1
|
Li W, Chen J, Lin Q, Ji Y, An T. Carbonyl-amine condensation coupled ozonolysis of dipropylamine and styrene: Decay kinetics, reaction mechanism, secondary organic aerosol formation and cytotoxicity. J Environ Sci (China) 2025; 149:444-455. [PMID: 39181656 DOI: 10.1016/j.jes.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 08/27/2024]
Abstract
Oxidation of organic amines (OAs) or aromatic hydrocarbons (AHs) produces carbonyls, which further react with OAs to form carbonyl-amine condensation products, threatening environmental quality and human health. However, there is still a lack of systematic understanding of the carbonyl-amine condensation reaction processes of OAs or between OAs and AHs, and subsequent environmental health impact. This work systematically investigated the carbonyl-amine condensation coupled ozonolysis kinetics, reaction mechanism, secondary organic aerosol (SOA) formation and cytotoxicity from the mixture of dipropylamine (DPA) and styrene (STY) by a combined method of product mass spectrometry identification, particle property analysis and cell exposure evaluation. The results from ozonolysis of DPA and STY mixture revealed that STY inhibited the ozonolysis of DPA to different degrees to accelerate its own decay rate. The barycenter of carbonyl-amine condensation reactions was shifted from inside of DPA to between DPA and STY, which accelerated STY ozonolysis, but slowed down DPA ozonolysis. For the first time, ozonolysis of DPA and STY mixture to complex carbonyl-amine condensation products through the reactions of DPA with its carbonyl products, DPA with STY's carbonyl products and DPA's bond breakage product with STY's carbonyl products was confirmed. These condensation products significantly contributed to the formation and growth of SOA. The SOA containing particulate carbonyl-amine condensation products showed definite cytotoxicity. These findings are helpful to deeply and comprehensively understand the transformation, fate and environmental health effects of mixed organics in atmospheric environment.
Collapse
Affiliation(s)
- Wanying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiangyao Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Qinhao Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuemeng Ji
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
González D, Espinosa S, Antiñolo M, Agúndez M, Cernicharo J, Willis S, Garrod RT, Jiménez E. Experimental Gas-Phase Removal of OH Radicals in the Presence of NH 2C(O)H over the 11.7-353 K Range: Implications in the Chemistry of the Interstellar Medium and the Earth's Atmosphere. ACS EARTH & SPACE CHEMISTRY 2024; 8:1970-1981. [PMID: 39440016 PMCID: PMC11492371 DOI: 10.1021/acsearthspacechem.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024]
Abstract
Formamide (NH2C(O)H) has been observed both in the interstellar medium (ISM), being identified as a potential precursor of prebiotic molecules in space, and in the Earth's atmosphere. In these environments where temperature is very distinct, hydroxyl (OH) radicals may play an important role in the degradation of NH2C(O)H. Thus, in this work, we report for the first time the experimental study of the temperature dependence of the gas-phase removal of OH in the presence of NH2C(O)H over the 11.7-353 K range. In the lowest temperature range (11.7-177.5 K), of interest for the ISM chemistry, the kinetic study was performed using a pulsed CRESU (French acronym for Reaction Kinetics in a Uniform Supersonic Flow) apparatus, while a thermostatized slow-flow reactor was employed in the kinetic study of the OH + NH2C(O)H reaction over the 273-353 K range, of interest in the Earth's troposphere below room temperature. The pulsed laser photolysis at 248 nm of a suitable OH-precursor (hydrogen peroxide, tert-butyl hydroperoxide, or acetylacetone) was used to generate OH radicals in the reactor. The temporal evolution of OH was monitored by laser-induced fluorescence at 310 nm. An almost independent k(T) between 273 and 353 K (temperatures of the Earth's troposphere extended to T > 298 K) is reported, being the OH + NH2C(O)H reaction the major degradation route with an atmospheric lifetime of around 1 day. At lower temperatures of interest in the ISM (11.7-177.5 K), the potential formation of NH2C(O)H dimers was evaluated. Thermodynamically, under equilibrium conditions, formamide would be fully converted into the dimer in that T range. However, the qualitative agreement of the observed increase of k(T) with computational studies on the OH + NH2C(O)H reaction down to 200 K let us to report, between 177.5 and 106.0 K, the following parameters commonly used in astrochemical modeling: α = (3.76 ± 0.62) × 10-12 cm3 s-1, β = (3.07 ± 0.11), and γ = 0. At 11.7 K, a kinetic model reproducing the experimental data indicates that formamide dimerization could be important, but the OH-reaction with the monomer would be fast, 4 × 10-10 cm3 s-1, and the OH-reaction with the dimer, relatively slow [(0.1-1.0) × 10-11 cm3 s-1]. Despite that, the impact of the gas-phase OH + NH2C(O)H in the relative abundances of NH2C(O)H in a dense molecular cloud (T ∼ 10 K) and after the warm-up phase in the surroundings of hot cores/corinos (here, 10-400 K) appears to be negligible.
Collapse
Affiliation(s)
- Daniel González
- Departamento
de Química Física, Facultad de Ciencias y Tecnologías
Químicas, Universidad de Castilla-La
Mancha, Avda. Camilo José Cela 1B, 13071 Ciudad Real, Spain
- Instituto
de Investigación en Combustión y Contaminación
Atmosférica, Universidad de Castilla-La
Mancha, Camino de Moledores
s/n, 13071 Ciudad
Real, Spain
| | - Sara Espinosa
- Departamento
de Química Física, Facultad de Ciencias y Tecnologías
Químicas, Universidad de Castilla-La
Mancha, Avda. Camilo José Cela 1B, 13071 Ciudad Real, Spain
- Instituto
de Investigación en Combustión y Contaminación
Atmosférica, Universidad de Castilla-La
Mancha, Camino de Moledores
s/n, 13071 Ciudad
Real, Spain
| | - María Antiñolo
- Departamento
de Química Física, Facultad de Ciencias y Tecnologías
Químicas, Universidad de Castilla-La
Mancha, Avda. Camilo José Cela 1B, 13071 Ciudad Real, Spain
- Instituto
de Investigación en Combustión y Contaminación
Atmosférica, Universidad de Castilla-La
Mancha, Camino de Moledores
s/n, 13071 Ciudad
Real, Spain
| | - Marcelino Agúndez
- Molecular
Astrophysics Group, Instituto de Física
Fundamental. Consejo Superior de Investigaciones Científicas
(IFF-CSIC), C/Serrano 123, 28006 Madrid, Spain
| | - José Cernicharo
- Molecular
Astrophysics Group, Instituto de Física
Fundamental. Consejo Superior de Investigaciones Científicas
(IFF-CSIC), C/Serrano 123, 28006 Madrid, Spain
| | - Sydney Willis
- Departments
of Chemistry and Astronomy, University of
Virginia, Charlottesville, Virginia 22904, United States
| | - Robin T. Garrod
- Departments
of Chemistry and Astronomy, University of
Virginia, Charlottesville, Virginia 22904, United States
| | - Elena Jiménez
- Departamento
de Química Física, Facultad de Ciencias y Tecnologías
Químicas, Universidad de Castilla-La
Mancha, Avda. Camilo José Cela 1B, 13071 Ciudad Real, Spain
- Instituto
de Investigación en Combustión y Contaminación
Atmosférica, Universidad de Castilla-La
Mancha, Camino de Moledores
s/n, 13071 Ciudad
Real, Spain
| |
Collapse
|
3
|
Nulakani NVR, Ali MA. Unveiling the chemical kinetics of aminomethanol (NH 2CH 2OH): insights into O . H and O 2 photo-oxidation reactions and formamide dominance. Front Chem 2024; 12:1407355. [PMID: 38873406 PMCID: PMC11169873 DOI: 10.3389/fchem.2024.1407355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
Aminomethanol is released into the atmosphere through various sources, including biomass burning. In this study, we have expounded the chemical kinetics of aminomethanol in the reaction pathways initiated by the hydroxyl radical (O ˙ H) with the aid of ab initio//density functional theory (DFT) i.e., coupled-cluster theory (CCSD(T))//hybrid-DFT (M06-2X/6-311++G (3df, 3pd). We have explored various possible directions of theO ˙ H radical on aminomethanol, as well as the formation of distinct pre-reactive complexes. Our computational findings reveal that the H transfer necessitates activation energies ranging from 4.1 to 6.5 kcal/mol from the -CH2 group, 3.5-6.5 kcal/mol from the -NH2 group and 7-9.3 kcal/mol from the -OH group of three rotational conformers. The H transfer from -CH2, -NH2 and -OH exhibits an estimated total rate constant (k OH) of approximately 1.97 × 10-11 cm3 molecule-1 s-1 at 300 K. The branching fraction analysis indicates a pronounced dominance of C-centered NH2C ˙ HOH radicals with a favorability of 77%, surpassing the N-centeredN ˙ HCH2OH (20%) and O-centered NH2CH2O ˙ (3%) radicals. Moreover, our investigation delves into the oxidation of the prominently favored carbon-centered NH2C ˙ HOH radical through its interaction with atmospheric oxygen molecules. Intriguingly, our findings reveal that formamide (NH2CHO) emerges as the predominant product in the NH2C ˙ HOH + 3O2 reaction, eclipsing alternative outcomes such as amino formic acid (NH2COOH) and formimidic acid (HN = C(H)-OH). At atmospheric conditions pertinent to the troposphere, the branching fraction value for the formation of formamide is about 99%, coupled with a rate constant of 5.5 × 10-12 cm3 molecule-1 s-1. Finally, we have scrutinized the detrimental impact of formamide on the atmosphere. Interaction of formamide with atmospheric hydroxyl radicals could give rise to the production of potentially perilous compounds such as HNCO. Further, unreactedN ˙ HCH2OH radicals may initiate the formation of carcinogenic nitrosamines when reacting with trace N-oxides (namely, NO and NO2). This, in turn, escalates the environmental risk factors.
Collapse
Affiliation(s)
| | - Mohamad Akbar Ali
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for the Catalyst and Separations, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Yuan Q, Zhang Z, Chen Y, Hui L, Wang M, Xia M, Zou Z, Wei W, Ho KF, Wang Z, Lai S, Zhang Y, Wang T, Lee S. Origin and transformation of volatile organic compounds at a regional background site in Hong Kong: Varied photochemical processes from different source regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168316. [PMID: 37949123 DOI: 10.1016/j.scitotenv.2023.168316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Volatile organic compounds (VOCs) are important gaseous constituents in the troposphere, impacting local and regional air quality, human health, and climate. Oxidation of VOCs, with the participation of nitrogen oxides (NOx), leads to the formation of tropospheric ozone (O3). Accurately apportioning the emission sources and transformation processes of ambient VOCs, and effectively estimation of OH reactivity and ozone formation potential (OFP) will play an important role in reducing O3 pollution in the atmosphere and improving public health. In this study, field measurements were conducted at a regional background site (Hok Tsui; HT) in Hong Kong from October to November 2020 with proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS). VOC data coupled with air mass back trajectory cluster analysis and receptor modelling were applied to reveal the pollution pattern, emission sources and transformation of ambient VOCs at HT in autumn 2020. Seven sources were identified by positive matrix factorization (PMF) analysis, namely vehicular + industrial, solvent usage, primary oxygenated VOCs (OVOCs), secondary OVOCs 1, secondary OVOCs 2 (aged), biogenic emissions, and background + biomass burning. Secondary formation and vehicular + industrial emissions are the vital sources of ambient VOCs at HT supersite, contributing to 20.8 % and 46.7 % of total VOC mixing ratios, respectively. Integrated with backward trajectory analysis and correlations of VOCs with their oxidation products, short-range transport of air masses from inland regions of southeast China brought high levels of total VOCs but longer-range transport of air masses brought more secondary OVOCs in aged air masses. Photolysis of OVOCs was the most important contributor to OH reactivity and OFP, among which aldehyde was the dominant contributor. The results of this study highlight the photochemical processing of VOCs from different source regions which should be considered in strategy making for pollution reduction.
Collapse
Affiliation(s)
- Qi Yuan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, Hong Kong
| | - Zhuozhi Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, Hong Kong
| | - Yi Chen
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong 999077, Hong Kong
| | - Lirong Hui
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong 999077, Hong Kong
| | - Meng Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, Hong Kong
| | - Men Xia
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, Hong Kong; Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Zhouxing Zou
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, Hong Kong
| | - Wan Wei
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, Hong Kong
| | - Kin Fai Ho
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong 999077, Hong Kong
| | - Zhe Wang
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong 999077, Hong Kong
| | - Senchao Lai
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yingyi Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, Hong Kong
| | - Shuncheng Lee
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, Hong Kong.
| |
Collapse
|
5
|
Kjærgaard ER, Møller KH, Kjaergaard HG. Atmospheric Oxidation of Hydroperoxy Amides. J Phys Chem A 2023; 127:9311-9321. [PMID: 37877667 DOI: 10.1021/acs.jpca.3c04509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Recently, hydroperoxy amides were identified as major products of OH-initiated autoxidation of tertiary amines in the atmosphere. The formation mechanism is analogous to that found for ethers and sulfides but substantially faster. However, the atmospheric fate of the hydroperoxy amides remains unknown. Using high-level theoretical methods, we study the most likely OH-initiated oxidation pathways of the hydroperoxy and dihydroperoxy amides derived from trimethylamine autoxidation. Overall, we find that the OH-initiated oxidation of the hydroperoxy amides predominantly leads to the formation of imides under NO-dominated conditions and more highly oxidized hydroperoxy amides under HO2-dominated conditions. Unimolecular reactions are found to be surprisingly slow, likely due to the restricting, planar structure of the amide moiety.
Collapse
Affiliation(s)
- Eva R Kjærgaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Kristian H Møller
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
6
|
Ni S, Meng TT, Huang GQ, Tang YZ, Bai FY, Zhao Z. Roles of Amides on the Formation of Atmospheric HONO and the Nucleation of Nitric Acid Hydrates. J Phys Chem A 2023. [PMID: 37311006 DOI: 10.1021/acs.jpca.3c01518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nitrous acid (HONO) is hazardous to the human respiratory system, and the hydrolysis of NO2 is the source of HONO. Hence, the investigation on the removal and transformation of HONO is urgently established. The effects of amide on the mechanism and kinetics of the formation of HONO with acetamide, formamide, methylformamide, urea, and its clusters of the catalyst were studied theoretically. The results show that amide and its small clusters reduce the energy barrier, the substituent improves the catalytic efficiency, and the catalytic effect order is dimer > monohydrate > monomer. Meanwhile, the clusters composed of nitric acid (HNO3), amides, and 1-6 water molecules were investigated in the amide-assisted nitrogen dioxide (NO2) hydrolysis reaction after HONO decomposes by combining the system sampling technique and density functional theory. The study on thermodynamics, intermolecular forces, optics properties of the clusters, as well as the influence of humidity, temperature, atmospheric pressure, and altitude shows that amide molecules promote the clustering and enhance the optical properties. The substituent facilitates the clustering of amide and nitric acid hydrate and lowers the humidity sensitivity of the clusters. The findings will help to control the atmospheric aerosol particle and then reduce the harm of poisonous organic chemicals on human health.
Collapse
Affiliation(s)
- Shuang Ni
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Ting-Ting Meng
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Guo-Qing Huang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Yi-Zhen Tang
- School of Environmental and Municipal Engineering, Qingdao Technological University, Qingdao 266033, China
| | - Feng-Yang Bai
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing 102249, China
| |
Collapse
|
7
|
Zhu S, Yan C, Zheng J, Chen C, Ning H, Yang D, Wang M, Ma Y, Zhan J, Hua C, Yin R, Li Y, Liu Y, Jiang J, Yao L, Wang L, Kulmala M, Worsnop DR. Observation and Source Apportionment of Atmospheric Alkaline Gases in Urban Beijing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17545-17555. [PMID: 36441962 DOI: 10.1021/acs.est.2c03584] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Alkaline gases, including NH3, C1-3-amines, C1-3-amides, and C1-3-imines, were measured in situ using a water cluster-CIMS in urban Beijing during the wintertime of 2018, with a campaign average of 2.8 ± 2.0 ppbv, 5.2 ± 4.3, 101.1 ± 94.5, and 5.2 ± 5.4 pptv, respectively. Source apportionment analysis constrained by emission profiles of in-use motor vehicles was performed using a SoFi-PMF software package, and five emission sources were identified as gasoline-powered vehicles (GV), diesel-powered vehicles (DV), septic system emission (SS), soil emission (SE), and combustion-related sources (CS). SS was the dominant NH3 source (60.0%), followed by DV (18.6%), SE (13.1%), CS (4.3%), and GV (4.0%). GV and DV were responsible for 69.9 and 85.2% of C1- and C2-amines emissions, respectively. Most of the C3-amines were emitted from nonmotor vehicular sources (SS = 61.3%; SE = 17.8%; CS = 9.1%). DV accounted for 71.9 and 34.1% of C1- and C2-amides emissions, respectively. CS was mainly comprised of amides and imines, likely originating from the pyrolysis of nitrogen-containing compounds. Our results suggested that motor vehicle exhausts can not only contribute to criteria air pollutants emission but also promote new particle formation, which has not been well recognized and considered in current regulations. Urban residential septic system was the predominant contributor to background NH3. Enhanced NH3 emissions from soil and combustion-related sources were the major cause of PM2.5 buildup during the haze events. Combustion-related sources, together with motor vehicles, were responsible for most of the observed amides and imines and may be of public health concern within the vicinity of these sources.
Collapse
Affiliation(s)
- Shengnan Zhu
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing210044, China
| | - Chao Yan
- Joint International Research Laboratory of Atmospheric and Earth System Research (JirLATEST), School of Atmospheric Sciences, Nanjing University, Nanjing210093, China
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki00014, Finland
| | - Jun Zheng
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing210044, China
| | - Chen Chen
- NUIST Reading Academy, Nanjing University of Information Science & Technology, Nanjing210044, China
| | - Heshan Ning
- NUIST Reading Academy, Nanjing University of Information Science & Technology, Nanjing210044, China
| | - Dongsen Yang
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing210044, China
| | - Ming Wang
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing210044, China
| | - Yan Ma
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing210044, China
- NUIST Reading Academy, Nanjing University of Information Science & Technology, Nanjing210044, China
| | - Junlei Zhan
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Chenjie Hua
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Rujing Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Yuyang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Jingkun Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Lei Yao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai200433, China
| | - Lin Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai200433, China
| | - Markku Kulmala
- Joint International Research Laboratory of Atmospheric and Earth System Research (JirLATEST), School of Atmospheric Sciences, Nanjing University, Nanjing210093, China
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki00014, Finland
| | - Douglas R Worsnop
- Aerodyne Research Inc., Billerica, Massachusetts01821, United States
| |
Collapse
|
8
|
Dash MR, Mishra SS. Mechanistic and kinetic approach on methyl isocyanate (CH 3NCO) with OH and Cl. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2124933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Nguyen TN, Trang HTT, Nguyen NT, Pham TV. Computational study of the reaction of C
3
H
3
with HNCO and the decomposition of C
4
H
4
NO radicals. INT J CHEM KINET 2022. [DOI: 10.1002/kin.21573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tue N. Nguyen
- School of Chemical Engineering Hanoi University of Science and Technology Hanoi Vietnam
| | | | - Nghia T. Nguyen
- School of Chemical Engineering Hanoi University of Science and Technology Hanoi Vietnam
| | - Tien V. Pham
- School of Chemical Engineering Hanoi University of Science and Technology Hanoi Vietnam
| |
Collapse
|
10
|
Balbisi M, Horváth RA, Szőri M, Jedlovszky P. Adsorption of acetamide on crystalline and amorphous ice under atmospheric conditions. A grand canonical Monte Carlo simulation study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Matrix Isolation FTIR and Theoretical Study of Weakly Bound Complexes of Isocyanic Acid with Nitrogen. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020495. [PMID: 35056808 PMCID: PMC8777744 DOI: 10.3390/molecules27020495] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/17/2022]
Abstract
Weak complexes of isocyanic acid (HNCO) with nitrogen were studied computationally employing MP2, B2PLYPD3 and B3LYPD3 methods and experimentally by FTIR matrix isolation technique. The results show that HNCO interacts specifically with N2. For the 1:1 stoichiometry, three stable minima were located on the potential energy surface. The most stable of them involves a weak, almost linear hydrogen bond from the NH group of the acid molecule to nitrogen molecule lone pair. Two other structures are bound by van der Waals interactions of N⋯N and C⋯N types. The 1:2 and 2:1 HNCO complexes with nitrogen were computationally tracked as well. Similar types of interactions as in the 1:1 complexes were found in the case of the higher stoichiometry complexes. Analysis of the HNCO/N2/Ar spectra after deposition indicates that the 1:1 hydrogen-bonded complex is prevalent in argon matrices with a small amount of the van der Waals structures also present. Upon annealing, complexes of the 1:2 and 2:1 stoichiometry were detected as well.
Collapse
|
12
|
ThOgersen J, Weidner T, Jensen F. The primary photo-dissociation dynamics of aqueous formamide and dimethylformamide. Phys Chem Chem Phys 2022; 24:24695-24705. [DOI: 10.1039/d2cp03166c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We study the primary dissociation dynamics of aqueous formamide (HCONH2) and dimethylformamide (HCON(CH3)2) induced by photo-excitation at λ = 200 nm. The photolysis is recorded with sub-picosecond time resolution by...
Collapse
|
13
|
Pham TV, Tran AV. Gas Phase Reaction of Isocyanic Acid: Kinetics, Mechanisms, and Formation of Isopropyl Aminocarbonyl. ACS OMEGA 2021; 6:34661-34674. [PMID: 34963950 PMCID: PMC8697403 DOI: 10.1021/acsomega.1c05063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
Isocyanic acid, HNCO, mainly emitted by combustion processes, is doubted to be detrimental to human health if its concentration surpasses ∼1 ppbv. Very little information has been found regarding the HNCO loss in the gas phase. This study aims to close this knowledge gap by performing a theoretical kinetic study on the reaction of HNCO with the propargyl radical. The potential energy surface of the HNCO + C3H3 reaction was characterized utilizing high-level CCSD(T)/CBS(TQ5)//B3LYP/6-311++G(3df,2p) quantum-chemical approaches, followed by TST and RRKM/ME kinetic computations. The obtained results reveal that the reaction can proceed via H-abstraction, leading to the C3H4 + NCO bimolecular products with energy barriers of 23-25 kcal/mol, and/or addition, resulting in C4H4NO intermediates with 23-26 kcal/mol barrier heights. The C4H4NO adducts when formed can decompose to products and/or return to HNCO + C3H3 in which the reverse decompositions are found to be dominant with a branching ratio that accounts for nearly 100% at 300 K and 760 Torr. The calculated P-independent rate coefficients indicate that at low temperatures, the H-abstraction channels are insignificant. However, at high temperatures (T > 1500 K), the H-abstraction path leading to H3CCCH + NCO prevails with a branching ratio of ∼50-53% in the descending 1800-1500 K temperature range at 760 Torr, while the H-abstraction leading to H2CCCH2 + NCO is favorable at T > 1800 K, with the yield reaching above 50% at 760 Torr. In contrast to the H-abstraction rate constants, the calculated values for the additions and the C4H4NO decompositions show a positive pressure dependence. Both the total rate constants for the reactions HNCO + C3H3 → products and C4H4NO → products, which are, respectively, k _total_bimo(T) = 3.53 × 10-23 T 3.27 exp[(-21.35 ± 0.06 kcal/mol)/RT] cm3 molecule-1 s-1 and k _total_uni(T) = 1.13 × 1025 T -4.02 exp[(-11.77 ± 0.16 kcal/mol)/RT] s-1, increase with the increasing temperature in the 300-2000 K range at 760 Torr. The rate constant of HNCO + C3H3 → products is about 8 orders of magnitude smaller than the value of HCHO + C3H3 → products, showing that HCHO is more reactive toward the C3H3 free radicals than HNCO. The computed heats of formation for several species agree well with the available literature data with the deviation less than 1.0 kcal/mol, indicating that the methods used in this study are extremely reliable. With the given results, it is vigorously suggested that the predicted rate constants, together with the thermodynamic data of the species involved, can be confidently used for modeling HNCO-related systems under atmospheric and combustion conditions.
Collapse
|
14
|
Speak TH, Medeiros DJ, Blitz MA, Seakins PW. OH Kinetics with a Range of Nitrogen-Containing Compounds: N-Methylformamide, t-Butylamine, and N-Methyl-propane Diamine. J Phys Chem A 2021; 125:10439-10450. [PMID: 34818012 DOI: 10.1021/acs.jpca.1c08104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Emissions of amines and amides to the atmosphere are significant from both anthropogenic and natural sources, and amides can be formed as secondary pollutants. Relatively little kinetic data exist on overall rate coefficients with OH, the most important tropospheric oxidant, and even less on site-specific data which control the product distribution. Structure-activity relationships (SARs) can be used to estimate both quantities. Rate coefficients for the reaction of OH with t-butylamine (k1), N-methyl-1,3-propanediamine (k2), and N-methylformamide (k3) have been measured using laser flash photolysis coupled with laser-induced fluorescence. Proton-transfer-reaction mass spectrometry (PTR-MS) has been used to ensure the reliable introduction of these low-vapor pressure N-containing compounds and to give qualitative information on products. Supporting ab initio calculations are presented for the t-butylamine system. The following rate coefficients have been determined: k1,298K= (1.66 ± 0.20) × 10-11 cm3 molecule-1 s-1, k(T)1 = 1.65 × 10-11 (T/300)-0.69 cm3 molecule-1 s-1, k2,293K = (7.09 ± 0.22) × 10-11 cm3 molecule-1 s-1, and k3,298K = (1.03 ± 0.23) × 10-11 cm3 molecule-1 s-1. For OH + t-butylamine, ab initio calculations predict that the fraction of N-H abstraction is 0.87. The dominance of this channel was qualitatively confirmed using end-product analysis. The reaction of OH with N-methyl-1,3-propanediamine also had a negative temperature dependence, but the reduction in the rate coefficient was complicated by reagent loss. The measured rate coefficient for reaction 3 is in good agreement with a recent relative rate study. The results of this work and the literature data are compared with the recent SAR estimates for the reaction of OH with reduced nitrogen compounds. Although the SARs reproduce the overall rate coefficients for reactions, site-specific agreement with this work and other literature studies is less strong.
Collapse
Affiliation(s)
- Thomas H Speak
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| | | | - Mark A Blitz
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.,National Centre for Atmospheric Science (NCAS), University of Leeds, Leeds LS2 9JT, U.K
| | - Paul W Seakins
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
15
|
Catalysis of the Thermal Decomposition of Transition Metal Nitrate Hydrates by Poly(vinylidene difluoride). Polymers (Basel) 2021; 13:polym13183112. [PMID: 34578011 PMCID: PMC8467513 DOI: 10.3390/polym13183112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 11/16/2022] Open
Abstract
Poly(vinylidene difluoride) (PVDF) doped with transition metal nitrate hydrates are cast into thin films giving a high β-phase content. Analysis of the thermal behavior of the doped PVDF shows that the decomposition of the metal (II) nitrate hydrates to metal (II) oxides is catalyzed by the PVDF, as evidenced by reduction in the decomposition temperature by as much as 170 °C compared to the pure metal salts. In contrast, there is little to no apparent catalysis for the decomposition of the metal (III) nitrate hydrates. The FTIR spectra of the gas phase decomposition products show H2O and NO2 are the major components for both PVDF-doped material and the pure metal nitrate hydrates. A mechanism for the role of PVDF is proposed that uses the internal electric field of the ferroelectric phase to orient the nitrate ions and polarize the N-O bonds.
Collapse
|
16
|
Tan W, Zhu L, Mikoviny T, Nielsen CJ, Tang Y, Wisthaler A, Eichler P, Müller M, D'Anna B, Farren NJ, Hamilton JF, Pettersson JBC, Hallquist M, Antonsen S, Stenstrøm Y. Atmospheric Chemistry of 2-Amino-2-methyl-1-propanol: A Theoretical and Experimental Study of the OH-Initiated Degradation under Simulated Atmospheric Conditions. J Phys Chem A 2021; 125:7502-7519. [PMID: 34424704 PMCID: PMC8419843 DOI: 10.1021/acs.jpca.1c04898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The OH-initiated
degradation of 2-amino-2-methyl-1-propanol [CH3C(NH2)(CH3)CH2OH, AMP] was
investigated in a large atmospheric simulation chamber, employing
time-resolved online high-resolution proton-transfer reaction-time-of-flight
mass spectrometry (PTR-ToF-MS) and chemical analysis of aerosol online
PTR-ToF-MS (CHARON-PTR-ToF-MS) instrumentation, and by theoretical
calculations based on M06-2X/aug-cc-pVTZ quantum chemistry results
and master equation modeling of the pivotal reaction steps. The quantum
chemistry calculations reproduce the experimental rate coefficient
of the AMP + OH reaction, aligning k(T) = 5.2 × 10–12 × exp (505/T) cm3 molecule–1 s–1 to the experimental value kexp,300K =
2.8 × 10–11 cm3 molecule–1 s–1. The theoretical calculations predict that
the AMP + OH reaction proceeds via hydrogen abstraction from the −CH3 groups (5–10%), −CH2– group,
(>70%) and −NH2 group (5–20%), whereas
hydrogen
abstraction from the −OH group can be disregarded under atmospheric
conditions. A detailed mechanism for atmospheric AMP degradation was
obtained as part of the theoretical study. The photo-oxidation experiments
show 2-amino-2-methylpropanal [CH3C(NH2)(CH3)CHO] as the major gas-phase product and propan-2-imine [(CH3)2C=NH], 2-iminopropanol [(CH3)(CH2OH)C=NH], acetamide [CH3C(O)NH2], formaldehyde (CH2O), and nitramine 2-methyl-2-(nitroamino)-1-propanol
[AMPNO2, CH3C(CH3)(NHNO2)CH2OH] as minor primary products; there is no experimental
evidence of nitrosamine formation. The branching in the initial H
abstraction by OH radicals was derived in analyses of the temporal
gas-phase product profiles to be BCH3/BCH2/BNH2 = 6:70:24. Secondary photo-oxidation products
and products resulting from particle and surface processing of the
primary gas-phase products were also observed and quantified. All
the photo-oxidation experiments were accompanied by extensive particle
formation that was initiated by the reaction of AMP with nitric acid
and that mainly consisted of this salt. Minor amounts of the gas-phase
photo-oxidation products, including AMPNO2, were detected
in the particles by CHARON-PTR-ToF-MS and GC×GC-NCD. Volatility
measurements of laboratory-generated AMP nitrate nanoparticles gave
ΔvapH = 80 ± 16 kJ mol–1 and an estimated vapor pressure of (1.3 ± 0.3)
× 10–5 Pa at 298 K. The atmospheric chemistry
of AMP is evaluated and a validated chemistry model for implementation
in dispersion models is presented.
Collapse
Affiliation(s)
- Wen Tan
- Section for Environmental Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Liang Zhu
- Section for Environmental Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Tomáš Mikoviny
- Section for Environmental Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Claus J Nielsen
- Section for Environmental Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Yizhen Tang
- Section for Environmental Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Armin Wisthaler
- Section for Environmental Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway.,Institute for Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria
| | - Philipp Eichler
- Institute for Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus Müller
- Institute for Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria
| | - Barbara D'Anna
- Aix Marseille Université, CNRS, LCE, UMR 7376, 13331 Marseille, France
| | - Naomi J Farren
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Jacqueline F Hamilton
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Jan B C Pettersson
- Atmospheric Science, Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Mattias Hallquist
- Atmospheric Science, Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Simen Antonsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Yngve Stenstrøm
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| |
Collapse
|
17
|
Zuo C, Zhao X, Wang H, Ma X, Zheng S, Xu F, Zhang Q. A theoretical study of hydrogen-bonded molecular clusters of sulfuric acid and organic acids with amides. J Environ Sci (China) 2021; 100:328-339. [PMID: 33279046 DOI: 10.1016/j.jes.2020.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/11/2020] [Accepted: 07/25/2020] [Indexed: 06/12/2023]
Abstract
Amides, a series of significant atmospheric nitrogen-containing volatile organic compounds (VOCs), can participate in new particle formation (NPF) throught interacting with sulfuric acid (SA) and organic acids. In this study, we investigated the molecular interactions of formamide (FA), acetamide (AA), N-methylformamide (MF), propanamide (PA), N-methylacetamide (MA), and N,N-dimethylformamide (DMF) with SA, acetic acid (HAC), propanoic acid (PAC), oxalic acid (OA), and malonic acid (MOA). Global minimum of clusters were obtained through the association of the artificial bee colony (ABC) algorithm and density functional theory (DFT) calculations. The conformational analysis, thermochemical analysis, frequency analysis, and topological analysis were conducted to determine the interactions of hydrogen-bonded molecular clusters. The heterodimers formed a hepta or octa membered ring through four different types of hydrogen bonds, and the strength of the bonds are ranked in the following order: SOH•••O > COH•••O > NH•••O > CH•••O. We also evaluated the stability of the clusters and found that the stabilization effect of amides with SA is weaker than that of amines with SA but stronger than that of ammonia (NH3) with SA in the dimer formation of nucleation process. Additionally, the nucleation capacity of SA with amides is greater than that of organic acids with amides.
Collapse
Affiliation(s)
- Chenpeng Zuo
- Shenzhen Research Institute, Shandong University, Shenzhen 518057, China; Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xianwei Zhao
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Hetong Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xiaohui Ma
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Siyuan Zheng
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Fei Xu
- Shenzhen Research Institute, Shandong University, Shenzhen 518057, China; Environment Research Institute, Shandong University, Qingdao 266237, China.
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
18
|
Zhao X, Li Y, Zuo C, Sun Y, Xu F, Nadykto AB, Du L, Xu Y, Zhang Q, Wang W. Propionamide participating in H 2SO 4-based new particle formation: a theory study. RSC Adv 2020; 11:493-500. [PMID: 35423025 PMCID: PMC8690887 DOI: 10.1039/d0ra09323h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/15/2020] [Indexed: 11/21/2022] Open
Abstract
Propionamide (PA), an important pollutant emitted into the atmosphere from a variety of sources, is abundant in many areas worldwide, and could be involved in new particle formation (NPF). In this study, the enhancement of the H2SO4 (SA)-based NPF by PA was evaluated through investigating the formation mechanism of (PA)m(SA)n (m = 0–3 and n = 0–3) clusters using computational chemistry and kinetics modeling. Our study proved that the formation of all the PA-containing clusters is thermodynamically favorable. Furthermore, the
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O group in PA plays an important role in the clusters with more PA than SA, and the basicity of bases exerts a greater influence with an increasing amount of SA. We demonstrate that although the enhancing potential of PA is lower than that of the strongest enhancers of SA-based NPF such as methylamine (MA) and dimethylamine (DMA), PA can enhance the SA-based NPF at the parts per billion (ppb) level, which is typical for concentrations of C3-amides in, for example, urban Shanghai (China). The monomer evaporation is the dominant degradation pathway for the (PA)m(SA)n clusters, which differs from that of the SA–DMA system. The formation rate of PA-containing clusters is comparable to the rate coefficients for PA oxidation by hydroxyl (OH) radicals, indicating that participating in the SA-based NPF is a crucial sink for PA. Propionamide (PA), an important pollutant emitted into the atmosphere from a variety of sources, is abundant in many areas worldwide, and could be involved in new particle formation (NPF).![]()
Collapse
Affiliation(s)
- Xianwei Zhao
- Environment Research Institute, Shandong University Qingdao 266237 P. R. China +86-532-5863-1986
| | - Yunfeng Li
- Environment Research Institute, Shandong University Qingdao 266237 P. R. China +86-532-5863-1986.,Chinese Research Institute Environmental Science, State Key Laboratory Environmental Criteria & Risk Assessment Beijing 100012 P. R. China
| | - Chenpeng Zuo
- Environment Research Institute, Shandong University Qingdao 266237 P. R. China +86-532-5863-1986
| | - Yanhui Sun
- College of Environment and Safety Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Fei Xu
- Environment Research Institute, Shandong University Qingdao 266237 P. R. China +86-532-5863-1986.,Shenzhen Research Institute of Shandong University Shenzhen 518057 P. R. China
| | - Alexey B Nadykto
- Department of Applied Mathematics, Moscow State University of Technology "Stankin" Vadkovsky 1 Moscow 127055 Russia +7-495-9729-521
| | - Lin Du
- Environment Research Institute, Shandong University Qingdao 266237 P. R. China +86-532-5863-1986
| | - Yisheng Xu
- Chinese Research Institute Environmental Science, State Key Laboratory Environmental Criteria & Risk Assessment Beijing 100012 P. R. China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University Qingdao 266237 P. R. China +86-532-5863-1986
| | - Wenxing Wang
- Environment Research Institute, Shandong University Qingdao 266237 P. R. China +86-532-5863-1986
| |
Collapse
|
19
|
Wang Z, Yuan B, Ye C, Roberts J, Wisthaler A, Lin Y, Li T, Wu C, Peng Y, Wang C, Wang S, Yang S, Wang B, Qi J, Wang C, Song W, Hu W, Wang X, Xu W, Ma N, Kuang Y, Tao J, Zhang Z, Su H, Cheng Y, Wang X, Shao M. High Concentrations of Atmospheric Isocyanic Acid (HNCO) Produced from Secondary Sources in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11818-11826. [PMID: 32876440 DOI: 10.1021/acs.est.0c02843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Isocyanic acid (HNCO) is a potentially toxic atmospheric pollutant, whose atmospheric concentrations are hypothesized to be linked to adverse health effects. An earlier model study estimated that concentrations of isocyanic acid in China are highest around the world. However, measurements of isocyanic acid in ambient air have not been available in China. Two field campaigns were conducted to measure isocyanic acid in ambient air using a high-resolution time-of-flight chemical ionization mass spectrometer (ToF-CIMS) in two different environments in China. The ranges of mixing ratios of isocyanic acid are from below the detection limit (18 pptv) to 2.8 ppbv (5 min average) with the average value of 0.46 ppbv at an urban site of Guangzhou in the Pearl River Delta (PRD) region in fall and from 0.02 to 2.2 ppbv with the average value of 0.37 ppbv at a rural site in the North China Plain (NCP) during wintertime, respectively. These concentrations are significantly higher than previous measurements in North America. The diurnal variations of isocyanic acid are very similar to secondary pollutants (e.g., ozone, formic acid, and nitric acid) in PRD, indicating that isocyanic acid is mainly produced by secondary formation. Both primary emissions and secondary formation account for isocyanic acid in the NCP. The lifetime of isocyanic acid in a lower atmosphere was estimated to be less than 1 day due to the high apparent loss rate caused by deposition at night in PRD. Based on the steady state analysis of isocyanic acid during the daytime, we show that amides are unlikely enough to explain the formation of isocyanic acid in Guangzhou, calling for additional precursors for isocyanic acid. Our measurements of isocyanic acid in two environments of China provide important constraints on the concentrations, sources, and sinks of this pollutant in the atmosphere.
Collapse
Affiliation(s)
- Zelong Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Bin Yuan
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Chenshuo Ye
- State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - James Roberts
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, USA
| | - Armin Wisthaler
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Yi Lin
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Tiange Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Caihong Wu
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Yuwen Peng
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Chaomin Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Sihang Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Suxia Yang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Baolin Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jipeng Qi
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Chen Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Wei Song
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Weiwei Hu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Wanyun Xu
- State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry of China Meteorology Administration, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Nan Ma
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Ye Kuang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Jiangchuan Tao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Zhanyi Zhang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Hang Su
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Yafang Cheng
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Xuemei Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Min Shao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| |
Collapse
|
20
|
Ugelow MS, Berry JL, Browne EC, Tolbert MA. The Impact of Molecular Oxygen on Anion Composition in a Hazy Archean Earth Atmosphere. ASTROBIOLOGY 2020; 20:658-669. [PMID: 32159384 DOI: 10.1089/ast.2019.2145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Atmospheric organic hazes are common in planetary bodies in our solar system and likely exoplanet atmospheres as well. In addition, geochemical data support the existence of an organic haze in the early Earth's atmosphere. Much of what is known about organic haze formation derives from studies of Saturn's moon Titan. It is believed that on Titan ions play an important role in haze formation. It is possible, by using Titan as an analog for the Archean Earth, to consider that an Archean haze could have formed by similar processes. Here, we examine the anion chemistry that occurs during laboratory simulations of early Earth haze formation and measure the composition of gaseous anions as a function of O2 mixing ratio. Gaseous anion composition and relative abundances are measured by an atmospheric pressure interface time-of-flight mass spectrometer and are compared to previous photochemical haze mass loading measurements. Numerous anions are observed spanning from mass-to-charge ratio 26 to 246, with a majority of the identified anions containing carbon, hydrogen, nitrogen, and/or oxygen. A shift in the anion composition occurs with increasing the precursor O2 mixing ratio. With 0-20 ppmv O2 in CH4/CO2/N2 mixtures, ions contain mostly organic nitrogen, with CNO- being the most intense ion peak. As the precursor O2 is increased to 200 and 2000 ppmv, inorganic nitrogen ions become the dominant chemical group, with NO3- having the most intense ion signal. The clear shift in the ionic composition could be indicative of a modification to the gas-phase chemistry that occurs in the transition from an anoxic atmosphere to an oxygen-containing atmosphere, with potential astrobiological significance.
Collapse
Affiliation(s)
- Melissa S Ugelow
- Department of Chemistry, University of Colorado, Boulder, Colorado
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado
- Now at Astrochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
- University Space Research Association, Columbia, Maryland
| | - Jennifer L Berry
- Department of Chemistry, University of Colorado, Boulder, Colorado
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado
| | - Eleanor C Browne
- Department of Chemistry, University of Colorado, Boulder, Colorado
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado
| | - Margaret A Tolbert
- Department of Chemistry, University of Colorado, Boulder, Colorado
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado
| |
Collapse
|
21
|
Hems RF, Wang C, Collins DB, Zhou S, Borduas-Dedekind N, Siegel JA, Abbatt JPD. Sources of isocyanic acid (HNCO) indoors: a focus on cigarette smoke. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1334-1341. [PMID: 30976776 DOI: 10.1039/c9em00107g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The sources and sinks of isocyanic acid (HNCO), a toxic gas, in indoor environments are largely uncharacterized. In particular, cigarette smoke has been identified as a significant source. In this study, controlled smoking of tobacco cigarettes was investigated in both an environmental chamber and a residence in Toronto, Canada using an acetate-CIMS. The HNCO emission ratio from side-stream cigarette smoke was determined to be 2.7 (±1.1) × 10-3 ppb HNCO/ppb CO. Side-stream smoke from a single cigarette introduced a large pulse of HNCO to the indoor environment, increasing the HNCO mixing ratio by up to a factor of ten from background conditions of 0.15 ppb. Although there was no evidence for photochemical production of HNCO from cigarette smoke in the residence, it was observed in the environmental chamber via oxidation by the hydroxyl radical (1.1 × 107 molecules per cm3), approximately doubling the HNCO mixing ratio after 30 minutes of oxidation. Oxidation of cigarette smoke by O3 (15 ppb = 4.0 × 1017 molecules per cm3) and photo-reaction with indoor fluorescent lights did not produce HNCO. By studying the temporal profiles of both HNCO and CO after smoking, it is inferred that gas-to-surface partitioning of HNCO acts as an indoor loss pathway. Even in the absence of smoking, the indoor HNCO mixing ratios in the Toronto residence were elevated compared to concurrent outdoor measurements by approximately a factor of two.
Collapse
Affiliation(s)
- Rachel F Hems
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.
| | | | | | | | | | | | | |
Collapse
|
22
|
Alam MA, Ren Z, da Silva G. Nitramine and nitrosamine formation is a minor pathway in the atmospheric oxidation of methylamine: A theoretical kinetic study of the CH
3
NH + O
2
reaction. INT J CHEM KINET 2019. [DOI: 10.1002/kin.21303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Zhonghua Ren
- Department of Chemical Engineering The University of Melbourne Parkville Australia
| | - Gabriel da Silva
- Department of Chemical Engineering The University of Melbourne Parkville Australia
| |
Collapse
|
23
|
Leslie MD, Ridoli M, Murphy JG, Borduas-Dedekind N. Isocyanic acid (HNCO) and its fate in the atmosphere: a review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:793-808. [PMID: 30968101 DOI: 10.1039/c9em00003h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Isocyanic acid (HNCO) has recently been identified in ambient air at potentially concerning concentrations for human health. Since its first atmospheric detection, significant progress has been made in understanding its sources and sinks. The chemistry of HNCO is governed by its partitioning between the gas and liquid phases, its weak acidity, its high solubility at pH above 5, and its electrophilic chemical behaviour. The online measurement of HNCO in ambient air is possible due to recent advances in mass spectrometry techniques, including chemical ionization mass spectrometry for the detection of weak acids. To date, HNCO has been measured in North America, Europe and South Asia as well as outdoors and indoors, with mixing ratios up to 10s of ppbv. The sources of HNCO include: (1) fossil fuel combustion such as coal, gasoline and diesel, (2) biomass burning such as wildfires and crop residue burning, (3) secondary photochemical production from amines and amides, (4) cigarette smoke, and (5) combustion of materials in the built environment. Then, three losses processes can occur: (1) gas phase photochemistry, (2) heterogenous uptake and hydrolysis, and (3) dry deposition. HNCO lifetimes with respect to photolysis and OH radical oxidation are on the order of months to decades. Consequently, the removal of HNCO from the atmosphere is thought to occur predominantly by dry deposition and by heterogeneous uptake followed by hydrolysis to NH3 and CO2. A back of the envelope calculation reveals that HNCO is an insignificant global source of NH3, contributing only around 1%, but could be important for local environments. Furthermore, HNCO can react due to its electrophilic behaviour with various nucleophilic functionalities, including those present in the human body through a reaction called protein carbamoylation. This protein modification can lead to toxicity, and thus exposure to high concentrations of HNCO can lead to cardiovascular and respiratory diseases, as well as cataracts. In this critical review, we outline our current understanding of the atmospheric fate of HNCO and its potential impacts on outdoor and indoor air quality. We also call attention to the need for toxicology studies linking HNCO exposure to health effects.
Collapse
Affiliation(s)
- Michael David Leslie
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | | | | | | |
Collapse
|
24
|
Kiss B, Picaud S, Szőri M, Jedlovszky P. Adsorption of Formamide at the Surface of Amorphous and Crystalline Ices under Interstellar and Tropospheric Conditions. A Grand Canonical Monte Carlo Simulation Study. J Phys Chem A 2019; 123:2935-2948. [PMID: 30839213 DOI: 10.1021/acs.jpca.9b00850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The adsorption of formamide is studied both at the surface of crystalline (Ih) ice at 200 K and at the surface of low density amorphous (LDA) ice in the temperature range of 50-200 K by grand canonical Monte Carlo (GCMC) simulation. These systems are characteristic of the upper troposphere and of the interstellar medium (ISM), respectively. Our results reveal that while no considerable amount of formamide is dissolved in the bulk ice phase in any case, the adsorption of formamide at the ice surface under these conditions is a very strongly preferred process, which has to be taken into account when studying the chemical reactivity in these environments. The adsorption is found to lead to the formation of multimolecular adsorption layer, the occurrence of which somewhat precedes the saturation of the first molecular layer. Due to the strong lateral interaction acting between the adsorbed formamide molecules, the adsorption isotherm does not follow the Langmuir shape. Adsorption is found to be slightly stronger on LDA than Ih ice under identical thermodynamic conditions, due to the larger surface area exposed to the adsorption. Indeed, the monomolecular adsorption capacity of the LDA and Ih ice surfaces is found to be 10.5 ± 0.7 μmol/m2 and 9.4 μmol/m2, respectively. The first layer formamide molecules are very strongly bound to the ice surface, forming typically four hydrogen bonds with each other and the surface water molecules. The heat of adsorption at infinitely low surface coverage is found to be -105.6 kJ/mol on Ih ice at 200 K.
Collapse
Affiliation(s)
- Bálint Kiss
- Institute of Chemistry , University of Miskolc , Egyetemváros A/2 , H-3515 Miskolc , Hungary.,University of Lille, Faculty of Sciences and Technologies, LASIR (UMR CNRS 8516), 59655 Villeneuve d'Ascq , France
| | - Sylvain Picaud
- Institut UTINAM (CNRS UMR 6213), Université Bourgogne Franche-Comté, 16 Route de Gray , F-25030 Besançon , France
| | - Milán Szőri
- Institute of Chemistry , University of Miskolc , Egyetemváros A/2 , H-3515 Miskolc , Hungary
| | - Pál Jedlovszky
- Department of Chemistry , Eszterházy Károly University , Leányka u. 6 , H-3300 Eger , Hungary
| |
Collapse
|
25
|
Duarte RMBO, Piñeiro-Iglesias M, López-Mahía P, Muniategui-Lorenzo S, Moreda-Piñeiro J, Silva AMS, Duarte AC. Comparative study of atmospheric water-soluble organic aerosols composition in contrasting suburban environments in the Iberian Peninsula Coast. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:430-441. [PMID: 30121042 DOI: 10.1016/j.scitotenv.2018.08.171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/26/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
This study investigates the structural composition and major sources of water-soluble organic matter (WSOM) from PM2.5 collected, in parallel, during summer and winter, in two contrasting suburban sites at Iberian Peninsula Coast: Aveiro (Portugal) and Coruña (Spain). PM10 samples were also collected at Coruña for comparison. Ambient concentrations of PM2.5, total nitrogen (TN), and WSOM were higher in Aveiro than in Coruña, with the highest levels found in winter at both locations. In Coruña, concentrations of PM10, TN, and WSOM were higher than those from PM2.5. Regardless of the season, stable isotopic δ13C and δ15N in PM2.5 suggested important contributions of anthropogenic fresh organic aerosols (OAs) at Aveiro. In Coruña, δ13C and δ15N of PM2.5 and PM10 suggests decreased anthropogenic input during summer. Although excitation-emission fluorescence profiles were similar for all WSOM samples, multi-dimensional nuclear magnetic resonance (NMR) spectroscopy confirmed differences in their structural composition, reflecting differences in aging processes and/or local sources between the two locations. In PM2.5 WSOM in Aveiro, the relative distribution of non-exchangeable proton functional groups was in the order: HC (40-43%) > HCC (31-39%) > HCO (12-15%) > Ar-H (5.0-13%). However, in PM2.5 and PM10 WSOM in Coruña, the relative contribution of HCO groups (24-30% and 23-29%, respectively) equals and/or surpasses that of HCC (25-26% and 25-29%, respectively), being also higher than those of Aveiro. In both locations, the highest aromatic contents were observed during winter due to biomass burning emissions. The structural composition of PM2.5 and PM10 WSOM in Coruña is dominated by oxygenated aliphatic compounds, reflecting the contribution of secondary OAs from biogenic, soil dust, and minor influence of anthropogenic emissions. In contrast, the composition of PM2.5 WSOM in Aveiro appears to be significantly impacted by fresh and secondary anthropogenic OAs. Marine and biomass burning OAs are important contributors, common to both sites.
Collapse
Affiliation(s)
- Regina M B O Duarte
- Department of Chemistry & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Maria Piñeiro-Iglesias
- Universidade da Coruña, Grupo Química Analítica Aplicada, Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Química, A Coruña, Spain
| | - Purificación López-Mahía
- Universidade da Coruña, Grupo Química Analítica Aplicada, Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Química, A Coruña, Spain
| | - Soledad Muniategui-Lorenzo
- Universidade da Coruña, Grupo Química Analítica Aplicada, Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Química, A Coruña, Spain
| | - Jorge Moreda-Piñeiro
- Universidade da Coruña, Grupo Química Analítica Aplicada, Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Química, A Coruña, Spain
| | - Artur M S Silva
- Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Armando C Duarte
- Department of Chemistry & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
26
|
Tomaz S, Cui T, Chen Y, Sexton KG, Roberts JM, Warneke C, Yokelson RJ, Surratt JD, Turpin BJ. Photochemical Cloud Processing of Primary Wildfire Emissions as a Potential Source of Secondary Organic Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11027-11037. [PMID: 30153017 DOI: 10.1021/acs.est.8b03293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We investigated the gas-phase chemical composition of biomass burning (BB) emissions and their role in aqueous secondary organic aerosol (aqSOA) formation through photochemical cloud processing. A high-resolution time-of-flight chemical ionization mass spectrometer using iodide reagent ion chemistry detected more than 100 gas-phase compounds from the emissions of 30 different controlled burns during the 2016 Fire Influence on Regional and Global Environments Experiment (FIREX) at the Fire Science Laboratory. Compounds likely to partition to cloudwater were selected based on high atomic oxygen-to-carbon ratio and abundance. Water solubility was confirmed by detection of these compounds in water after mist chamber collection during controlled burns and analysis using ion chromatography and electrospray ionization interfaced to high-resolution time-of-flight mass spectrometry. Known precursors of aqSOA were found in the primary gaseous BB emissions (e.g., phenols, acetate, and pyruvate). Aqueous OH oxidation of the complex biomass burning mixtures led to rapid depletion of many compounds (e.g., catechol, levoglucosan, methoxyphenol) and formation of others (e.g., oxalate, malonate, mesoxalate). After 150 min of oxidation (approximatively 1 day of cloud processing), oxalate accounted for 13-16% of total dissolved organic carbon. Formation of known SOA components suggests that cloud processing of primary BB emissions forms SOA.
Collapse
Affiliation(s)
- Sophie Tomaz
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Tianqu Cui
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Yuzhi Chen
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Kenneth G Sexton
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - James M Roberts
- Chemical Sciences Division , NOAA Earth System Research Laboratory , Boulder , Colorado 80305 , United States
| | - Carsten Warneke
- Chemical Sciences Division , NOAA Earth System Research Laboratory , Boulder , Colorado 80305 , United States
- Cooperative Institute for Research in Environmental Sciences , University of Colorado , Boulder , Colorado 80309 , United States
| | - Robert J Yokelson
- Department of Chemistry and Biochemistry , University of Montana , Missoula , Montana 59812 , United States
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Barbara J Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
27
|
Butkovskaya NI, Setser DW. Infrared Chemiluminescence Study of the Reaction of Hydroxyl Radical with Formamide and the Secondary Unimolecular Reaction of Chemically Activated Carbamic Acid. J Phys Chem A 2018; 122:3735-3746. [PMID: 29614222 DOI: 10.1021/acs.jpca.8b01512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reactions of OH and OD radicals with NH2CHO and ND2CHO were studied by Fourier transform infrared emission spectroscopy of the product molecules from a fast-flow reactor at 298 K. Vibrational distributions of the HOD and H2O molecules from the primary reactions with the C-H bond were obtained by computer simulation of the emission spectra. The vibrational distributions resemble those for other direct H atom abstraction reactions, such as with acetaldehyde. The highest observed level gives an estimate of the C-H bond dissociation energy in formamide of 90.5 ± 1.3 kcal mol-1. Observation of CO2, ammonia, and secondary water chemiluminescence gave evidence that recombination of OH and NH2CO forms carbamic acid (NH2COOH) with excitation energy of 103 kcal mol-1, which decomposes through two pathways forming either NH3 + CO2 or H2O + HNCO. The branching fraction for ammonia formation was estimated to be 2-3 times larger than formation of water. This observation was confirmed by RRKM calculation of the decomposition rate constants. A new simulation method was developed to analyze infrared emission from NH3, NH2D, ND2H, and ND3. Dynamical aspects of the primary and secondary reactions are discussed based on the vibrational distributions of CO2 and those of H/D isotopes of water and ammonia.
Collapse
Affiliation(s)
- N I Butkovskaya
- Semenov Institute of Chemical Physics, Russian Academy of Sciences , 119991 Moscow , Russian Federation
| | - D W Setser
- Department of Chemistry , Kansas State University , Manhattan , Kansas 66506 , United States
| |
Collapse
|
28
|
Sarkar S, Mallick S, Kumar P, Bandyopadhyay B. Ammonolysis of ketene as a potential source of acetamide in the troposphere: a quantum chemical investigation. Phys Chem Chem Phys 2018; 20:13437-13447. [DOI: 10.1039/c8cp01650j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Quantum chemical calculations at the CCSD(T)/CBS//MP2/aug-cc-pVTZ levels of theory have been carried out to investigate a potential new source of acetamide in Earth's atmosphere through the ammonolysis of the simplest ketene.
Collapse
Affiliation(s)
- Saptarshi Sarkar
- Department of Chemistry
- Malaviya National Institute of Technology Jaipur
- Jaipur
- India
| | - Subhasish Mallick
- Department of Chemistry
- Malaviya National Institute of Technology Jaipur
- Jaipur
- India
| | - Pradeep Kumar
- Department of Chemistry
- Malaviya National Institute of Technology Jaipur
- Jaipur
- India
| | - Biman Bandyopadhyay
- Department of Chemistry
- Malaviya National Institute of Technology Jaipur
- Jaipur
- India
| |
Collapse
|
29
|
Matos JTV, Duarte RMBO, Lopes SP, Silva AMS, Duarte AC. Persistence of urban organic aerosols composition: Decoding their structural complexity and seasonal variability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:281-290. [PMID: 28806693 DOI: 10.1016/j.envpol.2017.08.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/27/2017] [Accepted: 08/06/2017] [Indexed: 06/07/2023]
Abstract
Organic Aerosols (OAs) are typically defined as highly complex matrices whose composition changes in time and space. Focusing on time vector, this work uses two-dimensional nuclear magnetic resonance (2D NMR) techniques to examine the structural features of water-soluble (WSOM) and alkaline-soluble organic matter (ASOM) sequentially extracted from fine atmospheric aerosols collected in an urban setting during cold and warm seasons. This study reveals molecular signatures not previously decoded in NMR-related studies of OAs as meaningful source markers. Although the ASOM is less hydrophilic and structurally diverse than its WSOM counterpart, both fractions feature a core with heteroatom-rich branched aliphatics from both primary (natural and anthropogenic) and secondary origin, aromatic secondary organics originated from anthropogenic aromatic precursors, as well as primary saccharides and amino sugar derivatives from biogenic emissions. These common structures represent those 2D NMR spectral signatures that are present in both seasons and can thus be seen as an "annual background" profile of the structural composition of OAs at the urban location. Lignin-derived structures, nitroaromatics, disaccharides, and anhydrosaccharides signatures were also identified in the WSOM samples only from periods identified as smoke impacted, which reflects the influence of biomass-burning sources. The NMR dataset on the H-C molecules backbone was also used to propose a semi-quantitative structural model of urban WSOM, which will aid efforts for more realistic studies relating the chemical properties of OAs with their atmospheric behavior.
Collapse
Affiliation(s)
- João T V Matos
- Department of Chemistry & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Regina M B O Duarte
- Department of Chemistry & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Sónia P Lopes
- Department of Chemistry & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M S Silva
- Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Armando C Duarte
- Department of Chemistry & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
30
|
Chen H, Wang M, Yao L, Chen J, Wang L. Uptake of Gaseous Alkylamides by Suspended Sulfuric Acid Particles: Formation of Ammonium/Aminium Salts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11710-11717. [PMID: 28910093 DOI: 10.1021/acs.est.7b03175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Amides represent an important class of nitrogen-containing compounds in the atmosphere that can in theory interact with atmospheric acidic particles and contribute to secondary aerosol formation. In this study, uptake coefficients (γ) of six alkylamides (C1 to C3) by suspended sulfuric acid particles were measured using an aerosol flow tube coupled to a high resolution time-of-flight chemical ionization mass spectrometer (HRToF-CIMS). At 293 K and < 3% relative humidity (RH), the measured uptake coefficients for six alkylamides were in the range of (4.8-23) × 10-2. A negative dependence upon RH was observed for both N-methylformamide and N,N-dimethylformamide, likely due to decreased mass accommodation coefficients (α) at lower acidities. A negative temperature dependence was observed for N,N-dimethylformamide under < 3% RH, also consistent with the mass accommodation-controlled uptake processes. Chemical analysis of reacted sulfuric acid particles indicates that alkylamides hydrolyzed in the presence of water molecules to form ammonium or aminium. Our results suggest that multiphase uptake of amides will contribute to growth of atmospheric acidic particles and alter their chemical composition.
Collapse
Affiliation(s)
- Hangfei Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University , Shanghai 200433, China
| | - Mingyi Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University , Shanghai 200433, China
| | - Lei Yao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University , Shanghai 200433, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University , Shanghai 200433, China
- Institute of Atmospheric Sciences, Fudan University , Shanghai 200433, China
| | - Lin Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University , Shanghai 200433, China
- Institute of Atmospheric Sciences, Fudan University , Shanghai 200433, China
| |
Collapse
|
31
|
Xie HB, Ma F, Yu Q, He N, Chen J. Computational Study of the Reactions of Chlorine Radicals with Atmospheric Organic Compounds Featuring NHx–π-Bond (x = 1, 2) Structures. J Phys Chem A 2017; 121:1657-1665. [DOI: 10.1021/acs.jpca.6b11418] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hong-Bin Xie
- Key Laboratory
of Industrial Ecology and Environmental Engineering (Ministry of Education),
School of Environmental Science and Technology and ‡State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Fangfang Ma
- Key Laboratory
of Industrial Ecology and Environmental Engineering (Ministry of Education),
School of Environmental Science and Technology and ‡State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Qi Yu
- Key Laboratory
of Industrial Ecology and Environmental Engineering (Ministry of Education),
School of Environmental Science and Technology and ‡State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Ning He
- Key Laboratory
of Industrial Ecology and Environmental Engineering (Ministry of Education),
School of Environmental Science and Technology and ‡State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory
of Industrial Ecology and Environmental Engineering (Ministry of Education),
School of Environmental Science and Technology and ‡State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
32
|
Borduas N, Abbatt JPD, Murphy JG, So S, da Silva G. Gas-Phase Mechanisms of the Reactions of Reduced Organic Nitrogen Compounds with OH Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11723-11734. [PMID: 27690404 DOI: 10.1021/acs.est.6b03797] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Research on the fate of reduced organic nitrogen compounds in the atmosphere has gained momentum since the identification of their crucial role in particle nucleation and the scale up of carbon capture and storage technology which employs amine-based solvents. Reduced organic nitrogen compounds have strikingly different lifetimes against OH radicals, from hours for amines to days for amides to years for isocyanates, highlighting unique functional group reactivity. In this work, we use ab initio methods to investigate the gas-phase mechanisms governing the reactions of amines, amides, isocyanates and carbamates with OH radicals. We determine that N-H abstraction is only a viable mechanistic pathway for amines and we identify a reactive pathway in amides, the formyl C-H abstraction, not currently considered in structure-activity relationship (SAR) models. We then use our acquired mechanistic knowledge and tabulated literature experimental rate coefficients to calculate SAR factors for reduced organic nitrogen compounds. These proposed SAR factors are an improvement over existing SAR models because they predict the experimental rate coefficients of amines, amides, isocyanates, isothiocyanates, carbamates and thiocarbamates with OH radicals within a factor of 2, but more importantly because they are based on a sound fundamental mechanistic understanding of their reactivity.
Collapse
Affiliation(s)
- Nadine Borduas
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Jennifer G Murphy
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Sui So
- Chemical and Biomolecular Engineering, University of Melbourne , Victoria 3010, Australia
| | - Gabriel da Silva
- Chemical and Biomolecular Engineering, University of Melbourne , Victoria 3010, Australia
| |
Collapse
|
33
|
Chandra BP, Sinha V. Contribution of post-harvest agricultural paddy residue fires in the N.W. Indo-Gangetic Plain to ambient carcinogenic benzenoids, toxic isocyanic acid and carbon monoxide. ENVIRONMENT INTERNATIONAL 2016; 88:187-197. [PMID: 26760716 DOI: 10.1016/j.envint.2015.12.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/17/2015] [Accepted: 12/19/2015] [Indexed: 06/05/2023]
Abstract
In the north west Indo-Gangetic Plain (N.W.IGP), large scale post-harvest paddy residue fires occur every year during the months of October-November. This anthropogenic perturbation causes contamination of the atmospheric environment with adverse impacts on regional air quality posing health risks for the population exposed to high concentrations of carcinogens such as benzene and toxic VOCs such as isocyanic acid. These gases and carbon monoxide are known to be emitted from biomass fires along with acetonitrile. Yet no long-term in-situ measurements quantifying the impact of this activity have been carried out in the N.W. IGP. Using high quality continuous online in-situ measurements of these gases at a strategic downwind site over a three year period from 2012 to 2014, we demonstrate the strong impact of this anthropogenic emission activity on ambient concentrations of these gases. In contrast to the pre-paddy harvest period, excellent correlation of benzenoids, isocyanic acid and CO with acetonitrile (a biomass burning chemical tracer); (r≥0.82) and distinct VOC/acetonitrile emission ratios were observed for the post-paddy harvest period which was also characterized by high ambient concentrations of these species. The average concentrations of acetonitrile (1.62±0.18ppb), benzene (2.51±0.28ppb), toluene (3.72±0.41ppb), C8-aromatics (2.88±0.30ppb), C9-aromatics (1.55±0.19ppb) and CO (552±113ppb) in the post-paddy harvest periods were about 1.5 times higher than the annual average concentrations. For isocyanic acid, a compound with both primary and secondary sources, the concentration in the post-paddy harvest period was 0.97±0.17ppb. The annual average concentrations of benzene, a class A carcinogen, exceeded the annual exposure limit of 1.6ppb at NTP mandated by the National Ambient Air Quality Standard of India (NAAQS). We show that mitigating the post-harvest paddy residue fires can lower the annual average concentration of benzene and ensure compliance with the NAAQS. Calculations of excessive lifetime cancer risk due to benzene amount to 25 and 10 per million inhabitants for children and adults, respectively, exceeding the USEPA threshold of 1 per million inhabitants. Annual exposure to isocyanic acid was close to 1ppb, the concentration considered to be sufficient to enhance risks for cardiovascular diseases and cataracts. This study makes a case for urgent mitigation of post-harvest paddy residue fires as the unknown synergistic effect of multi-pollutant exposure due to emissions from this anthropogenic source may be posing grave health risks to the population of the N.W. IGP.
Collapse
Affiliation(s)
- B P Chandra
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S.A.S. Nagar, Manauli PO, Punjab 140306, India
| | - Vinayak Sinha
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S.A.S. Nagar, Manauli PO, Punjab 140306, India.
| |
Collapse
|
34
|
Bunkan AJC, Mikoviny T, Nielsen CJ, Wisthaler A, Zhu L. Experimental and Theoretical Study of the OH-Initiated Photo-oxidation of Formamide. J Phys Chem A 2016; 120:1222-30. [DOI: 10.1021/acs.jpca.6b00032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arne Joakim C. Bunkan
- Centre for Theoretical and Computational Chemistry, Department of
Chemistry, and ‡Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo, Norway
| | - Tomas Mikoviny
- Centre for Theoretical and Computational Chemistry, Department of
Chemistry, and ‡Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo, Norway
| | - Claus J. Nielsen
- Centre for Theoretical and Computational Chemistry, Department of
Chemistry, and ‡Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo, Norway
| | - Armin Wisthaler
- Centre for Theoretical and Computational Chemistry, Department of
Chemistry, and ‡Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo, Norway
| | - Liang Zhu
- Centre for Theoretical and Computational Chemistry, Department of
Chemistry, and ‡Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo, Norway
| |
Collapse
|
35
|
Xie HB, Ma F, Wang Y, He N, Yu Q, Chen J. Quantum Chemical Study on ·Cl-Initiated Atmospheric Degradation of Monoethanolamine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:13246-55. [PMID: 26495768 DOI: 10.1021/acs.est.5b03324] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Recent findings on the formation of ·Cl in continental urban areas necessitate the consideration of ·Cl initiated degradation when assessing the fate of volatile organic pollutants. Monoethanolamine (MEA) is considered as a potential atmospheric pollutant since it is a benchmark and widely utilized solvent in a leading CO2 capture technology. Especially, ·Cl may have specific interactions with the N atom of MEA, which could make the MEA + ·Cl reaction have different pathways and products from those of the MEA + ·OH reaction. Hence, ·Cl initiated reactions with MEA were investigated by a quantum chemical method [CCSD(T)/aug-cc-pVTZ//MP2/6-31+G(3df,2p)] and kinetics modeling. Results show that the overall rate constant for ·Cl initiated H-abstraction of MEA is 5 times faster than that initiated by ·OH, and the tropospheric lifetimes of MEA will be overestimated by 6-46% when assuming that [·Cl]/[·OH] = 1-10% if the role of ·Cl is ignored. The MEA + ·Cl reaction exclusively produces MEA-N that finally transforms into several products including mutagenic nitramine and carcinogenic nitrosamine via further reactions with O2/NOx, and the contribution of ·Cl to their formation is about 25-250% of that of ·OH. Thus, it is necessary to consider ·Cl initiated tropospheric degradation of MEA for its risk assessment.
Collapse
Affiliation(s)
- Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Yuanfang Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Ning He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116024, China
| | - Qi Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| |
Collapse
|
36
|
Karl M, Svendby T, Walker SE, Velken AS, Castell N, Solberg S. Modelling atmospheric oxidation of 2-aminoethanol (MEA) emitted from post-combustion capture using WRF-Chem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 527-528:185-202. [PMID: 25958366 DOI: 10.1016/j.scitotenv.2015.04.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
Carbon capture and storage (CCS) is a technological solution that can reduce the amount of carbon dioxide (CO2) emissions from the use of fossil fuel in power plants and other industries. A leading method today is amine based post-combustion capture, in which 2-aminoethanol (MEA) is one of the most studied absorption solvents. In this process, amines are released to the atmosphere through evaporation and entrainment from the CO2 absorber column. Modelling is a key instrument for simulating the atmospheric dispersion and chemical transformation of MEA, and for projections of ground-level air concentrations and deposition rates. In this study, the Weather Research and Forecasting model inline coupled with chemistry, WRF-Chem, was applied to quantify the impact of using a comprehensive MEA photo-oxidation sequence compared to using a simplified MEA scheme. Main discrepancies were found for iminoethanol (roughly doubled in the detailed scheme) and 2-nitro aminoethanol, short MEA-nitramine (reduced by factor of two in the detailed scheme). The study indicates that MEA emissions from a full-scale capture plant can modify regional background levels of isocyanic acid. Predicted atmospheric concentrations of isocyanic acid were however below the limit value of 1 ppbv for ambient exposure. The dependence of the formation of hazardous compounds in the OH-initiated oxidation of MEA on ambient level of nitrogen oxides (NOx) was studied in a scenario without NOx emissions from a refinery area in the vicinity of the capture plant. Hourly MEA-nitramine peak concentrations higher than 40 pg m(-3) did only occur when NOx mixing ratios were above 2 ppbv. Therefore, the spatial variability and temporal variability of levels of OH and NOx need to be taken into account in the health risk assessment. The health risk due to direct emissions of nitrosamines and nitramines from full-scale CO2 capture should be investigated in future studies.
Collapse
Affiliation(s)
- M Karl
- Norwegian Institute for Air Research, NILU, P.O. Box 100, 2027 Kjeller, Norway.
| | - T Svendby
- Norwegian Institute for Air Research, NILU, P.O. Box 100, 2027 Kjeller, Norway
| | - S-E Walker
- Norwegian Institute for Air Research, NILU, P.O. Box 100, 2027 Kjeller, Norway
| | - A S Velken
- Norwegian Institute for Air Research, NILU, P.O. Box 100, 2027 Kjeller, Norway; Norwegian Environment Agency (Miljødirektoratet), 0663 Oslo, Norway
| | - N Castell
- Norwegian Institute for Air Research, NILU, P.O. Box 100, 2027 Kjeller, Norway
| | - S Solberg
- Norwegian Institute for Air Research, NILU, P.O. Box 100, 2027 Kjeller, Norway
| |
Collapse
|
37
|
Sun Y, Zhang Q, Wang H, Wang W. OH radical-initiated oxidation degradation and atmospheric lifetime of N-ethylperfluorobutyramide in the presence of O₂/NOx. CHEMOSPHERE 2015; 134:241-249. [PMID: 25957036 DOI: 10.1016/j.chemosphere.2015.04.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
The OH radical-initiated oxidation degradation of N-ethylperfluorobutyramide (EtFBA) in the presence of O2/NOx was investigated theoretically by using density functional theory (DFT). All possible pathways involved in the oxidation process were presented and discussed. The study shows that the H abstraction from the C(2)H(2) group in EtFBA is the most energetically favorable because of the lowest barrier and highest exothermicity. Canonical variational transition-state (CVT) theory with small curvature tunneling (SCT) contribution was used to predict the rate constants over the temperature range of 180-370 K. At 296 K, the calculated overall rate constant of EtFBA with OH radicals is 2.50 × 10(-12)cm(3)molecule(-1)s(-1). The atmospheric lifetime of EtFBA determined by OH radicals is short, about 4.6 days at 296K. However, the atmospheric lifetimes of its primary oxidation products, C3F7C(O)N(H)C(O)CH3, C3F7C(O)N(H)CH2CHO and C3F7C(O)NH2, are much longer, about 30-50 days. It demonstrates the possibility that the atmospheric oxidation degradation of polyfluorinated amides (PFAMs) contributes to the burden of observed perfluorinated pollutants in the Arctic region. This study reveals for the first time that the water molecule plays an important catalytic effect on several key elementary steps and promotes the degradation potential of EtFBA.
Collapse
Affiliation(s)
- Yanhui Sun
- Environment Research Institute, Shandong University, Jinan 250100, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Jinan 250100, PR China.
| | - Hui Wang
- School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Jinan 250100, PR China
| |
Collapse
|
38
|
Bunkan AJC, Hetzler J, Mikoviny T, Wisthaler A, Nielsen CJ, Olzmann M. The reactions of N-methylformamide and N,N-dimethylformamide with OH and their photo-oxidation under atmospheric conditions: experimental and theoretical studies. Phys Chem Chem Phys 2015; 17:7046-59. [DOI: 10.1039/c4cp05805d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The atmospheric oxidation of amides is studied with a combination of laser photolysis and smog chamber experiments along with quantum chemical and statistical rate theory calculations.
Collapse
Affiliation(s)
- Arne Joakim C. Bunkan
- Center for Theoretical and Computational Chemistry
- Department of Chemistry
- University of Oslo
- 0315 Oslo
- Norway
| | - Jens Hetzler
- Institut für Physikalische Chemie
- Karlsruher Institut für Technologie (KIT)
- 76131 Karlsruhe
- Germany
| | - Tomáš Mikoviny
- Institute for Ion Physics and Applied Physics
- University of Innsbruck
- A-6020 Innsbruck
- Austria
| | - Armin Wisthaler
- Institute for Ion Physics and Applied Physics
- University of Innsbruck
- A-6020 Innsbruck
- Austria
| | - Claus J. Nielsen
- Center for Theoretical and Computational Chemistry
- Department of Chemistry
- University of Oslo
- 0315 Oslo
- Norway
| | - Matthias Olzmann
- Institut für Physikalische Chemie
- Karlsruher Institut für Technologie (KIT)
- 76131 Karlsruhe
- Germany
| |
Collapse
|
39
|
Onel L, Blitz M, Dryden M, Thonger L, Seakins P. Branching ratios in reactions of OH radicals with methylamine, dimethylamine, and ethylamine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:9935-9942. [PMID: 25072999 DOI: 10.1021/es502398r] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The branching ratios for the reaction of the OH radical with the primary and secondary alkylamines: methylamine (MA), dimethylamine (DMA), and ethylamine (EA), have been determined using the technique of pulsed laser photolysis-laser-induced fluorescence. Titration of the carbon-centered radical, formed following the initial OH abstraction, with oxygen to give HO2 and an imine, followed by conversion of HO2 to OH by reaction with NO, resulted in biexponential OH decay traces on a millisecond time scale. Analysis of the biexponential curves gave the HO2 yield, which equaled the branching ratio for abstraction at αC-H position, r(αC-H). The technique was validated by reproducing known branching ratios for OH abstraction for methanol and ethanol. For the amines studied in this work (all at 298 K): r(αC-H,MA) = 0.76 ± 0.08, r(αC-H,DMA) = 0.59 ± 0.07, and r(αC-H,EA) = 0.49 ± 0.06 where the errors are a combination in quadrature of statistical errors at the 2σ level and an estimated 10% systematic error. The branching ratios r(αC-H) for OH reacting with (CH3)2NH and CH3CH2NH2 are in agreement with those obtained for the OD reaction with (CH3)2ND (d-DMA) and CH3CH2ND2 (d-EA): r(αC-H,d-DMA) = 0.71 ± 0.12 and r(αC-H,d-EA) = 0.54 ± 0.07. A master equation analysis (using the MESMER package) based on potential energy surfaces from G4 theory was used to demonstrate that the experimental determinations are unaffected by formation of stabilized peroxy radicals and to estimate atmospheric pressure yields. The branching ratio for imine formation through the reaction of O2 with α carbon-centered radicals at 1 atm of N2 are estimated as r(CH2NH2) = 0.79 ± 0.15, r(CH2NHCH3) = 0.72 ± 0.19, and r(CH3CHNH2) = 0.50 ± 0.18. The implications of this work on the potential formation of nitrosamines and nitramines are briefly discussed.
Collapse
Affiliation(s)
- Lavinia Onel
- School of Chemistry, University of Leeds , Leeds, LS2 9JT, U.K
| | | | | | | | | |
Collapse
|
40
|
Borduas N, da Silva G, Murphy JG, Abbatt JPD. Experimental and theoretical understanding of the gas phase oxidation of atmospheric amides with OH radicals: kinetics, products, and mechanisms. J Phys Chem A 2014; 119:4298-308. [PMID: 25019427 DOI: 10.1021/jp503759f] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Atmospheric amides have primary and secondary sources and are present in ambient air at low pptv levels. To better assess the fate of amides in the atmosphere, the room temperature (298 ± 3 K) rate coefficients of five different amides with OH radicals were determined in a 1 m(3) smog chamber using online proton-transfer-reaction mass spectrometry (PTR-MS). Formamide, the simplest amide, has a rate coefficient of (4.44 ± 0.46) × 10(-12) cm(3) molec(-1) s(-1) against OH, translating to an atmospheric lifetime of ∼1 day. N-methylformamide, N-methylacetamide and propanamide, alkyl versions of formamide, have rate coefficients of (10.1 ± 0.6) × 10(-12), (5.42 ± 0.19) × 10(-12), and (1.78 ± 0.43) × 10(-12) cm(3) molec(-1) s(-1), respectively. Acetamide was also investigated, but due to its slow oxidation kinetics, we report a range of (0.4-1.1) × 10(-12) cm(3) molec(-1) s(-1) for its rate coefficient with OH radicals. Oxidation products were monitored and quantified and their time traces were fitted using a simple kinetic box model. To further probe the mechanism, ab initio calculations are used to identify the initial radical products of the amide reactions with OH. Our results indicate that N-H abstractions are negligible in all cases, in contrast to what is predicted by structure-activity relationships. Instead, the reactions proceed via C-H abstraction from alkyl groups and from formyl C(O)-H bonds when available. The latter process leads to radicals that can readily react with O2 to form isocyanates, explaining the detection of toxic compounds such as isocyanic acid (HNCO) and methyl isocyanate (CH3NCO). These contaminants of significant interest are primary oxidation products in the photochemical oxidation of formamide and N-methylformamide, respectively.
Collapse
Affiliation(s)
- Nadine Borduas
- †Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Gabriel da Silva
- ‡Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Jennifer G Murphy
- †Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Jonathan P D Abbatt
- †Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
41
|
Bunkan AJC, Tang Y, Sellevåg SR, Nielsen CJ. Atmospheric Gas Phase Chemistry of CH2═NH and HNC. A First-Principles Approach. J Phys Chem A 2014; 118:5279-88. [DOI: 10.1021/jp5049088] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Arne Joakim C. Bunkan
- Centre
for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O.
Box 1033, Blindern 0315, Oslo, Norway
| | - Yizhen Tang
- School
of Environmental and Municipal Engineering, Qingdao Technological University, Fushun Road 11, Qingdao, Shandong 266033, P.R. China
| | - Stig R. Sellevåg
- Centre
for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O.
Box 1033, Blindern 0315, Oslo, Norway
| | - Claus J. Nielsen
- Centre
for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O.
Box 1033, Blindern 0315, Oslo, Norway
| |
Collapse
|
42
|
Xie HB, Li C, He N, Wang C, Zhang S, Chen J. Atmospheric chemical reactions of monoethanolamine initiated by OH radical: mechanistic and kinetic study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:1700-6. [PMID: 24438015 DOI: 10.1021/es405110t] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Monoethanolamine (MEA) is a benchmark and widely utilized solvent in amine-based postcombustion CO2 capture (PCCC), a leading technology for reducing CO2 emission from fossil fuel power plants. The large-scale implementation of PCCC would lead to inevitable discharges of amines to the atmosphere. Therefore, understanding the kinetics and mechanisms of the transformation of representative amine MEA in the atmosphere is of great significance for risk assessment of the amine-based PCCC. In this study, the H-abstraction reaction of MEA with ·OH, and ensuing reactions of produced MEA-radicals, including isomerization, dissociation, and bimolecular reaction MEA-radicals+O2, were investigated by quantum chemical calculation [M06-2X/aug-cc-pVTZ//M06-2X/6-311++G(d,p)] and kinetic modeling. The calculated overall rate constant [(7.27 × 10(-11)) cm(3) molecule(-1) s(-1)] for H-abstraction is in excellent agreement with the experimental value [(7.02 ± 0.46) × 10(-11) cm(3) molecule(-1) s(-1)]. The results show that the product branching ratio of NH2CH2 · CHOH (MEA-β) (43%) is higher than that of NH2 · CHCH2OH (MEA-α) (39%), clarifying that MEA-α is not an exclusive product. On the basis of the unveiled reaction mechanisms of MEA-radicals + O2, the proton transfer reaction mass spectrometry signal (m/z 60.044), not recognized in the experiment, was identified.
Collapse
Affiliation(s)
- Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | | | | | | | | | | |
Collapse
|
43
|
Onel L, Thonger L, Blitz MA, Seakins PW, Bunkan AJC, Solimannejad M, Nielsen CJ. Gas-Phase Reactions of OH with Methyl Amines in the Presence or Absence of Molecular Oxygen. An Experimental and Theoretical Study. J Phys Chem A 2013; 117:10736-45. [DOI: 10.1021/jp406522z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- L. Onel
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - L. Thonger
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - M. A. Blitz
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - P. W. Seakins
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - A. J. C. Bunkan
- CTCC,
Department of Chemistry, University of Oslo, P.O.Box 1033 Blindern, 0315 Oslo, Norway
| | - M. Solimannejad
- CTCC,
Department of Chemistry, University of Oslo, P.O.Box 1033 Blindern, 0315 Oslo, Norway
| | - C. J. Nielsen
- CTCC,
Department of Chemistry, University of Oslo, P.O.Box 1033 Blindern, 0315 Oslo, Norway
| |
Collapse
|
44
|
Wentzell JJB, Liggio J, Li SM, Vlasenko A, Staebler R, Lu G, Poitras MJ, Chan T, Brook JR. Measurements of gas phase acids in diesel exhaust: a relevant source of HNCO? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:7663-7671. [PMID: 23781923 DOI: 10.1021/es401127j] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Gas-phase acids in light duty diesel (LDD) vehicle exhaust were measured using chemical ionization mass spectrometry (CIMS). Fuel based emission factors (EF) and NOx ratios for these species were determined under differing steady state engine operating conditions. The derived HONO and HNO3 EFs agree well with literature values, with HONO being the single most important acidic emission. Of particular importance is the quantification of the EF for the toxic species, isocyanic acid (HNCO). The emission factors for HNCO ranged from 0.69 to 3.96 mg kgfuel(-1), and were significantly higher than previous biomass burning emission estimates. Further ambient urban measurements of HNCO demonstrated a clear relationship with the known traffic markers of benzene and toluene, demonstrating for the first time that urban commuter traffic is a source of HNCO. Estimates based upon the HNCO-benzene relationship indicate that upward of 23 tonnes of HNCO are released annually from commuter traffic in the Greater Toronto Area, far exceeding the amount possible from LDD alone. Nationally, 250 to 770 tonnes of HNCO may be emitted annually from on-road vehicles, likely representing the dominant source of exposure in urban areas, and with emissions comparable to that of biomass burning.
Collapse
Affiliation(s)
- Jeremy J B Wentzell
- Air Quality Processes Research Section, Environment Canada , 4905 Dufferin Street, Toronto, Ontario, Canada M3H 5T4
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Borduas N, Abbatt JPD, Murphy JG. Gas phase oxidation of monoethanolamine (MEA) with OH radical and ozone: kinetics, products, and particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:6377-6383. [PMID: 23688148 DOI: 10.1021/es401282j] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Monoethanolamine (MEA) is currently the benchmark solvent in carbon capture and storage (CCS), a technology aimed at reducing CO2 emissions in large combustion industries. To accurately assess the environmental impact of CCS, a sound understanding of the fate of MEA in the atmosphere is necessary. Relative and absolute rate kinetic experiments were conducted in a smog chamber using online proton transfer reaction mass spectrometry (PTR-MS) to follow the decay of MEA. The room temperature (295 ± 3K) kinetics of oxidation with hydroxyl radicals from light and dark sources yield an average value of (7.02 ± 0.46) × 10(-11) cm(3) molec(-1) s(-1), in good agreement with previously published data. For the first time, the rate coefficient for MEA with ozone was measured: (1.09 ± 0.05) × 10(-18) cm(3) molec(-1) s(-1). An investigation into the oxidation products was also conducted using online chemical ionization mass spectrometry (CI-TOFMS) where formamide, isocyanic acid as well as higher order products including cyclic amines were detected. Significant particle numbers and mass loadings were observed during the MEA oxidation experiments and accounted for over 15% of the fate of MEA-derived nitrogen.
Collapse
Affiliation(s)
- Nadine Borduas
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, ON M5S 3H6
| | | | | |
Collapse
|
46
|
Jackson DA, Wallington TJ, Mabury SA. Atmospheric oxidation of polyfluorinated amides: historical source of perfluorinated carboxylic acids to the environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:4317-4324. [PMID: 23586598 DOI: 10.1021/es400617v] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Polyfluorinated amides (PFAMs) are a class of fluorinated compounds which were produced as unintentional byproducts in the electrochemical fluorination process used for polyfluorinated sulfonamide synthesis in 1947-2002. To investigate the historical potential of PFAMs as an atmospheric perfluorinated acid (PFCA) source we studied N-ethylperfluorobutyramide (EtFBA) as a surrogate for longer chained PFAMs. Smog chamber relative rate techniques were used to measure bimolecular rate coefficients for reactions of EtFBA with chlorine atoms and hydroxyl radicals. It was found kCl = (2.08 ± 0.15) × 10(-11) cm(3) molecule(-1) s(-1) and kOH = (2.65 ± 0.50) × 10(-12) cm(3) molecule(-1) s(-1) and the atmospheric lifetime of EtFBA with respect to reaction with OH was estimated to be approximately 4.4 days. Offline sampling with both GC-MS and LC-MS/MS techniques was used to determine the products and hence a plausible pathway of atmospheric oxidation of EtFBA. Three primary oxidation products were observed by GC-MS, the N-dealkylation product C3F7C(O)NH2 and two carbonyl products, probably C3F7C(O)N(H)C(O)CH3 and C3F7C(O)N(H)CH2CHO. These primary products react further to give perfluorocarboxylic acids (PFCAs) as detected by LC-MS/MS, suggesting that eight carbon PFAMs were a historical source of PFCAs to remote regions, including the Canadian Arctic.
Collapse
Affiliation(s)
- Derek A Jackson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 3H6
| | | | | |
Collapse
|
47
|
Young PJ, Emmons LK, Roberts JM, Lamarque JF, Wiedinmyer C, Veres P, VandenBoer TC. Isocyanic acid in a global chemistry transport model: Tropospheric distribution, budget, and identification of regions with potential health impacts. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd017393] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Nielsen CJ, Herrmann H, Weller C. Atmospheric chemistry and environmental impact of the use of amines in carbon capture and storage (CCS). Chem Soc Rev 2012; 41:6684-704. [DOI: 10.1039/c2cs35059a] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Hanson DR, McMurry PH, Jiang J, Tanner D, Huey LG. Ambient pressure proton transfer mass spectrometry: detection of amines and ammonia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:8881-8888. [PMID: 21892835 DOI: 10.1021/es201819a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
An instrument to detect gaseous amines and ammonia is described, and representative data from an urban site and a laboratory setting are presented. The instrument, an Ambient pressure Proton transfer Mass Spectrometer (AmPMS), consists of a chemical ionization and drift region at atmospheric pressure coupled to a standard quadrupole mass spectrometer. Calibrations show that AmPMS sensitivity is good for amines, and AmPMS backgrounds were suitably determined by diverting sampled air through a catalytic converter. In urban air at a site in Atlanta, amines were detected at subpptv levels for methyl and dimethyl amine which were generally at a low abundance of <1 and ∼3 pptv, respectively. Trimethyl amine (or isomers) was on average about 4 pptv in the morning and increased to 15 pptv in the afternoon, while triethyl amine (or isomers or amides) increased to 25 pptv on average in the late afternoon. The background levels for the 4 and 5 carbon amines and ammonia were high, and data are very limited for these species. Improvements in detecting amines and ammonia from a smog chamber were evident due to improvements in AmPMS background determination; notably dimethyl amine and its OH oxidation products were followed along with impurity ammonia and other species. Future work will focus on accurate calibration standards and on improving the sample gas inlet.
Collapse
Affiliation(s)
- D R Hanson
- Chemistry Department, Augsburg College, Minneapolis, Minnesota 55454, USA.
| | | | | | | | | |
Collapse
|
50
|
Isocyanic acid in the atmosphere and its possible link to smoke-related health effects. Proc Natl Acad Sci U S A 2011; 108:8966-71. [PMID: 21576489 DOI: 10.1073/pnas.1103352108] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We measured isocyanic acid (HNCO) in laboratory biomass fires at levels up to 600 parts per billion by volume (ppbv), demonstrating that it has a significant source from pyrolysis/combustion of biomass. We also measured HNCO at mixing ratios up to 200 pptv (parts-per-trillion by volume) in ambient air in urban Los Angeles, CA, and in Boulder, CO, during the recent 2010 Fourmile Canyon fire. Further, our measurements of aqueous solubility show that HNCO is highly soluble, as it dissociates at physiological pH. Exposure levels > 1 ppbv provide a direct source of isocyanic acid and cyanate ion (NCO(-)) to humans at levels that have recognized health effects: atherosclerosis, cataracts, and rheumatoid arthritis, through the mechanism of protein carbamylation. In addition to the wildland fire and urban sources, we observed HNCO in tobacco smoke, HNCO has been reported from the low-temperature combustion of coal, and as a by-product of urea-selective catalytic reduction (SCR) systems that are being phased-in to control on-road diesel NO(x) emissions in the United States and the European Union. Given the current levels of exposure in populations that burn biomass or use tobacco, the expected growth in biomass burning emissions with warmer, drier regional climates, and planned increase in diesel SCR controls, it is imperative that we understand the extent and effects of this HNCO exposure.
Collapse
|