1
|
López-Pacios L, Nogueira JJ, Martínez-Fernández L. Computational Characterization of the DAD Photoisomerization: Functionalization, Protonation, and Solvation Effects. J Phys Chem B 2024; 128:11587-11596. [PMID: 39548982 PMCID: PMC11613546 DOI: 10.1021/acs.jpcb.4c05179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024]
Abstract
Photoswitches are becoming increasingly popular in pharmacology due to the possibility of modifying their activity with light. Hence, it is crucial to understand the photophysics of these compounds to identify promising light-activated drugs. We focused our study on DAD, an azobenzene derivative that, according to a previous experimental investigation, can restore visual function in blind mice due to trans-cis photoisomerization upon light absorption. With the present computational study, we aim to characterize the absorption spectrum of DAD, and to understand its photoisomerization mechanism by means of conformational search analysis, quantum mechanical (QM) and hybrid QM/continuum calculations, and classical molecular dynamics simulations. Moreover, we explored the effect of the derivation (DAD vs azobenzene), the protonation (DAD vs DADH22+, the two possible protonation states) and the solvation (vacuum vs water) on the photoisomerization. Similarly to azobenzene, we showed that the photoisomerization of both protonation states of DAD begin with the population of the bright S2 state. Then, it crosses to the S1 surface and relaxes along the rotation of the azo dihedral to a S1/S0 crossing point. The latter is close to a transition state that connects the trans and cis geometries on the ground state. Finally, our results suggested that amino derivation, nonprotonation and water solvation could improve the quantum yield of the photoisomerization.
Collapse
Affiliation(s)
- Lucía López-Pacios
- Departamento
de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Juan J. Nogueira
- Departamento
de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Lara Martínez-Fernández
- Departamento
de Química Física de Materiales, Instituto de Química Física Blas Cabrera, CSIC, 28006 Madrid, Spain
| |
Collapse
|
2
|
Hu S, Yin X, Liu S, Yan Y, Mu J, Liu H, Cen Q, Wu M, Lv L, Liu R, Li H, Yao M, Zhao R, Yao D, Zou B, Zou G, Ma Y. Lighting Up Nonemissive Azobenzene Derivatives by Pressure. J Am Chem Soc 2024; 146:28961-28972. [PMID: 39279160 DOI: 10.1021/jacs.4c09784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Pressure-induced emission (PIE) is a compelling phenomenon that can activate luminescence within nonemissive materials. However, PIE in nonemissive organic materials has never been achieved. Herein, we present the first observation of PIE in an organic system, specifically within nonemissive azobenzene derivatives. The emission of 1,2-bis(4-(anthracen-9-yl)phenyl)diazene was activated at 0.52 GPa, primarily driven by local excitation promotion induced by molecular conformational changes. Complete photoisomerization suppression of the molecule was observed at 1.5 GPa, concurrently accelerating the emission enhancement to 3.53 GPa. Differing from the key role of isomerization inhibition in conventional perception, our findings demonstrate that the excited-state constituent is the decisive factor for emission activation, providing a potentially universal approach for high-efficiency azobenzene emission. Additionally, PIE was replicated in the analogue 1,2-bis(4-(9H-carbazol-9-yl)phenyl)diazene, confirming the general applicability of our findings. This work marks a significant breakthrough within the PIE paradigm and paves the novel high-pressure route for crystalline-state photoisomerization investigation.
Collapse
Affiliation(s)
- Shuhe Hu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Xiu Yin
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Shuang Liu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Yuye Yan
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiahui Mu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Haichao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiuyan Cen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Min Wu
- School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| | - Long Lv
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Ran Liu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Haiyan Li
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Mingguang Yao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Ruiyang Zhao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dong Yao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Guangtian Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Yuguang Ma
- Institute of Polymer Optoelectronic Materials and Devices, State Kay Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Sisodiya DS, Chattopadhyay A. The photochemical trans → cis and thermal cis → trans isomerization pathways of azobenzo-13-crown ether: A computational study on a strained cyclic azobenzene system. J Chem Phys 2024; 161:034307. [PMID: 39017425 DOI: 10.1063/5.0206946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
The isomerization of azobenzo-13-crown ether can be expected to be hindered due to the polyoxyethylene linkage connecting the 2,2'-positions of azobenzene. The mixed reference spin-flip time-dependent density functional theory results reveal that the planar and rotational minima of the first photo-excited singlet state (S1) of the trans-isomer pass through a barrier (2.5-5.0 kcal/mol) as it goes toward the torsional conical intersection (S0/S1) geometry (
Collapse
Affiliation(s)
- Dilawar Singh Sisodiya
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, K. K. Birla Goa Campus, Zuarinagar, India
| | - Anjan Chattopadhyay
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, K. K. Birla Goa Campus, Zuarinagar, India
| |
Collapse
|
4
|
Sisodiya DS, Ali SM, Chattopadhyay A. Unexplored Isomerization Pathways of Azobis(benzo-15-crown-5): Computational Studies on a Butterfly Crown Ether. J Phys Chem A 2023; 127:7080-7093. [PMID: 37526572 DOI: 10.1021/acs.jpca.3c02363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Computational studies on trans → cis and cis → trans isomerizations of photoresponsive azobis(benzo-15-crown-5) have been reported in this work. The photoexcited ππ* state (S2) of the trans isomer relaxes through the planar S2 minimum and the planar S2/S1 conical intersection (both situated around 9 kcal/mol below the vertically excited S2 state) arising along the N═N stretching coordinate. The nπ* state (S1) of this isomer has both planar and rotated (clockwise and anticlockwise) minima, which may lead to a torsional conical intersection (S0/S1) geometry having a
Collapse
Affiliation(s)
- Dilawar Singh Sisodiya
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, India
| | - Sk Musharaf Ali
- Chemical Engineering Division, Bhabha Atomic Research Centre (BARC), Mumbai 400085, India
| | - Anjan Chattopadhyay
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, India
| |
Collapse
|
5
|
Skačej G, Querciagrossa L, Zannoni C. On the Effects of Different trans and cis Populations in Azobenzene Liquid Crystal Elastomers: A Monte Carlo Investigation. ACS APPLIED POLYMER MATERIALS 2023; 5:5805-5815. [PMID: 37588085 PMCID: PMC10426334 DOI: 10.1021/acsapm.3c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023]
Abstract
We investigate main-chain liquid crystal elastomers (LCEs) formed by photoresponsive azobenzene units with different populations of trans and cis conformers (from fully trans to fully cis). We study their macroscopic properties as well as their molecular organization using extensive Monte Carlo simulations of a simple coarse-grained model where the trans and cis conformers are represented by soft-core biaxial Gay-Berne particles with size and interaction energy parameters obtained by fitting a bare bone azobenzene moiety represented at atomistic level. We find that increasing the fraction of cis conformers, as could be obtained by near-UV irradiation, shifts the nematic-isotropic transition to a lower temperature, consistently with experiment, while generating internal stress in a clamped sample. An analysis of pair distributions shows that the immediate surroundings of a bent cis molecule are slightly less dense and more orientationally disordered in comparison with that of a trans conformer. Comparing nematic and smectic LCEs, actuation in the smectic phase proved less effective, disrupting the smectic layers to some extent but preserving orientational order of the azobenzene moieties.
Collapse
Affiliation(s)
- Gregor Skačej
- Faculty
of Mathematics and Physics, University of
Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Lara Querciagrossa
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
- CINECA, Via Magnanelli 6/3, I-40033 Casalecchio di Reno, Italy
| | - Claudio Zannoni
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| |
Collapse
|
6
|
Osella S, Granucci G, Persico M, Knippenberg S. Dual photoisomerization mechanism of azobenzene embedded in a lipid membrane. J Mater Chem B 2023; 11:2518-2529. [PMID: 36852914 DOI: 10.1039/d2tb02767d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The photoisomerization of chromophores embedded in biological environments is of high importance for biomedical applications, but it is still challenging to define the photoisomerization mechanism both experimentally and computationally. We present here a computational study of the azobenzene molecule embedded in a DPPC lipid membrane, and assess the photoisomerization mechanism by means of the quantum mechanics/molecular mechanics surface hopping (QM/MM-SH) method. We observe that while the trans-to-cis isomerization is a slow process governed by a torsional mechanism due to the strong interaction with the environment, the cis-to-trans mechanism is completed in sub-ps time scale and is governed by a pedal-like mechanism in which both weaker interactions with the environment and a different geometry of the potential energy surface play a key role.
Collapse
Affiliation(s)
- Silvio Osella
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland. .,Materials and Process Simulation Center (MSC), California Institute of Technology, MC 139-74, Pasadena, CA, 91125, USA
| | - Giovanni Granucci
- Dipartimento di Chimica e Chimica Industriale, Universitá di Pisa, v. Moruzzi 13, I-56124 Pisa, Italy
| | - Maurizio Persico
- Dipartimento di Chimica e Chimica Industriale, Universitá di Pisa, v. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefan Knippenberg
- Hasselt University, Theory Lab, Agoralaan Building D, 3590 Diepenbeek, Belgium.,Université Libre de Bruxelles, Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES), 50 Avenue F. Roosevelt, C.P. 160/09, B-1050 Brussels, Belgium.
| |
Collapse
|
7
|
Vainikka P, Marrink SJ. Martini 3 Coarse-Grained Model for Second-Generation Unidirectional Molecular Motors and Switches. J Chem Theory Comput 2023; 19:596-604. [PMID: 36625495 PMCID: PMC9878727 DOI: 10.1021/acs.jctc.2c00796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 01/11/2023]
Abstract
Artificial molecular motors (MMs) and switches (MSs), capable of undergoing unidirectional rotation or switching under the appropriate stimuli, are being utilized in multiple complex and chemically diverse environments. Although thorough theoretical work utilizing QM and QM/MM methods have mapped out many of the critical properties of MSs and MMs, as the experimental setups become more complex and ambitious, there is an ever increasing need to study the behavior and dynamics of these molecules as they interact with their environment. To this end, we have parametrized two coarse-grained (CG) models of commonly used MMs and a model for an oxindole-based MS, which can be used to study the ground state behavior of MMs and MSs in large simulations for significantly longer periods of time. We also propose methods to perturb these systems which can allow users to approximate how such systems would respond to MMs rotating or the MSs switching.
Collapse
Affiliation(s)
- Petteri Vainikka
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AGGroningen, The Netherlands
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AGGroningen, The Netherlands
| | - Siewert J. Marrink
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AGGroningen, The Netherlands
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AGGroningen, The Netherlands
| |
Collapse
|
8
|
Osthues H, Doltsinis NL. ReaxFF-based nonadiabatic dynamics method for azobenzene derivatives. J Chem Phys 2022; 157:244101. [PMID: 36586973 DOI: 10.1063/5.0129699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
ReaxFF reactive force fields have been parameterized for the ground and first excited states of azobenzene and its derivatives. In addition, an extended set of ab initio reference data ensures wide applicability, including to azosystems in complex environments. Based on the optimized force fields, nonadiabatic surface hopping simulations produce photoisomerization quantum yields and decay times of azobenzene, both in the gas phase and in n-hexane solution, in reasonable agreement with higher level theory and experiment. The transferability to other azo-compounds is illustrated for different arylazopyrazoles as well as ethylene-bridged azobenzene. Moreover, it has been shown that the model can be easily extended to adsorbates on metal surfaces. The simulation of the ring-opening of cyclobutene triggered by the photoisomerization of azobenzene in a macrocycle highlights the advantages of a reactive force field model.
Collapse
Affiliation(s)
- Helena Osthues
- Institute for Solid State Theory and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
| | - Nikos L Doltsinis
- Institute for Solid State Theory and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
| |
Collapse
|
9
|
Sadilov I, Petukhov D, Brotsman V, Chumakova A, Eliseev A, Eliseev A. Light Response and Switching Behavior of Graphene Oxide Membranes Modified with Azobenzene Compounds. MEMBRANES 2022; 12:1131. [PMID: 36422123 PMCID: PMC9699301 DOI: 10.3390/membranes12111131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Here, we report on the fabrication of light-switchable and light-responsive membranes based on graphene oxide (GO) modified with azobenzene compounds. Azobenzene and para-aminoazobenzene were grafted onto graphene oxide layers by covalent attachment/condensation reaction prior to the membranes' assembly. The modification of GO was proven by the UV-vis, IR, Raman and photoelectron spectroscopy. The membrane's light-responsive properties were investigated in relation to the permeation of permanent gases and water vapors under UV and IR irradiation. Light irradiation does not influence the permeance of permanent gases, while it strongly affected that of water vapors. Both switching and irradiation-induced water permeance variation is described, and they were attributed to over 20% of the initial permeance. According to in situ diffraction studies, the effect is ascribed to the change to the interlayer distance between the graphene oxide nanoflakes, which increases under UV irradiation to ~1.5 nm while it decreases under IR irradiation to ~0.9 nm at 100% RH. The last part occurs due to the isomerization of grafted azobenzene under UV irradiation, pushing apart the GO layers, as confirmed by semi-empirical modelling.
Collapse
Affiliation(s)
- Ilia Sadilov
- Department of Materials Science, Lomonosov Moscow State University, 1-73 Leninskiye Gory, 119991 Moscow, Russia
| | - Dmitrii Petukhov
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Victor Brotsman
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Alexandra Chumakova
- European Synchrotron Radiation Facility, 71 Av. des Martyrs, F-38042 Grenoble, France
| | - Artem Eliseev
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Andrei Eliseev
- Department of Materials Science, Lomonosov Moscow State University, 1-73 Leninskiye Gory, 119991 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| |
Collapse
|
10
|
Mena-Giraldo P, Orozco J. Photosensitive Polymeric Janus Micromotor for Enzymatic Activity Protection and Enhanced Substrate Degradation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5897-5907. [PMID: 34978178 DOI: 10.1021/acsami.1c14663] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Immobilizing enzymes into microcarriers is a strategy to improve their long-term stability and reusability, hindered by (UV) light irradiation. However, in such approaches, enzyme-substrate interaction is mediated by diffusion, often at slow kinetics. In contrast, enzyme-linked self-propelled motors can accelerate this interaction, frequently mediated by the convection mechanism. This work reports on a new photosensitive polymeric Janus micromotor (JM) for UV-light protection of enzymatic activity and efficient degradation of substrates accelerated by the JMs. The JMs were assembled with UV-photosensitive modified chitosan, co-encapsulating fluorescent-labeled proteins and enzymes as models and magnetite and platinum nanoparticles for magnetic and catalytic motion. The JMs absorbed UV light, protecting the enzymatic activity and accelerating the enzyme-substrate degradation by magnetic/catalytic motion. Immobilizing proteins in photosensitive JMs is a promising strategy to improve the enzyme's stability and hasten the kinetics of substrate degradation, thereby enhancing the enzymatic process's efficiency.
Collapse
Affiliation(s)
- Pedro Mena-Giraldo
- Max Planck Tandem Group in Nanobioengineering, Faculty of Natural and Exact Sciences, University of Antioquia, Calle 67 N° 52-20, Complejo Ruta N, Medellín 050010, Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Faculty of Natural and Exact Sciences, University of Antioquia, Calle 67 N° 52-20, Complejo Ruta N, Medellín 050010, Colombia
| |
Collapse
|
11
|
Koch M, Saphiannikova M, Guskova O. Cyclic Photoisomerization of Azobenzene in Atomistic Simulations: Modeling the Effect of Light on Columnar Aggregates of Azo Stars. Molecules 2021; 26:7674. [PMID: 34946756 PMCID: PMC8709326 DOI: 10.3390/molecules26247674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/02/2022] Open
Abstract
This computational study investigates the influence of light on supramolecular aggregates of three-arm azobenzene stars. Every star contains three azobenzene (azo) moieties, each able to undergo reversible photoisomerization. In solution, the azo stars build column-shaped supramolecular aggregates. Previous experimental works report severe morphological changes of these aggregates under UV-Vis light. However, the underlying molecular mechanisms are still debated. Here we aim to elucidate how light affects the structure and stability of the columnar stacks on the molecular scale. The system is investigated using fully atomistic molecular dynamics (MD) simulations. To implement the effects of light, we first developed a stochastic model of the cyclic photoisomerization of azobenzene. This model reproduces the collective photoisomerization kinetics of the azo stars in good agreement with theory and previous experiments. We then apply light of various intensities and wavelengths on an equilibrated columnar stack of azo stars in water. The simulations indicate that the aggregate does not break into separate fragments upon light irradiation. Instead, the stack develops defects in the form of molecular shifts and reorientations and, as a result, it eventually loses its columnar shape. The mechanism and driving forces behind this order-disorder structural transition are clarified based on the simulations. In the end, we provide a new interpretation of the experimentally observed morphological changes.
Collapse
Affiliation(s)
- Markus Koch
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany;
| | - Marina Saphiannikova
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany;
- Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, 01062 Dresden, Germany
| | - Olga Guskova
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany;
- Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
12
|
Dissipative morphological characteristics of photo-responsive block copolymers driven by time-oscillatory irradiations: An in silico study. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Sussardi A, Marshall RJ, Moggach SA, Jones AC, Forgan RS. Photophysics of Azobenzene Constrained in a UiO Metal-Organic Framework: Effects of Pressure, Solvation and Dynamic Disorder. Chemistry 2021; 27:14871-14875. [PMID: 34468054 PMCID: PMC8596631 DOI: 10.1002/chem.202101879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 12/04/2022]
Abstract
Photophysical studies of chromophoric linkers in metal–organic frameworks (MOFs) are undertaken commonly in the context of sensing applications, in search of readily observable changes of optical properties in response to external stimuli. The advantages of the MOF construct as a platform for investigating fundamental photophysical behaviour have been somewhat overlooked. The linker framework offers a unique environment in which the chromophore is geometrically constrained and its structure can be determined crystallographically, but it exists in spatial isolation, unperturbed by inter‐chromophore interactions. Furthermore, high‐pressure studies enable the photophysical consequences of controlled, incremental changes in local environment or conformation to be observed and correlated with structural data. This approach is demonstrated in the present study of the trans‐azobenzene chromophore, constrained in the form of the 4,4’‐azobenzenedicarboxylate (abdc) linker, in a UiO topology framework. Previously unobserved effects of pressure‐induced solvation and conformational distortion on the lowest energy, nπ* transition are reported, and interpreted the light of crystallographic data. It was found that trans‐azobenzene remains non‐fluorescent (with a quantum yield less than 10−4) despite the prevention of trans‐cis isomerization by the constraining MOF structure. We propose that efficient non‐radiative decay is mediated by the local, pedal‐like twisting of the azo group that is evident as dynamic disorder in the crystal structure.
Collapse
Affiliation(s)
- Alif Sussardi
- EaStCHEM, School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Ross J Marshall
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Stephen A Moggach
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia
| | - Anita C Jones
- EaStCHEM, School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Ross S Forgan
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| |
Collapse
|
14
|
Ličen M, Masiero S, Pieraccini S, Drevenšek-Olenik I. Reversible Photoisomerization in Thin Surface Films from Azo-Functionalized Guanosine Derivatives. ACS OMEGA 2021; 6:15421-15430. [PMID: 34151120 PMCID: PMC8210406 DOI: 10.1021/acsomega.1c01879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
Two novel azo-functionalized guanosine derivatives were synthesized, and their photoisomerization process was investigated in molecular monolayers at the air-water interface and in the Langmuir-Blodgett (LB) films on solid substrates. Measurements of surface pressure vs area isotherms, surface potential measurements, UV-visible (vis) absorption spectroscopy, Brewster angle microscopy (BAM), and atomic force microscopy (AFM) were performed. Despite not having a typical amphiphilic molecular structure, the derivatives formed stable films on the water surface. They could also undergo repeated photoisomerization in all of the investigated thin-film configurations. The observations suggest that in the films at the air-water interface, the molecules first exhibit a conformational change, and then they reorient to an energetically more favored orientation. In the LB films transferred onto solid substrates, the isomerization process occurs on a similar time scale as in solution. However, the isomerization efficiency is about an order of magnitude lower than that in solution. Our results show that DNA nucleobases functionalized with azobenzene moieties are suitable candidates for the fabrication of photoactive two-dimensional (2D) materials that can provide all beneficial functionalities of DNA-based compounds.
Collapse
Affiliation(s)
- Matjaž Ličen
- Faculty
of Mathematics and Physics, University of
Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
| | - Stefano Masiero
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via San Giacomo 11, I-40126 Bologna, Italy
| | - Silvia Pieraccini
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via San Giacomo 11, I-40126 Bologna, Italy
| | - Irena Drevenšek-Olenik
- Faculty
of Mathematics and Physics, University of
Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
- Department
of Complex Matter, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
Hutcheson A, Paul AC, Myhre RH, Koch H, Høyvik IM. Describing ground and excited state potential energy surfaces for molecular photoswitches using coupled cluster models. J Comput Chem 2021; 42:1419-1429. [PMID: 33973669 DOI: 10.1002/jcc.26553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/19/2021] [Accepted: 04/20/2021] [Indexed: 11/08/2022]
Abstract
In this article, we use two extensively studied systems, a retinal model system and azobenzene, to explore the use of coupled cluster models for describing ground and singlet excited state potential energy surfaces of photoswitchable systems. While not being suitable for describing nuclear dynamics of photoisomerization, coupled cluster models have useful attributes, such as the inclusion of dynamical correlation, their black box nature, and the systematic improvement offered by truncation level. Results for the studied systems show that when triple excitations (here through the CC3 model) are included, ground and excited state potential energy surfaces for isomerization paths may reliably be generated, also for states of doubly excited character. For ground state equilibrium cis- and trans-azobenzene, the molecular geometry and basis set is seen to significantly impact the vertical excitation energies for the two lowest excited states. Efficient implementations of coupled cluster models can therefore constitute valuable tools for investigating photoswitchable systems and can be used for preliminary black box studies to gather information before more complicated excited state dynamics approaches are pursued.
Collapse
Affiliation(s)
- Anders Hutcheson
- Department of Chemistry, The Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Rolf H Myhre
- Department of Chemistry, The Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Ida-Marie Høyvik
- Department of Chemistry, The Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
16
|
Bai R, Ocegueda E, Bhattacharya K. Photochemical-induced phase transitions in photoactive semicrystalline polymers. Phys Rev E 2021; 103:033003. [PMID: 33862748 DOI: 10.1103/physreve.103.033003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/26/2021] [Indexed: 11/07/2022]
Abstract
The emergent photoactive materials obtained through photochemistry make it possible to directly convert photon energy to mechanical work. There has been much recent work in developing appropriate materials, and a promising system is semicrystalline polymers of the photoactive molecule azobenzene. We develop a phase field model with two order parameters for the crystal-melt transition and the trans-cis photoisomerization to understand such materials, and the model describes the rich phenomenology. We find that the photoreaction rate depends sensitively on temperature: At temperatures below the crystal-melt transition temperature, photoreaction is collective, requires a critical light intensity, and shows an abrupt first-order phase transition manifesting nucleation and growth; at temperatures above the transition temperature, photoreaction is independent and follows first-order kinetics. Further, the phase transition depends significantly on the exact forms of spontaneous strain during the crystal-melt and trans-cis transitions. A nonmonotonic change of photopersistent cis ratio with increasing temperature is observed accompanied by a reentrant crystallization of trans below the melting temperature. A pseudo phase diagram is subsequently presented with varying temperature and light intensity along with the resulting actuation strain. These insights can assist the further development of these materials.
Collapse
Affiliation(s)
- Ruobing Bai
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, USA
| | - Eric Ocegueda
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, USA
| | - Kaushik Bhattacharya
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
17
|
Mitus AC, Saphiannikova M, Radosz W, Toshchevikov V, Pawlik G. Modeling of Nonlinear Optical Phenomena in Host-Guest Systems Using Bond Fluctuation Monte Carlo Model: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1454. [PMID: 33809785 PMCID: PMC8002275 DOI: 10.3390/ma14061454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
We review the results of Monte Carlo studies of chosen nonlinear optical effects in host-guest systems, using methods based on the bond-fluctuation model (BFM) for a polymer matrix. In particular, we simulate the inscription of various types of diffraction gratings in degenerate two wave mixing (DTWM) experiments (surface relief gratings (SRG), gratings in polymers doped with azo-dye molecules and gratings in biopolymers), poling effects (electric field poling of dipolar molecules and all-optical poling) and photomechanical effect. All these processes are characterized in terms of parameters measured in experiments, such as diffraction efficiency, nonlinear susceptibilities, density profiles or loading parameters. Local free volume in the BFM matrix, characterized by probabilistic distributions and correlation functions, displays a complex mosaic-like structure of scale-free clusters, which are thought to be responsible for heterogeneous dynamics of nonlinear optical processes. The photoinduced dynamics of single azopolymer chains, studied in two and three dimensions, displays complex sub-diffusive, diffusive and super-diffusive dynamical regimes. A directly related mathematical model of SRG inscription, based on the continuous time random walk (CTRW) formalism, is formulated and studied. Theoretical part of the review is devoted to the justification of the a priori assumptions made in the BFM modeling of photoinduced motion of the azo-polymer chains.
Collapse
Affiliation(s)
- Antoni C. Mitus
- Department of Theoretical Physics, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.C.M.); (W.R.)
| | - Marina Saphiannikova
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany;
| | - Wojciech Radosz
- Department of Theoretical Physics, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.C.M.); (W.R.)
| | - Vladimir Toshchevikov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect 31, 199004 Saint Petersburg, Russia;
| | - Grzegorz Pawlik
- Department of Theoretical Physics, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.C.M.); (W.R.)
| |
Collapse
|
18
|
Hu Y, Yue L, Gu FL, Zhu C. Photoisomerization-mechanism-associated excited-state hydrogen transfer in 2'-hydroxychalcone revealed by on-the-fly trajectory surface-hopping molecular dynamics simulation. Phys Chem Chem Phys 2021; 23:4300-4310. [PMID: 33587072 DOI: 10.1039/d0cp06668k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
By performing global-switching on-the-fly trajectory surface-hopping molecular dynamics simulation at the OM2/MRCI (14,15) quantum level, we probed the S3(ππ*) photoisomerization mechanisms associated with excited-state intramolecular hydrogen transfer for 2'-hydroxychalcone (2HC) within the interwoven conical intersection networks from four singlet electronic states (S3, S2, S1, and S0). The simulated quantum yields of 0.03 for cis-to-trans and zero for trans-to-cis photoisomerization were due to almost all the conical intersections being localized either in the cis-2HC or in trans-2HC region, and there was little chance for sampling trajectories to reach the rotation conical intersection (S1/S0) in between cis-2HC and trans-2HC that is key for reactive isomerization. The potential energy well on the S1 state in the trans-2HC region prevents trajectories from trans-to-cis photoisomerization, while the fact there is no well on S1 state in cis-2HC region opens a few chances for trajectories to reach the rotation conical intersections. The present simulation found that excited-state intramolecular hydrogen transfers in 2HC have a negative impact for reactive isomerization, and that hydrogen transfers take place on the S1 state, while back-transfer on the S0 state prevents sampling trajectories reaching rotational conical intersections. It was realized that it could be possible to enhance the quantum yield of 2HC photoisomerization by suppressing the hydrogen transfer (such as by changing an electron-donating substitution or adjusting the substitution position to decrease the acidity of the phenol group). From a perspective view of the potential energy surfaces, the theoretical design of such 2HC derivatives could enhance (control) the quantum yield by shifting the conical intersections away from the cis- and trans-region.
Collapse
Affiliation(s)
- Ying Hu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry & Environment of South China Normal University, Guangzhou 51006, P. R. China.
| | - Ling Yue
- Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry & Environment of South China Normal University, Guangzhou 51006, P. R. China.
| | - Chaoyuan Zhu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry & Environment of South China Normal University, Guangzhou 51006, P. R. China. and Department of Applied Chemistry and Institute of Molecular Science, National Chiao-Tung University, Hsinchu 30010, Taiwan. and Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
19
|
Abou-Hatab S, Carnevale V, Matsika S. Modeling solvation effects on absorption and fluorescence spectra of indole in aqueous solution. J Chem Phys 2021; 154:064104. [PMID: 33588532 PMCID: PMC7878019 DOI: 10.1063/5.0038342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/20/2021] [Indexed: 11/14/2022] Open
Abstract
Modeling the optical spectra of molecules in solution presents a challenge, so it is important to understand which of the solvation effects (i.e., electrostatics, mutual polarization, and hydrogen bonding interactions between solute and solvent molecules) are crucial in reproducing the various features of the absorption and fluorescence spectra and to identify a sufficient theoretical model that accurately captures these effects with minimal computational cost. In this study, we use various implicit and explicit solvation models, such as molecular dynamics coupled with non-polarizable and polarizable force fields, as well as Car-Parrinello molecular dynamics, to model the absorption and fluorescence spectra of indole in aqueous solution. The excited states are computed using the equation of motion coupled cluster with single and double excitations combined with the effective fragment potential to represent water molecules, which we found to be a computationally efficient approach for modeling large solute-solvent clusters at a high level of quantum theory. We find that modeling mutual polarization, compared to other solvation effects, is a dominating factor for accurately reproducing the position of the peaks and spectral line shape of the absorption spectrum of indole in solution. We present an in-depth analysis of the influence that different solvation models have on the electronic excited states responsible for the features of the absorption spectra. Modeling fluorescence is more challenging since it is hard to reproduce even the correct emitting state, and force field parameters need to be re-evaluated.
Collapse
Affiliation(s)
- Salsabil Abou-Hatab
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
20
|
Quintano V, Diez-Cabanes V, Dell’Elce S, Di Mario L, Pelli Cresi S, Paladini A, Beljonne D, Liscio A, Palermo V. Measurement of the conformational switching of azobenzenes from the macro- to attomolar scale in self-assembled 2D and 3D nanostructures. Phys Chem Chem Phys 2021; 23:11698-11708. [DOI: 10.1039/d1cp00740h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We compare the cis–trans conformational switching of commercial azobenzene molecules in different chemical environments, ranging from isolated molecules in liquid to attomolar-2D and macro-scale 3D self-assembled structures.
Collapse
Affiliation(s)
- Vanesa Quintano
- Institute of Organic Synthesis and Photoreactivity (ISOF) – (CNR)
- 40129 Bologna
- Italy
| | | | | | - Lorenzo Di Mario
- Division of Ultrafast Processes in Materials (FLASHit)
- Institute of Structure of Matter (ISM) – CNR
- 00133 Rome
- Italy
| | - Stefano Pelli Cresi
- Division of Ultrafast Processes in Materials (FLASHit)
- Institute of Structure of Matter (ISM) – CNR
- 00133 Rome
- Italy
| | - Alessandra Paladini
- Division of Ultrafast Processes in Materials (FLASHit)
- Institute of Structure of Matter (ISM) – CNR
- 00133 Rome
- Italy
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials
- University of Mons
- B-7000 Mons
- Belgium
| | - Andrea Liscio
- Institute for Microelectronics and Microsystems (IMM)
- National Research Council of Italy (CNR)
- 00133 Rome
- Italy
| | - Vincenzo Palermo
- Institute of Organic Synthesis and Photoreactivity (ISOF) – (CNR)
- 40129 Bologna
- Italy
- Department of Industrial and Materials Science
- Chalmers University of Technology
| |
Collapse
|
21
|
Yu JK, Bannwarth C, Liang R, Hohenstein EG, Martínez TJ. Nonadiabatic Dynamics Simulation of the Wavelength-Dependent Photochemistry of Azobenzene Excited to the nπ* and ππ* Excited States. J Am Chem Soc 2020; 142:20680-20690. [DOI: 10.1021/jacs.0c09056] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jimmy K. Yu
- Biophysics Program, Stanford University, Stanford, California 94305, United States
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Christoph Bannwarth
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Ruibin Liang
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Edward G. Hohenstein
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Todd J. Martínez
- Biophysics Program, Stanford University, Stanford, California 94305, United States
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
22
|
Aleotti F, Nenov A, Salvigni L, Bonfanti M, El-Tahawy MM, Giunchi A, Gentile M, Spallacci C, Ventimiglia A, Cirillo G, Montali L, Scurti S, Garavelli M, Conti I. Spectral Tuning and Photoisomerization Efficiency in Push-Pull Azobenzenes: Designing Principles. J Phys Chem A 2020; 124:9513-9523. [PMID: 33170012 PMCID: PMC8015210 DOI: 10.1021/acs.jpca.0c08672] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
This
work demonstrates how push–pull substitution can induce spectral tuning toward the
visible range and improve the photoisomerization efficiency of azobenzene-based
photoswitches, making them good candidates for technological and biological
applications. The red-shifted bright ππ* state (S2) behaves like the lower and more productive dark nπ*
(S1) state because less potential energy along the planar
bending mode is available to reach higher energy unproductive nπ*/S0 crossing regions, which are responsible for the lower quantum
yield of the parent compound. The stabilization of the bright ππ*
state and the consequent increase in isomerization efficiency may
be regulated via the strength of push–pull substituents. Finally, the torsional
mechanism is recognized here as the unique productive route because
structures with bending values attributable to the inversion mechanism
were never detected, out of the 280 ππ* time-dependent
density functional theory (RASPT2-validated) dynamics simulations.
Collapse
Affiliation(s)
- Flavia Aleotti
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Artur Nenov
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Luca Salvigni
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Matteo Bonfanti
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Mohsen M El-Tahawy
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy.,Chemistry Department, Faculty of Science, Damanhour University, 22511 Damanhour, Egypt
| | - Andrea Giunchi
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Marziogiuseppe Gentile
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Claudia Spallacci
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Alessia Ventimiglia
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Giuseppe Cirillo
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Lorenzo Montali
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Stefano Scurti
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Irene Conti
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
23
|
Sekkat Z. Model for athermal enhancement of molecular mobility in solid polymers by light. Phys Rev E 2020; 102:032501. [PMID: 33075881 DOI: 10.1103/physreve.102.032501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/24/2020] [Indexed: 11/06/2022]
Abstract
Molecular motion in polymers is frozen below the glass transition temperature T_{g} and changes of viscoelastic functions are most spectacular near T_{g}. Exceptional enhancement of molecular mobility and a decrease of polymer viscosity, by several orders of magnitude, down to the viscous flow regime, are observed way below T_{g} by light absorption. Relaxation processes, which take decades to centuries in some high-T_{g} polymers, are reduced to minute timescales by sub-T_{g} light absorption. Here we develop a model for this intriguing albeit spectacular action of light on glass forming materials and we propose experiments to relate light absorption to materials properties. The model provides a solution to a long-lasting problem of how molecular mobility is enhanced in solid polymers by photoisomerization and provides a tool for a better understanding of the relationship between light absorption and material properties and developing photosensitive polymers for light to mechanical energy transduction.
Collapse
Affiliation(s)
- Zouheir Sekkat
- Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10000, Morocco; Optics and Photonics Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat 10100, Morocco; and Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
24
|
Klaja O, Frank JA, Trauner D, Bondar AN. Potential energy function for a photo-switchable lipid molecule. J Comput Chem 2020; 41:2336-2351. [PMID: 32749723 DOI: 10.1002/jcc.26387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/07/2020] [Accepted: 07/04/2020] [Indexed: 11/06/2022]
Abstract
Photo-switchable lipids are synthetic lipid molecules used in photo-pharmacology to alter membrane lateral pressure and thus control opening and closing of mechanosensitive ion channels. The molecular picture of how photo-switchable lipids interact with membranes or ion channels is poorly understood. To facilitate all-atom simulations that could provide a molecular picture of membranes with photo-switchable lipids, we derived force field parameters for atomistic computations of the azobenzene-based fatty acid FAAzo-4. We implemented a Phyton-based algorithm to make the optimization of atomic partial charges more efficient. Overall, the parameters we derived give good description of the equilibrium structure, torsional properties, and non-bonded interactions for the photo-switchable lipid in its trans and cis intermediate states, and crystal lattice parameters for trans-FAAzo-4. These parameters can be extended to all-atom descriptions of various photo-switchable lipids that have an azobenzene moiety.
Collapse
Affiliation(s)
- Oskar Klaja
- Department of Physics, Theoretical Molecular Biophysics Group, Freie Universität Berlin, Berlin, Germany
| | - James A Frank
- Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Dirk Trauner
- Department of Chemistry, New York University, New York, New York, USA
| | - Ana-Nicoleta Bondar
- Department of Physics, Theoretical Molecular Biophysics Group, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
25
|
Marefat Khah A, Reinholdt P, Nuernberger P, Kongsted J, Hättig C. Relaxation Dynamics of the Triazene Compound Berenil in DNA-Minor-Groove Confinement after Photoexcitation. J Chem Theory Comput 2020; 16:5203-5211. [DOI: 10.1021/acs.jctc.0c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Christof Hättig
- Quantum Chemistry Group, Ruhr University of Bochum, D-44780 Bochum, Germany
| |
Collapse
|
26
|
Yu JK, Bannwarth C, Hohenstein EG, Martínez TJ. Ab Initio Nonadiabatic Molecular Dynamics with Hole–Hole Tamm–Dancoff Approximated Density Functional Theory. J Chem Theory Comput 2020; 16:5499-5511. [DOI: 10.1021/acs.jctc.0c00644] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jimmy K. Yu
- Biophysics Program, Stanford University, Stanford, California 94305, United States
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Christoph Bannwarth
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Edward G. Hohenstein
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Todd J. Martínez
- Biophysics Program, Stanford University, Stanford, California 94305, United States
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
27
|
Sunil BN, Behera PK, Achalkumar AS, Shanker G, Hegde G. Influence of inter- and intramolecular H-bonding on the mesomorphic and photoswitching behaviour of ( E)-4-((4-(hexyloxy)phenyl)diazenyl)- N-phenyl benzamides. RSC Adv 2020; 10:20222-20230. [PMID: 35520455 PMCID: PMC9054115 DOI: 10.1039/d0ra03024d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/17/2020] [Indexed: 11/21/2022] Open
Abstract
We report on the synthesis, phase behaviour and photoswitching studies of new azo linked rod-shaped molecules. These novel materials consist of three phenyl rings separated by a diazo, amide linkage with a hexyloxy tail and 2,4-substituents at either end of the phenyl ring. The mesomorphic behaviours, phase transition temperature including the enthalpies were characterized by polarizing optical microscope (POM) and differential scanning calorimetry (DSC). The influence of inter- and intramolecular hydrogen bonding on mesomorphic and photoisomerization was studied. Photoisomerization studies carried out both in the solid and liquid phase show the quick E-Z transition with prolonged thermal back relaxation (Z-E) by using UV-Visible spectroscopy. This interesting behaviour could be attributed to the presence of the hexyloxy tail, lateral electron withdrawing group and the influence of inter- or intramolecular hydrogen bonding. Excellent bright and dark states were accomplished using one of these materials in optical storage device. Further tuning is necessary to employ them for real applications.
Collapse
Affiliation(s)
- B N Sunil
- Center for Nano-materials and Displays, BMS R and D Centre, B.M.S. College of Engineering Bangalore 560019 India
- Department of Chemistry, B.M.S. College of Engineering Bangalore 560019 India
| | - Paresh Kumar Behera
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati 781039 Assam India
| | - Ammathnadu S Achalkumar
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati 781039 Assam India
| | - G Shanker
- Department of Chemistry, Jnana Bharathi Campus, Bangalore University Bangalore 560056 India
| | - Gurumurthy Hegde
- Center for Nano-materials and Displays, BMS R and D Centre, B.M.S. College of Engineering Bangalore 560019 India
| |
Collapse
|
28
|
Marazzi M, Francés-Monerris A, Mourer M, Pasc A, Monari A. Trans-to-cis photoisomerization of cyclocurcumin in different environments rationalized by computational photochemistry. Phys Chem Chem Phys 2020; 22:4749-4757. [PMID: 32057038 DOI: 10.1039/c9cp06565b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclocurcumin is a turmeric component that has attracted much less attention compared to the well-known curcumin. In spite of the less deep characterization of its properties, cyclocurcumin has shown promising anticancer effects when used in combination with curcumin. Especially, due to its peculiar molecular structure, cyclocurcumin can be regarded as an almost ideal photoswitch, whose capabilities can also be exploited for relevant biological applications. Here, by means of state-of-the-art computational methods for electronic excited-state calculations (TD-DFT, MS-CASPT2, and XMS-CASPT2), we analyze in detail the absorption and photoisomerization pathways leading from the more stable trans isomer to the cis one. The different molecular surroundings, taken into account by means of the electrostatic solvent effect and compared with available experimental data, have been found to be critical in describing the fate of irradiated cyclocurcumin: when in non-polar environments, an excited state barrier prevents photoisomerization and favours fluorescence, whereas in polar solvents, an almost barrierless path results in a striking decrease of fluorescence, opening the way toward a crossing region with the ground state and thus funneling the photoproduction of the cis isomer.
Collapse
Affiliation(s)
- Marco Marazzi
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km 33, 600, E-28805, Alcalá de Henares, Madrid, Spain. and Chemical Research Institute "Andrés M. del Rio" (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona, Km 33, 600, E-28805, Alcalá de Henares, Madrid, Spain
| | - Antonio Francés-Monerris
- Université de Lorraine and CNRS, LPCT UMR-7019, F-5400 Nancy, France. and Departement de Quimica Fisica, Universitat de Valencia, 46100 Burjassot, Spain
| | - Maxime Mourer
- Université de Lorraine and CNRS, L2CM UMR 7053, F-54000 Nancy, France
| | - Andreea Pasc
- Université de Lorraine and CNRS, L2CM UMR 7053, F-54000 Nancy, France
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR-7019, F-5400 Nancy, France.
| |
Collapse
|
29
|
Slavov C, Yang C, Heindl AH, Wegner HA, Dreuw A, Wachtveitl J. Thiophenylazobenzene: An Alternative Photoisomerization Controlled by Lone-Pair⋅⋅⋅π Interaction. Angew Chem Int Ed Engl 2020; 59:380-387. [PMID: 31595575 PMCID: PMC6973119 DOI: 10.1002/anie.201909739] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/01/2019] [Indexed: 01/15/2023]
Abstract
Azoheteroarene photoswitches have attracted attention due to their unique properties. We present the stationary photochromism and ultrafast photoisomerization mechanism of thiophenylazobenzene (TphAB). It demonstrates impressive fatigue resistance and photoisomerization efficiency, and shows favorably separated (E)- and (Z)-isomer absorption bands, allowing for highly selective photoconversion. The (Z)-isomer of TphAB adopts an unusual orthogonal geometry where the thiophenyl group is perfectly perpendicular to the phenyl group. This geometry is stabilized by a rare lone-pair⋅⋅⋅π interaction between the S atom and the phenyl group. The photoisomerization of TphAB occurs on the sub-ps to ps timescale and is governed by this interaction. Therefore, the adoption and disruption of the orthogonal geometry requires significant movement along the inversion reaction coordinates (CNN and NNC angles). Our results establish TphAB as an excellent photoswitch with versatile properties that expand the application possibilities of AB derivatives.
Collapse
Affiliation(s)
- Chavdar Slavov
- Institute of Physical and Theoretical ChemistryGoethe UniversityFrankfurt am MainGermany
| | - Chong Yang
- Interdisciplinary Center for Scientific Computing (IWR)University of HeidelbergHeidelbergGermany
| | - Andreas H. Heindl
- Institute of Organic ChemistryCenter for Materials Research (LaMa)Justus Liebig UniversityGiessenGermany
| | - Hermann A. Wegner
- Institute of Organic ChemistryCenter for Materials Research (LaMa)Justus Liebig UniversityGiessenGermany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing (IWR)University of HeidelbergHeidelbergGermany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical ChemistryGoethe UniversityFrankfurt am MainGermany
| |
Collapse
|
30
|
Ilnytskyi JM, Toshchevikov V, Saphiannikova M. Modeling of the photo-induced stress in azobenzene polymers by combining theory and computer simulations. SOFT MATTER 2019; 15:9894-9908. [PMID: 31774109 DOI: 10.1039/c9sm01853k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It has been shown recently that the photo-induced deformations in azobenzene-containing polymers of a side-chain architecture can be explained by means of the so-called orientational approach. The explanation is based on the following sequence of steps: (i) reorientation of azobenzenes under illumination, (ii) reorientation of the polymer backbones coupled mechanically to azobenzenes, and (iii) development of large stress in a material. Step (i) is based on the angle selective absorption of the azobenzene chromophore, which is a well established fact. Step (iii) has been validated in a series of recent theoretic studies in an infinite coupling limit. Concerning step (ii), in a real material, the backbone-azobenzene coupling will be always finite, resulting in a decrease of the effective torque sensed by the backbones and in a time delay in their reorientation. To study the relevance of these effects in detail, we perform coarse-grained molecular dynamics simulations of side-chain azobenzene-containing oligomers in bulk at conditions close to the glassy state. The focus is on the dynamical properties of such a system and on its response to the illumination, with the latter modeled either as an orientation potential applied to the azobenzenes or via their stochastic photo-isomerization. By matching the amount of light-induced stress evaluated in both cases, we obtained the equivalent orientation potential as a function of the illumination intensity and the system density.
Collapse
Affiliation(s)
- Jaroslav M Ilnytskyi
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1, Svientsitskii Str., 79011 Lviv, Ukraine.
| | | | | |
Collapse
|
31
|
Slavov C, Yang C, Heindl AH, Wegner HA, Dreuw A, Wachtveitl J. Thiophenylazobenzene: An Alternative Photoisomerization Controlled by Lone‐Pair⋅⋅⋅π Interaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chavdar Slavov
- Institute of Physical and Theoretical Chemistry Goethe University Frankfurt am Main Germany
| | - Chong Yang
- Interdisciplinary Center for Scientific Computing (IWR) University of Heidelberg Heidelberg Germany
| | - Andreas H. Heindl
- Institute of Organic Chemistry Center for Materials Research (LaMa) Justus Liebig University Giessen Germany
| | - Hermann A. Wegner
- Institute of Organic Chemistry Center for Materials Research (LaMa) Justus Liebig University Giessen Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing (IWR) University of Heidelberg Heidelberg Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry Goethe University Frankfurt am Main Germany
| |
Collapse
|
32
|
Koch M, Saphiannikova M, Guskova O. Do Columns of Azobenzene Stars Disassemble under Light Illumination? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14659-14669. [PMID: 31627699 DOI: 10.1021/acs.langmuir.9b02960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The clustering properties of star-shaped molecules comprising three photochromic azobenzene-containing arms are investigated with specific focus on the influence of light on these structures. Previous experimental works report self-assembly of azobenzene stars in aqueous solution into long columnar clusters that are detectable using optical microscopy. These clusters appear to vanish under UV irradiation, which is known to induce trans-to-cis photoisomerization of the azobenzene groups. We have performed MD simulations, density functional theory, and density functional tight binding calculations to determine conformational properties and binding energies of these clusters. Our simulation data suggest that the binding strength of the clusters is large enough to prevent a breaking along their main axis. We conclude that very likely other mechanisms lead to the apparent disappearance of the clusters.
Collapse
Affiliation(s)
- Markus Koch
- Institute Theory of Polymers , Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , 01069 Dresden , Germany
| | - Marina Saphiannikova
- Institute Theory of Polymers , Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , 01069 Dresden , Germany
- Dresden Center for Computational Materials Science (DCMS) , Technische Universität Dresden , 01062 Dresden , Germany
| | - Olga Guskova
- Institute Theory of Polymers , Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , 01069 Dresden , Germany
- Dresden Center for Computational Materials Science (DCMS) , Technische Universität Dresden , 01062 Dresden , Germany
| |
Collapse
|
33
|
Aleotti F, Soprani L, Nenov A, Berardi R, Arcioni A, Zannoni C, Garavelli M. Multidimensional Potential Energy Surfaces Resolved at the RASPT2 Level for Accurate Photoinduced Isomerization Dynamics of Azobenzene. J Chem Theory Comput 2019; 15:6813-6823. [DOI: 10.1021/acs.jctc.9b00561] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Flavia Aleotti
- Dipartimento di Chimica Industriale “Toso Montanari”, Universitá di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Lorenzo Soprani
- Dipartimento di Chimica Industriale “Toso Montanari”, Universitá di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Artur Nenov
- Dipartimento di Chimica Industriale “Toso Montanari”, Universitá di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Roberto Berardi
- Dipartimento di Chimica Industriale “Toso Montanari”, Universitá di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Alberto Arcioni
- Dipartimento di Chimica Industriale “Toso Montanari”, Universitá di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Claudio Zannoni
- Dipartimento di Chimica Industriale “Toso Montanari”, Universitá di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale “Toso Montanari”, Universitá di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
34
|
Khan A, Yu H, Wang L, Zhizhko PA, Zarubin DN, Lemenovskiy DA, Haq F, Usman M, Nazir A, Naveed KUR. Synthesis of ferrocene and azobenzene-based copolymers P(FHEMA-co-MAZOHE)s and their redox and photo-responsive properties. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Boumrifak C, Yang C, Bellotto S, Wegner HA, Wachtveitl J, Dreuw A, Slavov C. Isomerization Dynamics of Electronically Coupled but Thermodynamically Decoupled Bisazobenzenes. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Chokri Boumrifak
- Institute of Physical and Theoretical ChemistryGoethe University Frankfurt 60438 Germany
| | - Chong Yang
- Interdisciplinary Center for Scientific Computing (IWR)University of Heidelberg Heidelberg 69120 Germany
| | - Silvia Bellotto
- Center for Materials Research (LaMa)Justus Liebig University Giessen 35392 Germany
| | - Hermann A. Wegner
- Center for Materials Research (LaMa)Justus Liebig University Giessen 35392 Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical ChemistryGoethe University Frankfurt 60438 Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing (IWR)University of Heidelberg Heidelberg 69120 Germany
| | - Chavdar Slavov
- Institute of Physical and Theoretical ChemistryGoethe University Frankfurt 60438 Germany
| |
Collapse
|
36
|
Krawczyk KM, Field RL, Liu LC, Dong M, Woolley GA, Miller RD. Illuminating the photoisomerization of a modified azobenzene single crystal by femtosecond absorption spectroscopy. CAN J CHEM 2019. [DOI: 10.1139/cjc-2018-0461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanism of isomerization for azobenzene is a topic still to be completely elucidated. Here, we describe the ultrafast dynamics of a brominated dioxane-methoxy-azobenzene under single crystal conditions by means of femtosecond transient absorption (TA) spectroscopy. Upon excitation with 400 nm light, spectral components with decays of 0.72, 2.9, and >10 ps are observed. The fast components of the system correspond to vibrational cooling of the population on the S1 excited state, with a decay to a local minimum in the reaction coordinate, followed by a longer evolution to a dark intermediate state prior to relaxing to the ground state, S0. The long time constant can be used to describe the isomerization process, returning excited population to the ground state. Spectral frequencies observed at 33 and 82 cm−1 suggest that both rotation and inversion occur in the system, with a stronger contribution coming from the latter due to a weakened N–N double bond in the excited state. This information provides insight into the structural nature of modified azobenzene systems and sets the stage for future structural studies of the molecule’s isomerization dynamics.
Collapse
Affiliation(s)
- Kamil M. Krawczyk
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
- Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7, Canada
| | - Ryan L. Field
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
- Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7, Canada
| | - Lai Chung Liu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
- Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7, Canada
| | - Mingxin Dong
- Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, 308 Ningxia Street, Qingdao 266021, China
| | - G. Andrew Woolley
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - R.J. Dwayne Miller
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
- Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7, Canada
- Max Planck Institute for the Structure and Dynamics of Matter, Building 99 (CFEL), Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
37
|
Ličen M, Masiero S, Drevenšek-Olenik I. Photoisomerizable Guanosine Derivative as a Probe for DNA Base-Pairing in Langmuir Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6550-6561. [PMID: 31030520 PMCID: PMC6727594 DOI: 10.1021/acs.langmuir.9b00429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/26/2019] [Indexed: 06/09/2023]
Abstract
Mixtures of azo-functionalized amphiphilic derivatives of guanosine and of amphiphilic derivatives of other DNA nucleobases were deposited at an air-water interface and repeatedly irradiated with light of 340 and 440 nm wavelengths. The consequent switching between cis and trans configurations of the azobenzene moiety caused changes in the surface pressure of the film, which were analyzed using a model based on the two-dimensional Van der Waals equation of state. For mixed films of guanosine and cytidine derivatives, the analysis revealed a significant modification of the strength of intermolecular interaction caused by the optical irradiation, while no such modifications were identified in mixed films involving other nucleobases. The difference is attributed to light-induced breaking of the hydrogen bonding that is established only between specific nucleobases. The results demonstrate that photosensitive nucleoside derivatives can be used as an efficient probe for base-pairing in Langmuir monolayers.
Collapse
Affiliation(s)
- M. Ličen
- Department
of Complex Matter, Jožef Stefan Institute, Jamova 39, SI 1000 Ljubljana, Slovenia
| | - S. Masiero
- Dipartimento
di Chimica “G. Ciamician”, Alma Mater Studiorum—Università di Bologna, Via San Giacomo 11, I-40126 Bologna, Italy
| | - I. Drevenšek-Olenik
- Department
of Complex Matter, Jožef Stefan Institute, Jamova 39, SI 1000 Ljubljana, Slovenia
- Faculty
of Mathematics and Physics, University of
Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
38
|
Amirjalayer S, Buma WJ. Light on the Structural Evolution of Photoresponsive Molecular Switches in Electronically Excited States. Chemistry 2019; 25:6252-6258. [PMID: 30576061 DOI: 10.1002/chem.201805810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/21/2018] [Indexed: 11/08/2022]
Abstract
Stimuli-responsive materials are attracting extensive interest as they offer the opportunity to transform external inputs such as light into a functionality by control at the molecular level. As a result, a large number of molecular building units have been developed that enable switching between two or more states. Since the trajectory describing the transition between the various states defines the efficiency of the usually immobilized unit and the resulting functionality, it does not suffice to merely consider the initial and final states of the switching process. A key challenge is in fact to decipher at the atomic scale the actual motion that takes place after photoexcitation. Understanding and being able to manipulate this trajectory is crucial for an efficient implementation of photoactive molecular switches into functional materials, as well as to rationally develop novel tailor-made materials. In this Concept article, we highlight the potential to characterize in detail photoinitiated switching mechanisms by combining quantum chemical calculations with advanced laser spectroscopic techniques that probe the vibrational manifold of electronically excited states and its evolution.
Collapse
Affiliation(s)
- Saeed Amirjalayer
- Physikalisches Institut and Center for Multiscale Theory &, Computation (CMTC), Westfälische Wilhelms-Universität Münster, Willhelm-Klemm-Strasse 10, 48149, Münster, Germany.,Center for Nanotechnology (CeNTech), Heisenbergstrasse 11, 48149, Münster, Germany
| | - Wybren Jan Buma
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098, XH, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Maity A, Bera S, Rajak KK. Synthesis and comparative studies of photophysical and electrochemical properties of three different types of new heteroleptic 5-arylazo-8-hydroxyquinoline complexes of rhodium including trans → cis isomerism studies. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Maity A, Rajak KK. Photo induced trans→cis isomerism studies of heteroleptic iridium complex with 8-quinolinol-5-phenylazo ligand: Photophysical and electrochemical studies and it's theoretical investigations. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.12.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Martins GF, Cabral BJC. Electron Propagator Theory Approach to the Electron Binding Energies of a Prototypical Photo-Switch Molecular System: Azobenzene. J Phys Chem A 2019; 123:2091-2099. [PMID: 30779578 DOI: 10.1021/acs.jpca.9b00532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electron binding energies for the trans and cis conformers of azobenzene (AB), a prototypical photoswitch, were investigated by electron propagator theory (EPT). The EPT results are compared with data from photoelectron and electron transmission spectroscopies and complemented by the calculation of the differences between vertical and adiabatic ionization energies and electron affinities of the AB conformers. These differences are discussed in terms of the geometry changes associated with the processes of ionization and electron attachment. The results pointed out a major difference between these processes when we compare trans-AB and cis-AB. For trans-AB, electron attachment leads to a small geometry change, whereas for cis-AB, it is the ionized structure that keeps some similarity with the neutral species. We emphasize the interest of the present results for a better understanding of recent experiments on the dark cis-trans isomerization in different environments, specifically for azobenzenes in interaction with gold nanoparticles, where the proposed cis-trans isomerization mechanism relies on electron transfer induced isomerization.
Collapse
Affiliation(s)
- Gabriel F Martins
- Biosystems and Integrative Sciences Institute (BioISI) , Faculdade de Ciências, Universidade de Lisboa , 1749-016 Lisboa , Portugal
| | - Benedito J C Cabral
- Biosystems and Integrative Sciences Institute (BioISI) , Faculdade de Ciências, Universidade de Lisboa , 1749-016 Lisboa , Portugal.,Departamento de Quı́mica e Bioquı́mica , Faculdade de Ciências, Universidade de Lisboa , 1749-016 Lisboa , Portugal
| |
Collapse
|
42
|
Tsourtou FD, Peroukidis SD, Peristeras LD, Mavrantzas VG. Monte Carlo Algorithm Based on Internal Bridging Moves for the Atomistic Simulation of Thiophene Oligomers and Polymers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Flora D. Tsourtou
- Department of Chemical Engineering, University of Patras and FORTH-ICE/HT, GR-26504 Patras, Greece
| | - Stavros D. Peroukidis
- Department of Chemical Engineering, University of Patras and FORTH-ICE/HT, GR-26504 Patras, Greece
- School of Science/Technology, Natural Sciences, Hellenic Open University, GR-26335 Patras, Greece
| | - Loukas D. Peristeras
- Institute of Nanoscience and Nanotechnology, Molecular Thermodynamics and Modelling of Materials Laboratory, National Center for Scientific Research “Demokritos”, GR-15310 Agia Paraskevi Attikis, Greece
| | - Vlasis G. Mavrantzas
- Department of Chemical Engineering, University of Patras and FORTH-ICE/HT, GR-26504 Patras, Greece
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| |
Collapse
|
43
|
Dong L, Feng Y, Wang L, Feng W. Azobenzene-based solar thermal fuels: design, properties, and applications. Chem Soc Rev 2018; 47:7339-7368. [PMID: 30168543 DOI: 10.1039/c8cs00470f] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Development of renewable energy technologies has been a significant area of research amongst scientists with the aim of attaining a sustainable world society. Solar thermal fuels that can capture, convert, store, and release solar energy in the form of heat through reversible photoisomerization of molecular photoswitches such as azobenzene derivatives are currently in the limelight of research. Herein, we provide a state-of-the-art account on the recent advancements in solar thermal fuels based on azobenzene photoswitches. We begin with an overview on the importance of azobenzene-based solar thermal fuels and their fundamentals. Then, we highlight the recent advances in diverse azobenzene materials for solar thermal fuels such as pure azobenzene derivatives, nanocarbon-templated azobenzene, and polymer-templated azobenzene. The basic design concepts of these advanced solar energy storage materials are discussed, and their promising applications are highlighted. We then introduce the recent endeavors in the molecular design of azobenzene derivatives toward efficient solar thermal fuels, and conclude with new perspectives on the future scope, opportunities and challenges. It is expected that continuous pioneering research involving scientists and engineers from diverse technological backgrounds could trigger the rapid advancement of this important interdisciplinary field, which embraces chemistry, physics, engineering, nanoscience, nanotechnology, materials science, polymer science, etc.
Collapse
Affiliation(s)
- Liqi Dong
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China.
| | | | | | | |
Collapse
|
44
|
Lee G, Park YI. Lanthanide-Doped Upconversion Nanocarriers for Drug and Gene Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E511. [PMID: 29987223 PMCID: PMC6071191 DOI: 10.3390/nano8070511] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 02/08/2023]
Abstract
Compared to traditional cancer treatments, drug/gene delivery is an advanced, safe, and efficient method. Nanoparticles are widely used as nanocarriers in a drug/gene delivery system due to their long circulation time and low multi-drug resistance. In particular, lanthanide-doped upconversion nanoparticles (UCNPs) that can emit UV and visible light by near-infrared (NIR) upconversion demonstrated more efficient and safer drug/gene delivery. Because of the low penetration depth of UV and visible light, a photoinduced reaction such as photocleavage or photoisomerization has proven restrictive. However, NIR light has high tissue penetration depth and stimulates the photoinduced reaction through UV and visible emissions from lanthanide-doped UCNPs. This review discusses the optical properties of UCNPs that are useful in bioapplications and drug/gene delivery systems using the UCNPs as a photoreaction inducer.
Collapse
Affiliation(s)
- Gibok Lee
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Korea.
| | - Yong Il Park
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Korea.
| |
Collapse
|
45
|
Toshchevikov V, Petrova T, Saphiannikova M. Kinetics of Ordering and Deformation in Photosensitive Azobenzene LC Networks. Polymers (Basel) 2018; 10:E531. [PMID: 30966565 PMCID: PMC6415373 DOI: 10.3390/polym10050531] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 11/22/2022] Open
Abstract
Azobenzene-containing polymer networks are unique compounds that are able to change their shape in response to light, which makes them prospective materials for photocontrollable nano-templates, sensors, microrobots, artificial muscles, etc. In present work, we study the kinetics of light-induced ordering and deformation in two-component polymer networks containing optically inert liquid crystalline (LC) mesogens and azobenzene chromophores. By this, we generalize our previous theory [J. Phys. Chem. Lett. 2017, 8, 1094⁻1098] devoted to the kinetics of photoizomerization in one-component azo-polymers without mesogenic inclusions. The kinetic equations of photoisomerization are used, taking into account the angular selectivity of the photoisomerization with respect to the polarization direction of the light E. After multiple trans-cis-trans photoisomerization cycles, the azobenzenes are reoriented preferably perpendicular to the vector E. This changes the ordering of the mesogens due to the orientational LC interactions between the components. The light-induced reordering is accompanied by network deformation. Time evolution of ordering and deformation is found as a function of the intensity of light and structural parameters of the LC azo-networks, which define the viscosity, the strength of the LC interactions between the components, the volume fraction of the azobenzene moieties, and the angular distribution of azobenzenes in polymer chains. Established structure-property relationships are in agreement with a number of experimental data.
Collapse
Affiliation(s)
- Vladimir Toshchevikov
- Leibniz-Institut für Polymerforschung, Hohe Str. 6, 01069 Dresden, Germany.
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi pr. 31, Saint-Petersburg 199004, Russia.
| | - Tatiana Petrova
- Leibniz-Institut für Polymerforschung, Hohe Str. 6, 01069 Dresden, Germany.
- Cherepovets State University, pr. Lunacharskogo 5, Cherepovets 162600, Russia.
| | | |
Collapse
|
46
|
Siriwardane DA, Kulikov O, Batchelor BL, Liu Z, Cue JM, Nielsen SO, Novak BM. UV- and Thermo-Controllable Azobenzene-Decorated Polycarbodiimide Molecular Springs. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00679] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Dumindika A. Siriwardane
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Oleg Kulikov
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Benjamin L. Batchelor
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Zhiwei Liu
- Department of Chemistry and Biochemistry, University of the Sciences, 600 South 43rd Street, Philadelphia, Pennsylvania 19104, United States
| | - John Michael Cue
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Steven O. Nielsen
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Bruce M. Novak
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
47
|
Nenov A, Borrego-Varillas R, Oriana A, Ganzer L, Segatta F, Conti I, Segarra-Marti J, Omachi J, Dapor M, Taioli S, Manzoni C, Mukamel S, Cerullo G, Garavelli M. UV-Light-Induced Vibrational Coherences: The Key to Understand Kasha Rule Violation in trans-Azobenzene. J Phys Chem Lett 2018; 9:1534-1541. [PMID: 29504764 DOI: 10.1021/acs.jpclett.8b00152] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We combine sub-20 fs transient absorption spectroscopy with state-of-the-art computations to study the ultrafast photoinduced dynamics of trans-azobenzene (AB). We are able to resolve the lifetime of the ππ* state, whose decay within ca. 50 fs is correlated to the buildup of the nπ* population and to the emergence of coherences in the dynamics, to date unobserved. Nonlinear spectroscopy simulations call for the CNN in-plane bendings as the active modes in the subps photoinduced coherent dynamics out of the ππ* state. Radiative to kinetic energy transfer into these modes drives the system to a high-energy planar nπ*/ground state conical intersection, inaccessible upon direct excitation of the nπ* state, that triggers an ultrafast (0.45 ps) nonproductive decay of the nπ* state and is thus responsible for the observed Kasha rule violation in UV excited trans-AB. On the other hand, cis-AB is built only after intramolecular vibrational energy redistribution and population of the NN torsional mode.
Collapse
Affiliation(s)
- Artur Nenov
- Dipartimento di Chimica Industriale , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy
| | - Rocio Borrego-Varillas
- IFN-CNR, Dipartimento di Fisica , Politecnico di Milano , Piazza Leonardo da Vinci 32 , I-20133 Milano , Italy
| | - Aurelio Oriana
- IFN-CNR, Dipartimento di Fisica , Politecnico di Milano , Piazza Leonardo da Vinci 32 , I-20133 Milano , Italy
| | - Lucia Ganzer
- IFN-CNR, Dipartimento di Fisica , Politecnico di Milano , Piazza Leonardo da Vinci 32 , I-20133 Milano , Italy
| | - Francesco Segatta
- Dipartimento di Chimica Industriale , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy
- European Center for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN) , 38123 Trento , Italy
| | - Irene Conti
- Dipartimento di Chimica Industriale , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy
| | - Javier Segarra-Marti
- Laboratoire de Chimie UMR 5182 , Université Lyon, ENS de Lyon, CNRS, Université Lyon 1 , 46 Allée d'Italie , FR-69342 Lyon , France
| | - Junko Omachi
- Institute for Photon Science and Technology , University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Maurizio Dapor
- European Center for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN) , 38123 Trento , Italy
| | - Simone Taioli
- European Center for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN) , 38123 Trento , Italy
- Faculty of Mathematics and Physics , Charles University , Praha 8 , 180 00 Prague , Czech Republic
| | - Cristian Manzoni
- IFN-CNR, Dipartimento di Fisica , Politecnico di Milano , Piazza Leonardo da Vinci 32 , I-20133 Milano , Italy
| | - Shaul Mukamel
- Department of Chemistry , University of California , Irvine , California 92697-2025 , United States
| | - Giulio Cerullo
- IFN-CNR, Dipartimento di Fisica , Politecnico di Milano , Piazza Leonardo da Vinci 32 , I-20133 Milano , Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy
| |
Collapse
|
48
|
Moustafa ME, McCready MS, Boyle PD, Puddephatt RJ. Photoswitchable and pH responsive organoplatinum(ii) complexes with azopyridine ligands. Dalton Trans 2018. [PMID: 28621358 DOI: 10.1039/c7dt01290j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several platinum(ii) complexes with ligands containing azo groups have been prepared and structurally characterised, and their photoswitching between trans and cis azo group isomers has been studied. The azo groups in the cationic complexes [PtMe(bipy)(4-NC5H4-N[double bond, length as m-dash]N-4-C6H4X)][PF6], X = H, OH or NMe2, and in the dicationic complex [Pt(bipy)(4-H2NC6H4-N[double bond, length as m-dash]N-C6H5)2][OTf]2 undergo trans to cis photoswitching on irradiation at 365 nm. The complex [PtMe(bipy)(4-NC5H4-N[double bond, length as m-dash]N-4-C6H4NMe)2][PF6] also exhibits a reversible halochromic effect on protonation to give the dicationic complex [PtMe(bipy)(4-NC5H4-NH[double bond, length as m-dash]N-4-C6H4NMe2]2+. The nature of the frontier orbitals in the platinum(ii) complexes depends on the charge on the complex and on the degree of metal-ligand π-bonding.
Collapse
Affiliation(s)
- Mohamed E Moustafa
- Department of Chemistry, University of Western Ontario, London, Canada N6A 5B7.
| | | | | | | |
Collapse
|
49
|
Yue L, Liu Y, Zhu C. Performance of TDDFT with and without spin-flip in trajectory surface hopping dynamics: cis–trans azobenzene photoisomerization. Phys Chem Chem Phys 2018; 20:24123-24139. [DOI: 10.1039/c8cp03851a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum yields simulated by LR-TDDFT and SF-TDDFT methods for azobenzene photoisomerizations.
Collapse
Affiliation(s)
- Ling Yue
- Department of Applied Chemistry and Institute of Molecular Science
- National Chiao-Tung University
- Hsinchu 30010
- Taiwan
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
| | - Yajun Liu
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Chaoyuan Zhu
- Department of Applied Chemistry and Institute of Molecular Science
- National Chiao-Tung University
- Hsinchu 30010
- Taiwan
- Center for Emergent Functional Matter Science
| |
Collapse
|
50
|
Marturano V, Ambrogi V, Bandeira NAG, Tylkowski B, Giamberini M, Cerruti P. Modeling of Azobenzene-Based Compounds. PHYSICAL SCIENCES REVIEWS 2017. [DOI: 10.1515/psr-2017-0138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractAzobenzene is by far the most studied photochromic molecule and its applications range from optical storage to bio-engineering. To exploit the great potential of azobenzene, one must achieve deep understanding of its photochemistry as single molecule in solution AS WELL AS in-chain moiety and pendent group in macromolecular structures. With the advent of computer-aided simulation scientists have been able to match experimental data with computational models. In this chapter, a review on the modeling of azobenzene-containing molecules in different conditions and environments IS provided with a special focus on advanced applications of photo-controllable materials, such as molecular machines and photoactivation of bio-molecules.
Collapse
|