1
|
Ahmad I, Rabbi F, Nisar A, Ul-Haq Z, Khan A. In vitro-in silico pharmacology and chemistry of Stercularin, isolated from Sterculia diversifolia. Comput Biol Chem 2024; 109:108008. [PMID: 38198964 DOI: 10.1016/j.compbiolchem.2023.108008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Stercularin is a coumarin, isolated from the ethyl acetate fraction of stem bark and leaves of S. diversifolia. Pharmacologically it is active against cancer, diabetes, and inflammation etc. The molecule is further screened for in vitro pharmacological activities. In addition, a detailed description on its drug likeness and pharmacokinetic profile has been established to further explore its fate as a drug candidate. Stercularin exhibited antiglycation, immunomodulatory, and leishmanicidal activity in three different in vitro models. The IC50 values obtained in these three assays were 80.22 ± 0.46 mg/ml, 12.8 ± 1.6 μg/ml, and 8.32 ± 0.42 μg/ml, respectively. In case of drug likeness evaluation, Stercularin has acceptable physicochemical properties and compliant with major drug likeness descriptors i.e., Lipinski rule, Pfizer rule, GSK rule, and "golden triangle". Accepting Lipinski rule implies the oral drug development of Stercularin. Pharmacokinetically, Stercularin is permeable to Caco-2 and MDCK cell lines. 'Boiled-egg' plot suggest intestinal route of absorption, blood brain barrier nonpermeating, and not affected by p-glycoprotein. Stercularin has high plasma protein binding with low free fraction circulating in the plasma. Stercularin proved to be the substrate and/or inhibitor of CYP 450 system with a moderate half-life and clearance rate to allow flexible dosing regimen. Finally, slight risk of toxicity exists for Stercularin, but not being limiting factors of drug knock out. A nature isolated Stercularin possess pharmacological activities and is predicted to have acceptable pharmacokinetic profile. Further drug development and in vivo studies are desirable for optimization.
Collapse
Affiliation(s)
- Imad Ahmad
- Department of Pharmacy, The Professional Institute of Health Sciences, Mardan, Khyber Pakhtunkhwa, Pakistan; Department of Pharmacy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Fazle Rabbi
- Department of Pharmacy, Abasyn University Peshawar, Peshawar, Khyber Pakhtunkhwa 25000, Pakistan.
| | - Amna Nisar
- Department of Pharmacy, University of Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Zaheer Ul-Haq
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Alamgir Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
2
|
Alboreggia G, Udompholkul P, Baggio C, Pellecchia M. Mixture-Based Screening of Focused Combinatorial Libraries by NMR: Application to the Antiapoptotic Protein hMcl-1. J Med Chem 2023. [PMID: 37464766 PMCID: PMC10388297 DOI: 10.1021/acs.jmedchem.3c01073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
We report on an innovative ligand discovery strategy based on protein NMR-based screening of a combinatorial library of ∼125,000 compounds that was arranged in 96 distinct mixtures. Using sensitive solution protein NMR spectroscopy and chemical perturbation-based screening followed by an iterative synthesis, deconvolutions, and optimization strategy, we demonstrate that the approach could be useful in the identification of initial binding molecules for difficult drug targets, such as those involved in protein-protein interactions. As an application, we will report novel agents targeting the Bcl-2 family protein hMcl-1. The approach is of general applicability and could be deployed as an effective screening strategy for de novo identification of ligands, particularly when tackling targets involved in protein-protein interactions.
Collapse
Affiliation(s)
- Giulia Alboreggia
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Parima Udompholkul
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Carlo Baggio
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Maurizio Pellecchia
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
3
|
Dahlin JL, Hua BK, Zucconi BE, Nelson SD, Singh S, Carpenter AE, Shrimp JH, Lima-Fernandes E, Wawer MJ, Chung LPW, Agrawal A, O'Reilly M, Barsyte-Lovejoy D, Szewczyk M, Li F, Lak P, Cuellar M, Cole PA, Meier JL, Thomas T, Baell JB, Brown PJ, Walters MA, Clemons PA, Schreiber SL, Wagner BK. Reference compounds for characterizing cellular injury in high-content cellular morphology assays. Nat Commun 2023; 14:1364. [PMID: 36914634 PMCID: PMC10011410 DOI: 10.1038/s41467-023-36829-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Robust, generalizable approaches to identify compounds efficiently with undesirable mechanisms of action in complex cellular assays remain elusive. Such a process would be useful for hit triage during high-throughput screening and, ultimately, predictive toxicology during drug development. Here we generate cell painting and cellular health profiles for 218 prototypical cytotoxic and nuisance compounds in U-2 OS cells in a concentration-response format. A diversity of compounds that cause cellular damage produces bioactive cell painting morphologies, including cytoskeletal poisons, genotoxins, nonspecific electrophiles, and redox-active compounds. Further, we show that lower quality lysine acetyltransferase inhibitors and nonspecific electrophiles can be distinguished from more selective counterparts. We propose that the purposeful inclusion of cytotoxic and nuisance reference compounds such as those profiled in this resource will help with assay optimization and compound prioritization in complex cellular assays like cell painting.
Collapse
Grants
- R35 GM127045 NIGMS NIH HHS
- U01 CA272612 NCI NIH HHS
- T32 HL007627 NHLBI NIH HHS
- R37 GM062437 NIGMS NIH HHS
- S10 OD026839 NIH HHS
- R35 GM122481 NIGMS NIH HHS
- U01 DK123717 NIDDK NIH HHS
- Wellcome Trust
- R35 GM122547 NIGMS NIH HHS
- U01 CA217848 NCI NIH HHS
- K99 GM124357 NIGMS NIH HHS
- R35 GM149229 NIGMS NIH HHS
- This study was supported by the Ono Pharma Breakthrough Science Initiative Award (to BKW). Authors acknowledge the following financial support: JLD (NIH NHLBI, T32-HL007627); BKH (National Science Foundation, DGE1144152 and DGE1745303); BEZ (NIH NIGMS, K99-GM124357); SDN (Harvard University’s Graduate Prize Fellowship, Eli Lilly Graduate Fellowship in Chemistry); PA Cole (NIH NIGMS, R37-GM62437); SLS (NIGMS, R35-GM127045); BKW (Ono Pharma Foundation; NIH NIDDK, U01-DK123717); SS (NIH NIGMS, R35-GM122547). The authors gratefully acknowledge the use of the Opera Phenix High-Content/High-Throughput imaging system at the Broad Institute, funded by the NIH S10 grant OD026839. This research was supported in part by the Intramural/Extramural research program of the NCATS, NIH.
Collapse
Affiliation(s)
- Jayme L Dahlin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA.
| | - Bruce K Hua
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | - Beth E Zucconi
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | - Jonathan H Shrimp
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | | | - Mathias J Wawer
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | - Lawrence P W Chung
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | - Ayushi Agrawal
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | | | | | - Magdalena Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Parnian Lak
- Department of Pharmaceutical Chemistry and Quantitative Biology Institute, University of California San Francisco, San Francisco, CA, USA
| | - Matthew Cuellar
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, USA
| | - Philip A Cole
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Jordan L Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Tim Thomas
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Jonathan B Baell
- Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Michael A Walters
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, USA
| | - Paul A Clemons
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | - Bridget K Wagner
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
4
|
Ahmad I, Khan H, Serdaroğlu G. Physicochemical Properties, Drug Likeness, ADMET, DFT Studies and in vitro antioxidant activity of Oxindole Derivatives. Comput Biol Chem 2023; 104:107861. [PMID: 37060784 DOI: 10.1016/j.compbiolchem.2023.107861] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Poor pharmacokinetic and safety profiles create significant hurdles in the drug development process. This work focuses on a detailed understanding of drug discovery interplay among physicochemical, pharmacokinetic, toxicity endpoints, and antioxidant properties of oxindole derivatives. DFT compıutations were also performed at B3LYP/6-311G** level to evaluate the physicochemical properties, global reactivity features, and intramolecular interactions. The BOILED-Egg pharmacokinetic model envisaged gastrointestinal absorption, blood-brain barrier penetration, and no interaction with p-glycoprotein for compounds C1 and C2. The physicochemical evaluation revealed that C1 possesses superior drug-like properties fit for oral absorption. Both derivatives were predicted to have high plasma protein binding, efficient distribution, and inhibiting CYP 450 major isoforms but serve as substrates only for a few of them. Both molecules have mild to moderate clearance rates. Out of ten toxicity parameters, only hepatotoxicity was predicted. DFT results implied that the meta position of the -OH group made the possibility of charge transfer greater than -para positioned -OH, due to the ΔNmax (eV) values of molecules C1 and C2 being calculated at 2.596 and 2.477, respectively. Both C1 and C2 exhibited a concentration dependant DPPH and ABTS radical scavenging activity. The chemical structure-physicochemical-pharmacokinetic relationship identified the meta position as the favorite for the electron-withdrawing hydroxyl group. This provides useful insight to medicinal chemists to design 6-chlorooxindole derivatives with an acceptable drug-like and pharmacokinetic property.
Collapse
|
5
|
Ahmad I, Kuznetsov AE, Pirzada AS, Alsharif KF, Daglia M, Khan H. Computational pharmacology and computational chemistry of 4-hydroxyisoleucine: Physicochemical, pharmacokinetic, and DFT-based approaches. Front Chem 2023; 11:1145974. [PMID: 37123881 PMCID: PMC10133580 DOI: 10.3389/fchem.2023.1145974] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Computational pharmacology and chemistry of drug-like properties along with pharmacokinetic studies have made it more amenable to decide or predict a potential drug candidate. 4-Hydroxyisoleucine is a pharmacologically active natural product with prominent antidiabetic properties. In this study, ADMETLab 2.0 was used to determine its important drug-related properties. 4-Hydroxyisoleucine is compliant with important drug-like physicochemical properties and pharma giants' drug-ability rules like Lipinski's, Pfizer, and GlaxoSmithKline (GSK) rules. Pharmacokinetically, it has been predicted to have satisfactory cell permeability. Blood-brain barrier permeation may add central nervous system (CNS) effects, while a very slight probability of being CYP2C9 substrate exists. None of the well-known toxicities were predicted in silico, being congruent with wet lab results, except for a "very slight risk" for respiratory toxicity predicted. The molecule is non ecotoxic as analyzed with common indicators such as bioconcentration and LC50 for fathead minnow and daphnia magna. The toxicity parameters identified 4-hydroxyisoleucine as non-toxic to androgen receptors, PPAR-γ, mitochondrial membrane receptor, heat shock element, and p53. However, out of seven parameters, not even a single toxicophore was found. The density functional theory (DFT) study provided support to the findings obtained from drug-like property predictions. Hence, it is a very logical approach to proceed further with a detailed pharmacokinetics and drug development process for 4-hydroxyisoleucine.
Collapse
Affiliation(s)
- Imad Ahmad
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Aleksey E. Kuznetsov
- Department of Chemistry, Universidad Tecnica Federico Santa Maria, Santiago, Chile
| | | | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, Taif, Saudi Arabia
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- International Research Centre for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
- *Correspondence: Haroon Khan,
| |
Collapse
|
6
|
Proj M, Knez D, Sosič I, Gobec S. Redox active or thiol reactive? Optimization of rapid screens to identify less evident nuisance compounds. Drug Discov Today 2022; 27:1733-1742. [PMID: 35301150 DOI: 10.1016/j.drudis.2022.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/03/2022] [Accepted: 03/11/2022] [Indexed: 01/01/2023]
Abstract
Compounds that exhibit assay interference or undesirable mechanisms of bioactivity are routinely encountered in assays at various stages of drug discovery. We observed that assays for the investigation of thiol-reactive and redox-active compounds have not been collected in a comprehensive review. Here, we review these assays and subject them to experimental optimization to improve their reliability. We demonstrate the usefulness of our assay cascade by assaying a library of bioactive compounds, chemical probes, and a set of approved drugs. These high-throughput assays should complement the array of wet-lab and in silico assays during the initial stages of hit discovery campaigns to pursue only hit compounds with tractable mechanisms of action. Teaser: We provide an overview of assays to detect redox active and thiol reactive compounds and the robust protocols for identification of nuisance compounds during early stages of drug discovery programs.
Collapse
Affiliation(s)
- Matic Proj
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Askerceva 7, SI-1000 Ljubljana, Slovenia
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Askerceva 7, SI-1000 Ljubljana, Slovenia
| | - Izidor Sosič
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Askerceva 7, SI-1000 Ljubljana, Slovenia.
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Askerceva 7, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
7
|
Choo MZY, Chai CLL. Promoting GAINs (Give Attention to Limitations in Assays) over PAINs Alerts: no PAINS, more GAINs. ChemMedChem 2022; 17:e202100710. [PMID: 35146933 DOI: 10.1002/cmdc.202100710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/14/2022] [Indexed: 11/09/2022]
Abstract
Many concepts and guidelines in medicinal chemistry have been introduced to aid in successful drug discovery and development. An example is the concept of Pan-Assay Interference Compounds (PAINS) and the elimination of such nuisance compounds from high-throughput screening (HTS) libraries. PAINs, along with other guidelines in medicinal chemistry, are like double-edged swords. If used appropriately, they may be beneficial for drug discovery and development. However, rigid and blind use of such concepts can hinder productivity. In this perspective, we introduce GAINS (give attention to limitations in assays) and highlight its relevance for successful drug discovery.
Collapse
Affiliation(s)
- Malcolm Z Y Choo
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, Singapore, 117543, Singapore
| | - Christina L L Chai
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, Singapore, 117543, Singapore
| |
Collapse
|
8
|
LeBlanc RM, Mesleh MF. A drug discovery toolbox for Nuclear Magnetic Resonance (NMR) characterization of ligands and their targets. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 37:51-60. [PMID: 34895655 DOI: 10.1016/j.ddtec.2020.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
Information about the structure, dynamics, and ligand-binding properties of biomolecules can be derived from Nuclear Magnetic Resonance (NMR) spectroscopy and provides valuable information for drug discovery. A multitude of experimental approaches provides a wealth of information that can be tailored to the system of interest. Methods to study the behavior of ligands upon target binding enable the identification of weak binders in a robust manner that is critical for the identification of truly novel binding interactions. This is particularly important for challenging targets. Observing the solution behavior of biomolecules yields information about their structure, dynamics, and interactions. This review describes the breadth of approaches that are available, many of which are under-utilized in a drug-discovery environment, and focuses on recent advances that continue to emerge.
Collapse
Affiliation(s)
- Regan M LeBlanc
- Structural Biology and Biophysics, Vertex Pharmaceuticals Inc., Boston, MA, 02210, United States
| | - Michael F Mesleh
- Structural Biology and Biophysics, Vertex Pharmaceuticals Inc., Boston, MA, 02210, United States.
| |
Collapse
|
9
|
Berndt N, Bippes CC, Michalk I, Bartsch T, Arndt C, Puentes-Cala E, Soto JA, Loureiro LR, Kegler A, Bachmann D, Gross JK, Gross T, Kurien BT, Scofield RH, Farris AD, James JA, Bergmann R, Schmitz M, Feldmann A, Bachmann MP. And Yet It Moves: Oxidation of the Nuclear Autoantigen La/SS-B Is the Driving Force for Nucleo-Cytoplasmic Shuttling. Int J Mol Sci 2021; 22:9699. [PMID: 34575862 PMCID: PMC8470643 DOI: 10.3390/ijms22189699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 01/10/2023] Open
Abstract
Decades ago, we and many other groups showed a nucleo-cytoplasmic translocation of La protein in cultured cells. This shuttling of La protein was seen after UV irradiation, virus infections, hydrogen peroxide exposure and the Fenton reaction based on iron or copper ions. All of these conditions are somehow related to oxidative stress. Unfortunately, these harsh conditions could also cause an artificial release of La protein. Even until today, the shuttling and the cytoplasmic function of La/SS-B is controversially discussed. Moreover, the driving mechanism for the shuttling of La protein remains unclear. Recently, we showed that La protein undergoes redox-dependent conformational changes. Moreover, we developed anti-La monoclonal antibodies (anti-La mAbs), which are specific for either the reduced form of La protein or the oxidized form. Using these tools, here we show that redox-dependent conformational changes are the driving force for the shuttling of La protein. Moreover, we show that translocation of La protein to the cytoplasm can be triggered in a ligand/receptor-dependent manner under physiological conditions. We show that ligands of toll-like receptors lead to a redox-dependent shuttling of La protein. The shuttling of La protein depends on the redox status of the respective cell type. Endothelial cells are usually resistant to the shuttling of La protein, while dendritic cells are highly sensitive. However, the deprivation of intracellular reducing agents in endothelial cells makes endothelial cells sensitive to a redox-dependent shuttling of La protein.
Collapse
Affiliation(s)
- Nicole Berndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
| | - Claudia C. Bippes
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
| | - Irene Michalk
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
| | - Tabea Bartsch
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
| | - Claudia Arndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
| | - Edinson Puentes-Cala
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
- Corporación para la Investigación de la Corrosión (CIC), Piedecuesta 681011, Colombia
| | - Javier Andrés Soto
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
- Instituto de Investigación Masira, Facultad de Ciencias Médicas y de la Salud, Universidad de Santander, Cúcuta 540001, Colombia
| | - Liliana R. Loureiro
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
| | - Alexandra Kegler
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
| | - Dominik Bachmann
- Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus Technische Universität Dresden, 01307 Dresden, Germany;
| | - Joanne K. Gross
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Tim Gross
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Biji T. Kurien
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - R. Hal Scofield
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - A. Darise Farris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Judith A. James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Ralf Bergmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
- Department of Biophysics and Radiobiology, Semmelweis University, 1094 Budapest, Hungary
| | - Marc Schmitz
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
- National Center for Tumor Diseases (NCT), 03128 Dresden, Germany
| | - Anja Feldmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
| | - Michael P. Bachmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
- National Center for Tumor Diseases (NCT), 03128 Dresden, Germany
| |
Collapse
|
10
|
Coussens NP, Auld DS, Thielman JR, Wagner BK, Dahlin JL. Addressing Compound Reactivity and Aggregation Assay Interferences: Case Studies of Biochemical High-Throughput Screening Campaigns Benefiting from the National Institutes of Health Assay Guidance Manual Guidelines. SLAS DISCOVERY 2021; 26:1280-1290. [PMID: 34218710 DOI: 10.1177/24725552211026239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Compound-dependent assay interferences represent a continued burden in drug and chemical probe discovery. The open-source National Institutes of Health/National Center for Advancing Translational Sciences (NIH/NCATS) Assay Guidance Manual (AGM) established an "Assay Artifacts and Interferences" section to address different sources of artifacts and interferences in biological assays. In addition to the frequent introduction of new chapters in this important topic area, older chapters are periodically updated by experts from academia, industry, and government to include new technologies and practices. Section chapters describe many best practices for mitigating and identifying compound-dependent assay interferences. Using two previously reported biochemical high-throughput screening campaigns for small-molecule inhibitors of the epigenetic targets Rtt109 and NSD2, the authors review best practices and direct readers to high-yield resources in the AGM and elsewhere for the mitigation and identification of compound-dependent reactivity and aggregation assay interferences.
Collapse
Affiliation(s)
- Nathan P Coussens
- Molecular Pharmacology Laboratories, Division of Cancer Treatment and Diagnosis Laboratory Support, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Douglas S Auld
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Jonathan R Thielman
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | - Bridget K Wagner
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | - Jayme L Dahlin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
11
|
Mastracchio A, Lai C, Digiammarino E, Ready DB, Lasko LM, Bromberg KD, McClellan WJ, Montgomery D, Manaves V, Shaw B, Algire M, Patterson MJ, Sun CC, Rosenberg S, Lai A, Michaelides MR. Discovery of a Potent and Selective Covalent p300/CBP Inhibitor. ACS Med Chem Lett 2021; 12:726-731. [PMID: 34055218 DOI: 10.1021/acsmedchemlett.0c00654] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/02/2021] [Indexed: 01/10/2023] Open
Abstract
Aberrant gene activation driven by the histone acetyltransferases p300 and CREB binding protein (CBP) has been linked to several diseases, including cancers. Because of this, many efforts have been aimed toward the targeting of the closely related paralogues, p300 and CBP, but these endeavors have been exclusively directed toward noncovalent inhibitors. X-ray crystallography of A-485 revealed that both p300 and CBP possess a cysteine (C1450) near the active site, thus rendering covalent inhibition an attractive chemical approach. Herein we report the development of compound 2, an acrylamide-based inhibitor of p300/CBP that forms a covalent adduct with C1450. We demonstrated using mass spectrometry that compound 2 selectively targets C1450, and we also validated covalent binding using kinetics experiments and cellular washout studies. The discovery of covalent inhibitor 2 gives us a unique tool for the study of p300/CBP biology.
Collapse
Affiliation(s)
- Anthony Mastracchio
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Chunqiu Lai
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Enrico Digiammarino
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Damien B. Ready
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Loren M. Lasko
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Kenneth D. Bromberg
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - William J. McClellan
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Debra Montgomery
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Vlasios Manaves
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Bailin Shaw
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Mikkel Algire
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Melanie J. Patterson
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Chaohong C. Sun
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Saul Rosenberg
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Albert Lai
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | | |
Collapse
|
12
|
Berndt N, Bippes CC, Michalk I, Bachmann D, Bachmann J, Puentes-Cala E, Bartsch T, Loureiro LR, Kegler A, Bergmann R, Gross JK, Gross T, Kurien BT, Scofield RH, Farris AD, James JA, Schmitz M, Fahmy K, Feldmann A, Arndt C, Bachmann MP. Two Be or Not Two Be: The Nuclear Autoantigen La/SS-B Is Able to Form Dimers and Oligomers in a Redox Dependent Manner. Int J Mol Sci 2021; 22:3377. [PMID: 33806091 PMCID: PMC8036718 DOI: 10.3390/ijms22073377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
According to the literature, the autoantigen La is involved in Cap-independent translation. It was proposed that one prerequisite for this function is the formation of a protein dimer. However, structural analyses argue against La protein dimers. Noteworthy to mention, these structural analyses were performed under reducing conditions. Here we describe that La protein can undergo redox-dependent structural changes. The oxidized form of La protein can form dimers, oligomers and even polymers stabilized by disulfide bridges. The primary sequence of La protein contains three cysteine residues. Only after mutation of all three cysteine residues to alanine La protein becomes insensitive to oxidation, indicating that all three cysteines are involved in redox-dependent structural changes. Biophysical analyses of the secondary structure of La protein support the redox-dependent conformational changes. Moreover, we identified monoclonal anti-La antibodies (anti-La mAbs) that react with either the reduced or oxidized form of La protein. Differential reactivities to the reduced and oxidized form of La protein were also found in anti-La sera of autoimmune patients.
Collapse
Affiliation(s)
- Nicole Berndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (E.P.-C.); (T.B.); (L.R.L.); (A.K.); (R.B.); (A.F.); (C.A.)
| | - Claudia C. Bippes
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
| | - Irene Michalk
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
| | - Dominik Bachmann
- University Cancer Center (UCC), Tumor Immunology, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (D.B.); (J.B.)
| | - Jennifer Bachmann
- University Cancer Center (UCC), Tumor Immunology, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (D.B.); (J.B.)
| | - Edinson Puentes-Cala
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (E.P.-C.); (T.B.); (L.R.L.); (A.K.); (R.B.); (A.F.); (C.A.)
- Corporación para la Investigación de la Corrosión (CIC), Piedecuesta 681011, Colombia
| | - Tabea Bartsch
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (E.P.-C.); (T.B.); (L.R.L.); (A.K.); (R.B.); (A.F.); (C.A.)
| | - Liliana R. Loureiro
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (E.P.-C.); (T.B.); (L.R.L.); (A.K.); (R.B.); (A.F.); (C.A.)
| | - Alexandra Kegler
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (E.P.-C.); (T.B.); (L.R.L.); (A.K.); (R.B.); (A.F.); (C.A.)
| | - Ralf Bergmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (E.P.-C.); (T.B.); (L.R.L.); (A.K.); (R.B.); (A.F.); (C.A.)
- Department of Biophysics and Radiobiology, Semmelweis University, 1094 Budapest, Hungary
| | - Joanne K. Gross
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Tim Gross
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Biji T. Kurien
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - R. Hal Scofield
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - A. Darise Farris
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Judith A. James
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Marc Schmitz
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany
| | - Karim Fahmy
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany;
| | - Anja Feldmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (E.P.-C.); (T.B.); (L.R.L.); (A.K.); (R.B.); (A.F.); (C.A.)
| | - Claudia Arndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (E.P.-C.); (T.B.); (L.R.L.); (A.K.); (R.B.); (A.F.); (C.A.)
| | - Michael P. Bachmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (E.P.-C.); (T.B.); (L.R.L.); (A.K.); (R.B.); (A.F.); (C.A.)
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
- University Cancer Center (UCC), Tumor Immunology, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (D.B.); (J.B.)
| |
Collapse
|
13
|
Applications of Solution NMR in Drug Discovery. Molecules 2021; 26:molecules26030576. [PMID: 33499337 PMCID: PMC7865596 DOI: 10.3390/molecules26030576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 01/13/2023] Open
Abstract
During the past decades, solution nuclear magnetic resonance (NMR) spectroscopy has demonstrated itself as a promising tool in drug discovery. Especially, fragment-based drug discovery (FBDD) has benefited a lot from the NMR development. Multiple candidate compounds and FDA-approved drugs derived from FBDD have been developed with the assistance of NMR techniques. NMR has broad applications in different stages of the FBDD process, which includes fragment library construction, hit generation and validation, hit-to-lead optimization and working mechanism elucidation, etc. In this manuscript, we reviewed the current progresses of NMR applications in fragment-based drug discovery, which were illustrated by multiple reported cases. Moreover, the NMR applications in protein-protein interaction (PPI) modulators development and the progress of in-cell NMR for drug discovery were also briefly summarized.
Collapse
|
14
|
Jackson PA, Schares HAM, Jones KFM, Widen JC, Dempe DP, Grillet F, Cuellar ME, Walters MA, Harki DA, Brummond KM. Synthesis of Guaianolide Analogues with a Tunable α-Methylene-γ-lactam Electrophile and Correlating Bioactivity with Thiol Reactivity. J Med Chem 2020; 63:14951-14978. [PMID: 33201697 DOI: 10.1021/acs.jmedchem.0c01464] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
α-Methylene-γ-lactones are present in ∼3% of known natural products, and compounds comprising this motif display a range of biological activities. However, this reactive lactone limits informed structure-activity relationships for these bioactive molecules. Herein, we describe chemically tuning the electrophilicity of the α-methylene-γ-lactone by replacement with an α-methylene-γ-lactam. Guaianolide analogues having α-methylene-γ-lactams are synthesized using the allenic Pauson-Khand reaction. Substitution of the lactam nitrogen with electronically different groups affords diverse thiol reactivity. Cellular NF-κB inhibition assays for these lactams were benchmarked against parthenolide and a synthetic α-methylene-γ-lactone showing a positive correlation between thiol reactivity and bioactivity. Cytotoxicity assays show good correlation at the outer limits of thiol reactivity but less so for compounds with intermediate reactivity. A La assay to detect reactive molecules by nuclear magnetic resonance and mass spectrometry peptide sequencing assays with the La antigen protein demonstrate that lactam analogues with muted nonspecific thiol reactivities constitute a better electrophile for rational chemical probe and therapeutic molecule design.
Collapse
Affiliation(s)
- Paul A Jackson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Henry A M Schares
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katherine F M Jones
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John C Widen
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daniel P Dempe
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Francois Grillet
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Matthew E Cuellar
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Michael A Walters
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kay M Brummond
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
15
|
Emwas AH, Szczepski K, Poulson BG, Chandra K, McKay RT, Dhahri M, Alahmari F, Jaremko L, Lachowicz JI, Jaremko M. NMR as a "Gold Standard" Method in Drug Design and Discovery. Molecules 2020; 25:E4597. [PMID: 33050240 PMCID: PMC7594251 DOI: 10.3390/molecules25204597] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
Studying disease models at the molecular level is vital for drug development in order to improve treatment and prevent a wide range of human pathologies. Microbial infections are still a major challenge because pathogens rapidly and continually evolve developing drug resistance. Cancer cells also change genetically, and current therapeutic techniques may be (or may become) ineffective in many cases. The pathology of many neurological diseases remains an enigma, and the exact etiology and underlying mechanisms are still largely unknown. Viral infections spread and develop much more quickly than does the corresponding research needed to prevent and combat these infections; the present and most relevant outbreak of SARS-CoV-2, which originated in Wuhan, China, illustrates the critical and immediate need to improve drug design and development techniques. Modern day drug discovery is a time-consuming, expensive process. Each new drug takes in excess of 10 years to develop and costs on average more than a billion US dollars. This demonstrates the need of a complete redesign or novel strategies. Nuclear Magnetic Resonance (NMR) has played a critical role in drug discovery ever since its introduction several decades ago. In just three decades, NMR has become a "gold standard" platform technology in medical and pharmacology studies. In this review, we present the major applications of NMR spectroscopy in medical drug discovery and development. The basic concepts, theories, and applications of the most commonly used NMR techniques are presented. We also summarize the advantages and limitations of the primary NMR methods in drug development.
Collapse
Affiliation(s)
- Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Kacper Szczepski
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Benjamin Gabriel Poulson
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Kousik Chandra
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Ryan T. McKay
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2W2, Canada;
| | - Manel Dhahri
- Biology Department, Faculty of Science, Taibah University, Yanbu El-Bahr 46423, Saudi Arabia;
| | - Fatimah Alahmari
- Nanomedicine Department, Institute for Research and Medical, Consultations (IRMC), Imam Abdulrahman Bin Faisal University (IAU), Dammam 31441, Saudi Arabia;
| | - Lukasz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, Università di Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Mariusz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| |
Collapse
|
16
|
Priebbenow DL, Leaver DJ, Nguyen N, Cleary B, Lagiakos HR, Sanchez J, Xue L, Huang F, Sun Y, Mujumdar P, Mudududdla R, Varghese S, Teguh S, Charman SA, White KL, Shackleford DM, Katneni K, Cuellar M, Strasser JM, Dahlin JL, Walters MA, Street IP, Monahan BJ, Jarman KE, Jousset Sabroux H, Falk H, Chung MC, Hermans SJ, Downer NL, Parker MW, Voss AK, Thomas T, Baell JB. Discovery of Acylsulfonohydrazide-Derived Inhibitors of the Lysine Acetyltransferase, KAT6A, as Potent Senescence-Inducing Anti-Cancer Agents. J Med Chem 2020; 63:4655-4684. [PMID: 32118427 DOI: 10.1021/acs.jmedchem.9b02071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A high-throughput screen designed to discover new inhibitors of histone acetyltransferase KAT6A uncovered CTX-0124143 (1), a unique aryl acylsulfonohydrazide with an IC50 of 1.0 μM. Using this acylsulfonohydrazide as a template, we herein disclose the results of our extensive structure-activity relationship investigations, which resulted in the discovery of advanced compounds such as 55 and 80. These two compounds represent significant improvements on our recently reported prototypical lead WM-8014 (3) as they are not only equivalently potent as inhibitors of KAT6A but are less lipophilic and significantly more stable to microsomal degradation. Furthermore, during this process, we discovered a distinct structural subclass that contains key 2-fluorobenzenesulfonyl and phenylpyridine motifs, culminating in the discovery of WM-1119 (4). This compound is a highly potent KAT6A inhibitor (IC50 = 6.3 nM; KD = 0.002 μM), competes with Ac-CoA by binding to the Ac-CoA binding site, and has an oral bioavailability of 56% in rats.
Collapse
Affiliation(s)
- Daniel L Priebbenow
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Parkville, Victoria 3052, Australia
| | - David J Leaver
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Parkville, Victoria 3052, Australia
| | - Nghi Nguyen
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Parkville, Victoria 3052, Australia
| | - Benjamin Cleary
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Parkville, Victoria 3052, Australia
| | - H Rachel Lagiakos
- Cancer Therapeutics CRC, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | - Julie Sanchez
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Lian Xue
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Fei Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yuxin Sun
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Parkville, Victoria 3052, Australia
| | - Prashant Mujumdar
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Parkville, Victoria 3052, Australia
| | - Ramesh Mudududdla
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Parkville, Victoria 3052, Australia
| | - Swapna Varghese
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Parkville, Victoria 3052, Australia
| | - Silvia Teguh
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Parkville, Victoria 3052, Australia
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Karen L White
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - David M Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Kasiram Katneni
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Matthew Cuellar
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jessica M Strasser
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jayme L Dahlin
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
| | - Michael A Walters
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ian P Street
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Cancer Therapeutics CRC, 343 Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Brendon J Monahan
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Cancer Therapeutics CRC, 343 Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Kate E Jarman
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Helene Jousset Sabroux
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Hendrik Falk
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Cancer Therapeutics CRC, 343 Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Matthew C Chung
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Stefan J Hermans
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Natalie L Downer
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Michael W Parker
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Anne K Voss
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Tim Thomas
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Jonathan B Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.,Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Parkville, Victoria 3052, Australia.,ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
17
|
Leaver DJ, Cleary B, Nguyen N, Priebbenow DL, Lagiakos HR, Sanchez J, Xue L, Huang F, Sun Y, Mujumdar P, Mudududdla R, Varghese S, Teguh S, Charman SA, White KL, Katneni K, Cuellar M, Strasser JM, Dahlin JL, Walters MA, Street IP, Monahan BJ, Jarman KE, Sabroux HJ, Falk H, Chung MC, Hermans SJ, Parker MW, Thomas T, Baell JB. Discovery of Benzoylsulfonohydrazides as Potent Inhibitors of the Histone Acetyltransferase KAT6A. J Med Chem 2019; 62:7146-7159. [DOI: 10.1021/acs.jmedchem.9b00665] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | | | - H. Rachel Lagiakos
- Cancer Therapeutics CRC, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | - Julie Sanchez
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Lian Xue
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Fei Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | | | | | | | | | | | | | | | | | - Matthew Cuellar
- Institute for Therapeutics Discovery and Development, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55455, United States
| | - Jessica M. Strasser
- Institute for Therapeutics Discovery and Development, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55455, United States
| | - Jayme L. Dahlin
- Department of Pathology, Brigham and Women’s Hospital, Boston, 75 Francis Street, Boston, Massachusetts 02115, United States
| | - Michael A. Walters
- Institute for Therapeutics Discovery and Development, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55455, United States
| | - Ian P. Street
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Cancer Therapeutics CRC, 343 Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Brendon J. Monahan
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Cancer Therapeutics CRC, 343 Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Kate E. Jarman
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Helene Jousset Sabroux
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Hendrik Falk
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Cancer Therapeutics CRC, 343 Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Matthew C. Chung
- ACRF Rational Drug Discovery Centre, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Stefan J. Hermans
- ACRF Rational Drug Discovery Centre, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Michael W. Parker
- ACRF Rational Drug Discovery Centre, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Tim Thomas
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Jonathan B. Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
18
|
Xue L, Shi DH, Harjani JR, Huang F, Beveridge JG, Dingjan T, Ban K, Diab S, Duffy S, Lucantoni L, Fletcher S, Chiu FCK, Blundell S, Ellis K, Ralph SA, Wirjanata G, Teguh S, Noviyanti R, Chavchich M, Creek D, Price RN, Marfurt J, Charman SA, Cuellar ME, Strasser JM, Dahlin JL, Walters MA, Edstein MD, Avery VM, Baell JB. 3,3'-Disubstituted 5,5'-Bi(1,2,4-triazine) Derivatives with Potent in Vitro and in Vivo Antimalarial Activity. J Med Chem 2019; 62:2485-2498. [PMID: 30715882 DOI: 10.1021/acs.jmedchem.8b01799] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A series of 3,3'-disubstituted 5,5'-bi(1,2,4-triazine) derivatives was synthesized and screened against the erythrocytic stage of Plasmodium falciparum 3D7 line. The most potent dimer, 6k, with an IC50 (50% inhibitory concentration) of 0.008 μM, had high in vitro potency against P. falciparum lines resistant to chloroquine (W2, IC50 = 0.0047 ± 0.0011 μM) and artemisinin (MRA1240, IC50 = 0.0086 ± 0.0010 μM). Excellent ex vivo potency of 6k was shown against clinical field isolates of both P. falciparum (IC50 = 0.022-0.034 μM) and Plasmodium vivax (IC50 = 0.0093-0.031 μM) from the blood of outpatients with uncomplicated malaria. Despite 6k being cleared relatively rapidly in mice, it suppressed parasitemia in the Peters 4-day test, with a mean ED50 value (50% effective dose) of 1.47 mg kg-1 day-1 following oral administration. The disubstituted triazine dimer 6k represents a new class of orally available antimalarial compounds of considerable interest for further development.
Collapse
Affiliation(s)
- Lian Xue
- School of Pharmaceutical Sciences , Nanjing Tech University , No. 30 South Puzhu Road , Nanjing 211816 , People's Republic of China
| | - Da-Hua Shi
- Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Jitendra R Harjani
- Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Fei Huang
- School of Pharmaceutical Sciences , Nanjing Tech University , No. 30 South Puzhu Road , Nanjing 211816 , People's Republic of China
| | - Julia G Beveridge
- Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Tamir Dingjan
- Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Kung Ban
- Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Sarah Diab
- Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Sandra Duffy
- Discovery Biology, Griffith Institute for Drug Discovery , Griffith University , Brisbane Innovation Park , Nathan , Queensland 4111 , Australia
| | - Leonardo Lucantoni
- Discovery Biology, Griffith Institute for Drug Discovery , Griffith University , Brisbane Innovation Park , Nathan , Queensland 4111 , Australia
| | - Sabine Fletcher
- Discovery Biology, Griffith Institute for Drug Discovery , Griffith University , Brisbane Innovation Park , Nathan , Queensland 4111 , Australia
| | - Francis C K Chiu
- Centre for Drug Candidate Optimisation , Monash University (Parkville Campus) , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Scott Blundell
- Centre for Drug Candidate Optimisation , Monash University (Parkville Campus) , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Katherine Ellis
- Drug Delivery Disposition and Dynamics , Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Stuart A Ralph
- Bio21 Institute , The University of Melbourne , Parkville , Victoria 3052 , Australia
| | - Grennady Wirjanata
- Global and Tropical Health Division , Menzies School of Health Research and Charles Darwin University , Royal Darwin Hospital Campus, Rocklands Drive , Casuarina , Northern Territory 0810 , Australia
| | - Silvia Teguh
- Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Rintis Noviyanti
- Eijkman Institute for Molecular Biology , Jalan Diponegoro 69 , Jakarta 10430 , Indonesia
| | - Marina Chavchich
- The Department of Drug Evaluation , Australian Defence Force Malaria and Infectious Disease Institute , Brisbane , Queensland 4052 , Australia
| | - Darren Creek
- Drug Delivery Disposition and Dynamics , Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Ric N Price
- Global and Tropical Health Division , Menzies School of Health Research and Charles Darwin University , Royal Darwin Hospital Campus, Rocklands Drive , Casuarina , Northern Territory 0810 , Australia.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine , University of Oxford , Oxford OX3 7LJ , U.K
| | - Jutta Marfurt
- Global and Tropical Health Division , Menzies School of Health Research and Charles Darwin University , Royal Darwin Hospital Campus, Rocklands Drive , Casuarina , Northern Territory 0810 , Australia
| | - Susan A Charman
- Centre for Drug Candidate Optimisation , Monash University (Parkville Campus) , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Matthew E Cuellar
- Institute for Therapeutics Discovery and Development , University of Minnesota , 717 Delaware Street SE , Minneapolis , Minnesota , United States
| | - Jessica M Strasser
- Institute for Therapeutics Discovery and Development , University of Minnesota , 717 Delaware Street SE , Minneapolis , Minnesota , United States
| | - Jayme L Dahlin
- Department of Pathology , Brigham and Women's Hospital , 75 Francis Street , Boston , Massachusetts 02115 , United States
| | - Michael A Walters
- Institute for Therapeutics Discovery and Development , University of Minnesota , 717 Delaware Street SE , Minneapolis , Minnesota , United States
| | - Michael D Edstein
- The Department of Drug Evaluation , Australian Defence Force Malaria and Infectious Disease Institute , Brisbane , Queensland 4052 , Australia
| | - Vicky M Avery
- Discovery Biology, Griffith Institute for Drug Discovery , Griffith University , Brisbane Innovation Park , Nathan , Queensland 4111 , Australia
| | - Jonathan B Baell
- School of Pharmaceutical Sciences , Nanjing Tech University , No. 30 South Puzhu Road , Nanjing 211816 , People's Republic of China.,Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| |
Collapse
|
19
|
Polshakov VI, Batuev EA, Mantsyzov AB. NMR screening and studies of target–ligand interactions. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|