1
|
Yi H, Yang Z, Johnson M, Bramlage L, Ludwig B. Developing an in vitro validated 3D in silico internal carotid artery sidewall aneurysm model. Front Physiol 2022; 13:1024590. [PMID: 36605897 PMCID: PMC9810024 DOI: 10.3389/fphys.2022.1024590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction: Direct quantification of hemodynamic factors applied to a cerebral aneurysm (CA) remains inaccessible due to the lack of technologies to measure the flow field within an aneurysm precisely. This study aimed to develop an in vitro validated 3D in silico patient-specific internal carotid artery sidewall aneurysm (ICASA) model which can be used to investigate hemodynamic factors on the CA pathophysiology. Methods: The validated ICASA model was developed by quantifying and comparing the flow field using particle image velocimetry (PIV) measurements and computational fluid dynamics (CFD) simulations. Specifically, the flow field characteristics, i.e., blood flowrates, normalized velocity profiles, flow streamlines, and vortex locations, have been compared at representative time instants in a cardiac pulsatile period in two designated regions of the ICASA model, respectively. One region is in the internal carotid artery (ICA) inlet close to the aneurysm sac, the other is across the middle of the aneurysmal sac. Results and Discussion: The results indicated that the developed computational fluid dynamics model presents good agreements with the results from the parallel particle image velocimetry and flowrate measurements, with relative differences smaller than 0.33% in volumetric flow rate in the ICA and relative errors smaller than 9.52% in averaged velocities in the complex aneurysmal sac. However, small differences between CFD and PIV in the near wall regions were observed due to the factors of slight differences in the 3D printed model, light reflection and refraction near arterial walls, and flow waveform uncertainties. The validated model not only can be further employed to investigate hemodynamic factors on the cerebral aneurysm pathophysiology statistically, but also provides a typical model and guidance for other professionals to evaluate the hemodynamic effects on cerebral aneurysms.
Collapse
Affiliation(s)
- Hang Yi
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| | - Zifeng Yang
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| | - Mark Johnson
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| | - Luke Bramlage
- Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Bryan Ludwig
- Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
- Division of NeuroInterventional Surgery, Department of Neurology, Wright State University/Premier Health—Clinical Neuroscience Institute, Dayton, OH, United States
| |
Collapse
|
2
|
Effects of Pulsatile Flow Rate and Shunt Ratio in Bifurcated Distal Arteries on Hemodynamic Characteristics Involved in Two Patient-Specific Internal Carotid Artery Sidewall Aneurysms: A Numerical Study. Bioengineering (Basel) 2022; 9:bioengineering9070326. [PMID: 35877376 PMCID: PMC9311626 DOI: 10.3390/bioengineering9070326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 01/08/2023] Open
Abstract
The pulsatile flow rate (PFR) in the cerebral artery system and shunt ratios in bifurcated arteries are two patient-specific parameters that may affect the hemodynamic characteristics in the pathobiology of cerebral aneurysms, which needs to be identified comprehensively. Accordingly, a systematic study was employed to study the effects of pulsatile flow rate (i.e., PFR−I, PFR−II, and PFR−III) and shunt ratio (i.e., 75:25 and 64:36) in bifurcated distal arteries, and transient cardiac pulsatile waveform on hemodynamic patterns in two internal carotid artery sidewall aneurysm models using computational fluid dynamics (CFD) modeling. Numerical results indicate that larger PFRs can cause higher wall shear stress (WSS) in some local regions of the aneurysmal dome that may increase the probability of small/secondary aneurysm generation than under smaller PFRs. The low WSS and relatively high oscillatory shear index (OSI) could appear under a smaller PFR, increasing the potential risk of aneurysmal sac growth and rupture. However, the variances in PFRs and bifurcated shunt ratios have rare impacts on the time-average pressure (TAP) distributions on the aneurysmal sac, although a higher PFR can contribute more to the pressure increase in the ICASA−1 dome due to the relatively stronger impingement by the redirected bloodstream than in ICASA−2. CFD simulations also show that the variances of shunt ratios in bifurcated distal arteries have rare impacts on the hemodynamic characteristics in the sacs, mainly because the bifurcated location is not close enough to the sac in present models. Furthermore, it has been found that the vortex location plays a major role in the temporal and spatial distribution of the WSS on the luminal wall, varying significantly with the cardiac period.
Collapse
|
3
|
Bao Q, Meng X, Hu M, Xing J, Jin D, Liu H, Jiang J, Yin Y. Simulation analysis of aneurysm embolization surgery: Hemorheology of aneurysms with different embolization rates (CTA). Biomed Mater Eng 2021; 32:295-308. [PMID: 33998529 DOI: 10.3233/bme-211225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Embolization degree acts as an important factor affecting recurrence of aneurysm. OBJECTIVE To analyze the role of hemodynamics parameters of different degrees of embolization in the occurrence, development and post-treatment of aneurysms, and to determine the specific factors causing the occurrence and recurrence of aneurysms after hemodynamics treatment. Our study provides a theoretical basis for the prevention and treatment of aneurysms. METHODS Computed tomography angiography data of a patient with cerebral aneurysm was used to model 0%, 24%, 52%, 84% and 100% of endovascular embolization, respectively. The time average wall shear stress, time average wall shear stress, oscillatory shear index, hemodynamics formation index and relative retentive time were used to analyze the changes of hemodynamics indexes in different embolic models. RESULTS With the increase of embolic rate, the values of time average wall shear stress, time average wall shear stress grade and aneurysm index formation gradually increased, and the values of relative retention time gradually decreased. Oscillatory shear index was higher in patients with incomplete embolization and decreased in patients with complete embolization. CONCLUSIONS As the degree of embolization increased, the blood flow tended to stabilize, reducing the risk of cerebral aneurysm rupture, and finding that the wall of the vessel junction was susceptible to injury.
Collapse
Affiliation(s)
- Quan Bao
- Department of Image, Hongqi Hospital Affiliated with Mudanjiang Medical University, Mudanjiang, China
| | - Xin Meng
- Department of Image, No. 3 Hospital Affiliated with Qiqihaer Medical University, Qiqihaer, China
| | - Mingcheng Hu
- Department of Image, Hongqi Hospital Affiliated with Mudanjiang Medical University, Mudanjiang, China
| | - Jian Xing
- Department of Image, Hongqi Hospital Affiliated with Mudanjiang Medical University, Mudanjiang, China
| | - Dan Jin
- Department of Image, No. 2 Hospital of Mudanjiang, Mudanjiang, China
| | - He Liu
- Department of Image, Hongqi Hospital Affiliated with Mudanjiang Medical University, Mudanjiang, China
| | - Jie Jiang
- Department of Infectious Disease, Mudanjiang Forestry Center Hospital, Mudanjiang, China
| | - Yanwei Yin
- Department of Image, Hongqi Hospital Affiliated with Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
4
|
Munarriz PM, Bárcena E, Alén JF, Castaño-Leon AM, Paredes I, Moreno-Gómez LM, García-Pérez D, Jiménez-Roldán L, Gómez PA, Lagares A. Reliability and accuracy assessment of morphometric measurements obtained with software for three-dimensional reconstruction of brain aneurysms relative to cerebral angiography measures. Interv Neuroradiol 2020; 27:191-199. [PMID: 32996346 DOI: 10.1177/1591019920961588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To analyze the reliability and accuracy of morphological measurements of software employed to three-dimensionally reconstruct aneurysms and vessels (VMTKlab, version 1.6.1,) with computed tomography angiography (CTA) as the source of images. Agreement with measurements from three-dimensional digital subtraction angiography (3 D-DSA) was evaluated. METHODS We evaluated 40 patients presenting with aneurysmal subarachnoid hemorrhage (aSAH). We analyzed four main variables of the aneurysm morphology: absolute height (size), neck (maximum neck width), perpendicular height, and maximum width. The CTA images were uploaded to the software and then segmented to reconstruct the aneurysm. This new method was compared to the current gold standard-3D reconstruction of pretreatment cerebral angiography. We used intraclass correlation coefficient (ICC) and Bland-Altman plot analyses to evaluate the agreement between these methods. RESULTS The ICCs obtained for absolute height, neck, perpendicular height, and maximum width were 0.85, 0.57, 0.85, and 0.89, respectively. This implied good agreement except for the neck of the aneurysm (moderate agreement). Bland-Altman plots are presented for the four indexes. The average of the differences was not significant in terms of absolute height, perpendicular height, and maximum width indicating good agreement. However, it was significant for the neck of the aneurysm. CONCLUSIONS We report good agreement between the values generated using VMTKlab and cerebral angiography for three of the four main variables. Discrepancies in neck diameter are not surprising and its underestimation with a traditional delineation from cerebral angiography has been reported before.
Collapse
Affiliation(s)
- Pablo M Munarriz
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Instituto de Investigación i±12, Madrid, Spain.,Department of Surgery, Universidad Complutense de Madrid, Madrid, Spain
| | - Eduardo Bárcena
- Department of Radiology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jose F Alén
- Department of Radiology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Neurosurgery, Hospital Universitario La Princesa, Madrid, Spain
| | - Ana M Castaño-Leon
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Instituto de Investigación i±12, Madrid, Spain.,Department of Surgery, Universidad Complutense de Madrid, Madrid, Spain
| | - Igor Paredes
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Instituto de Investigación i±12, Madrid, Spain.,Department of Surgery, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis Miguel Moreno-Gómez
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Instituto de Investigación i±12, Madrid, Spain
| | - Daniel García-Pérez
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Instituto de Investigación i±12, Madrid, Spain
| | - Luis Jiménez-Roldán
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Instituto de Investigación i±12, Madrid, Spain.,Department of Surgery, Universidad Complutense de Madrid, Madrid, Spain
| | - Pedro A Gómez
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Instituto de Investigación i±12, Madrid, Spain.,Department of Surgery, Universidad Complutense de Madrid, Madrid, Spain
| | - Alfonso Lagares
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Instituto de Investigación i±12, Madrid, Spain.,Department of Surgery, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Steinman DA, Pereira VM. How patient specific are patient-specific computational models of cerebral aneurysms? An overview of sources of error and variability. Neurosurg Focus 2020; 47:E14. [PMID: 31261118 DOI: 10.3171/2019.4.focus19123] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/12/2019] [Indexed: 01/20/2023]
Abstract
Computational modeling of cerebral aneurysms, derived from clinical 3D angiography, has become widespread over the past 15 years. While such "image-based" or "patient-specific" models have shown promise for the assessment of rupture risk, much debate remains about their reliability in light of necessary modeling assumptions and incomplete or uncertain model input parameters derived from the clinic. The aims of this review were to walk through the various steps of this so-called patient-specific modeling pipeline and to highlight evidence supporting those steps that we can or cannot rely on. The relative importance of the different sources of error and variability on hemodynamic predictions is summarized, with recommendations to standardize for those that can be avoided and to pay closer attention those to that cannot.
Collapse
Affiliation(s)
- David A Steinman
- 1Department of Mechanical and Industrial Engineering and Institute of Biomaterials and Biomedical Engineering, University of Toronto; and
| | - Vitor M Pereira
- 2Divisions of Neuroradiology and Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Berg P, Saalfeld S, Voß S, Beuing O, Janiga G. A review on the reliability of hemodynamic modeling in intracranial aneurysms: why computational fluid dynamics alone cannot solve the equation. Neurosurg Focus 2020; 47:E15. [PMID: 31261119 DOI: 10.3171/2019.4.focus19181] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/09/2019] [Indexed: 12/23/2022]
Abstract
Computational blood flow modeling in intracranial aneurysms (IAs) has enormous potential for the assessment of highly resolved hemodynamics and derived wall stresses. This results in an improved knowledge in important research fields, such as rupture risk assessment and treatment optimization. However, due to the requirement of assumptions and simplifications, its applicability in a clinical context remains limited.This review article focuses on the main aspects along the interdisciplinary modeling chain and highlights the circumstance that computational fluid dynamics (CFD) simulations are embedded in a multiprocess workflow. These aspects include imaging-related steps, the setup of realistic hemodynamic simulations, and the analysis of multidimensional computational results. To condense the broad knowledge, specific recommendations are provided at the end of each subsection.Overall, various individual substudies exist in the literature that have evaluated relevant technical aspects. In this regard, the importance of precise vessel segmentations for the simulation outcome is emphasized. Furthermore, the accuracy of the computational model strongly depends on the specific research question. Additionally, standardization in the context of flow analysis is required to enable an objective comparison of research findings and to avoid confusion within the medical community. Finally, uncertainty quantification and validation studies should always accompany numerical investigations.In conclusion, this review aims for an improved awareness among physicians regarding potential sources of error in hemodynamic modeling for IAs. Although CFD is a powerful methodology, it cannot provide reliable information, if pre- and postsimulation steps are inaccurately carried out. From this, future studies can be critically evaluated and real benefits can be differentiated from results that have been acquired based on technically inaccurate procedures.
Collapse
Affiliation(s)
- Philipp Berg
- 1Department of Fluid Dynamics and Technical Flows.,2Research CampusSTIMULATE, and
| | - Sylvia Saalfeld
- 2Research CampusSTIMULATE, and.,3Department of Simulation and Graphics, University of Magdeburg; and
| | - Samuel Voß
- 1Department of Fluid Dynamics and Technical Flows.,2Research CampusSTIMULATE, and
| | - Oliver Beuing
- 2Research CampusSTIMULATE, and.,4Department of Neuroradiology, University Hospital Magdeburg, Magdeburg, Germany
| | - Gábor Janiga
- 1Department of Fluid Dynamics and Technical Flows.,2Research CampusSTIMULATE, and
| |
Collapse
|
7
|
Rayz VL, Cohen-Gadol AA. Hemodynamics of Cerebral Aneurysms: Connecting Medical Imaging and Biomechanical Analysis. Annu Rev Biomed Eng 2020; 22:231-256. [PMID: 32212833 DOI: 10.1146/annurev-bioeng-092419-061429] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the last two decades, numerous studies have conducted patient-specific computations of blood flow dynamics in cerebral aneurysms and reported correlations between various hemodynamic metrics and aneurysmal disease progression or treatment outcomes. Nevertheless, intra-aneurysmal flow analysis has not been adopted in current clinical practice, and hemodynamic factors usually are not considered in clinical decision making. This review presents the state of the art in cerebral aneurysm imaging and image-based modeling, discussing the advantages and limitations of each approach and focusing on the translational value of hemodynamic analysis. Combining imaging and modeling data obtained from different flow modalities can improve the accuracy and fidelity of resulting velocity fields and flow-derived factors that are thought to affect aneurysmal disease progression. It is expected that predictive models utilizing hemodynamic factors in combination with patient medical history and morphological data will outperform current risk scores and treatment guidelines. Possible future directions include novel approaches enabling data assimilation and multimodality analysis of cerebral aneurysm hemodynamics.
Collapse
Affiliation(s)
- Vitaliy L Rayz
- Weldon School of Biomedical Engineering and School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA;
| | - Aaron A Cohen-Gadol
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.,Goodman Campbell Brain and Spine, Carmel, Indiana 46032, USA
| |
Collapse
|