pathway and promoted the differentiation of hiPSCs into mature VELs. Moreover, VELs cultured on decellularized heart valves (DHVs) exhibited a notable propensity for proliferation, robust adhesion properties, and antithrombotic characteristics, which were dependent on the activation of the Piezo1 channel. Overall, our study demonstrated that proper shear stress activated the Piezo1 channel to facilitate the differentiation and maturation of hiPSC-VELs via the Akt pathway, providing a potential cell source for regenerative medicine, drug screening, pathogenesis, and disease modeling. STATEMENT OF SIGNIFICANCE: This is the first research that systematically analyzes the effect of shear stress on valvular endothelial-like cells (VELs) derived from human induced pluripotent stem cells (hiPSCs). Mechanistically, unidirectional shear stress activates Piezo1, resulting in an elevation of calcium levels, which triggers the Akt signaling pathway and then facilitates the differentiation of functional maturation VELs. After exposure to shear stress, the VELs exhibited enhanced proliferation, robust adhesion capabilities, and antithrombotic characteristics while being cultured on decellularized heart valves. Thus, it is of interest to develop hiPSCs-VELs using shear stress and the Piezo1 channel provides insights into the functional maturation of valvular endothelial cells, thereby serving as a catalyst for potential applications in the development of therapeutic and tissue-engineered heart valves in the future.
Collapse
Affiliation(s)
- Minghui Xie
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong Cao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ge Yan
- Department of Cardiovascular Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Xingyu Qian
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yecen Zhang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuyu Wen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Min Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
6
|
Henry M, Fadnes S, Lovstakken L, Mawad W, Mertens L, Nyrnes SA. Flow Dynamics in Children With Bicuspid Aortic Valve: A Blood Speckle Tracking Study. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2354-2360. [PMID: 37573177 DOI: 10.1016/j.ultrasmedbio.2023.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/27/2023] [Accepted: 07/16/2023] [Indexed: 08/14/2023]
Abstract
OBJECTIVE Bicuspid aortic valve (BAV) is associated with progressive aortic dilation. Although the etiology is complex, altered flow dynamics is thought to play an important role. Blood speckle tracking (BST) allows for visualization and quantification of complex flow, which could be useful in identifying patients at risk of root dilation and could aid in surgical planning. The aims of this study were to assess and quantify flow in the aortic root and left ventricle using BST in children with bicuspid aortic valves. METHODS AND RESULTS A total of 38 children <10 y of age were included (24 controls, 14 with BAV). Flow dynamics were examined using BST in the aortic root and left ventricle. Children with BAV had altered systolic flow patterns in the aortic root and higher aortic root average vorticity (25.9 [23.4-29.2] Hz vs. 17.8 [9.0-26.2] Hz, p < 0.05), vector complexity (0.17 [0.14-0.31] vs. 0.05 [0.02-0.13], p < 0.01) and rate of energy loss (7.9 [4.9-12.1] mW/m vs. 2.7 [1.2-7.4] mW/m, p = 0.01). Left ventricular average diastolic vorticity (20.9 ± 5.8 Hz vs. 11.4 ± 5.2 Hz, p < 0.01), kinetic energy (0.11 ± 0.05 J/m vs. 0.04 ± 0.02 J/m, p < 0.01), vector complexity (0.38 ± 0.1 vs. 0.23 ± 0.1, p < 0.01) and rate of energy loss (11.1 ± 4.8 mW/m vs. 2.7 ± 1.9 mW/m, p < 0.01) were higher in children with BAV. CONCLUSION Children with BAV exhibit altered flow dynamics in the aortic root and left ventricle in the absence of significant aortic root dilation. This may represent a substrate and potential predictor for future dilation and diastolic dysfunction.
Collapse
Affiliation(s)
| | - Solveig Fadnes
- Norwegian University of Science and Technology, Trondheim, Norway
| | - Lasse Lovstakken
- Norwegian University of Science and Technology, Trondheim, Norway
| | - Wadi Mawad
- McGill University Health Centre, Montreal, QC, Canada
| | - Luc Mertens
- Hospital for Sick Children, Toronto, ON, Canada
| | - Siri Ann Nyrnes
- Norwegian University of Science and Technology, Trondheim, Norway; Children's Clinic, St. Olav's University Hospital, Trondheim, Norway
| |
Collapse
|
7
|
Tsolaki E, Corso P, Zboray R, Avaro J, Appel C, Liebi M, Bertazzo S, Heinisch PP, Carrel T, Obrist D, Herrmann IK. Multiscale multimodal characterization and simulation of structural alterations in failed bioprosthetic heart valves. Acta Biomater 2023; 169:138-154. [PMID: 37517619 DOI: 10.1016/j.actbio.2023.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/30/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Calcific degeneration is the most frequent type of heart valve failure, with rising incidence due to the ageing population. The gold standard treatment to date is valve replacement. Unfortunately, calcification oftentimes re-occurs in bioprosthetic substitutes, with the governing processes remaining poorly understood. Here, we present a multiscale, multimodal analysis of disturbances and extensive mineralisation of the collagen network in failed bioprosthetic bovine pericardium valve explants with full histoanatomical context. In addition to highly abundant mineralized collagen fibres and fibrils, calcified micron-sized particles previously discovered in native valves were also prevalent on the aortic as well as the ventricular surface of bioprosthetic valves. The two mineral types (fibres and particles) were detectable even in early-stage mineralisation, prior to any macroscopic calcification. Based on multiscale multimodal characterisation and high-fidelity simulations, we demonstrate that mineral occurrence coincides with regions exposed to high haemodynamic and biomechanical indicators. These insights obtained by multiscale analysis of failed bioprosthetic valves serve as groundwork for the evidence-based development of more durable alternatives. STATEMENT OF SIGNIFICANCE: Bioprosthetic valve calcification is a well-known clinically significant phenomenon, leading to valve failure. The nanoanalytical characterisation of bioprosthetic valves gives insights into the highly abundant, extensive calcification and disorganization of the collagen network and the presence of calcium phosphate particles previously reported in native cardiovascular tissues. While the collagen matrix mineralisation can be primarily attributed to a combination of chemical and mechanical alterations, the calcified particles are likely of host cellular origin. This work presents a straightforward route to mineral identification and characterization at high resolution and sensitivity, and with full histoanatomical context and correlation to hemodynamic and biomechanical indicators, hence providing design cues for improved bioprosthetic valve alternatives.
Collapse
Affiliation(s)
- Elena Tsolaki
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland; Nanoparticle Systems Engineering Laboratory, Department of Mechanical and Process Engineering, Institute of Energy and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland
| | - Pascal Corso
- ARTORG Center for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, Bern 3010, Switzerland
| | - Robert Zboray
- Center for X-Ray Analytics, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Ueberlandstrasse 129, Duebendorf 8600, Switzerland
| | - Jonathan Avaro
- Center for X-Ray Analytics, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Ueberlandstrasse 129, Duebendorf 8600, Switzerland
| | | | - Marianne Liebi
- Center for X-Ray Analytics, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Ueberlandstrasse 129, Duebendorf 8600, Switzerland; Paul Scherrer Institute, PSI, Villigen 5232, Switzerland; Department of Physics, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical Engineering, University College London, WC1E 6BT, UK; London Centre for Nanotechnology, University College London, WC1E 6BT, UK
| | - Paul Philipp Heinisch
- Department of Cardiovascular Surgery, Inselspital, University of Bern, Freiburgstrasse 18, Bern 3010, Switzerland; Department of Congenital and Pediatric Heart Surgery, German Heart Center Munich, Technische Universität München, Germany
| | - Thierry Carrel
- Department of Cardiovascular Surgery, Inselspital, University of Bern, Freiburgstrasse 18, Bern 3010, Switzerland; Department of Cardiac Surgery, University Hospital Zurich (USZ), Rämistrasse 101, Zürich 8091, Switzerland.
| | - Dominik Obrist
- ARTORG Center for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, Bern 3010, Switzerland.
| | - Inge K Herrmann
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland; Nanoparticle Systems Engineering Laboratory, Department of Mechanical and Process Engineering, Institute of Energy and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland.
| |
Collapse
|
8
|
Zhou J, Li Y, Li T, Tian X, Xiong Y, Chen Y. Analysis of the Effect of Thickness on the Performance of Polymeric Heart Valves. J Funct Biomater 2023; 14:309. [PMID: 37367273 DOI: 10.3390/jfb14060309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/17/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Polymeric heart valves (PHVs) are a promising and more affordable alternative to mechanical heart valves (MHVs) and bioprosthetic heart valves (BHVs). Materials with good durability and biocompatibility used for PHVs have always been the research focus in the field of prosthetic heart valves for many years, and leaflet thickness is a major design parameter for PHVs. The study aims to discuss the relationship between material properties and valve thickness, provided that the basic functions of PHVs are qualified. The fluid-structure interaction (FSI) approach was employed to obtain a more reliable solution of the effective orifice area (EOA), regurgitant fraction (RF), and stress and strain distribution of the valves with different thicknesses under three materials: Carbothane PC-3585A, xSIBS and SIBS-CNTs. This study demonstrates that the smaller elastic modulus of Carbothane PC-3585A allowed for a thicker valve (>0.3 mm) to be produced, while for materials with an elastic modulus higher than that of xSIBS (2.8 MPa), a thickness less than 0.2 mm would be a good attempt to meet the RF standard. What is more, when the elastic modulus is higher than 23.9 MPa, the thickness of the PHV is recommended to be 0.l-0.15 mm. Reducing the RF is one of the directions of PHV optimization in the future. Reducing the thickness and improving other design parameters are reliable means to reduce the RF for materials with high and low elastic modulus, respectively.
Collapse
Affiliation(s)
- Jingyuan Zhou
- Department of Applied Mechanics, Sichuan University, Chengdu 610065, China
| | - Yijing Li
- College of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Tao Li
- College of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaobao Tian
- Department of Applied Mechanics, Sichuan University, Chengdu 610065, China
| | - Yan Xiong
- College of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Yu Chen
- Department of Applied Mechanics, Sichuan University, Chengdu 610065, China
| |
Collapse
|
9
|
West TM, Howsmon DP, Massidda MW, Vo HN, Janobas AA, Baker AB, Sacks MS. The effects of strain history on aortic valve interstitial cell activation in a 3D hydrogel environment. APL Bioeng 2023; 7:026101. [PMID: 37035541 PMCID: PMC10076067 DOI: 10.1063/5.0138030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
Aortic valves (AVs) undergo unique stretch histories that include high rates and magnitudes. While major differences in deformation patterns have been observed between normal and congenitally defective bicuspid aortic valves (BAVs), the relation to underlying mechanisms of rapid disease onset in BAV patients remains unknown. To evaluate how the variations in stretch history affect AV interstitial cell (AVIC) activation, high-throughput methods were developed to impart varied cyclical biaxial stretch histories into 3D poly(ethylene) glycol hydrogels seeded with AVICs for 48 h. Specifically, a physiologically mimicking stretch history was compared to two stretch histories with varied peak stretch and stretch rate. Post-conditioned AVICs were imaged for nuclear shape, alpha smooth muscle actin (αSMA) and vimentin (VMN) polymerization, and small mothers against decapentaplegic homologs 2 and 3 (SMAD 2/3) nuclear activity. The results indicated that bulk gel deformations were accurately transduced to the AVICs. Lower peak stretches lead to increased αSMA polymerization. In contrast, VMN polymerization was a function of stretch rate, with SMAD 2/3 nuclear localization and nuclear shape also trending toward stretch rate dependency. Lower than physiological levels of stretch rate led to higher SMAD 2/3 activity, higher VMN polymerization around the nucleus, and lower nuclear elongation. αSMA polymerization did not correlate with VMN polymerization, SMAD 2/3 activity, nor nuclear shape. These results suggest that a negative feedback loop may form between SMAD 2/3, VMN, and nuclear shape to maintain AVIC homeostatic nuclear deformations, which is dependent on stretch rate. These novel results suggest that AVIC mechanobiological responses are sensitive to stretch history and provide insight into the mechanisms of AV disease.
Collapse
Affiliation(s)
- Toni M. West
- James T. Willerson Center for Cardiovascular Modelling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, Austin, Texas 78711, USA
| | - Daniel P. Howsmon
- James T. Willerson Center for Cardiovascular Modelling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, Austin, Texas 78711, USA
| | - Miles W. Massidda
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78711, USA
| | | | | | - Aaron B. Baker
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78711, USA
| | - Michael S. Sacks
- James T. Willerson Center for Cardiovascular Modelling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, Austin, Texas 78711, USA
| |
Collapse
|
10
|
Bahadormanesh N, Tomka B, Abdelkhalek M, Khodaei S, Maftoon N, Keshavarz-Motamed Z. A Doppler-exclusive non-invasive computational diagnostic framework for personalized transcatheter aortic valve replacement. Sci Rep 2023; 13:8033. [PMID: 37198194 PMCID: PMC10192526 DOI: 10.1038/s41598-023-33511-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/13/2023] [Indexed: 05/19/2023] Open
Abstract
Given the associated risks with transcatheter aortic valve replacement (TAVR), it is crucial to determine how the implant will affect the valve dynamics and cardiac function, and if TAVR will improve or worsen the outcome of the patient. Effective treatment strategies, indeed, rely heavily on the complete understanding of the valve dynamics. We developed an innovative Doppler-exclusive non-invasive computational framework that can function as a diagnostic tool to assess valve dynamics in patients with aortic stenosis in both pre- and post-TAVR status. Clinical Doppler pressure was reduced by TAVR (52.2 ± 20.4 vs. 17.3 ± 13.8 [mmHg], p < 0.001), but it was not always accompanied by improvements in valve dynamics and left ventricle (LV) hemodynamics metrics. TAVR had no effect on LV workload in 4 patients, and LV workload post-TAVR significantly rose in 4 other patients. Despite the group level improvements in maximum LV pressure (166.4 ± 32.2 vs 131.4 ± 16.9 [mmHg], p < 0.05), only 5 of the 12 patients (41%) had a decrease in LV pressure. Moreover, TAVR did not always improve valve dynamics. TAVR did not necessarily result in a decrease (in 9 out of 12 patients investigated in this study) in major principal stress on the aortic valve leaflets which is one of the main contributors in valve degeneration and, consequently, failure of heart valves. Diastolic stresses increased significantly post-TAVR (34%, 109% and 81%, p < 0.001) for each left, right and non-coronary leaflets respectively. Moreover, we quantified the stiffness and material properties of aortic valve leaflets which correspond with the reduced calcified region average stiffness among leaflets (66%, 74% and 62%; p < 0.001; N = 12). Valve dynamics post-intervention should be quantified and monitored to ensure the improvement of patient conditions and prevent any further complications. Improper evaluation of biomechanical valve features pre-intervention as well as post-intervention may result in harmful effects post-TAVR in patients including paravalvular leaks, valve degeneration, failure of TAVR and heart failure.
Collapse
Affiliation(s)
- Nikrouz Bahadormanesh
- Department of Mechanical Engineering, McMaster University, JHE-310, Hamilton, ON, L8S 4L7, Canada
| | - Benjamin Tomka
- Department of Mechanical Engineering, McMaster University, JHE-310, Hamilton, ON, L8S 4L7, Canada
| | | | - Seyedvahid Khodaei
- Department of Mechanical Engineering, McMaster University, JHE-310, Hamilton, ON, L8S 4L7, Canada
| | - Nima Maftoon
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
- Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Zahra Keshavarz-Motamed
- Department of Mechanical Engineering, McMaster University, JHE-310, Hamilton, ON, L8S 4L7, Canada.
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada.
- School of Computational Science and Engineering, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
11
|
Bahadormanesh N, Tomka B, Kadem M, Khodaei S, Keshavarz-Motamed Z. An ultrasound-exclusive non-invasive computational diagnostic framework for personalized cardiology of aortic valve stenosis. Med Image Anal 2023; 87:102795. [PMID: 37060702 DOI: 10.1016/j.media.2023.102795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023]
Abstract
Aortic stenosis (AS) is an acute and chronic cardiovascular disease and If left untreated, 50% of these patients will die within two years of developing symptoms. AS is characterized as the stiffening of the aortic valve leaflets which restricts their motion and prevents the proper opening under transvalvular pressure. Assessments of the valve dynamics, if available, would provide valuable information about the patient's state of cardiac deterioration as well as heart recovery and can have incredible impacts on patient care, planning interventions and making critical clinical decisions with life-threatening risks. Despite remarkable advancements in medical imaging, there are no clinical tools available to quantify valve dynamics invasively or noninvasively. In this study, we developed a highly innovative ultrasound-based non-invasive computational framework that can function as a diagnostic tool to assess valve dynamics (e.g. transient 3-D distribution of stress and displacement, 3-D deformed shape of leaflets, geometric orifice area and angular positions of leaflets) for patients with AS at no risk to the patients. Such a diagnostic tool considers the local valve dynamics and the global circulatory system to provide a platform for testing the intervention scenarios and evaluating their effects. We used clinical data of 12 patients with AS not only to validate the proposed framework but also to demonstrate its diagnostic abilities by providing novel analyses and interpretations of clinical data in both pre and post intervention states. We used transthoracic echocardiogram (TTE) data for the developments and transesophageal echocardiography (TEE) data for validation.
Collapse
Affiliation(s)
| | - Benjamin Tomka
- Department of Mechanical Engineering, McMaster University Hamilton, ON, Canada
| | - Mason Kadem
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Seyedvahid Khodaei
- Department of Mechanical Engineering, McMaster University Hamilton, ON, Canada
| | - Zahra Keshavarz-Motamed
- Department of Mechanical Engineering, McMaster University Hamilton, ON, Canada; School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada; School of Computational Science and Engineering, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
12
|
Morany A, Lavon K, Gomez Bardon R, Kovarovic B, Hamdan A, Bluestein D, Haj-Ali R. Fluid-structure interaction modeling of compliant aortic valves using the lattice Boltzmann CFD and FEM methods. Biomech Model Mechanobiol 2023; 22:837-850. [PMID: 36763197 DOI: 10.1007/s10237-022-01684-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/28/2022] [Indexed: 02/11/2023]
Abstract
The lattice Boltzmann method (LBM) has been increasingly used as a stand-alone CFD solver in various biomechanical applications. This study proposes a new fluid-structure interaction (FSI) co-modeling framework for the hemodynamic-structural analysis of compliant aortic valves. Toward that goal, two commercial software packages are integrated using the lattice Boltzmann (LBM) and finite element (FE) methods. The suitability of the LBM-FE hemodynamic FSI is examined in modeling healthy tricuspid and bicuspid aortic valves (TAV and BAV), respectively. In addition, a multi-scale structural approach that has been employed explicitly recognizes the heterogeneous leaflet tissues and differentiates between the collagen fiber network (CFN) embedded within the elastin matrix of the leaflets. The CFN multi-scale tissue model is inspired by monitoring the distribution of the collagen in 15 porcine leaflets. Different simulations have been examined, and structural stresses and resulting hemodynamics are analyzed. We found that LBM-FE FSI approach can produce good predictions for the flow and structural behaviors of TAV and BAV and correlates well with those reported in the literature. The multi-scale heterogeneous CFN tissue structural model enhances our understanding of the mechanical roles of the CFN and the elastin matrix behaviors. The importance of LBM-FE FSI also emerges in its ability to resolve local hemodynamic and structural behaviors. In particular, the diastolic fluctuating velocity phenomenon near the leaflets is explicitly predicted, providing vital information on the flow transient nature. The full closure of the contacting leaflets in BAV is also demonstrated. Accordingly, good structural kinematics and deformations are captured for the entire cardiac cycle.
Collapse
Affiliation(s)
- Adi Morany
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Karin Lavon
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
| | | | - Brandon Kovarovic
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Ashraf Hamdan
- Department of Cardiology, Rabin Medical Center, Petach Tikva, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Rami Haj-Ali
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel. .,Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
13
|
Gollmann-Tepeköylü C, Nägele F, Engler C, Stoessel L, Zellmer B, Graber M, Hirsch J, Pölzl L, Ruttmann E, Tancevski I, Tiller C, Barbieri F, Stastny L, Reinstadler SJ, Oezpeker UC, Semsroth S, Bonaros N, Grimm M, Feuchtner G, Holfeld J. Different calcification patterns of tricuspid and bicuspid aortic valves and their clinical impact. Interact Cardiovasc Thorac Surg 2022; 35:ivac274. [PMID: 36383200 PMCID: PMC10906007 DOI: 10.1093/icvts/ivac274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Mechanical strain plays a major role in the development of aortic calcification. We hypothesized that (i) valvular calcifications are most pronounced at the localizations subjected to the highest mechanical strain and (ii) calcification patterns are different in patients with bicuspid and tricuspid aortic valves. METHODS Multislice computed tomography scans of 101 patients with severe aortic stenosis were analysed using a 3-dimensional post-processing software to quantify calcification of tricuspid aortic valves (n = 51) and bicuspid aortic valves (n = 50) after matching. RESULTS Bicuspid aortic valves exhibited higher calcification volumes and increased calcification of the non-coronary cusp with significantly higher calcification of the free leaflet edge. The non-coronary cusp showed the highest calcium load compared to the other leaflets. Patients with annular calcification above the median had an impaired survival compared to patients with low annular calcification, whereas patients with calcification of the free leaflet edge above the median did not (P = 0.53). CONCLUSIONS Calcification patterns are different in patients with aortic stenosis with bicuspid and tricuspid aortic valves. Patients with high annular calcification might have an impaired prognosis.
Collapse
Affiliation(s)
| | - Felix Nägele
- Department of Cardiac Surgery, Medical University of Innsbruck, Austria
| | - Clemens Engler
- Department of Cardiac Surgery, Medical University of Innsbruck, Austria
| | - Leon Stoessel
- Department of Cardiac Surgery, Medical University of Innsbruck, Austria
| | - Berit Zellmer
- Department of Cardiac Surgery, Medical University of Innsbruck, Austria
| | - Michael Graber
- Department of Cardiac Surgery, Medical University of Innsbruck, Austria
| | - Jakob Hirsch
- Department of Cardiac Surgery, Medical University of Innsbruck, Austria
| | - Leo Pölzl
- Department of Cardiac Surgery, Medical University of Innsbruck, Austria
| | - Elfriede Ruttmann
- Department of Cardiac Surgery, Medical University of Innsbruck, Austria
| | - Ivan Tancevski
- Department of Internal Medicine II, Medical University of Innsbruck, Austria
| | - Christina Tiller
- Deparment of Internal Medicine III, Medical University of Innsbruck, Austria
| | - Fabian Barbieri
- Deparment of Internal Medicine III, Medical University of Innsbruck, Austria
| | - Lukas Stastny
- Department of Cardiac Surgery, Medical University of Innsbruck, Austria
| | | | | | - Severin Semsroth
- Department of Cardiac Surgery, Medical University of Innsbruck, Austria
| | - Nikolaos Bonaros
- Department of Cardiac Surgery, Medical University of Innsbruck, Austria
| | - Michael Grimm
- Department of Cardiac Surgery, Medical University of Innsbruck, Austria
| | - Gudrun Feuchtner
- Department of Radiology, Medical University of Innsbruck, Austria
| | - Johannes Holfeld
- Department of Cardiac Surgery, Medical University of Innsbruck, Austria
| |
Collapse
|
14
|
Molnár AÁ, Pásztor D, Merkely B. Cellular Senescence, Aging and Non-Aging Processes in Calcified Aortic Valve Stenosis: From Bench-Side to Bedside. Cells 2022; 11:cells11213389. [PMID: 36359785 PMCID: PMC9659237 DOI: 10.3390/cells11213389] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022] Open
Abstract
Aortic valve stenosis (AS) is the most common valvular heart disease. The incidence of AS increases with age, however, a significant proportion of elderly people have no significant AS, indicating that both aging and nonaging pathways are involved in the pathomechanism of AS. Age-related and stress-induced cellular senescence accompanied by further active processes represent the key elements of AS pathomechanism. The early stage of aortic valve degeneration involves dysfunction and disruption of the valvular endothelium due to cellular senescence and mechanical stress on blood flow. These cells are replaced by circulating progenitor cells, but in an age-dependent decelerating manner. When endothelial denudation is no longer replaced by progenitor cells, the path opens for focal lipid deposition, initiating subsequent oxidation, inflammation and micromineralisation. Later stages of AS feature a complex active process with extracellular matrix remodeling, fibrosis and calcification. Echocardiography is the gold standard method for diagnosing aortic valve disease, although computed tomography and cardiac magnetic resonance are useful additional imaging methods. To date, no medical treatment has been proven to halt the progression of AS. Elucidation of differences and similarities between vascular and valvular calcification pathomechanisms may help to find effective medical therapy and reduce the increasing health burden of the disease.
Collapse
|
15
|
Barati S, Fatouraee N, Nabaei M, Petrini L, Migliavacca F, Luraghi G, Matas JFR. Patient-specific multi-scale design optimization of transcatheter aortic valve stents. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106912. [PMID: 35640391 DOI: 10.1016/j.cmpb.2022.106912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Transcatheter aortic valve implantation (TAVI) has become the standard treatment for a wide range of patients with aortic stenosis. Although some of the TAVI post-operative complications are addressed in newer designs, other complications and lack of long-term and durability data on the performance of these prostheses are limiting this procedure from becoming the standard for heart valve replacements. The design optimization of these devices with the finite element and optimization techniques can help increase their performance quality and reduce the risk of malfunctioning. Most performance metrics of these prostheses are morphology-dependent, and the design and the selection of the device before implantation should be planned for each individual patient. METHODS In this study, a patient-specific aortic root geometry was utilized for the crimping and implantation simulation of 50 stent samples. The results of simulations were then evaluated and used for developing regression models. The strut width and thickness, the number of cells and patterns, the size of stent cells, and the diameter profile of the stent were optimized with two sets of optimization processes. The objective functions included the maximum crimping strain, radial strength, anchorage area, and the eccentricity of the stent. RESULTS The optimization process was successful in finding optimal models with up to 40% decrease in the maximum crimping strain, 261% increase in the radial strength, 67% reduction in the eccentricity, and about an eightfold increase in the anchorage area compared to the reference device. CONCLUSIONS The stents with larger distal diameters perform better in the selected objective functions. They provide better anchorage in the aortic root resulting in a smaller gap between the device and the surrounding tissue and smaller contact pressure. This framework can be used in designing patient-specific stents and improving the performance of these devices and the outcome of the implantation process.
Collapse
Affiliation(s)
- Sara Barati
- Biological Fluid Dynamics Research Laboratory, Biomedical Engineering Department, Amirkabir University of Technology, 350 Hafez Ave, Tehran, Iran
| | - Nasser Fatouraee
- Biological Fluid Dynamics Research Laboratory, Biomedical Engineering Department, Amirkabir University of Technology, 350 Hafez Ave, Tehran, Iran.
| | - Malikeh Nabaei
- Biological Fluid Dynamics Research Laboratory, Biomedical Engineering Department, Amirkabir University of Technology, 350 Hafez Ave, Tehran, Iran
| | - Lorenza Petrini
- Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy
| | - Giulia Luraghi
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy.
| | - Josè Felix Rodriguez Matas
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy.
| |
Collapse
|
16
|
Hou Q, Tao K, Du T, Wei H, Zhang H, Chen S, Pan Y, Qiao A. A computational analysis of potential aortic dilation induced by the hemodynamic effects of bicuspid aortic valve phenotypes. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 220:106811. [PMID: 35447428 DOI: 10.1016/j.cmpb.2022.106811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/01/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVES The bicuspid aortic valve (BAV) is a major risk factor for the progression of aortic dilation (AD) because of the induced abnormal blood flow environment in aorta. The differences in the development of AD induced by BAV phenotypes remains unclear. Therefore, the objective of this study was to assess the potential locations of AD induced by different phenotypes of BAV. The different effects of opening orifice area and leaflet orientation on ascending aortic hemodynamics in Type-1 BAV was investigated by means of numerical simulation. METHODS Finite element dynamic analysis was performed on tricuspid aortic valve (TAV) and BAV models to simulate the motion of the leaflets and obtain the geometrical characteristics of AV at peak systole as a reference, which were used for aortic models. Then, four sets of aortic fluid models were designed according to the leaflet fusion types [TAV; BAV (left-right-coronary cusp fusion, LR; right-non-coronary cusp fusion, RN; left-non-coronary cusp fusion, LN)], and the computational fluid dynamics method was applied to compare the hemodynamic differences within the aorta at peak systole. RESULTS The maximum opening area of BAV was significantly reduced, resulting in alterations in aortic hemodynamics compared with TAV. The velocity streamlines were essentially parallel to the aortic wall in TAV. The average pressure and wall shear stress in aorta tend to be stable. In contrary, the eccentricity of BAV orifice jet resulted in high-velocity flow directed toward the ascending aorta (AA) wall and aortic arch for LR and LN; RN features an asymmetrical velocity distribution toward the outer bend of the middle AA, and eccentric flow tends to impact the distal AA. As the flow angle is associated with distinct flow impingement locations, different degrees of WSS and pressure concentration occur along the aortic wall from the AA to the aortic arch in three BAV types. CONCLUSIONS The BAV morphotype affects the aortic hemodynamics, and the abnormal blood flow associated with BAV may play a role in AD. The different BAV phenotypes determine the direction of blood flow jet and change the expression of dilation. LR is likely to cause dilation of the tubular AA; RN results in dilation of the middle AA to proximal aortic arch; and LN causes an increased incidence of the tubular AA and the proximal aortic arch.
Collapse
Affiliation(s)
- Qianwen Hou
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China; Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Beijing, China
| | - Keyi Tao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China; Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Beijing, China
| | - Tianming Du
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China; Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Beijing, China.
| | - Hongge Wei
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China; Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Beijing, China
| | - Honghui Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China; Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Beijing, China
| | - Shiliang Chen
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China; Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Beijing, China
| | - Youlian Pan
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China; Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Beijing, China
| | - Aike Qiao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China; Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Beijing, China.
| |
Collapse
|
17
|
Kraler S, Blaser MC, Aikawa E, Camici GG, Lüscher TF. Calcific aortic valve disease: from molecular and cellular mechanisms to medical therapy. Eur Heart J 2021; 43:683-697. [PMID: 34849696 DOI: 10.1093/eurheartj/ehab757] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/12/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is a highly prevalent condition that comprises a disease continuum, ranging from microscopic changes to profound fibro-calcific leaflet remodelling, culminating in aortic stenosis, heart failure, and ultimately premature death. Traditional risk factors, such as hypercholesterolaemia and (systolic) hypertension, are shared among atherosclerotic cardiovascular disease and CAVD, yet the molecular and cellular mechanisms differ markedly. Statin-induced low-density lipoprotein cholesterol lowering, a remedy highly effective for secondary prevention of atherosclerotic cardiovascular disease, consistently failed to impact CAVD progression or to improve patient outcomes. However, recently completed phase II trials provide hope that pharmaceutical tactics directed at other targets implicated in CAVD pathogenesis offer an avenue to alter the course of the disease non-invasively. Herein, we delineate key players of CAVD pathobiology, outline mechanisms that entail compromised endothelial barrier function, and promote lipid homing, immune-cell infiltration, and deranged phospho-calcium metabolism that collectively perpetuate a pro-inflammatory/pro-osteogenic milieu in which valvular interstitial cells increasingly adopt myofibro-/osteoblast-like properties, thereby fostering fibro-calcific leaflet remodelling and eventually resulting in left ventricular outflow obstruction. We provide a glimpse into the most promising targets on the horizon, including lipoprotein(a), mineral-binding matrix Gla protein, soluble guanylate cyclase, dipeptidyl peptidase-4 as well as candidates involved in regulating phospho-calcium metabolism and valvular angiotensin II synthesis and ultimately discuss their potential for a future therapy of this insidious disease.
Collapse
Affiliation(s)
- Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,University Heart Center, Department of Cardiology, University Hospital, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Mark C Blaser
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA.,Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Ave Louis Pasteur, NRB7, Boston, MA 02115, USA
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,University Heart Center, Department of Cardiology, University Hospital, Rämistrasse 100, 8091 Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,Heart Division, Royal Brompton & Harefield Hospitals, Sydney Street, London SW3 6NP, UK.,National Heart and Lung Institute, Imperial College, Guy Scadding Building, Dovehouse Street, London SW3 6LY, UK
| |
Collapse
|
18
|
Progressive Calcification in Bicuspid Valves: A Coupled Hemodynamics and Multiscale Structural Computations. Ann Biomed Eng 2021; 49:3310-3322. [PMID: 34708308 DOI: 10.1007/s10439-021-02877-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
Bicuspid aortic valve (BAV) is the most common congenital heart disease. Calcific aortic valve disease (CAVD) accounts for the majority of aortic stenosis (AS) cases. Half of the patients diagnosed with AS have a BAV, which has an accelerated progression rate. This study aims to develop a computational modeling approach of both the calcification progression in BAV, and its biomechanical response incorporating fluid-structure interaction (FSI) simulations during the disease progression. The calcification is patient-specifically reconstructed from Micro-CT images of excised calcified BAV leaflets, and processed with a novel reverse calcification technique that predicts prior states of CAVD using a density-based criterion, resulting in a multilayered calcified structure. Four progressive multilayered calcified BAV models were generated: healthy, mild, moderate, and severe, and were modeled by FSI simulations during the full cardiac cycle. A valve apparatus model, composed of the excised calcified BAV leaflets, was tested in an in-vitro pulse duplicator, to validate the severe model. The healthy model was validated against echocardiography scans. Progressive AS was characterized by higher systolic jet flow velocities (2.08, 2.3, 3.37, and 3.85 m s-1), which induced intense vortices surrounding the jet, coupled with irregular recirculation backflow patterns that elevated viscous shear stresses on the leaflets. This study shed light on the fluid-structure mechanism that drives CAVD progression in BAV patients.
Collapse
|
19
|
Hou Q, Liu G, Liu N, Zhang H, Qu Z, Zhang H, Li H, Pan Y, Qiao A. Effect of Valve Height on the Opening and Closing Performance of the Aortic Valve Under Aortic Root Dilatation. Front Physiol 2021; 12:697502. [PMID: 34526908 PMCID: PMC8435789 DOI: 10.3389/fphys.2021.697502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
Patients with aortic valve disease can suffer from valve insufficiency after valve repair surgery due to aortic root dilatation. The paper investigates the effect of valve height (Hv) on the aortic valve opening and closing in order to select the appropriate range of Hv for smoother blood flow through the aortic valve and valve closure completely in the case of continuous aortic root dilatation. A total of 20 parameterized three-dimensional models of the aortic root were constructed following clinical surgical guidance. Aortic annulus diameter (DAA) was separately set to 26, 27, 28, 29, and 30 mm to simulate aortic root dilatation. HV value was separately set to 13.5, 14, 14.5, and 15 mm to simulate aortic valve alterations in surgery. Time-varying pressure loads were applied to the valve, vessel wall of the ascending aorta, and left ventricle. Then, finite element analysis software was employed to simulate the movement and mechanics of the aortic root. The feasible design range of the valve size was evaluated using maximum stress, geometric orifice area (GOA), and leaflet contact force. The results show that the valve was incompletely closed when HV was 13.5 mm and DAA was 29 or 30 mm. The GOA of the valve was small when HV was 15 mm and DAA was 26 or 27 mm. The corresponding values of the other models were within the normal range. Compared with the model with an HV of 14 mm, the model with an HV of 14.5 mm could effectively reduce maximum stress and had relatively larger GOA and less change in contact force. As a result, valve height affects the performance of aortic valve opening and closing. Smaller HV is adapted to smaller DAA and vice versa. When HV is 14.5 mm, the valve is well adapted to the dilatation of the aortic root to enhance repair durability. Therefore, more attention should be paid to HV in surgical planning.
Collapse
Affiliation(s)
- Qianwen Hou
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China.,Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Beijing, China
| | - Guimei Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China.,Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Beijing, China
| | - Ning Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China.,Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Beijing, China
| | - Honghui Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China.,Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Beijing, China
| | - Zhuoran Qu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China.,Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Beijing, China
| | - Hanbing Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China.,Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Beijing, China
| | - Hui Li
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China.,Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Beijing, China
| | - Youlian Pan
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China.,Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Beijing, China
| | - Aike Qiao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China.,Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Beijing, China
| |
Collapse
|
20
|
Computational Analysis of Wall Shear Stress Patterns on Calcified and Bicuspid Aortic Valves: Focus on Radial and Coaptation Patterns. FLUIDS 2021. [DOI: 10.3390/fluids6080287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Calcification and bicuspid valve formation are important aortic valve disorders that disturb the hemodynamics and the valve function. The detailed analysis of aortic valve hemodynamics would lead to a better understanding of the disease’s etiology. We computationally modeled the aortic valve using simplified three-dimensional geometry and inlet velocity conditions obtained via echocardiography. We examined various calcification severities and bicuspid valve formation. Fluid-structure interaction (FSI) analyses were adapted using ANSYS Workbench to incorporate both flow dynamics and leaflet deformation accurately. Simulation results were validated by comparing leaflet movements in B-mode echo recordings. Results indicate that the biomechanical environment is significantly changed for calcified and bicuspid valves. High flow jet velocities are observed in the calcified valves which results in high transvalvular pressure difference (TPG). Wall shear stresses (WSS) increased with the calcification on both fibrosa (aorta side) and ventricularis (left ventricle side) surfaces of the leaflet. The WSS distribution is regular on the ventricularis, as the WSS values proportionally increase from the base to the tip of the leaflet. However, WSS patterns are spatially complex on the fibrosa side. Low WSS levels and spatially complex WSS patterns on the fibrosa side are considered as promoting factors for further calcification and valvular diseases.
Collapse
|
21
|
Fan Y, Shao J, Wei S, Song C, Li Y, Jiang S. Self-eating and Heart: The Emerging Roles of Autophagy in Calcific Aortic Valve Disease. Aging Dis 2021; 12:1287-1303. [PMID: 34341709 PMCID: PMC8279526 DOI: 10.14336/ad.2021.0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/01/2021] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a self-degradative pathway by which subcellular elements are broken down intracellularly to maintain cellular homeostasis. Cardiac autophagy commonly decreases with aging and is accompanied by the accumulation of misfolded proteins and dysfunctional organelles, which are undesirable to the cell. Reduction of autophagy over time leads to aging-related cardiac dysfunction and is inversely related to longevity. However, despite the increasing interest in autophagy in cardiac diseases and aging, the process remains an undervalued and disregarded object in calcific valvular disease. Neither the nature through which autophagy is triggered nor the interplay between autophagic machinery and targeted molecules during aortic valve calcification are fully understood. Recently, the upregulation of autophagy has been shown to result in cardioprotective effects against cell death as well as its origin. Here, we review the evidence that shows how autophagy can be both beneficial and detrimental as it pertains to aortic valve calcification in the heart.
Collapse
Affiliation(s)
- Yunlong Fan
- 1Medical School of Chinese PLA, Beijing 100853, China.,2Department of Cardiovascular Surgery, the First Medical Centre of Chinese PLA General Hospital, Beijing 100853, China
| | - Jiakang Shao
- 1Medical School of Chinese PLA, Beijing 100853, China
| | - Shixiong Wei
- 1Medical School of Chinese PLA, Beijing 100853, China.,2Department of Cardiovascular Surgery, the First Medical Centre of Chinese PLA General Hospital, Beijing 100853, China
| | - Chao Song
- 1Medical School of Chinese PLA, Beijing 100853, China.,2Department of Cardiovascular Surgery, the First Medical Centre of Chinese PLA General Hospital, Beijing 100853, China
| | - Yanan Li
- 1Medical School of Chinese PLA, Beijing 100853, China
| | - Shengli Jiang
- 1Medical School of Chinese PLA, Beijing 100853, China.,2Department of Cardiovascular Surgery, the First Medical Centre of Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
22
|
Yan W, Li J, Wang W, Wei L, Wang S. A Fluid-Structure Interaction Study of Different Bicuspid Aortic Valve Phenotypes Throughout the Cardiac Cycle. Front Physiol 2021; 12:716015. [PMID: 34381379 PMCID: PMC8350765 DOI: 10.3389/fphys.2021.716015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
The bicuspid aortic valve (BAV) is a congenital malformation of the aortic valve with a variety of structural features. The current research on BAV mainly focuses on the systolic phase, while ignoring the diastolic hemodynamic characteristics and valve mechanics. The purpose of this study is to compare the differences in hemodynamics and mechanical properties of BAV with different phenotypes throughout the cardiac cycle by means of numerical simulation. Based on physiological anatomy, we established an idealized tricuspid aortic valve (TAV) model and six phenotypes of BAV models (including Type 0 a-p, Type 0 lat, Type 1 L-R, Type 1 N-L, Type 1 R-N, and Type 2), and simulated the dynamic changes of the aortic valve during the cardiac cycle using the fluid-structure interaction method. The morphology of the leaflets, hemodynamic parameters, flow patterns, and strain were analyzed. Compared with TAV, the cardiac output and effective orifice area of different BAV phenotypes decreased certain degree, along with the peak velocity and mean pressure difference increased both. Among all BAV models, Type 2 exhibited the worst hemodynamic performance. During the systole, obvious asymmetric flow field was observed in BAV aorta, which was related to the orientation of BAV. Higher strain was generated in diastole for BAV models. The findings of this study suggests specific differences in the hemodynamic characteristics and valve mechanics of different BAV phenotypes, including different severity of stenosis, flow patterns, and leaflet strain, which may be critical for prediction of other subsequent aortic diseases and differential treatment strategy for certain BAV phenotype.
Collapse
Affiliation(s)
- Wentao Yan
- Department of Aeronautics and Astronautics, Fudan University, Shanghai, China
| | - Jianming Li
- Department of Aeronautics and Astronautics, Fudan University, Shanghai, China
| | - Wenshuo Wang
- Department of Vascular Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Lai Wei
- Department of Vascular Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Shengzhang Wang
- Department of Aeronautics and Astronautics, Fudan University, Shanghai, China
- Institute of Biomedical Engineering Technology, Academy for Engineering and Technology, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Park MH, Zhu Y, Imbrie-Moore AM, Wang H, Marin-Cuartas M, Paulsen MJ, Woo YJ. Heart Valve Biomechanics: The Frontiers of Modeling Modalities and the Expansive Capabilities of Ex Vivo Heart Simulation. Front Cardiovasc Med 2021; 8:673689. [PMID: 34307492 PMCID: PMC8295480 DOI: 10.3389/fcvm.2021.673689] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/17/2021] [Indexed: 01/05/2023] Open
Abstract
The field of heart valve biomechanics is a rapidly expanding, highly clinically relevant area of research. While most valvular pathologies are rooted in biomechanical changes, the technologies for studying these pathologies and identifying treatments have largely been limited. Nonetheless, significant advancements are underway to better understand the biomechanics of heart valves, pathologies, and interventional therapeutics, and these advancements have largely been driven by crucial in silico, ex vivo, and in vivo modeling technologies. These modalities represent cutting-edge abilities for generating novel insights regarding native, disease, and repair physiologies, and each has unique advantages and limitations for advancing study in this field. In particular, novel ex vivo modeling technologies represent an especially promising class of translatable research that leverages the advantages from both in silico and in vivo modeling to provide deep quantitative and qualitative insights on valvular biomechanics. The frontiers of this work are being discovered by innovative research groups that have used creative, interdisciplinary approaches toward recapitulating in vivo physiology, changing the landscape of clinical understanding and practice for cardiovascular surgery and medicine.
Collapse
Affiliation(s)
- Matthew H Park
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Annabel M Imbrie-Moore
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Mateo Marin-Cuartas
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,University Department of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - Michael J Paulsen
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
24
|
Lu Y, Zhang L, Tao H, Sun X, Zhao Y, Xia L, Sun X, Shen J, Fu J, Hamidi MR, Liu H, Wang W, Liu M, Wei L. Two MicroRNAs, miR-34a and miR-125a, Are Implicated in Bicuspid Aortopathy by Modulating Metalloproteinase 2. Biochem Genet 2021; 60:286-302. [PMID: 34195933 DOI: 10.1007/s10528-021-10085-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
It has been recognized that wall shear stress plays an important role in the development of Bicuspid Aortopathy (BA), but the intrinsic mechanism is not well elucidated. This study aims to explore the underlying relationship between hemodynamical forces and pathological phenomenon. Total RNA was prepared from aortic wall tissues collected from 20 BA patients. RNA sequencing, bioinformatic analysis and quantitative reverse-transcription PCR validation identified nine miRNAs that were up-regulated in the aortic part exposed to high wall shear stress compared to the low wall shear stress control, and six miRNAs that were down-regulated. Among these candidates, miR-34a and miR-125a, both down-regulated in the high wall shear stress parts, were shown to be potential inhibitors of the metalloproteinase 2 gene. Luciferase reporter assays confirmed that both miRNAs could inhibit the expression of metalloproteinase 2 mRNA in CRL1999 by complementing with its 3' untranslated region. Conversely, immunofluorescence assays showed that inhibition of miR-34a or miR-125a could lead to increased metalloproteinase 2 protein level. On the other hand, both miR-34a and miR-125a were shown to alleviate stretch-induced stimulation of metalloproteinase 2 expression in CRL1999 cells. The results suggested that miR-34a and miR-125a might be implicated in wall shear stress induced aortic pathogenesis due to their apparent regulatory roles in metalloproteinase 2 expression and extracellular matrix remodeling, which are key events in the weakening of aortic walls among BA patients.
Collapse
Affiliation(s)
- Yuntao Lu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lingfei Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hongyue Tao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiaotian Sun
- Department of Cardiac Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yun Zhao
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Limin Xia
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoning Sun
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jinqiang Shen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiahui Fu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mohammad Rafi Hamidi
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Huan Liu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenshuo Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Zhongshan Hospital, Fudan University, Room 633, Building 16, Shanghai, 200032, China.
| | - Mofang Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Lai Wei
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Zhongshan Hospital, Fudan University, Room 639, Building 16, Shanghai, 200032, China.
| |
Collapse
|
25
|
Huang J, Pu Y, Zhang H, Xie L, He L, Zhang CL, Cheng CK, Huo Y, Wan S, Chen S, Huang Y, Lau CW, Wang L, Xia Y, Huang Y, Luo JY. KLF2 Mediates the Suppressive Effect of Laminar Flow on Vascular Calcification by Inhibiting Endothelial BMP/SMAD1/5 Signaling. Circ Res 2021; 129:e87-e100. [PMID: 34157851 DOI: 10.1161/circresaha.120.318690] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Juan Huang
- Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China.,School of Biomedical Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Y.X., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, China (J.H.)
| | - Yujie Pu
- Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China.,School of Biomedical Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Y.X., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China
| | - Hongsong Zhang
- Department of Cardiology, Nanjing First Hospital (H.Z., S.C.), Nanjing Medical University, China
| | - Liping Xie
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine (L.X.), Nanjing Medical University, China
| | - Lei He
- Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China.,School of Biomedical Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Y.X., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China
| | - Cheng-Lin Zhang
- Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China.,School of Biomedical Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Y.X., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China
| | - Chak Kwong Cheng
- Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China.,School of Biomedical Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Y.X., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China
| | - Yingsong Huo
- Department of Radiology, Nanjing First Hospital (Y.H.), Nanjing Medical University, China
| | - Song Wan
- Department of Surgery (S.W.), Chinese University of Hong Kong, China
| | - Shaoliang Chen
- Department of Cardiology, Nanjing First Hospital (H.Z., S.C.), Nanjing Medical University, China
| | - Yuhong Huang
- Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China.,School of Biomedical Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Y.X., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China
| | - Chi Wai Lau
- Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China.,School of Biomedical Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Y.X., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China
| | - Li Wang
- Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China.,School of Biomedical Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Y.X., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China
| | - Yin Xia
- School of Biomedical Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Y.X., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China
| | - Yu Huang
- Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China.,School of Biomedical Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Y.X., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China
| | - Jiang-Yun Luo
- Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China.,School of Biomedical Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Y.X., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China
| |
Collapse
|
26
|
Fluid Flow Characteristics of Healthy and Calcified Aortic Valves Using Three-Dimensional Lagrangian Coherent Structures Analysis. FLUIDS 2021. [DOI: 10.3390/fluids6060203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aortic valve calcification is an important cardiovascular disorder that deteriorates the accurate functioning of the valve leaflets. The increasing stiffness due to the calcification prevents the complete closure of the valve and therefore leads to significant hemodynamic alterations. Computational fluid dynamics (CFD) modeling enables the investigation of the entire flow domain by processing medical images from aortic valve patients. In this study, we computationally modeled and simulated a 3D aortic valve using patient-specific dimensions of the aortic root and aortic sinus. Leaflet stiffness is deteriorated in aortic valve disease due to calcification. In order to investigate the influence of leaflet calcification on flow dynamics, three different leaflet-stiffness values were considered for healthy, mildly calcified, and severely calcified leaflets. Time-dependent CFD results were used for applying the Lagrangian coherent structures (LCS) technique by performing finite-time Lyapunov exponent (FTLE) computations along with Lagrangian particle residence time (PRT) analysis to identify unique vortex structures at the front and backside of the leaflets. Obtained results indicated that the peak flow velocity at the valve orifice increased with the calcification rate. For the healthy aortic valve, a low-pressure field was observed at the leaflet tips. This low-pressure field gradually expanded through the entire aortic sinus as the calcification level increased. FTLE field plots of the healthy and calcified valves showed a variety of differences in terms of flow structures. When the number of fluid particles in the healthy valve model was taken as reference, 1.59 and 1.74 times more particles accumulated in the mildly and severely calcified valves, respectively, indicating that the calcified valves were not sufficiently opened to allow normal mass flow rates.
Collapse
|
27
|
Kazik HB, Kandail HS, LaDisa JF, Lincoln J. Molecular and Mechanical Mechanisms of Calcification Pathology Induced by Bicuspid Aortic Valve Abnormalities. Front Cardiovasc Med 2021; 8:677977. [PMID: 34124206 PMCID: PMC8187581 DOI: 10.3389/fcvm.2021.677977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Bicuspid aortic valve (BAV) is a congenital defect affecting 1-2% of the general population that is distinguished from the normal tricuspid aortic valve (TAV) by the existence of two, rather than three, functional leaflets (or cusps). BAV presents in different morphologic phenotypes based on the configuration of cusp fusion. The most common phenotypes are Type 1 (containing one raphe), where fusion between right coronary and left coronary cusps (BAV R/L) is the most common configuration followed by fusion between right coronary and non-coronary cusps (BAV R/NC). While anatomically different, BAV R/L and BAV R/NC configurations are both associated with abnormal hemodynamic and biomechanical environments. The natural history of BAV has shown that it is not necessarily the primary structural malformation that enforces the need for treatment in young adults, but the secondary onset of premature calcification in ~50% of BAV patients, that can lead to aortic stenosis. While an underlying genetic basis is a major pathogenic contributor of the structural malformation, recent studies have implemented computational models, cardiac imaging studies, and bench-top methods to reveal BAV-associated hemodynamic and biomechanical alterations that likely contribute to secondary complications. Contributions to the field, however, lack support for a direct link between the external valvular environment and calcific aortic valve disease in the setting of BAV R/L and R/NC BAV. Here we review the literature of BAV hemodynamics and biomechanics and discuss its previously proposed contribution to calcification. We also offer means to improve upon previous studies in order to further characterize BAV and its secondary complications.
Collapse
Affiliation(s)
- Hail B. Kazik
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - John F. LaDisa
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Section of Pediatric Cardiology, The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, United States
| | - Joy Lincoln
- Section of Pediatric Cardiology, The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, United States
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
28
|
Kusner J, Luraghi G, Khodaee F, Rodriguez Matas JF, Migliavacca F, Edelman ER, Nezami FR. Understanding TAVR device expansion as it relates to morphology of the bicuspid aortic valve: A simulation study. PLoS One 2021; 16:e0251579. [PMID: 33999969 PMCID: PMC8128244 DOI: 10.1371/journal.pone.0251579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/29/2021] [Indexed: 12/23/2022] Open
Abstract
The bicuspid aortic valve (BAV) is a common and heterogeneous congenital heart abnormality that is often complicated by aortic stenosis. Although initially developed for tricuspid aortic valves (TAV), transcatheter aortic valve replacement (TAVR) devices are increasingly applied to the treatment of BAV stenosis. It is known that patient-device relationship between TAVR and BAV are not equivalent to those observed in TAV but the nature of these differences are not well understood. We sought to better understand the patient-device relationships between TAVR devices and the two most common morphologies of BAV. We performed finite element simulation of TAVR deployment into three cases of idealized aortic anatomies (TAV, Sievers 0 BAV, Sievers 1 BAV), derived from patient-specific measurements. Valve leaflet von Mises stress at the aortic commissures differed by valve configuration over a ten-fold range (TAV: 0.55 MPa, Sievers 0: 6.64 MPa, and Sievers 1: 4.19 MPa). First principle stress on the aortic wall was greater in Sievers 1 (0.316 MPa) and Sievers 0 BAV (0.137 MPa) compared to TAV (0.056 MPa). TAVR placement in Sievers 1 BAV demonstrated significant device asymmetric alignment, with 1.09 mm of displacement between the center of the device measured at the annulus and at the leaflet free edge. This orifice displacement was marginal in TAV (0.33 mm) and even lower in Sievers 0 BAV (0.23 mm). BAV TAVR, depending on the subtype involved, may encounter disparate combinations of device under expansion and asymmetry compared to TAV deployment. Understanding the impacts of BAV morphology on patient-device relationships can help improve device selection, patient eligibility, and the overall safety of TAVR in BAV.
Collapse
Affiliation(s)
- Jonathan Kusner
- Harvard Medical School, Boston, MA, United States of America
| | - Giulia Luraghi
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta’, Politecnico di Milano, Milan, Italy
| | - Farhan Khodaee
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - José Félix Rodriguez Matas
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta’, Politecnico di Milano, Milan, Italy
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta’, Politecnico di Milano, Milan, Italy
| | - Elazer R. Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Farhad R. Nezami
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Thoracic and Cardiac Surgery Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
- * E-mail: ,
| |
Collapse
|
29
|
Niazy N, Barth M, Selig JI, Feichtner S, Shakiba B, Candan A, Albert A, Preuß K, Lichtenberg A, Akhyari P. Degeneration of Aortic Valves in a Bioreactor System with Pulsatile Flow. Biomedicines 2021; 9:biomedicines9050462. [PMID: 33922670 PMCID: PMC8145810 DOI: 10.3390/biomedicines9050462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
Calcific aortic valve disease is the most common valvular heart disease in industrialized countries. Pulsatile pressure, sheer and bending stress promote initiation and progression of aortic valve degeneration. The aim of this work is to establish an ex vivo model to study the therein involved processes. Ovine aortic roots bearing aortic valve leaflets were cultivated in an elaborated bioreactor system with pulsatile flow, physiological temperature, and controlled pressure and pH values. Standard and pro-degenerative treatment were studied regarding the impact on morphology, calcification, and gene expression. In particular, differentiation, matrix remodeling, and degeneration were also compared to a static cultivation model. Bioreactor cultivation led to shrinking and thickening of the valve leaflets compared to native leaflets while gross morphology and the presence of valvular interstitial cells were preserved. Degenerative conditions induced considerable leaflet calcification. In comparison to static cultivation, collagen gene expression was stable under bioreactor cultivation, whereas expression of hypoxia-related markers was increased. Osteopontin gene expression was differentially altered compared to protein expression, indicating an enhanced protein turnover. The present ex vivo model is an adequate and effective system to analyze aortic valve degeneration under controlled physiological conditions without the need of additional growth factors.
Collapse
Affiliation(s)
- Naima Niazy
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.N.); (M.B.); (J.I.S.); (S.F.); (B.S.); (A.C.); (A.A.); (P.A.)
| | - Mareike Barth
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.N.); (M.B.); (J.I.S.); (S.F.); (B.S.); (A.C.); (A.A.); (P.A.)
| | - Jessica I. Selig
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.N.); (M.B.); (J.I.S.); (S.F.); (B.S.); (A.C.); (A.A.); (P.A.)
| | - Sabine Feichtner
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.N.); (M.B.); (J.I.S.); (S.F.); (B.S.); (A.C.); (A.A.); (P.A.)
| | - Babak Shakiba
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.N.); (M.B.); (J.I.S.); (S.F.); (B.S.); (A.C.); (A.A.); (P.A.)
| | - Asya Candan
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.N.); (M.B.); (J.I.S.); (S.F.); (B.S.); (A.C.); (A.A.); (P.A.)
| | - Alexander Albert
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.N.); (M.B.); (J.I.S.); (S.F.); (B.S.); (A.C.); (A.A.); (P.A.)
- Department of Cardiovascular Surgery, Klinikum Dortmund gGmbH, Beurhausstraße 40, 44137 Dortmund, Germany
| | - Karlheinz Preuß
- Faculty of Biotechnology, Bioprocessing, Modulation and Simulation, University of Applied Sciences Mannheim, Paul-Wittsack-Straße 10, 68163 Mannheim, Germany;
| | - Artur Lichtenberg
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.N.); (M.B.); (J.I.S.); (S.F.); (B.S.); (A.C.); (A.A.); (P.A.)
- Correspondence:
| | - Payam Akhyari
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.N.); (M.B.); (J.I.S.); (S.F.); (B.S.); (A.C.); (A.A.); (P.A.)
| |
Collapse
|
30
|
de Oliveira DC, Owen DG, Qian S, Green NC, Espino DM, Shepherd DET. Computational fluid dynamics of the right atrium: Assessment of modelling criteria for the evaluation of dialysis catheters. PLoS One 2021; 16:e0247438. [PMID: 33630903 PMCID: PMC7906423 DOI: 10.1371/journal.pone.0247438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 02/06/2021] [Indexed: 11/19/2022] Open
Abstract
Central venous catheters are widely used in haemodialysis therapy, having to respect design requirements for appropriate performance. These are placed within the right atrium (RA); however, there is no prior computational study assessing different catheter designs while mimicking their native environment. Here, a computational fluid dynamics model of the RA, based on realistic geometry and transient physiological boundary conditions, was developed and validated. Symmetric, split and step catheter designs were virtually placed in the RA and their performance was evaluated by: assessing their interaction with the RA haemodynamic environment through prediction of flow vorticity and wall shear stress (WSS) magnitudes (1); and quantifying recirculation and tip shear stress (2). Haemodynamic predictions from our RA model showed good agreement with the literature. Catheter placement in the RA increased average vorticity, which could indicate alterations of normal blood flow, and altered WSS magnitudes and distribution, which could indicate changes in tissue mechanical properties. All designs had recirculation and elevated shear stress values, which can induce platelet activation and subsequently thrombosis. The symmetric design, however, had the lowest associated values (best performance), while step design catheters working in reverse mode were associated with worsened performance. Different tip placements also impacted on catheter performance. Our findings suggest that using a realistically anatomical RA model to study catheter performance and interaction with the haemodynamic environment is crucial, and that care needs to be given to correct tip placement within the RA for improved recirculation percentages and diminished shear stress values.
Collapse
Affiliation(s)
- Diana C. de Oliveira
- Department of Mechanical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - David G. Owen
- Department of Mechanical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Shuang Qian
- Department of Mechanical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Naomi C. Green
- Department of Mechanical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Daniel M. Espino
- Department of Mechanical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Duncan E. T. Shepherd
- Department of Mechanical Engineering, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
31
|
Soltany Sadrabadi M, Hedayat M, Borazjani I, Arzani A. Fluid-structure coupled biotransport processes in aortic valve disease. J Biomech 2021; 117:110239. [PMID: 33515904 DOI: 10.1016/j.jbiomech.2021.110239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/22/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022]
Abstract
Biological transport processes near the aortic valve play a crucial role in calcific aortic valve disease initiation and bioprosthetic aortic valve thrombosis. Hemodynamics coupled with the dynamics of the leaflets regulate these transport patterns. Herein, two-way coupled fluid-structure interaction (FSI) simulations of a 2D bicuspid aortic valve and a 3D mechanical heart valve were performed and coupled with various convective mass transport models that represent some of the transport processes in calcification and thrombosis. Namely, five different continuum transport models were developed to study biochemicals that originate from the blood and the leaflets, as well as residence-time and flow stagnation. Low-density lipoprotein (LDL) and platelet activation were studied for their role in calcification and thrombosis, respectively. Coherent structures were identified using vorticity and Lagrangian coherent structures (LCS) for the 2D and 3D models, respectively. A very close connection between vortex structures and biochemical concentration patterns was shown where different vortices controlled the concentration patterns depending on the transport mechanism. Additionally, the relationship between leaflet concentration and wall shear stress was revealed. Our work shows that blood flow physics and coherent structures regulate the flow-mediated biological processes that are involved in aortic valve calcification and thrombosis, and therefore could be used in the design process to optimize heart valve replacement durability.
Collapse
Affiliation(s)
| | - Mohammadali Hedayat
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA
| | - Iman Borazjani
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA
| | - Amirhossein Arzani
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ, USA.
| |
Collapse
|
32
|
Shar JA, Keswani SG, Grande-Allen KJ, Sucosky P. Computational Assessment of Valvular Dysfunction in Discrete Subaortic Stenosis: A Parametric Study. Cardiovasc Eng Technol 2021; 12:559-575. [PMID: 33432514 DOI: 10.1007/s13239-020-00513-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/22/2020] [Indexed: 01/16/2023]
Abstract
PURPOSE Discrete subaortic stenosis (DSS) is a left-ventricular outflow tract (LVOT) obstruction caused by a membranous lesion. DSS is associated with steep aortoseptal angles (AoSAs) and is a risk factor for aortic regurgitation (AR). However, the etiology of AR secondary to DSS remains unknown. This study aimed at quantifying computationally the impact of AoSA steepening and DSS on aortic valve (AV) hemodynamics and AR. METHODS An LV geometry reconstructed from cine-MRI data was connected to an AV geometry to generate a unified 2D LV-AV model. Six geometrical variants were considered: unobstructed (CTRL) and DSS-obstructed LVOT (DSS), each reflecting three AoSA variations (110°, 120°, 130°). Fluid-structure interaction simulations were run to compute LVOT flow, AV leaflet dynamics, and regurgitant fraction (RF). RESULTS AoSA steepening and DSS generated vortex dynamics alterations and stenotic flow conditions. While the CTRL-110° model generated the highest degree of leaflet opening asymmetry, DSS preferentially altered superior leaflet kinematics, and caused leaflet-dependent alterations in systolic fluttering. LVOT steepening and DSS subjected the leaflets to increasing WSS overloads (up to 94% increase in temporal shear magnitude), while DSS also increased WSS bidirectionality on the inferior leaflet belly (+ 0.30-point in oscillatory shear index). Although AoSA steepening and DSS increased diastolic transvalvular backflow, regurgitant fractions (RF < 7%) remained below the threshold defining clinical mild AR. CONCLUSIONS The mechanical interactions between AV leaflets and LVOT steepening/DSS hemodynamic derangements do not cause AR. However, the leaflet WSS abnormalities predicted in those anatomies provide new support to a mechanobiological etiology of AR secondary to DSS.
Collapse
Affiliation(s)
- Jason A Shar
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, USA
| | - Sundeep G Keswani
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, USA
| | | | - Philippe Sucosky
- Department of Mechanical Engineering, Kennesaw State University, 840 Polytechnic Lane, Marietta, GA, 30060, USA.
| |
Collapse
|
33
|
The effect of fundamental curves on geometric orifice and coaptation areas of polymeric heart valves. J Mech Behav Biomed Mater 2020; 112:104039. [DOI: 10.1016/j.jmbbm.2020.104039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 12/29/2022]
|
34
|
Lim MS, Bannon PG, Celermajer DS. Bicuspid aortic valve: different clinical profiles for subjects with versus without repaired aortic coarctation. Open Heart 2020; 7:openhrt-2020-001429. [PMID: 33051336 PMCID: PMC7555085 DOI: 10.1136/openhrt-2020-001429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 01/16/2023] Open
Abstract
Objectives A small proportion of patients undergoing bicuspid aortic valve (BAV) intervention have had prior repair of aortic coarctation (CoA). We aimed to describe phenotypic differences between BAV patients, comparing those with versus those without previous coarctation repair. Methods 556 adults with BAV who had undergone aortic valve and/or ascending aortic surgery were identified, and relevant clinical and operative details were retrospectively analysed. Results Of the total cohort, 532 patients (95.7%) had isolated BAV (‘BAV-only’), and 24 (4.3%) had had a previous successful CoA repair (‘BAV-CoA’). The median age at surgery was significantly lower in BAV-CoA patients compared with BAV-only (median, IQR: 40 years, 26–57 vs 62 years, 51–69, p<0.001). Indications for surgery also differed, with BAV-CoA patients much more likely to undergo surgery for aortic regurgitation (BAV-CoA 38% vs BAV-only 13%, p<0.001); patients with isolated BAV were more likely to require surgery for aortic stenosis (BAV-only 75% vs BAV-CoA 50%, p<0.001). Two different BAV morphotypes were commoner in the BAV-CoA group; type 0 valves (24% vs 8%, p<0.05) and type 2 valves (12% vs 3%, p<0.05). The proportion of patients undergoing concomitant aortic surgery at the time of valve surgery were similar (BAV-only 38% vs BAV-CoA 42%, p=0.8). Conclusion In adult patients undergoing aortic valve surgery for BAV disease, those with a prior history of repaired CoA underwent surgery at a very much younger age, and a higher proportion required intervention for aortic regurgitation.
Collapse
Affiliation(s)
- Michelle S Lim
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia .,Cardiology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Paul G Bannon
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Cardiothoracic Surgery, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - David S Celermajer
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Cardiology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| |
Collapse
|
35
|
Luraghi G, Matas JFR, Beretta M, Chiozzi N, Iannetti L, Migliavacca F. The impact of calcification patterns in transcatheter aortic valve performance: a fluid-structure interaction analysis. Comput Methods Biomech Biomed Engin 2020; 24:375-383. [PMID: 32924580 DOI: 10.1080/10255842.2020.1817409] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transcatheter aortic valve replacement (TAVR) strongly depends on the calcification patterns, which may lead to a malapposition of the stented valve and complication onsets in terms of structure kinematics and paravalvular leakage (PVL). From one anatomical-resembling model of the aortic root, six configurations with different calcific deposits were built. TAVR fluid-structure interaction simulations predicted different outcomes for the different calcifications patterns in terms of the final valve configuration in the implantation site and the PVL estimations. In particular models with deposits along the cups coaptation resulted in mild PVL, while those with deposits along the attachment line in moderate PVL.
Collapse
Affiliation(s)
- Giulia Luraghi
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy
| | - Jose Felix Rodriguez Matas
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy
| | - Marta Beretta
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy
| | - Nicole Chiozzi
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy
| | | | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy
| |
Collapse
|
36
|
Emendi M, Sturla F, Ghosh RP, Bianchi M, Piatti F, Pluchinotta FR, Giese D, Lombardi M, Redaelli A, Bluestein D. Patient-Specific Bicuspid Aortic Valve Biomechanics: A Magnetic Resonance Imaging Integrated Fluid-Structure Interaction Approach. Ann Biomed Eng 2020; 49:627-641. [PMID: 32804291 DOI: 10.1007/s10439-020-02571-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Congenital bicuspid aortic valve (BAV) consists of two fused cusps and represents a major risk factor for calcific valvular stenosis. Herein, a fully coupled fluid-structure interaction (FSI) BAV model was developed from patient-specific magnetic resonance imaging (MRI) and compared against in vivo 4-dimensional flow MRI (4D Flow). FSI simulation compared well with 4D Flow, confirming direction and magnitude of the flow jet impinging onto the aortic wall as well as location and extension of secondary flows and vortices developing at systole: the systolic flow jet originating from an elliptical 1.6 cm2 orifice reached a peak velocity of 252.2 cm/s, 0.6% lower than 4D Flow, progressively impinging on the ascending aorta convexity. The FSI model predicted a peak flow rate of 22.4 L/min, 6.7% higher than 4D Flow, and provided BAV leaflets mechanical and flow-induced shear stresses, not directly attainable from MRI. At systole, the ventricular side of the non-fused leaflet revealed the highest wall shear stress (WSS) average magnitude, up to 14.6 Pa along the free margin, with WSS progressively decreasing towards the belly. During diastole, the aortic side of the fused leaflet exhibited the highest diastolic maximum principal stress, up to 322 kPa within the attachment region. Systematic comparison with ground-truth non-invasive MRI can improve the computational model ability to reproduce native BAV hemodynamics and biomechanical response more realistically, and shed light on their role in BAV patients' risk for developing complications; this approach may further contribute to the validation of advanced FSI simulations designed to assess BAV biomechanics.
Collapse
Affiliation(s)
- Monica Emendi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Francesco Sturla
- 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Ram P Ghosh
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Matteo Bianchi
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Filippo Piatti
- 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Francesca R Pluchinotta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.,Multimodality Cardiac Imaging, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.,Department of Pediatric and Adult Congenital Heart Disease, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | | | - Massimo Lombardi
- Multimodality Cardiac Imaging, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
37
|
Sia CH, Ho JSY, Chua JJL, Tan BYQ, Ngiam NJ, Chew N, Sim HW, Chen R, Lee CH, Yeo TC, Kong WKF, Poh KK. Comparison of Clinical and Echocardiographic Features of Asymptomatic Patients With Stenotic Bicuspid Versus Tricuspid Aortic Valves. Am J Cardiol 2020; 128:210-215. [PMID: 32534732 DOI: 10.1016/j.amjcard.2020.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/31/2022]
Abstract
The clinical and imaging differences between bicuspid aortic valve (BAV) and tricuspid aortic valve (TAV) patients with medically managed asymptomatic moderate-to-severe aortic stenosis (AS) have not been studied previously. We aim to characterize these differences and their clinical outcomes in this study. A retrospective observational study was conducted on 836 consecutive cases of isolated asymptomatic moderate-to-severe AS, with median follow-up of 3.4 years. Clinical and echocardiographic characteristics were compared between BAV and TAV patients. Subgroup analysis stratified by AS severity were performed. Survival analysis of all-cause mortality was performed using Kaplan-Meier curves and Cox proportional hazards model. Compared to BAV patients, TAV patients were older (76 ± 11 vs 55 ± 16 years, p <0.001) and had more co-morbidities including hypertension (78% vs 56%; p <0.001), diabetes (41% vs 24%; p <0.001), and chronic kidney disease (20% vs 3%; p = 0.001). TAV patients had less severe aortic valve disease than BAV patients, with a higher aortic valve area index (0.71 ± 0.20 cm2/m2 vs 0.61 ± 0.18 cm2/m2, p <0.001) and less aortic dilation (sinotubular junction: 23.7 ± 4.0 mm vs 26.9 ± 4.8 mm, p <0.001; mid-ascending aorta: 31.4 ± 4.7 mm vs 36.3 ± 6.3 mm, p <0.001). TAV patients were more likely to have eccentric left ventricular hypertrophy and less likely to have a normal geometry (p = 0.003). Competing risk analysis identified increased age (hazard ratio 1.03, 95% confidence interval 1.02 to 1.05, p <0.001) and LVEF (hazard ratio 0.98, 95% confidence interval 0.97 to 0.99, p <0.001) as independent risk factors of all-cause mortality. Valve morphology was not a significant independent risk factor for aortic valve replacement or mortality. In conclusion, asymptomatic TAV patients had more cardiovascular risk factors, less severe aortic valve disease, less sinotubular and mid-ascending aortic dilation, more severe LV remodeling.
Collapse
|
38
|
de Oliveira DMC, Abdullah N, Green NC, Espino DM. Biomechanical Assessment of Bicuspid Aortic Valve Phenotypes: A Fluid-Structure Interaction Modelling Approach. Cardiovasc Eng Technol 2020; 11:431-447. [PMID: 32519086 DOI: 10.1007/s13239-020-00469-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Bicuspid aortic valve (BAV) is a congenital heart malformation with phenotypic heterogeneity. There is no prior computational study that assesses the haemodynamic and valve mechanics associated with BAV type 2 against a healthy tricuspid aortic valve (TAV) and other BAV categories. METHODS A proof-of-concept study incorporating three-dimensional fluid-structure interaction (FSI) models with idealised geometries (one TAV and six BAVs, namely type 0 with lateral and anterior-posterior orientations, type 1 with R-L, N-R and N-L leaflet fusion and type 2) has been developed. Transient physiological boundary conditions have been applied and simulations were run using an Arbitrary Lagrangian-Eulerian formulation. RESULTS Our results showed the presence of abnormal haemodynamics in the aorta and abnormal valve mechanics: type 0 BAVs yielded the best haemodynamical and mechanical outcomes, but cusp stress distribution varied with valve orifice orientation, which can be linked to different cusp calcification location onset; type 1 BAVs gave rise to similar haemodynamics and valve mechanics, regardless of raphe position, but this position altered the location of abnormal haemodynamic features; finally, type 2 BAV constricted the majority of blood flow, exhibiting the most damaging haemodynamic and mechanical repercussions when compared to other BAV phenotypes. CONCLUSION The findings of this proof-of-concept work suggest that there are specific differences across haemodynamics and valve mechanics associated with BAV phenotypes, which may be critical to subsequent processes associated with their pathophysiology processes.
Collapse
Affiliation(s)
- Diana M C de Oliveira
- Department of Mechanical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Nazirul Abdullah
- Department of Mechanical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Naomi C Green
- Department of Mechanical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Daniel M Espino
- Department of Mechanical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
39
|
Shar JA, Liu J, Atkins SK, Sucosky P. Letter by Shar et al Regarding Article, “Low and Oscillatory Wall Shear Stress Is Not Related to Aortic Dilation in Patients With Bicuspid Aortic Valve: A Time-Resolved 3-Dimensional Phase-Contrast Magnetic Resonance Imaging Study”. Arterioscler Thromb Vasc Biol 2020; 40:e114-e115. [DOI: 10.1161/atvbaha.120.314049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jason A. Shar
- From the Department of Mechanical and Materials Engineering, Wright State University, Russ Engineering Center, Dayton, OH (J.A.S., J.L., P.S.)
| | - Janet Liu
- From the Department of Mechanical and Materials Engineering, Wright State University, Russ Engineering Center, Dayton, OH (J.A.S., J.L., P.S.)
| | - Samantha K. Atkins
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (S.K.A.)
| | - Philippe Sucosky
- From the Department of Mechanical and Materials Engineering, Wright State University, Russ Engineering Center, Dayton, OH (J.A.S., J.L., P.S.)
| |
Collapse
|
40
|
Hirschhorn M, Tchantchaleishvili V, Stevens R, Rossano J, Throckmorton A. Fluid–structure interaction modeling in cardiovascular medicine – A systematic review 2017–2019. Med Eng Phys 2020; 78:1-13. [DOI: 10.1016/j.medengphy.2020.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 01/18/2020] [Accepted: 01/26/2020] [Indexed: 01/06/2023]
|
41
|
Ghosh RP, Marom G, Bianchi M, D'souza K, Zietak W, Bluestein D. Numerical evaluation of transcatheter aortic valve performance during heart beating and its post-deployment fluid-structure interaction analysis. Biomech Model Mechanobiol 2020; 19:1725-1740. [PMID: 32095912 DOI: 10.1007/s10237-020-01304-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/02/2020] [Indexed: 01/11/2023]
Abstract
Transcatheter aortic valve replacement (TAVR) is a minimally invasive procedure that provides an effective alternative to open-heart surgical valve replacement for treating advanced calcific aortic valve disease patients. However, complications, such as valve durability, device migration, paravalvular leakage (PVL), and thrombogenicity may lead to increased overall post-TAVR morbidity and mortality. A series of numerical studies involving a self-expandable TAVR valve were performed to evaluate these complications. Structural studies were performed with finite element (FE) analysis, followed by computational fluid dynamics (CFD) simulations, and fluid-structure interaction (FSI) analysis. The FE analysis was utilized to study the effect of TAVR valve implantation depth on valve anchorage in the Living Heart Human Model, which is capable of simulating beating heart during repeated cardiac cycles. The TAVR deployment cases where no valve migration was observed were then used to calculate the post-deployment thrombogenic potential via CFD simulations. FSI analysis followed to further assess the post-deployment TAVR hemodynamic performance for different implantation depths. The deployed valves PVL, geometric and effective orifice areas, and the leaflets structural and flow stress magnitudes were compared to determine the device optimal landing zone. The combined structural and hemodynamic analysis indicated that with the TAVR valve deployed at an aft ventricle position an optimal performance was achieved in the specific anatomy studied. Given the TAVR's rapid expansion to younger lower-risk patients, the comprehensive numerical methodology proposed here can potentially be used as a predictive tool for both procedural planning and valve design optimization to minimize the reported complications.
Collapse
Affiliation(s)
- Ram P Ghosh
- Department of Biomedical Engineering, Health Sciences Center T08-050, Stony Brook University, Stony Brook, NY, 11794-8084, USA
| | - Gil Marom
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Matteo Bianchi
- Department of Biomedical Engineering, Health Sciences Center T08-050, Stony Brook University, Stony Brook, NY, 11794-8084, USA
| | - Karl D'souza
- Dassault Systèmes SIMULIA Corp, Johnston, RI, 02919, USA
| | - Wojtek Zietak
- Capvidia NV, Research Park Haasrode, Technologielaan 3, 3001, Leuven, Belgium
| | - Danny Bluestein
- Department of Biomedical Engineering, Health Sciences Center T08-050, Stony Brook University, Stony Brook, NY, 11794-8084, USA.
| |
Collapse
|
42
|
Nachlas ALY, Li S, Streeter BW, De Jesus Morales KJ, Sulejmani F, Madukauwa-David DI, Bejleri D, Sun W, Yoganathan AP, Davis ME. A multilayered valve leaflet promotes cell-laden collagen type I production and aortic valve hemodynamics. Biomaterials 2020; 240:119838. [PMID: 32092591 DOI: 10.1016/j.biomaterials.2020.119838] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 12/18/2022]
Abstract
Patients with aortic heart valve disease are limited to valve replacements that lack the ability to grow and remodel. This presents a major challenge for pediatric patients who require a valve capable of somatic growth and at a smaller size. A patient-specific heart valve capable of growth and remodeling while maintaining proper valve function would address this major issue. Here, we recreate the native valve leaflet structure composed of poly-ε-caprolactone (PCL) and cell-laden gelatin-methacrylate/poly (ethylene glycol) diacrylate (GelMA/PEGDA) hydrogels using 3D printing and molding, and then evaluate the ability of the multilayered scaffold to produce collagen matrix under physiological shear stress conditions. We also characterized the valve hemodynamics under aortic physiological flow conditions. The valve's fibrosa layer was replicated by 3D printing PCL in a circumferential direction similar to collagen alignment in the native leaflet, and GelMA/PEGDA sustained and promoted cell viability in the spongiosa/ventricularis layers. We found that collagen type I production can be increased in the multilayered scaffold when it is exposed to pulsatile shear stress conditions over static conditions. When the PCL component was mounted onto a valve ring and tested under physiological aortic valve conditions, the hemodynamics were comparable to commercially available valves. Our results demonstrate that a structurally representative valve leaflet can be generated using 3D printing and that the PCL layer of the leaflet can sustain proper valve function under physiological aortic valve conditions.
Collapse
Affiliation(s)
- Aline L Y Nachlas
- Wallace H Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Siyi Li
- Wallace H Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Benjamin W Streeter
- Wallace H Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Kenneth J De Jesus Morales
- Wallace H Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Fatiesa Sulejmani
- Wallace H Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - David Immanuel Madukauwa-David
- Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Donald Bejleri
- Wallace H Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Wei Sun
- Wallace H Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Ajit P Yoganathan
- Wallace H Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael E Davis
- Wallace H Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA; Children's Heart Research & Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, GA, USA.
| |
Collapse
|
43
|
Liu J, Cornelius K, Graham M, Leonard T, Tipton A, Yorde A, Sucosky P. Design and Computational Validation of a Novel Bioreactor for Conditioning Vascular Tissue to Time-Varying Multidirectional Fluid Shear Stress. Cardiovasc Eng Technol 2019; 10:531-542. [PMID: 31309526 DOI: 10.1007/s13239-019-00426-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/04/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE The cardiovascular endothelium experiences pulsatile and multidirectional fluid wall shear stress (WSS). While the effects of non-physiologic WSS magnitude and pulsatility on cardiovascular function have been studied extensively, the impact of directional abnormalities remains unknown due to the challenge to replicate this characteristic in vitro. To address this gap, this study aimed at designing a bioreactor capable of subjecting cardiovascular tissue to time-varying WSS magnitude and directionality. METHODS The device consisted of a modified cone-and-plate bioreactor. The cone rotation generates a fluid flow subjecting tissue to desired WSS magnitude, while WSS directionality is achieved by altering the alignment of the tissue relative to the flow at each instant of time. Computational fluid dynamics was used to verify the device ability to replicate the native WSS of the proximal aorta. Cone and tissue mount velocities were determined using an iterative optimization procedure. RESULTS Using conditions derived from cone-and-plate theory, the initial simulations yielded root-mean-square errors of 22.8 and 8.4% in WSS magnitude and angle, respectively, between the predicted and the target signals over one cycle, relative to the time-averaged target values. The conditions obtained after two optimization iterations reduced those errors to 3.5 and 0.5%, respectively, and generated 0.2% and 0.01% difference in time-averaged WSS magnitude and angle, respectively, relative to the target waveforms. CONCLUSIONS A bioreactor capable of generating simultaneously desired time-varying WSS magnitude and directionality was designed and validated computationally. The ability to subject tissue to in vivo-like WSS will provide new insights into cardiovascular mechanobiology and disease.
Collapse
Affiliation(s)
- Janet Liu
- Department of Mechanical and Materials Engineering, Wright State University, 257 Russ Engineering Center, Dayton, OH, 45435, USA
| | - Kurtis Cornelius
- Department of Mechanical and Materials Engineering, Wright State University, 257 Russ Engineering Center, Dayton, OH, 45435, USA
| | - Mathew Graham
- Department of Mechanical and Materials Engineering, Wright State University, 257 Russ Engineering Center, Dayton, OH, 45435, USA
| | - Tremayne Leonard
- Department of Mechanical and Materials Engineering, Wright State University, 257 Russ Engineering Center, Dayton, OH, 45435, USA
| | - Austin Tipton
- Department of Mechanical and Materials Engineering, Wright State University, 257 Russ Engineering Center, Dayton, OH, 45435, USA
| | - Abram Yorde
- Department of Mechanical and Materials Engineering, Wright State University, 257 Russ Engineering Center, Dayton, OH, 45435, USA
| | - Philippe Sucosky
- Department of Mechanical and Materials Engineering, Wright State University, 257 Russ Engineering Center, Dayton, OH, 45435, USA.
| |
Collapse
|
44
|
Is there a role for autophagy in ascending aortopathy associated with tricuspid or bicuspid aortic valve? Clin Sci (Lond) 2019; 133:805-819. [PMID: 30991346 DOI: 10.1042/cs20181092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/27/2019] [Accepted: 03/18/2019] [Indexed: 01/04/2023]
Abstract
Autophagy is a conserved process by which cytoplasmatic elements are sequestered in vesicles and degraded after their fusion with lysosomes, thus recycling the precursor molecules. The autophagy-mediated removal of redundant/harmful/damaged organelles and biomolecules plays not only a replenishing function, but protects against stressful conditions through an adaptive mechanism. Autophagy, known to play a role in several pathological conditions, is now gaining increasing attention also in the perspective of the identification of the pathogenetic mechanisms at the basis of ascending thoracic aortic aneurysm (TAA), a localized or diffused dilatation of the aorta with an abnormal widening greater than 50 percent of the vessel's normal diameter. TAA is less frequent than abdominal aortic aneurysm (AAA), but is encountered with a higher percentage in patients with congenital heart disease or known genetic syndromes. Several biological aspects of TAA pathophysiology remain to be elucitated and therapeutic needs are still widely unmet. One of the most controversial and epidemiologically important forms of TAA is that associated with the congenital bicuspid malformation of the aortic valve (BAV). Dysregulated autophagy in response, for example, to wall shear stress alterations, has been demonstrated to affect the phenotype of vascular cells relevant to aortopathy, with potential consequences on signaling, remodeling, and angiogenesis. The most recent findings and hypotheses concerning the multiple aspects of autophagy and of its dysregulation are summarized, both in general and in the context of the different vascular cell types and of TAA progression, with particular reference to BAV-related aortopathy.
Collapse
|
45
|
Oliveira D, Rosa SA, Tiago J, Ferreira RC, Agapito AF, Sequeira A. Bicuspid aortic valve aortopathies: An hemodynamics characterization in dilated aortas. Comput Methods Biomech Biomed Engin 2019; 22:815-826. [PMID: 30957542 DOI: 10.1080/10255842.2019.1597860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bicuspid aortic valve (BAV) aortopathy remains of difficult clinical management due to its heterogeneity and further assessment of related aortic hemodynamics is necessary. The aim of this study was to assess systolic hemodynamic indexes and wall stresses in patients with diverse BAV phenotypes and dilated ascending aortas. The aortic geometry was reconstructed from patient-specific images while the aortic valve was generated based on patient-specific measurements. Physiologic material properties and boundary conditions were applied and fully coupled fluid-structure interaction (FSI) analysis were conducted. Our dilated aortic models were characterized by the presence of abnormal hemodynamics with elevated degrees of flow skewness and eccentricity, regardless of BAV morphotype. Retrograde flow was also present. Both features, predicted by flow angle and flow reversal ratios, were consistently higher than those reported for non-dilated aortas. Right-handed helical flow was present, as well as elevated wall shear stress (WSS) on the outer ascending aortic wall. Our results suggest that the abnormal flow associated with BAV may play a role in aortic enlargement and progress it further on already dilated aortas.
Collapse
Affiliation(s)
- Diana Oliveira
- a Department of Mathematics and CEMAT , Instituto Superior Técnico, University of Lisbon , Lisbon , Portugal
| | - Sílvia Aguiar Rosa
- b Cardiology Department , Hospital de Santa Marta (CHLC) , Lisboa , Portugal
| | - Jorge Tiago
- a Department of Mathematics and CEMAT , Instituto Superior Técnico, University of Lisbon , Lisbon , Portugal
| | - Rui Cruz Ferreira
- b Cardiology Department , Hospital de Santa Marta (CHLC) , Lisboa , Portugal
| | | | - Adélia Sequeira
- a Department of Mathematics and CEMAT , Instituto Superior Técnico, University of Lisbon , Lisbon , Portugal
| |
Collapse
|
46
|
Esmerats JF, Villa-Roel N, Kumar S, Gu L, Salim MT, Ohh M, Taylor WR, Nerem RM, Yoganathan AP, Jo H. Disturbed Flow Increases UBE2C (Ubiquitin E2 Ligase C) via Loss of miR-483-3p, Inducing Aortic Valve Calcification by the pVHL (von Hippel-Lindau Protein) and HIF-1α (Hypoxia-Inducible Factor-1α) Pathway in Endothelial Cells. Arterioscler Thromb Vasc Biol 2019; 39:467-481. [PMID: 30602302 PMCID: PMC6393167 DOI: 10.1161/atvbaha.118.312233] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022]
Abstract
Objective- Calcific aortic valve (AV) disease, characterized by AV sclerosis and calcification, is a major cause of death in the aging population; however, there are no effective medical therapies other than valve replacement. AV calcification preferentially occurs on the fibrosa side, exposed to disturbed flow (d-flow), whereas the ventricularis side exposed to predominantly stable flow remains protected by unclear mechanisms. Here, we tested the role of novel flow-sensitive UBE2C (ubiquitin E2 ligase C) and microRNA-483-3p (miR-483) in flow-dependent AV endothelial function and AV calcification. Approach and Results- Human AV endothelial cells and fresh porcine AV leaflets were exposed to stable flow or d-flow. We found that UBE2C was upregulated by d-flow in human AV endothelial cells in the miR-483-dependent manner. UBE2C mediated OS-induced endothelial inflammation and endothelial-mesenchymal transition by increasing the HIF-1α (hypoxia-inducible factor-1α) level. UBE2C increased HIF-1α by ubiquitinating and degrading its upstream regulator pVHL (von Hippel-Lindau protein). These in vitro findings were corroborated by immunostaining studies using diseased human AV leaflets. In addition, we found that reduction of miR-483 by d-flow led to increased UBE2C expression in human AV endothelial cells. The miR-483 mimic protected against endothelial inflammation and endothelial-mesenchymal transition in human AV endothelial cells and calcification of porcine AV leaflets by downregulating UBE2C. Moreover, treatment with the HIF-1α inhibitor (PX478) significantly reduced porcine AV calcification in static and d-flow conditions. Conclusions- These results suggest that miR-483 and UBE2C and pVHL are novel flow-sensitive anti- and pro-calcific AV disease molecules, respectively, that regulate the HIF-1α pathway in AV. The miR-483 mimic and HIF-1α pathway inhibitors may serve as potential therapeutics of calcific AV disease.
Collapse
Affiliation(s)
- Joan Fernandez Esmerats
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Nicolas Villa-Roel
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Lina Gu
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Md Tausif Salim
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology
| | - Michael Ohh
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, CA
| | - W. Robert Taylor
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
- Division of Cardiology, Department of Medicine, Emory University
| | - Robert M. Nerem
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology. Atlanta, GA, USA
| | - Ajit P. Yoganathan
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
- Division of Cardiology, Department of Medicine, Emory University
| |
Collapse
|
47
|
Massé DD, Shar JA, Brown KN, Keswani SG, Grande-Allen KJ, Sucosky P. Discrete Subaortic Stenosis: Perspective Roadmap to a Complex Disease. Front Cardiovasc Med 2018; 5:122. [PMID: 30320123 PMCID: PMC6166095 DOI: 10.3389/fcvm.2018.00122] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
Discrete subaortic stenosis (DSS) is a congenital heart disease that results in the formation of a fibro-membranous tissue, causing an increased pressure gradient in the left ventricular outflow tract (LVOT). While surgical resection of the membrane has shown some success in eliminating the obstruction, it poses significant risks associated with anesthesia, sternotomy, and heart bypass, and it remains associated with a high rate of recurrence. Although a genetic etiology had been initially proposed, the association between DSS and left ventricle (LV) geometrical abnormalities has provided more support to a hemodynamic etiology by which congenital or post-surgical LVOT geometric derangements could generate abnormal shear forces on the septal wall, triggering in turn a fibrotic response. Validating this hypothetical etiology and understanding the mechanobiological processes by which altered shear forces induce fibrosis in the LVOT are major knowledge gaps. This perspective paper describes the current state of knowledge of DSS, articulates the research needs to yield mechanistic insights into a significant pathologic process that is poorly understood, and proposes several strategies aimed at elucidating the potential mechanobiological synergies responsible for DSS pathogenesis. The proposed roadmap has the potential to improve DSS management by identifying early targets for prevention of the fibrotic lesion, and may also prove beneficial in other fibrotic cardiovascular diseases associated with altered flow.
Collapse
Affiliation(s)
- Danielle D Massé
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| | - Jason A Shar
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| | - Kathleen N Brown
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Sundeep G Keswani
- Division of Pediatric Surgery, Texas Children's Hospital, Houston, TX, United States.,Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | | | - Philippe Sucosky
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| |
Collapse
|
48
|
McNally A, Akingba AG, Sucosky P. Effect of arteriovenous graft flow rate on vascular access hemodynamics in a novel modular anastomotic valve device. J Vasc Access 2018; 19:446-454. [PMID: 30192183 DOI: 10.1177/1129729818758229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Perturbed vascular access hemodynamics is considered a potential driver of intimal hyperplasia, the leading cause of vascular access failure. To improve vascular access patency, a modular anastomotic valve device has been designed to normalize venous flow between hemodialysis periods while providing normal vascular access during hemodialysis. The objective of this study was to quantify the effects of arteriovenous graft flow rate on modular anastomotic valve device vascular access hemodynamics under realistic hemodialysis conditions. METHODS Modular anastomotic valve device inlet and outlet flow conditions and velocity profiles were measured by ultrasound Doppler in a vascular access flow loop replicating arteriovenous graft flow rates of 800, 1000, and 1500 mL/min. Fluid-structure interaction simulations were performed to identify low wall shear stress regions on the vein wall and to characterize them in terms of temporal shear magnitude, oscillatory shear index, and relative residence time. The model was validated with respect to the Doppler measurements. RESULTS The low wall shear stress region generated downstream of the anastomosis under low and moderate arteriovenous graft flow rates was eliminated under the highest arteriovenous graft flow rate. Increase in arteriovenous graft flow rate from 800 to 1500 mL/min resulted in a substantial increase in wall shear stress magnitude (27-fold increase in temporal shear magnitude), the elimination of wall shear stress bidirectionality (0.20-point reduction in oscillatory shear index), and a reduction in flow stagnation (98% decrease in relative residence time). While the results suggest the ability of high arteriovenous graft flow rates to protect the venous wall from intimal hyperplasia-prone hemodynamics, they indicate their adverse impact on the degree of venous hemodynamic abnormality.
Collapse
Affiliation(s)
- Andrew McNally
- 1 Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - A George Akingba
- 2 Department of Vascular and Endovascular Surgery, Detroit Medical Center, Detroit, MI, USA
| | - Philippe Sucosky
- 3 Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, USA
| |
Collapse
|
49
|
Ghosh R, Marom G, Rotman O, Slepian MJ, Prabhakar S, Horner M, Bluestein D. Comparative Fluid-Structure Interaction Analysis of Polymeric Transcatheter and Surgical Aortic Valves' Hemodynamics and Structural Mechanics. J Biomech Eng 2018; 140:2686528. [PMID: 30029207 DOI: 10.1115/1.4040600] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Indexed: 02/28/2024]
Abstract
Transcatheter aortic valve replacement (TAVR) has emerged as an effective alternative to conventional surgical aortic valve replacement (SAVR) in high-risk elderly patients with calcified aortic valve disease. All currently FDA-approved TAVR devices use tissue valves that were adapted to but not specifically designed for TAVR use. Emerging clinical evidence indicates that these valves may get damaged during crimping and deployment- leading to valvular calcification, thrombotic complications, and limited durability. This impedes the expected expansion of TAVR to lower-risk and younger patients. Viable polymeric valves have the potential to overcome such limitations. We have developed a polymeric SAVR valve, which was optimized to reduce leaflet stresses and offer a thromboresistance profile similar to that of a tissue valve. This study compares the polymeric SAVR valve's hemodynamic performance and mechanical stresses to a new version of the valve- specifically designed for TAVR. Fluid-structure interaction (FSI) models were utilized and the valves' hemodynamics, flexural stresses, strains, orifice area, and wall shear stresses were compared. The TAVR valve had 42% larger opening area and 27% higher flow rate versus the SAVR valve, while wall shear stress distribution and mechanical stress magnitudes were of the same order, demonstrating the enhanced performance of the TAVR valve prototype. The TAVR valve FSI simulation and Vivitro pulse duplicator experiments were compared in terms of the leaflets' kinematics and the effective orifice area. The numerical methodology presented can be further used as a predictive tool for valve design optimization for enhanced hemodynamics and durability.
Collapse
Affiliation(s)
- Ram Ghosh
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-8151, USA
| | - Gil Marom
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; Biomedical Engineering Department, Stony Brook University, Stony Brook 11794, NY, USA
| | - Oren Rotman
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-8151, USA
| | - Marvin J Slepian
- Department of Biomedical Engineering and Department of Medicine, Sarver Heart Center, University of Arizona, Tucson, AZ 85724, USA
| | - Saurabh Prabhakar
- ANSYS Fluent India Pvt Ltd., MIDC, Plot No. 34/1, Rajiv Gandhi IT Park, Hinjewadi, Pune 411057, India
| | - Marc Horner
- ANSYS, Inc., 1007 Church St, Suite 250, Evanston, IL 60201, USA
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-8151, USA
| |
Collapse
|
50
|
Zhang Q, Gao B, Yu C. The Effects of Left Ventricular Assist Device Support Level on the Biomechanical States of Aortic Valve. Med Sci Monit 2018; 24:2003-2017. [PMID: 29618718 PMCID: PMC5900803 DOI: 10.12659/msm.906903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Although aortic valve disease caused by left ventricular assist device (LVAD) support has attracted more and more attention, the precise biomechanical effects of LVAD support level on the aortic valve are still unclear. Material/Methods A structural finite element models study was conducted using an ideal aortic valve geometric model. Four different study conditions were designed, according to the reduction of the open duration of the aortic valve. The isotropic hyperelastic constitutive equation was chosen to reflect the mechanical property of the leaflets. The distribution of the stress, strain, and transient dynamics of the leaflet were calculated. Results Along with the increase of LVAD support level, the open duration of the aortic valve was also reduced by the increase of LVAD support (low support level case 0.23 seconds versus middle support level case 0.2 seconds versus high support level case 0.14 seconds). Moreover, along with the increase of support mode of LVAD, the von Mises stress in most leaflet areas was increased from the low stress level (0–0.4 MPa) to the middle region (0.4–0.8 MPa). Once the leaflets were continuously closed, the high stress level (larger than 0.8 MPa) was observed. In contrast, the support level of LVAD only had slight effects on the distribution of von Mises strain. According to the aforementioned results, maintaining the open duration of aortic valve longer than 0.2 seconds could achieve better performance of biomechanical states of leaflets. Conclusions This study could provide useful information on the determination of optimal LVAD support strategy.
Collapse
Affiliation(s)
- Qi Zhang
- School of Life Science and BioEngineering, Beijing University of Technology, Beijing, China (mainland)
| | - Bin Gao
- School of Life Science and BioEngineering, Beijing University of Technology, Beijing, China (mainland)
| | - Chang Yu
- School of Life Science and BioEngineering, Beijing University of Technology, Beijing, China (mainland)
| |
Collapse
|