1
|
He FY, Zhao LS, Qu XX, Li K, Guo JP, Zhao F, Wang N, Qin BY, Chen XL, Gao J, Liu LN, Zhang YZ. Structural insights into the assembly and energy transfer of haptophyte photosystem I-light-harvesting supercomplex. Proc Natl Acad Sci U S A 2024; 121:e2413678121. [PMID: 39642204 DOI: 10.1073/pnas.2413678121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/04/2024] [Indexed: 12/08/2024] Open
Abstract
Haptophyta represents a major taxonomic group, with plastids derived from the primary plastids of red algae. Here, we elucidated the cryoelectron microscopy structure of the photosystem I-light-harvesting complex I (PSI-LHCI) supercomplex from the haptophyte Isochrysis galbana. The PSI core comprises 12 subunits, which have evolved differently from red algae and cryptophytes by losing the PsaO subunit while incorporating the PsaK subunit, which is absent in diatoms and dinoflagellates. The PSI core is encircled by 22 fucoxanthin-chlorophyll a/c-binding light-harvesting antenna proteins (iFCPIs) that form a trilayered antenna arrangement. Moreover, a pigment-binding subunit, LiFP, which has not been identified in any other previously characterized PSI-LHCI supercomplexes, was determined in I. galbana PSI-iFCPI, presumably facilitating the interactions and energy transfer between peripheral iFCPIs and the PSI core. Calculation of excitation energy transfer rates by computational simulations revealed that the intricate pigment network formed within PSI-iFCPI ensures efficient transfer of excitation energy. Overall, our study provides a solid structural foundation for understanding the light-harvesting and energy transfer mechanisms in haptophyte PSI-iFCPI and provides insights into the evolution and structural variations of red-lineage PSI-LHCIs.
Collapse
Affiliation(s)
- Fei-Yu He
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Long-Sheng Zhao
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Ministry of Education Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xin-Xiao Qu
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Kang Li
- Ministry of Education Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jian-Ping Guo
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Zhao
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Ning Wang
- Ministry of Education Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bing-Yue Qin
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiu-Lan Chen
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu-Ning Liu
- Ministry of Education Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Yu-Zhong Zhang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Ministry of Education Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
2
|
Perez-Boerema A, Engel BD, Wietrzynski W. Evolution of Thylakoid Structural Diversity. Annu Rev Cell Dev Biol 2024; 40:169-193. [PMID: 38950450 DOI: 10.1146/annurev-cellbio-120823-022747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Oxygenic photosynthesis evolved billions of years ago, becoming Earth's main source of biologically available carbon and atmospheric oxygen. Since then, phototrophic organisms have diversified from prokaryotic cyanobacteria into several distinct clades of eukaryotic algae and plants through endosymbiosis events. This diversity can be seen in the thylakoid membranes, complex networks of lipids, proteins, and pigments that perform the light-dependent reactions of photosynthesis. In this review, we highlight the structural diversity of thylakoids, following the evolutionary history of phototrophic species. We begin with a molecular inventory of different thylakoid components and then illustrate how these building blocks are integrated to form membrane networks with diverse architectures. We conclude with an outlook on understanding how thylakoids remodel their architecture and molecular organization during dynamic processes such as biogenesis, repair, and environmental adaptation.
Collapse
|
3
|
Ennist NM, Wang S, Kennedy MA, Curti M, Sutherland GA, Vasilev C, Redler RL, Maffeis V, Shareef S, Sica AV, Hua AS, Deshmukh AP, Moyer AP, Hicks DR, Swartz AZ, Cacho RA, Novy N, Bera AK, Kang A, Sankaran B, Johnson MP, Phadkule A, Reppert M, Ekiert D, Bhabha G, Stewart L, Caram JR, Stoddard BL, Romero E, Hunter CN, Baker D. De novo design of proteins housing excitonically coupled chlorophyll special pairs. Nat Chem Biol 2024; 20:906-915. [PMID: 38831036 PMCID: PMC11213709 DOI: 10.1038/s41589-024-01626-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
Natural photosystems couple light harvesting to charge separation using a 'special pair' of chlorophyll molecules that accepts excitation energy from the antenna and initiates an electron-transfer cascade. To investigate the photophysics of special pairs independently of the complexities of native photosynthetic proteins, and as a first step toward creating synthetic photosystems for new energy conversion technologies, we designed C2-symmetric proteins that hold two chlorophyll molecules in closely juxtaposed arrangements. X-ray crystallography confirmed that one designed protein binds two chlorophylls in the same orientation as native special pairs, whereas a second designed protein positions them in a previously unseen geometry. Spectroscopy revealed that the chlorophylls are excitonically coupled, and fluorescence lifetime imaging demonstrated energy transfer. The cryo-electron microscopy structure of a designed 24-chlorophyll octahedral nanocage with a special pair on each edge closely matched the design model. The results suggest that the de novo design of artificial photosynthetic systems is within reach of current computational methods.
Collapse
Affiliation(s)
- Nathan M Ennist
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | - Shunzhi Wang
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Madison A Kennedy
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Mariano Curti
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology (BIST), Tarragona, Spain
| | | | | | - Rachel L Redler
- Department of Cell Biology and Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Valentin Maffeis
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology (BIST), Tarragona, Spain
| | - Saeed Shareef
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology (BIST), Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Anthony V Sica
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ash Sueh Hua
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Arundhati P Deshmukh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Adam P Moyer
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Derrick R Hicks
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Avi Z Swartz
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Ralph A Cacho
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Nathan Novy
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Asim K Bera
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Amala Phadkule
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Mike Reppert
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Damian Ekiert
- Department of Cell Biology and Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Gira Bhabha
- Department of Cell Biology and Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Lance Stewart
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Justin R Caram
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Elisabet Romero
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology (BIST), Tarragona, Spain
| | - C Neil Hunter
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Zhang YZ, Li K, Qin BY, Guo JP, Zhang QB, Zhao DL, Chen XL, Gao J, Liu LN, Zhao LS. Structure of cryptophyte photosystem II-light-harvesting antennae supercomplex. Nat Commun 2024; 15:4999. [PMID: 38866834 PMCID: PMC11169493 DOI: 10.1038/s41467-024-49453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
Cryptophytes are ancestral photosynthetic organisms evolved from red algae through secondary endosymbiosis. They have developed alloxanthin-chlorophyll a/c2-binding proteins (ACPs) as light-harvesting complexes (LHCs). The distinctive properties of cryptophytes contribute to efficient oxygenic photosynthesis and underscore the evolutionary relationships of red-lineage plastids. Here we present the cryo-electron microscopy structure of the Photosystem II (PSII)-ACPII supercomplex from the cryptophyte Chroomonas placoidea. The structure includes a PSII dimer and twelve ACPII monomers forming four linear trimers. These trimers structurally resemble red algae LHCs and cryptophyte ACPI trimers that associate with Photosystem I (PSI), suggesting their close evolutionary links. We also determine a Chl a-binding subunit, Psb-γ, essential for stabilizing PSII-ACPII association. Furthermore, computational calculation provides insights into the excitation energy transfer pathways. Our study lays a solid structural foundation for understanding the light-energy capture and transfer in cryptophyte PSII-ACPII, evolutionary variations in PSII-LHCII, and the origin of red-lineage LHCIIs.
Collapse
Affiliation(s)
- Yu-Zhong Zhang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| | - Kang Li
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Bing-Yue Qin
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jian-Ping Guo
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Quan-Bao Zhang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Dian-Li Zhao
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xiu-Lan Chen
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China.
| | - Lu-Ning Liu
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| | - Long-Sheng Zhao
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| |
Collapse
|
5
|
Pirnia A, Maqdisi R, Mittal S, Sener M, Singharoy A. Perspective on Integrative Simulations of Bioenergetic Domains. J Phys Chem B 2024; 128:3302-3319. [PMID: 38562105 DOI: 10.1021/acs.jpcb.3c07335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Bioenergetic processes in cells, such as photosynthesis or respiration, integrate many time and length scales, which makes the simulation of energy conversion with a mere single level of theory impossible. Just like the myriad of experimental techniques required to examine each level of organization, an array of overlapping computational techniques is necessary to model energy conversion. Here, a perspective is presented on recent efforts for modeling bioenergetic phenomena with a focus on molecular dynamics simulations and its variants as a primary method. An overview of the various classical, quantum mechanical, enhanced sampling, coarse-grained, Brownian dynamics, and Monte Carlo methods is presented. Example applications discussed include multiscale simulations of membrane-wide electron transport, rate kinetics of ATP turnover from electrochemical gradients, and finally, integrative modeling of the chromatophore, a photosynthetic pseudo-organelle.
Collapse
Affiliation(s)
- Adam Pirnia
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1004, United States
| | - Ranel Maqdisi
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1004, United States
| | - Sumit Mittal
- VIT Bhopal University, Sehore 466114, Madhya Pradesh, India
| | - Melih Sener
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1004, United States
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1004, United States
| |
Collapse
|
6
|
van Stokkum IHM, Müller MG, Holzwarth AR. Energy Transfer and Radical-Pair Dynamics in Photosystem I with Different Red Chlorophyll a Pigments. Int J Mol Sci 2024; 25:4125. [PMID: 38612934 PMCID: PMC11012434 DOI: 10.3390/ijms25074125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024] Open
Abstract
We establish a general kinetic scheme for the energy transfer and radical-pair dynamics in photosystem I (PSI) of Chlamydomonas reinhardtii, Synechocystis PCC6803, Thermosynechococcus elongatus and Spirulina platensis grown under white-light conditions. With the help of simultaneous target analysis of transient-absorption data sets measured with two selective excitations, we resolved the spectral and kinetic properties of the different species present in PSI. WL-PSI can be described as a Bulk Chl a in equilibrium with a higher-energy Chl a, one or two Red Chl a and a reaction-center compartment (WL-RC). Three radical pairs (RPs) have been resolved with very similar properties in the four model organisms. The charge separation is virtually irreversible with a rate of ≈900 ns-1. The second rate, of RP1 → RP2, ranges from 70-90 ns-1 and the third rate, of RP2 → RP3, is ≈30 ns-1. Since RP1 and the Red Chl a are simultaneously present, resolving the RP1 properties is challenging. In Chlamydomonas reinhardtii, the excited WL-RC and Bulk Chl a compartments equilibrate with a lifetime of ≈0.28 ps, whereas the Red and the Bulk Chl a compartments equilibrate with a lifetime of ≈2.65 ps. We present a description of the thermodynamic properties of the model organisms at room temperature.
Collapse
Affiliation(s)
- Ivo H. M. van Stokkum
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands;
| | - Marc G. Müller
- Max-Planck-Institut für Chemische Energiekonversion, D-45470 Mülheim a.d. Ruhr, Germany;
| | - Alfred R. Holzwarth
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands;
- Max-Planck-Institut für Chemische Energiekonversion, D-45470 Mülheim a.d. Ruhr, Germany;
| |
Collapse
|
7
|
Li W, Liang Z, Wang P, Ma Q. The luminescent principle and sensing mechanism of metal-organic framework for bioanalysis and bioimaging. Biosens Bioelectron 2024; 249:116008. [PMID: 38245932 DOI: 10.1016/j.bios.2024.116008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Metal-organic frameworks (MOFs) porous material have obtained more and more attention during the past decade. Among various MOFs materials, luminescent MOFs with specific chemical characteristics and excellent optical properties have been regarded as promising candidates in the research of cancer biomarkers detection and bioimaging. Therefore, the latest advances and the principal biosensing and imaging strategies based on the luminescent MOFs were discussed in this review. The effective synthesis methods of luminescent MOFs were emphasized firstly. Subsequently, the luminescent principle of MOFs has been summarized. Furthermore, the luminescent MOF-based sensing mechanisms have been highlighted to provide insights into the design of biosensors. The designability of LMOFs was suitable for different needs of biorecognition, detection, and imaging. Typical examples of luminescent MOF in the various cancer biomarkers detection and bioimaging were emphatically introduced. Finally, the future outlooks and challenges of luminescent MOF-based biosensing systems were proposed for clinical cancer diagnosis.
Collapse
Affiliation(s)
- Wenyan Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zihui Liang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Peilin Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
8
|
Brinatti Vazquez GD, Lo Gerfo Morganti G, Vasilev C, Hunter CN, van Hulst NF. Structured Excitation Energy Transfer: Tracking Exciton Diffusion below Sunlight Intensity. ACS PHOTONICS 2024; 11:1318-1326. [PMID: 38523751 PMCID: PMC10958594 DOI: 10.1021/acsphotonics.4c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/26/2024]
Abstract
With the increasing demand for new materials for light-harvesting applications, spatiotemporal microscopy techniques are receiving increasing attention as they allow direct observation of the nanoscale diffusion of excitons. However, the use of pulsed and tightly focused laser beams generates light intensities far above those expected under sunlight illumination, leading to photodamage and nonlinear effects that seriously limit the accuracy and applicability of these techniques, especially in biological or atomically thin materials. In this work, we present a novel spatiotemporal microscopy technique that exploits structured excitation in order to dramatically decrease the excitation intensity, up to 10,000-fold when compared with previously reported spatiotemporal photoluminescence microscopy experiments. We tested our method in two different systems, reporting the first exciton diffusion measurement at illumination conditions below sunlight, both considering average power and peak exciton densities in an organic photovoltaic sample (Y6), where we tracked the excitons for up to five recombination lifetimes. Next, nanometer-scale energy transport was directly observed for the first time in both space and time in a printed monolayer of the light-harvesting complex 2 from purple bacteria.
Collapse
Affiliation(s)
- Guillermo D. Brinatti Vazquez
- ICFO-Institut
de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Giulia Lo Gerfo Morganti
- ICFO-Institut
de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Cvetelin Vasilev
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - C. Neil Hunter
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - Niek F. van Hulst
- ICFO-Institut
de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
9
|
Zhang Y, Oberg CP, Hu Y, Xu H, Yan M, Scholes GD, Wang M. Molecular and Supramolecular Materials: From Light-Harvesting to Quantum Information Science and Technology. J Phys Chem Lett 2024:3294-3316. [PMID: 38497707 DOI: 10.1021/acs.jpclett.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The past two decades have witnessed immense advances in quantum information technology (QIT), benefited by advances in physics, chemistry, biology, and materials science and engineering. It is intriguing to consider whether these diverse molecular and supramolecular structures and materials, partially inspired by quantum effects as observed in sophisticated biological systems such as light-harvesting complexes in photosynthesis and the magnetic compass of migratory birds, might play a role in future QIT. If so, how? Herein, we review materials and specify the relationship between structures and quantum properties, and we identify the challenges and limitations that have restricted the intersection of QIT and chemical materials. Examples are broken down into two categories: materials for quantum sensing where nonclassical function is observed on the molecular scale and systems where nonclassical phenomena are present due to intermolecular interactions. We discuss challenges for materials chemistry and make comparisons to related systems found in nature. We conclude that if chemical materials become relevant for QIT, they will enable quite new kinds of properties and functions.
Collapse
Affiliation(s)
- Yipeng Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Catrina P Oberg
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Yue Hu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Hongxue Xu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Mengwen Yan
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Mingfeng Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
10
|
Zhao LS, Wang N, Li K, Li CY, Guo JP, He FY, Liu GM, Chen XL, Gao J, Liu LN, Zhang YZ. Architecture of symbiotic dinoflagellate photosystem I-light-harvesting supercomplex in Symbiodinium. Nat Commun 2024; 15:2392. [PMID: 38493166 PMCID: PMC10944487 DOI: 10.1038/s41467-024-46791-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
Symbiodinium are the photosynthetic endosymbionts for corals and play a vital role in supplying their coral hosts with photosynthetic products, forming the nutritional foundation for high-yield coral reef ecosystems. Here, we determine the cryo-electron microscopy structure of Symbiodinium photosystem I (PSI) supercomplex with a PSI core composed of 13 subunits including 2 previously unidentified subunits, PsaT and PsaU, as well as 13 peridinin-Chl a/c-binding light-harvesting antenna proteins (AcpPCIs). The PSI-AcpPCI supercomplex exhibits distinctive structural features compared to their red lineage counterparts, including extended termini of PsaD/E/I/J/L/M/R and AcpPCI-1/3/5/7/8/11 subunits, conformational changes in the surface loops of PsaA and PsaB subunits, facilitating the association between the PSI core and peripheral antennae. Structural analysis and computational calculation of excitation energy transfer rates unravel specific pigment networks in Symbiodinium PSI-AcpPCI for efficient excitation energy transfer. Overall, this study provides a structural basis for deciphering the mechanisms governing light harvesting and energy transfer in Symbiodinium PSI-AcpPCI supercomplexes adapted to their symbiotic ecosystem, as well as insights into the evolutionary diversity of PSI-LHCI among various photosynthetic organisms.
Collapse
Affiliation(s)
- Long-Sheng Zhao
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237, China
| | - Ning Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Kang Li
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237, China
| | - Chun-Yang Li
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237, China
| | - Jian-Ping Guo
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fei-Yu He
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Gui-Ming Liu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China
| | - Xiu-Lan Chen
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237, China
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Lu-Ning Liu
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Yu-Zhong Zhang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237, China.
| |
Collapse
|
11
|
Stadnichuk IN, Krasilnikov PM. Relationship between non-photochemical quenching efficiency and the energy transfer rate from phycobilisomes to photosystem II. PHOTOSYNTHESIS RESEARCH 2024; 159:177-189. [PMID: 37328680 DOI: 10.1007/s11120-023-01031-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
The chromophorylated PBLcm domain of the ApcE linker protein in the cyanobacterial phycobilisome (PBS) serves as a bottleneck for Förster resonance energy transfer (FRET) from the PBS to the antennal chlorophyll of photosystem II (PS II) and as a redirection point for energy distribution to the orange protein ketocarotenoid (OCP), which is excitonically coupled to the PBLcm chromophore in the process of non-photochemical quenching (NPQ) under high light conditions. The involvement of PBLcm in the quenching process was first directly demonstrated by measuring steady-state fluorescence spectra of cyanobacterial cells at different stages of NPQ development. The time required to transfer energy from the PBLcm to the OCP is several times shorter than the time it takes to transfer energy from the PBLcm to the PS II, ensuring quenching efficiency. The data obtained provide an explanation for the different rates of PBS quenching in vivo and in vitro according to the half ratio of OCP/PBS in the cyanobacterial cell, which is tens of times lower than that realized for an effective NPQ process in solution.
Collapse
Affiliation(s)
- Igor N Stadnichuk
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya 35, 127726, Moscow, Russia.
| | - Pavel M Krasilnikov
- Biological Faculty of M.V., Lomonosov State University, Lenin Hills 12, 119991, Moscow, Russia
| |
Collapse
|
12
|
Oliden-Sánchez A, Sola-Llano R, Pérez-Pariente J, Gómez-Hortigüela L, Martínez-Martínez V. Exploiting the photophysical features of DMAN template in ITQ-51 zeotype in the search for FRET energy transfer. Phys Chem Chem Phys 2024; 26:1225-1233. [PMID: 38099816 DOI: 10.1039/d3cp02625f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The combination between photoactive molecules and inorganic structures is of great interest for the development of advanced materials in the field of optics. Particularly, zeotypes with extra-large pore size are attractive because they allow the encapsulation of bulky dyes. The microporous aluminophoshate Mg-ITQ-51 (IFO-type structure) represents an ideal candidate because of the synergic combination of two crucial features: the IFO framework itself, which is composed of non-interconnected one-dimensional extra-large elliptical channels with a diameter up to 11 Å able to host bulky guest species, and the particular organic structure-directing agent used for the synthesis (1,8-bis(dimethylamino)naphthalene, DMAN), which efficiently fills the IFO pores, and is itself a photoactive molecule with interesting fluorescence properties in the blue range of the visible spectrum, thus providing a densely-incorporated donor species for FRET processes. Besides, occlusion of DMAN dye in the framework triggers a notable improvement of its fluorescence properties by confinement effect. To extend the action of the material and to mimic processes such as photosynthesis in which FRET is essential, two robust laser dyes with bulky size, rhodamine 123 and Nile Blue, have been encapsulated for the first time in a zeolitic framework, together with DMAN, in a straightforward one-pot synthesis. Thus, photoactive systems with emission in the entire visible range have been achieved due to a partial FRET between organic chromophores protected in a rigid aluminophosphate matrix.
Collapse
Affiliation(s)
- Ainhoa Oliden-Sánchez
- Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Apartado 644, 4808 Bilbao, Spain.
| | - Rebeca Sola-Llano
- Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Apartado 644, 4808 Bilbao, Spain.
| | - Joaquín Pérez-Pariente
- Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Cantoblanco, Madrid, Spain.
| | - Luis Gómez-Hortigüela
- Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Cantoblanco, Madrid, Spain.
| | | |
Collapse
|
13
|
Xin J, Shi Y, Zhang X, Yuan X, Xin Y, He H, Shen J, Blankenship RE, Xu X. Carotenoid assembly regulates quinone diffusion and the Roseiflexus castenholzii reaction center-light harvesting complex architecture. eLife 2023; 12:e88951. [PMID: 37737710 PMCID: PMC10516601 DOI: 10.7554/elife.88951] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
Carotenoid (Car) pigments perform central roles in photosynthesis-related light harvesting (LH), photoprotection, and assembly of functional pigment-protein complexes. However, the relationships between Car depletion in the LH, assembly of the prokaryotic reaction center (RC)-LH complex, and quinone exchange are not fully understood. Here, we analyzed native RC-LH (nRC-LH) and Car-depleted RC-LH (dRC-LH) complexes in Roseiflexus castenholzii, a chlorosome-less filamentous anoxygenic phototroph that forms the deepest branch of photosynthetic bacteria. Newly identified exterior Cars functioned with the bacteriochlorophyll B800 to block the proposed quinone channel between LHαβ subunits in the nRC-LH, forming a sealed LH ring that was disrupted by transmembrane helices from cytochrome c and subunit X to allow quinone shuttling. dRC-LH lacked subunit X, leading to an exposed LH ring with a larger opening, which together accelerated the quinone exchange rate. We also assigned amino acid sequences of subunit X and two hypothetical proteins Y and Z that functioned in forming the quinone channel and stabilizing the RC-LH interactions. This study reveals the structural basis by which Cars assembly regulates the architecture and quinone exchange of bacterial RC-LH complexes. These findings mark an important step forward in understanding the evolution and diversity of prokaryotic photosynthetic apparatus.
Collapse
Affiliation(s)
- Jiyu Xin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and The Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Yang Shi
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence & Department of Neurobiology and Department of Pathology of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang UniversityHangzhouChina
| | - Xin Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and The Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhouChina
| | - Xinyi Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and The Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhouChina
| | - Yueyong Xin
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhouChina
| | - Huimin He
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhouChina
| | - Jiejie Shen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and The Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Robert E Blankenship
- Departments of Biology and Chemistry, Washington University in St. LouisSt. LouisUnited States
| | - Xiaoling Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and The Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhouChina
| |
Collapse
|
14
|
Götze JP, Maity S, Kleinekathöfer U. Incoherent Energy Transfer between the Baseplate and FMO Protein Explored at Ideal Geometries. J Phys Chem B 2023; 127:7829-7838. [PMID: 37691433 DOI: 10.1021/acs.jpcb.3c02568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The Förster resonance energy transfer (FRET) between the Fenna-Matthews-Olson (FMO) protein complex and the chlorosomal baseplate (CBP) is investigated by using an idealized model. This simplified model is based on crystal structure and molecular dynamics conformations. Some of the further input, such as the transition dipole moments, was extracted from earlier molecular-level simulations. The resulting model mimics the effects of the relative position between the CBP and the FMO complex on the corresponding FRET efficiency under ideal conditions, involving about 1.3 billion FRET calculations per investigated model. In this idealized model and employing some approximations, it is found that FRET efficiency is almost completely independent of the FMO trimer orientation (displacement, distance, and rotation), despite FMO and CBP being highly structured complexes. Even removing individual FMO BChl triples will only reduce the FRET efficiency by up to 8.6%. An FMO containing only the least efficient BChl triple will retain about 25% of the FRET efficiency of a full FMO complex. In addition to its proposed function as an energetic funnel, FMO is thus identified to act as a highly robust spatial funnel for CBP excitation harvesting, independent of the mutual CBP-FMO orientation.
Collapse
Affiliation(s)
- Jan P Götze
- Institut für Chemie und Biochemie, Physikalische und Theoretische Chemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Sayan Maity
- School of Science, Constructor University, Campusring 1, 28759 Bremen, Germany
| | | |
Collapse
|
15
|
Thwaites O, Christianson BM, Cowan AJ, Jäckel F, Liu LN, Gardner AM. Unravelling the Roles of Integral Polypeptides in Excitation Energy Transfer of Photosynthetic RC-LH1 Supercomplexes. J Phys Chem B 2023; 127:7283-7290. [PMID: 37556839 PMCID: PMC10461223 DOI: 10.1021/acs.jpcb.3c04466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/24/2023] [Indexed: 08/11/2023]
Abstract
Elucidating the photosynthetic processes that occur within the reaction center-light-harvesting 1 (RC-LH1) supercomplexes from purple bacteria is crucial for uncovering the assembly and functional mechanisms of natural photosynthetic systems and underpinning the development of artificial photosynthesis. Here, we examined excitation energy transfer of various RC-LH1 supercomplexes of Rhodobacter sphaeroides using transient absorption spectroscopy, coupled with lifetime density analysis, and studied the roles of the integral transmembrane polypeptides, PufX and PufY, in energy transfer within the RC-LH1 core complex. Our results show that the absence of PufX increases both the LH1 → RC excitation energy transfer lifetime and distribution due to the role of PufX in defining the interaction and orientation of the RC within the LH1 ring. While the absence of PufY leads to the conformational shift of several LH1 subunits toward the RC, it does not result in a marked change in the excitation energy transfer lifetime.
Collapse
Affiliation(s)
- Owen Thwaites
- Stephenson
Institute of Renewable Energy, University
of Liverpool, Liverpool L69 7ZF, U.K.
- Department
of Physics, University of Liverpool, Liverpool L69 7ZE, U.K.
| | - Bern M. Christianson
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
| | - Alexander J. Cowan
- Stephenson
Institute of Renewable Energy, University
of Liverpool, Liverpool L69 7ZF, U.K.
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Frank Jäckel
- Stephenson
Institute of Renewable Energy, University
of Liverpool, Liverpool L69 7ZF, U.K.
- Department
of Physics, University of Liverpool, Liverpool L69 7ZE, U.K.
| | - Lu-Ning Liu
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
- College
of Marine Life Sciences, and Frontiers Science Center for Deep Ocean
Multispheres and Earth System, Ocean University
of China, Qingdao 266003, China
| | - Adrian M. Gardner
- Stephenson
Institute of Renewable Energy, University
of Liverpool, Liverpool L69 7ZF, U.K.
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
- Early Career
Laser Laboratory, University of Liverpool, Liverpool L69 3BX, U.K.
| |
Collapse
|
16
|
Garci A, Abid S, David AHG, Jones LO, Azad CS, Ovalle M, Brown PJ, Stern CL, Zhao X, Malaisrie L, Schatz GC, Young RM, Wasielewski MR, Stoddart JF. Exciplex Emission and Förster Resonance Energy Transfer in Polycyclic Aromatic Hydrocarbon-Based Bischromophoric Cyclophanes and Homo[2]catenanes. J Am Chem Soc 2023; 145:18391-18401. [PMID: 37565777 DOI: 10.1021/jacs.3c04213] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Energy transfer and exciplex emission are not only crucial photophysical processes in many living organisms but also important for the development of smart photonic materials. We report, herein, the rationally designed synthesis and characterization of two highly charged bischromophoric homo[2]catenanes and one cyclophane incorporating a combination of polycyclic aromatic hydrocarbons, i.e., anthracene, pyrene, and perylene, which are intrinsically capable of supporting energy transfer and exciplex formation. The possible coconformations of the homo[2]catenanes, on account of their dynamic behavior, have been probed by Density Functional Theory calculations. The unique photophysical properties of these exotic molecules have been explored by steady-state and time-resolved absorption and fluorescence spectroscopies. The tetracationic pyrene-perylene cyclophane system exhibits emission emanating from a highly efficient Förster resonance energy transfer (FRET) mechanism which occurs in 48 ps, while the octacationic homo[2]catenane displays a weak exciplex photoluminescence following extremely fast (<0.3 ps) exciplex formation. The in-depth fundamental understanding of these photophysical processes involved in the fluorescence of bischromophoric cyclophanes and homo[2]catenanes paves the way for their use in future bioapplications and photonic devices.
Collapse
Affiliation(s)
- Amine Garci
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Seifallah Abid
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leighton O Jones
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chandra S Azad
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Marco Ovalle
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Paige J Brown
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingang Zhao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Luke Malaisrie
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ryan M Young
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
17
|
Shevela D, Kern JF, Govindjee G, Messinger J. Solar energy conversion by photosystem II: principles and structures. PHOTOSYNTHESIS RESEARCH 2023; 156:279-307. [PMID: 36826741 PMCID: PMC10203033 DOI: 10.1007/s11120-022-00991-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/01/2022] [Indexed: 05/23/2023]
Abstract
Photosynthetic water oxidation by Photosystem II (PSII) is a fascinating process because it sustains life on Earth and serves as a blue print for scalable synthetic catalysts required for renewable energy applications. The biophysical, computational, and structural description of this process, which started more than 50 years ago, has made tremendous progress over the past two decades, with its high-resolution crystal structures being available not only of the dark-stable state of PSII, but of all the semi-stable reaction intermediates and even some transient states. Here, we summarize the current knowledge on PSII with emphasis on the basic principles that govern the conversion of light energy to chemical energy in PSII, as well as on the illustration of the molecular structures that enable these reactions. The important remaining questions regarding the mechanism of biological water oxidation are highlighted, and one possible pathway for this fundamental reaction is described at a molecular level.
Collapse
Affiliation(s)
- Dmitry Shevela
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
| | - Jan F Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Johannes Messinger
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
- Molecular Biomimetics, Department of Chemistry - Ångström, Uppsala University, 75120, Uppsala, Sweden.
| |
Collapse
|
18
|
Ennist N, Wang S, Kennedy M, Curti M, Sutherland G, Vasilev C, Redler R, Maffeis V, Shareef S, Sica A, Hua A, Deshmukh A, Moyer A, Hicks D, Swartz A, Cacho R, Novy N, Bera A, Kang A, Sankaran B, Johnson M, Reppert M, Ekiert D, Bhabha G, Stewart L, Caram J, Stoddard B, Romero E, Hunter CN, Baker D. De novo design of energy transfer proteins housing excitonically coupled chlorophyll special pairs. RESEARCH SQUARE 2023:rs.3.rs-2736786. [PMID: 37131790 PMCID: PMC10153362 DOI: 10.21203/rs.3.rs-2736786/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Natural photosystems couple light harvesting to charge separation using a "special pair" of chlorophyll molecules that accepts excitation energy from the antenna and initiates an electron-transfer cascade. To investigate the photophysics of special pairs independent of complexities of native photosynthetic proteins, and as a first step towards synthetic photosystems for new energy conversion technologies, we designed C2-symmetric proteins that precisely position chlorophyll dimers. X-ray crystallography shows that one designed protein binds two chlorophylls in a binding orientation matching native special pairs, while a second positions them in a previously unseen geometry. Spectroscopy reveals excitonic coupling, and fluorescence lifetime imaging demonstrates energy transfer. We designed special pair proteins to assemble into 24-chlorophyll octahedral nanocages; the design model and cryo-EM structure are nearly identical. The design accuracy and energy transfer function of these special pair proteins suggest that de novo design of artificial photosynthetic systems is within reach of current computational methods.
Collapse
Affiliation(s)
| | | | | | - Mariano Curti
- Institute of Chemical Research of Catalonia (ICIQ-CERCA)
| | | | | | | | | | - Saeed Shareef
- Institute of Chemical Research of Catalonia (ICIQ-CERCA)
| | | | - Ash Hua
- University of California, Los Angeles
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Reiter S, Kiss FL, Hauer J, de Vivie-Riedle R. Thermal site energy fluctuations in photosystem I: new insights from MD/QM/MM calculations. Chem Sci 2023; 14:3117-3131. [PMID: 36970098 PMCID: PMC10034153 DOI: 10.1039/d2sc06160k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Cyanobacterial photosystem I (PSI) is one of the most efficient photosynthetic machineries found in nature. Due to the large scale and complexity of the system, the energy transfer mechanism from the antenna complex to the reaction center is still not fully understood. A central element is the accurate evaluation of the individual chlorophyll excitation energies (site energies). Such an evaluation must include a detailed treatment of site specific environmental influences on structural and electrostatic properties, but also their evolution in the temporal domain, because of the dynamic nature of the energy transfer process. In this work, we calculate the site energies of all 96 chlorophylls in a membrane-embedded model of PSI. The employed hybrid QM/MM approach using the multireference DFT/MRCI method in the QM region allows to obtain accurate site energies under explicit consideration of the natural environment. We identify energy traps and barriers in the antenna complex and discuss their implications for energy transfer to the reaction center. Going beyond previous studies, our model also accounts for the molecular dynamics of the full trimeric PSI complex. Via statistical analysis we show that the thermal fluctuations of single chlorophylls prevent the formation of a single prominent energy funnel within the antenna complex. These findings are also supported by a dipole exciton model. We conclude that energy transfer pathways may form only transiently at physiological temperatures, as thermal fluctuations overcome energy barriers. The set of site energies provided in this work sets the stage for theoretical and experimental studies on the highly efficient energy transfer mechanisms in PSI.
Collapse
Affiliation(s)
- Sebastian Reiter
- Department of Chemistry, Ludwig-Maximilians-Universität München Butenandtstr. 11 81377 Munich Germany
| | - Ferdinand L Kiss
- Department of Chemistry, Ludwig-Maximilians-Universität München Butenandtstr. 11 81377 Munich Germany
| | - Jürgen Hauer
- Department of Chemistry, Technical University of Munich Lichtenbergstr. 4, Garching 85747 Germany
| | - Regina de Vivie-Riedle
- Department of Chemistry, Ludwig-Maximilians-Universität München Butenandtstr. 11 81377 Munich Germany
| |
Collapse
|
20
|
Slimani SL, Kostecki R, Kursunlu AN, Kee TW, Tapping PC, Mak AM, Quach JQ. Experimental and computational characterisation of an artificial light harvesting complex. Phys Chem Chem Phys 2023; 25:4743-4753. [PMID: 36691831 DOI: 10.1039/d2cp03858g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Photosynthesis has been shown to be a highly efficient process for energy transfer in plants and bacteria. Like natural photosynthetic systems, the artificial light harvesting complex (LHC) BODIPY pillar[5]arene exhibits Förster resonance energy transfer (FRET). However, extensive characterisation of the BODIPY pillar[5]arene LHC to determine its suitability as an artificial LHC has yet to occur. In this paper we experimentally and computationally investigate the photophysical properties of the LHC by comparing the light absorption of the BODIPY LHC to individual BODIPY chromophores. Our results show evidence for quantum coherence, with oscillation frequencies of 100 cm-1 and 600 cm-1, which are attributable to vibronic, or exciton-phonon type coupling. Computational analysis suggests strong couplings of the molecular orbitals of the LHC resulting from the stacking of neighbouring BODIPY chromophore units. Interestingly, we find a 40% reduction in the absorbance of light for the BODIPY LHC compared to the individual chromophores which we attribute to electronic interactions between the conjugated π-systems of the BODIPY chromophores and the pillar[5]arene backbone.
Collapse
Affiliation(s)
- Sabrina L Slimani
- Institute for Photonics and Advanced Sensing (IPAS) and School of Physical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Roman Kostecki
- Institute for Photonics and Advanced Sensing (IPAS) and School of Physical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Ahmed Nuri Kursunlu
- Department of Chemistry, Faculty of Science, University of Selçuk, Konya, Turkey.
| | - Tak W Kee
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Patrick C Tapping
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Adrian M Mak
- Institute of High Performance Computing, Agency of Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Singapore
| | - James Q Quach
- Institute for Photonics and Advanced Sensing (IPAS) and School of Physical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.,Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| |
Collapse
|
21
|
Holder ST, Estévez-Varela C, Pastoriza-Santos I, Lopez-Garcia M, Oulton R, Núñez-Sánchez S. Bio-inspired building blocks for all-organic metamaterials from visible to near-infrared. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:307-318. [PMID: 39634858 PMCID: PMC11501215 DOI: 10.1515/nanoph-2022-0690] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/07/2024]
Abstract
Light-harvesting complexes in natural photosynthetic systems, such as those in purple bacteria, consist of photo-reactive chromophores embedded in densely packed "antenna" systems organized in well-defined nanostructures. In the case of purple bacteria, the chromophore antennas are composed of natural J-aggregates such as bacteriochlorophylls and carotenoids. Inspired by the molecular composition of such biological systems, we create a library of organic materials composed of densely packed J-aggregates in a polymeric matrix, in which the matrix mimics the optical role of a protein scaffold. This library of organic materials shows polaritonic properties which can be tuned from the visible to the infrared by choice of the model molecule. Inspired by the molecular architecture of the light-harvesting complexes of Rhodospirillum molischianum bacteria, we study the light-matter interactions of J-aggregate-based nanorings with similar dimensions to the analogous natural nanoscale architectures. Electromagnetic simulations show that these nanorings of J-aggregates can act as resonators, with subwavelength confinement of light while concentrating the electric field in specific regions. These results open the door to bio-inspired building blocks for metamaterials from visible to infrared in an all-organic platform, while offering a new perspective on light-matter interactions at the nanoscale in densely packed organic matter in biological organisms including photosynthetic organelles.
Collapse
Affiliation(s)
| | | | | | - Martin Lopez-Garcia
- Natural and Artificial Photonic Structures and Devices Group, INL-International Iberian Nanotechnology Laboratory, Braga4715-330, Portugal
| | - Ruth Oulton
- Quantum Engineering Technology Labs, University of Bristol, Bristol, UK
| | | |
Collapse
|
22
|
Hancock AM, Swainsbury DJK, Meredith SA, Morigaki K, Hunter CN, Adams PG. Enhancing the spectral range of plant and bacterial light-harvesting pigment-protein complexes with various synthetic chromophores incorporated into lipid vesicles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 237:112585. [PMID: 36334507 DOI: 10.1016/j.jphotobiol.2022.112585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/16/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
The Light-Harvesting (LH) pigment-protein complexes found in photosynthetic organisms have the role of absorbing solar energy with high efficiency and transferring it to reaction centre complexes. LH complexes contain a suite of pigments that each absorb light at specific wavelengths, however, the natural combinations of pigments within any one protein complex do not cover the full range of solar radiation. Here, we provide an in-depth comparison of the relative effectiveness of five different organic "dye" molecules (Texas Red, ATTO, Cy7, DiI, DiR) for enhancing the absorption range of two different LH membrane protein complexes (the major LHCII from plants and LH2 from purple phototrophic bacteria). Proteoliposomes were self-assembled from defined mixtures of lipids, proteins and dye molecules and their optical properties were quantified by absorption and fluorescence spectroscopy. Both lipid-linked dyes and alternative lipophilic dyes were found to be effective excitation energy donors to LH protein complexes, without the need for direct chemical or generic modification of the proteins. The Förster theory parameters (e.g., spectral overlap) were compared between each donor-acceptor combination and found to be good predictors of an effective dye-protein combination. At the highest dye-to-protein ratios tested (over 20:1), the effective absorption strength integrated over the full spectral range was increased to ∼180% of its natural level for both LH complexes. Lipophilic dyes could be inserted into pre-formed membranes although their effectiveness was found to depend upon favourable physicochemical interactions. Finally, we demonstrated that these dyes can also be effective at increasing the spectral range of surface-supported models of photosynthetic membranes, using fluorescence microscopy. The results of this work provide insight into the utility of self-assembled lipid membranes and the great flexibility of LH complexes for interacting with different dyes.
Collapse
Affiliation(s)
- Ashley M Hancock
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - David J K Swainsbury
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK; School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Sophie A Meredith
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Kenichi Morigaki
- Graduate School of Agricultural Science and Biosignal Research Center, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| | - C Neil Hunter
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Peter G Adams
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
23
|
Eschenbach P, Neugebauer J. Subsystem density-functional theory: A reliable tool for spin-density based properties. J Chem Phys 2022; 157:130902. [PMID: 36209003 DOI: 10.1063/5.0103091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Subsystem density-functional theory compiles a set of features that allow for efficiently calculating properties of very large open-shell radical systems such as organic radical crystals, proteins, or deoxyribonucleic acid stacks. It is computationally less costly than correlated ab initio wave function approaches and can pragmatically avoid the overdelocalization problem of Kohn-Sham density-functional theory without employing hard constraints on the electron-density. Additionally, subsystem density-functional theory calculations commonly start from isolated fragment electron densities, pragmatically preserving a priori specified subsystem spin-patterns throughout the calculation. Methods based on subsystem density-functional theory have seen a rapid development over the past years and have become important tools for describing open-shell properties. In this Perspective, we address open questions and possible developments toward challenging future applications in connection with subsystem density-functional theory for spin-dependent properties.
Collapse
Affiliation(s)
- Patrick Eschenbach
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Simulation, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Simulation, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
24
|
Puskar R, Du Truong C, Swain K, Chowdhury S, Chan KY, Li S, Cheng KW, Wang TY, Poh YP, Mazor Y, Liu H, Chou TF, Nannenga BL, Chiu PL. Molecular asymmetry of a photosynthetic supercomplex from green sulfur bacteria. Nat Commun 2022; 13:5824. [PMID: 36192412 PMCID: PMC9529944 DOI: 10.1038/s41467-022-33505-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
The photochemical reaction center (RC) features a dimeric architecture for charge separation across the membrane. In green sulfur bacteria (GSB), the trimeric Fenna-Matthews-Olson (FMO) complex mediates the transfer of light energy from the chlorosome antenna complex to the RC. Here we determine the structure of the photosynthetic supercomplex from the GSB Chlorobaculum tepidum using single-particle cryogenic electron microscopy (cryo-EM) and identify the cytochrome c subunit (PscC), two accessory protein subunits (PscE and PscF), a second FMO trimeric complex, and a linker pigment between FMO and the RC core. The protein subunits that are assembled with the symmetric RC core generate an asymmetric photosynthetic supercomplex. One linker bacteriochlorophyll (BChl) is located in one of the two FMO-PscA interfaces, leading to differential efficiencies of the two energy transfer branches. The two FMO trimeric complexes establish two different binding interfaces with the RC cytoplasmic surface, driven by the associated accessory subunits. This structure of the GSB photosynthetic supercomplex provides mechanistic insight into the light excitation energy transfer routes and a possible evolutionary transition intermediate of the bacterial photosynthetic supercomplex from the primitive homodimeric RC.
Collapse
Affiliation(s)
- Ryan Puskar
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Chloe Du Truong
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- Rampart Bioscience, Monrovia, CA, 91016, USA
| | - Kyle Swain
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Saborni Chowdhury
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Ka-Yi Chan
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Kai-Wen Cheng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Ting Yu Wang
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Yu-Ping Poh
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Yuval Mazor
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Haijun Liu
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Brent L Nannenga
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Po-Lin Chiu
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
25
|
Koebke KJ, Pinter TBJ, Pitts WC, Pecoraro VL. Catalysis and Electron Transfer in De Novo Designed Metalloproteins. Chem Rev 2022; 122:12046-12109. [PMID: 35763791 PMCID: PMC10735231 DOI: 10.1021/acs.chemrev.1c01025] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the hallmark advances in our understanding of metalloprotein function is showcased in our ability to design new, non-native, catalytically active protein scaffolds. This review highlights progress and milestone achievements in the field of de novo metalloprotein design focused on reports from the past decade with special emphasis on de novo designs couched within common subfields of bioinorganic study: heme binding proteins, monometal- and dimetal-containing catalytic sites, and metal-containing electron transfer sites. Within each subfield, we highlight several of what we have identified as significant and important contributions to either our understanding of that subfield or de novo metalloprotein design as a discipline. These reports are placed in context both historically and scientifically. General suggestions for future directions that we feel will be important to advance our understanding or accelerate discovery are discussed.
Collapse
Affiliation(s)
- Karl J. Koebke
- Department of Chemistry, University of Michigan Ann Arbor, MI 48109 USA
| | | | - Winston C. Pitts
- Department of Chemistry, University of Michigan Ann Arbor, MI 48109 USA
| | | |
Collapse
|
26
|
Algar WR, Krause KD. Developing FRET Networks for Sensing. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:17-36. [PMID: 35300526 DOI: 10.1146/annurev-anchem-061020-014925] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Förster resonance energy transfer (FRET) is a widely used fluorescence-based sensing mechanism. To date, most implementations of FRET sensors have relied on a discrete donor-acceptor pair for detection of each analytical target. FRET networks are an emerging concept in which target recognition perturbs a set of interconnected FRET pathways between multiple emitters. Here, we review the energy transfer topologies and scaffold materials for FRET networks, propose a general nomenclature, and qualitatively summarize the dynamics of the competitive, sequential, homoFRET, and heteroFRET pathways that constitute FRET networks. Implementations of FRET networks for sensing are also described, including concentric FRET probes, other single-vector multiplexing, and logic gates and switches. Unresolved questions and future research directions for current systems are discussed, as are potential but currently unexplored applications of FRET networks in sensing.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada;
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada;
| |
Collapse
|
27
|
Moya R, Norris AC, Kondo T, Schlau-Cohen GS. Observation of robust energy transfer in the photosynthetic protein allophycocyanin using single-molecule pump-probe spectroscopy. Nat Chem 2022; 14:153-159. [PMID: 34992285 PMCID: PMC9977402 DOI: 10.1038/s41557-021-00841-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/20/2021] [Indexed: 01/26/2023]
Abstract
Photosynthetic organisms convert sunlight to electricity with near unity quantum efficiency. Absorbed photoenergy transfers through a network of chromophores positioned within protein scaffolds, which fluctuate due to thermal motion. The resultant variation in the individual energy transfer steps has not yet been measured, and so how the efficiency is robust to this variation has not been determined. Here, we describe single-molecule pump-probe spectroscopy with facile spectral tuning and its application to the ultrafast dynamics of single allophycocyanin, a light-harvesting protein from cyanobacteria. We disentangled the energy transfer and energetic relaxation from nuclear motion using the spectral dependence of the dynamics. We observed an asymmetric distribution of timescales for energy transfer and a slower and more heterogeneous distribution of timescales for energetic relaxation, which was due to the impact of the protein environment. Collectively, these results suggest that energy transfer is robust to protein fluctuations, a prerequisite for efficient light harvesting.
Collapse
Affiliation(s)
- Raymundo Moya
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Audrey C. Norris
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Toru Kondo
- Department of Life Science and Technology, Tokyo Institute of Technology,PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA,To whom correspondence should be addressed;
| |
Collapse
|
28
|
Kim YJ, Hong H, Yun J, Kim SI, Jung HY, Ryu W. Photosynthetic Nanomaterial Hybrids for Bioelectricity and Renewable Energy Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005919. [PMID: 33236450 DOI: 10.1002/adma.202005919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Harvesting solar energy in the form of electricity from the photosynthesis of plants, algal cells, and bacteria has been researched as the most environment-friendly renewable energy technology in the last decade. The primary challenge has been the engineering of electrochemical interfacing with photosynthetic apparatuses, organelles, or whole cells. However, with the aid of low-dimensional nanomaterials, there have been many advances, including enhanced photon absorption, increased generation of photosynthetic electrons (PEs), and more efficient transfer of PEs to electrodes. These advances have demonstrated the possibility for the technology to advance to a new level. In this article, the fundamentals of photosynthesis are introduced. How PE harvesting systems have improved concerning solar energy absorption, PE production, and PE collection by electrodes is discussed. The review focuses on how different kinds of nanomaterials are applied and function in interfacing with photosynthetic materials for enhanced PE harvesting. Finally, the review analyzes how the performance of PE harvesting and stand-alone systems have evolved so far and its future prospects.
Collapse
Affiliation(s)
- Yong Jae Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Hyeonaug Hong
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - JaeHyoung Yun
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Seon Il Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Ho Yun Jung
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - WonHyoung Ryu
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| |
Collapse
|
29
|
Cryo-EM structure of the monomeric Rhodobacter sphaeroides RC-LH1 core complex at 2.5 Å. Biochem J 2021; 478:3775-3790. [PMID: 34590677 PMCID: PMC8589327 DOI: 10.1042/bcj20210631] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 12/02/2022]
Abstract
Reaction centre light-harvesting 1 (RC–LH1) complexes are the essential components of bacterial photosynthesis. The membrane-intrinsic LH1 complex absorbs light and the energy migrates to an enclosed RC where a succession of electron and proton transfers conserves the energy as a quinol, which is exported to the cytochrome bc1 complex. In some RC–LH1 variants quinols can diffuse through small pores in a fully circular, 16-subunit LH1 ring, while in others missing LH1 subunits create a gap for quinol export. We used cryogenic electron microscopy to obtain a 2.5 Å resolution structure of one such RC–LH1, a monomeric complex from Rhodobacter sphaeroides. The structure shows that the RC is partly enclosed by a 14-subunit LH1 ring in which each αβ heterodimer binds two bacteriochlorophylls and, unusually for currently reported complexes, two carotenoids rather than one. Although the extra carotenoids confer an advantage in terms of photoprotection and light harvesting, they could impede passage of quinones through small, transient pores in the LH1 ring, necessitating a mechanism to create a dedicated quinone channel. The structure shows that two transmembrane proteins play a part in stabilising an open ring structure; one of these components, the PufX polypeptide, is augmented by a hitherto undescribed protein subunit we designate as protein-Y, which lies against the transmembrane regions of the thirteenth and fourteenth LH1α polypeptides. Protein-Y prevents LH1 subunits 11–14 adjacent to the RC QB site from bending inwards towards the RC and, with PufX preventing complete encirclement of the RC, this pair of polypeptides ensures unhindered quinone diffusion.
Collapse
|
30
|
Gorka M, Baldansuren A, Malnati A, Gruszecki E, Golbeck JH, Lakshmi KV. Shedding Light on Primary Donors in Photosynthetic Reaction Centers. Front Microbiol 2021; 12:735666. [PMID: 34659164 PMCID: PMC8517396 DOI: 10.3389/fmicb.2021.735666] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Chlorophylls (Chl)s exist in a variety of flavors and are ubiquitous in both the energy and electron transfer processes of photosynthesis. The functions they perform often occur on the ultrafast (fs-ns) time scale and until recently, these have been difficult to measure in real time. Further, the complexity of the binding pockets and the resulting protein-matrix effects that alter the respective electronic properties have rendered theoretical modeling of these states difficult. Recent advances in experimental methodology, computational modeling, and emergence of new reaction center (RC) structures have renewed interest in these processes and allowed researchers to elucidate previously ambiguous functions of Chls and related pheophytins. This is complemented by a wealth of experimental data obtained from decades of prior research. Studying the electronic properties of Chl molecules has advanced our understanding of both the nature of the primary charge separation and subsequent electron transfer processes of RCs. In this review, we examine the structures of primary electron donors in Type I and Type II RCs in relation to the vast body of spectroscopic research that has been performed on them to date. Further, we present density functional theory calculations on each oxidized primary donor to study both their electronic properties and our ability to model experimental spectroscopic data. This allows us to directly compare the electronic properties of hetero- and homodimeric RCs.
Collapse
Affiliation(s)
- Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Amgalanbaatar Baldansuren
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Amanda Malnati
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Elijah Gruszecki
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - John H. Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - K. V. Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
31
|
Cryo-EM structure of the Rhodospirillum rubrum RC-LH1 complex at 2.5 Å. Biochem J 2021; 478:3253-3263. [PMID: 34402504 PMCID: PMC8454704 DOI: 10.1042/bcj20210511] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/03/2022]
Abstract
The reaction centre light-harvesting 1 (RC–LH1) complex is the core functional component of bacterial photosynthesis. We determined the cryo-electron microscopy (cryo-EM) structure of the RC–LH1 complex from Rhodospirillum rubrum at 2.5 Å resolution, which reveals a unique monomeric bacteriochlorophyll with a phospholipid ligand in the gap between the RC and LH1 complexes. The LH1 complex comprises a circular array of 16 αβ-polypeptide subunits that completely surrounds the RC, with a preferential binding site for a quinone, designated QP, on the inner face of the encircling LH1 complex. Quinols, initially generated at the RC QB site, are proposed to transiently occupy the QP site prior to traversing the LH1 barrier and diffusing to the cytochrome bc1 complex. Thus, the QP site, which is analogous to other such sites in recent cryo-EM structures of RC–LH1 complexes, likely reflects a general mechanism for exporting quinols from the RC–LH1 complex.
Collapse
|
32
|
Zheng L, Zheng Z, Li X, Wang G, Zhang K, Wei P, Zhao J, Gao N. Structural insight into the mechanism of energy transfer in cyanobacterial phycobilisomes. Nat Commun 2021; 12:5497. [PMID: 34535665 PMCID: PMC8448738 DOI: 10.1038/s41467-021-25813-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023] Open
Abstract
Phycobilisomes (PBS) are the major light-harvesting machineries for photosynthesis in cyanobacteria and red algae and they have a hierarchical structure of a core and peripheral rods, with both consisting of phycobiliproteins and linker proteins. Here we report the cryo-EM structures of PBS from two cyanobacterial species, Anabaena 7120 and Synechococcus 7002. Both PBS are hemidiscoidal in shape and share a common triangular core structure. While the Anabaena PBS has two additional hexamers in the core linked by the 4th linker domain of ApcE (LCM). The PBS structures predict that, compared with the PBS from red algae, the cyanobacterial PBS could have more direct routes for energy transfer to ApcD. Structure-based systematic mutagenesis analysis of the chromophore environment of ApcD and ApcF subunits reveals that aromatic residues are critical to excitation energy transfer (EET). The structures also suggest that the linker protein could actively participate in the process of EET in both rods and the cores. These results provide insights into the organization of chromophores and the mechanisms of EET within cyanobacterial PBS.
Collapse
Affiliation(s)
- Lvqin Zheng
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, 100871 Beijing, China
| | - Zhenggao Zheng
- grid.11135.370000 0001 2256 9319State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, 100871 Beijing, China ,grid.410645.20000 0001 0455 0905College of Life Science, Qingdao University, 266071 Qingdao, China
| | - Xiying Li
- grid.11135.370000 0001 2256 9319State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, 100871 Beijing, China
| | - Guopeng Wang
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, 100871 Beijing, China
| | - Kun Zhang
- grid.11135.370000 0001 2256 9319State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, 100871 Beijing, China
| | - Peijun Wei
- grid.11135.370000 0001 2256 9319State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, 100871 Beijing, China
| | - Jindong Zhao
- grid.11135.370000 0001 2256 9319State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, 100871 Beijing, China ,grid.429211.d0000 0004 1792 6029Key Laboratory of Phycology of CAS, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, Hubei China
| | - Ning Gao
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, 100871 Beijing, China
| |
Collapse
|
33
|
Hancock AM, Son M, Nairat M, Wei T, Jeuken LJC, Duffy CDP, Schlau-Cohen GS, Adams PG. Ultrafast energy transfer between lipid-linked chromophores and plant light-harvesting complex II. Phys Chem Chem Phys 2021; 23:19511-19524. [PMID: 34524278 PMCID: PMC8442836 DOI: 10.1039/d1cp01628h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Light-Harvesting Complex II (LHCII) is a membrane protein found in plant chloroplasts that has the crucial role of absorbing solar energy and subsequently performing excitation energy transfer to the reaction centre subunits of Photosystem II. LHCII provides strong absorption of blue and red light, however, it has minimal absorption in the green spectral region where solar irradiance is maximal. In a recent proof-of-principle study, we enhanced the absorption in this spectral range by developing a biohybrid system where LHCII proteins together with lipid-linked Texas Red (TR) chromophores were assembled into lipid membrane vesicles. The utility of these systems was limited by significant LHCII quenching due to protein-protein interactions and heterogeneous lipid structures. Here, we organise TR and LHCII into a lipid nanodisc, which provides a homogeneous, well-controlled platform to study the interactions between TR molecules and single LHCII complexes. Fluorescence spectroscopy determined that TR-to-LHCII energy transfer has an efficiency of at least 60%, resulting in a 262% enhancement of LHCII fluorescence in the 525-625 nm range, two-fold greater than in the previous system. Ultrafast transient absorption spectroscopy revealed two time constants of 3.7 and 128 ps for TR-to-LHCII energy transfer. Structural modelling and theoretical calculations indicate that these timescales correspond to TR-lipids that are loosely- or tightly-associated with the protein, respectively, with estimated TR-to-LHCII separations of ∼3.5 nm and ∼1 nm. Overall, we demonstrate that a nanodisc-based biohybrid system provides an idealised platform to explore the photophysical interactions between extrinsic chromophores and membrane proteins with potential applications in understanding more complex natural or artificial photosynthetic systems.
Collapse
Affiliation(s)
- Ashley M Hancock
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK. .,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Minjung Son
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA.
| | - Muath Nairat
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA.
| | - Tiejun Wei
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Lars J C Jeuken
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.,Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Christopher D P Duffy
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Gabriela S Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA.
| | - Peter G Adams
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK. .,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
34
|
Neveselý T, Wienhold M, Molloy JJ, Gilmour R. Advances in the E → Z Isomerization of Alkenes Using Small Molecule Photocatalysts. Chem Rev 2021; 122:2650-2694. [PMID: 34449198 DOI: 10.1021/acs.chemrev.1c00324] [Citation(s) in RCA: 185] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Geometrical E → Z alkene isomerization is intimately entwined in the historical fabric of organic photochemistry and is enjoying a renaissance (Roth et al. Angew. Chem., Int. Ed. Engl. 1989 28, 1193-1207). This is a consequence of the fundamental stereochemical importance of Z-alkenes, juxtaposed with frustrations in thermal reactivity that are rooted in microscopic reversibility. Accessing excited state reactivity paradigms allow this latter obstacle to be circumnavigated by exploiting subtle differences in the photophysical behavior of the substrate and product chromophores: this provides a molecular basis for directionality. While direct irradiation is operationally simple, photosensitization via selective energy transfer enables augmentation of the alkene repertoire to include substrates that are not directly excited by photons. Through sustained innovation, an impressive portfolio of tailored small molecule catalysts with a range of triplet energies are now widely available to facilitate contra-thermodynamic and thermo-neutral isomerization reactions to generate Z-alkene fragments. This review is intended to serve as a practical guide covering the geometric isomerization of alkenes enabled by energy transfer catalysis from 2000 to 2020, and as a logical sequel to the excellent treatment by Dugave and Demange (Chem. Rev. 2003 103, 2475-2532). The mechanistic foundations underpinning isomerization selectivity are discussed together with induction models and rationales to explain the counterintuitive directionality of these processes in which very small energy differences distinguish substrate from product. Implications for subsequent stereospecific transformations, application in total synthesis, regioselective polyene isomerization, and spatiotemporal control of pre-existing alkene configuration in a broader sense are discussed.
Collapse
Affiliation(s)
- Tomáš Neveselý
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Max Wienhold
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - John J Molloy
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
35
|
Gorka M, Charles P, Kalendra V, Baldansuren A, Lakshmi KV, Golbeck JH. A dimeric chlorophyll electron acceptor differentiates type I from type II photosynthetic reaction centers. iScience 2021; 24:102719. [PMID: 34278250 PMCID: PMC8267441 DOI: 10.1016/j.isci.2021.102719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/17/2021] [Accepted: 06/09/2021] [Indexed: 01/09/2023] Open
Abstract
This research addresses one of the most compelling issues in the field of photosynthesis, namely, the role of the accessory chlorophyll molecules in primary charge separation. Using a combination of empirical and computational methods, we demonstrate that the primary acceptor of photosystem (PS) I is a dimer of accessory and secondary chlorophyll molecules, Chl2A and Chl3A, with an asymmetric electron charge density distribution. The incorporation of highly coupled donors and acceptors in PS I allows for extensive delocalization that prolongs the lifetime of the charge-separated state, providing for high quantum efficiency. The discovery of this motif has widespread implications ranging from the evolution of naturally occurring reaction centers to the development of a new generation of highly efficient artificial photosynthetic systems. Video abstract
Collapse
Affiliation(s)
- Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Philip Charles
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Vidmantas Kalendra
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Amgalanbaatar Baldansuren
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - K V Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.,Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
36
|
Patalag LJ, Hoche J, Holzapfel M, Schmiedel A, Mitric R, Lambert C, Werz DB. Ultrafast Resonance Energy Transfer in Ethylene-Bridged BODIPY Heterooligomers: From Frenkel to Förster Coupling Limit. J Am Chem Soc 2021; 143:7414-7425. [PMID: 33956430 DOI: 10.1021/jacs.1c01279] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of distinct BODIPY heterooligomers (dyads, triads, and tetrads) comprising a variable number of typical green BODIPY monomers and a terminal red-emitting styryl-equipped species acting as an energy sink was prepared and subjected to computational and photophysical investigations in solvent media. An ethylene tether between the single monomeric units provides a unique foldameric system, setting the stage for a systematic study of excitation energy transfer processes (EET) on the basis of nonconjugated oscillators. The influence of stabilizing β-ethyl substituents on conformational space and the disorder of site energies and electronic couplings was addressed. In this way both the strong (Frenkel) and the weak (Förster) coupling limit could be accessed within a single system: the Frenkel limit within the strongly coupled homooligomeric green donor subunit and the Förster limit at the terminal heterosubstituted ethylene bridge. Femtosecond transient-absorption spectroscopy combined with mixed quantum-classical dynamic simulations demonstrate the limitations of the Förster resonance energy transfer (FRET) theory and provide a consistent framework to elucidate the trend of increasing relaxation lifetimes at higher homologues, revealing one of the fastest excitation energy transfer processes detected to date with a corresponding lifetime of 39 fs.
Collapse
Affiliation(s)
- Lukas J Patalag
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Joscha Hoche
- Institute of Physical and Theoretical Chemistry, Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany
| | - Marco Holzapfel
- Institute of Organic Chemistry, Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alexander Schmiedel
- Institute of Organic Chemistry, Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Roland Mitric
- Institute of Physical and Theoretical Chemistry, Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany
| | - Christoph Lambert
- Institute of Organic Chemistry, Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Daniel B Werz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
37
|
Chen JH, Wu H, Xu C, Liu XC, Huang Z, Chang S, Wang W, Han G, Kuang T, Shen JR, Zhang X. Architecture of the photosynthetic complex from a green sulfur bacterium. Science 2021; 370:370/6519/eabb6350. [PMID: 33214250 DOI: 10.1126/science.abb6350] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/09/2020] [Indexed: 01/09/2023]
Abstract
The photosynthetic apparatus of green sulfur bacteria (GSB) contains a peripheral antenna chlorosome, light-harvesting Fenna-Matthews-Olson proteins (FMO), and a reaction center (GsbRC). We used cryo-electron microscopy to determine a 2.7-angstrom structure of the FMO-GsbRC supercomplex from Chlorobaculum tepidum The GsbRC binds considerably fewer (bacterio)chlorophylls [(B)Chls] than other known type I RCs do, and the organization of (B)Chls is similar to that in photosystem II. Two BChl layers in GsbRC are not connected by Chls, as seen in other RCs, but associate with two carotenoid derivatives. Relatively long distances of 22 to 33 angstroms were observed between BChls of FMO and GsbRC, consistent with the inefficient energy transfer between these entities. The structure contains common features of both type I and type II RCs and provides insight into the evolution of photosynthetic RCs.
Collapse
Affiliation(s)
- Jing-Hua Chen
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China.,Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Hangjun Wu
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China.,Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Caihuang Xu
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China
| | - Xiao-Chi Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
| | - Zihui Huang
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China
| | - Shenghai Chang
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China.,Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China.
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China. .,Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 700-8530 Okayama, Japan
| | - Xing Zhang
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China. .,Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, 310058 Zhejiang, China.,Zhejiang Laboratory for System and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121 Zhejiang, China
| |
Collapse
|
38
|
Seibt J, Kühn O. Exciton transfer using rates extracted from the “hierarchical equations of motion”. J Chem Phys 2020; 153:194112. [DOI: 10.1063/5.0027373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Joachim Seibt
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Oliver Kühn
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| |
Collapse
|
39
|
Peter C, Thoms S, Koch F, Sartoris FJ, Bickmeyer U. Sponge-derived Ageladine A affects the in vivo fluorescence emission spectra of microalgae. PLoS One 2020; 15:e0242464. [PMID: 33211752 PMCID: PMC7676647 DOI: 10.1371/journal.pone.0242464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/02/2020] [Indexed: 11/19/2022] Open
Abstract
In several marine hosts of microalgae, fluorescent natural products may play an important role. While the ecological function of these compounds is not well understood, an interaction of these molecules with the photosynthesis of the symbionts has been suggested. In this study, the effect of Ageladine A (Ag A), a pH-dependent fluorophore found in sponges of the genus Agelas, on microalgal fluorescence was examined. The spectra showed an accumulation of Ag A within the cells, but with variable impacts on fluorescence. While in two Synechococcus strains, fluorescence of phycoerythrin increased significantly, the fluorescence of other Synechococcus strains was not affected. In four out of the five eukaryote species examined, chlorophyll a (Chl a) fluorescence intensity was modulated. In Tisochrysis lutea, for example, the position of the fluorescence emission maximum of Chl a was shifted. The variety of these effects of Ag A on microalgal fluorescence suggests that fluorophores derived from animals could play a crucial role in shaping the composition of marine host/symbiont systems.
Collapse
Affiliation(s)
- Carolin Peter
- Division of Biosciences, Department of Ecological Chemistry, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- * E-mail: (CP); (UB)
| | - Silke Thoms
- Division of Biosciences, Department of Ecological Chemistry, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Florian Koch
- Division of Biosciences, Department of Ecological Chemistry, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Department 2, University of Applied Sciences, Bremerhaven, Germany
| | - Franz Josef Sartoris
- Division of Biosciences, Department of Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Ulf Bickmeyer
- Division of Biosciences, Department of Ecological Chemistry, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- * E-mail: (CP); (UB)
| |
Collapse
|
40
|
Grinzato A, Albanese P, Marotta R, Swuec P, Saracco G, Bolognesi M, Zanotti G, Pagliano C. High-Light versus Low-Light: Effects on Paired Photosystem II Supercomplex Structural Rearrangement in Pea Plants. Int J Mol Sci 2020; 21:E8643. [PMID: 33207833 PMCID: PMC7698171 DOI: 10.3390/ijms21228643] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/14/2020] [Indexed: 11/24/2022] Open
Abstract
In plant grana thylakoid membranes Photosystem II (PSII) associates with a variable number of antenna proteins (LHCII) to form different types of supercomplexes (PSII-LHCII), whose organization is dynamically adjusted in response to light cues, with the C2S2 more abundant in high-light and the C2S2M2 in low-light. Paired PSII-LHCII supercomplexes interacting at their stromal surface from adjacent thylakoid membranes were previously suggested to mediate grana stacking. Here, we present the cryo-electron microscopy maps of paired C2S2 and C2S2M2 supercomplexes isolated from pea plants grown in high-light and low-light, respectively. These maps show a different rotational offset between the two supercomplexes in the pair, responsible for modifying their reciprocal interaction and energetic connectivity. This evidence reveals a different way by which paired PSII-LHCII supercomplexes can mediate grana stacking at diverse irradiances. Electrostatic stromal interactions between LHCII trimers almost completely overlapping in the paired C2S2 can be the main determinant by which PSII-LHCII supercomplexes mediate grana stacking in plants grown in high-light, whereas the mutual interaction of stromal N-terminal loops of two facing Lhcb4 subunits in the paired C2S2M2 can fulfil this task in plants grown in low-light. The high-light induced accumulation of the Lhcb4.3 protein in PSII-LHCII supercomplexes has been previously reported. Our cryo-electron microscopy map at 3.8 Å resolution of the C2S2 supercomplex isolated from plants grown in high-light suggests the presence of the Lhcb4.3 protein revealing peculiar structural features of this high-light-specific antenna important for photoprotection.
Collapse
Affiliation(s)
- Alessandro Grinzato
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58 B, 35121 Padova, Italy; (A.G.); (G.Z.)
| | - Pascal Albanese
- Applied Science and Technology Department–BioSolar Lab, Politecnico di Torino, Environment Park, Via Livorno 60, 10144 Torino, Italy; (P.A.); (G.S.)
| | - Roberto Marotta
- Center for Convergent Technologies, Electron Microscopy Facility, Istituto Italiano di Tecnologia—IIT, Via Morego 30, 16163 Genova, Italy;
| | - Paolo Swuec
- Department of BioSciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (P.S.); (M.B.)
- Cryo-Electron Microscopy Facility, Human Technopole, Via Cristina Belgioioso 171, 20157 Milano, Italy
| | - Guido Saracco
- Applied Science and Technology Department–BioSolar Lab, Politecnico di Torino, Environment Park, Via Livorno 60, 10144 Torino, Italy; (P.A.); (G.S.)
| | - Martino Bolognesi
- Department of BioSciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (P.S.); (M.B.)
| | - Giuseppe Zanotti
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58 B, 35121 Padova, Italy; (A.G.); (G.Z.)
| | - Cristina Pagliano
- Applied Science and Technology Department–BioSolar Lab, Politecnico di Torino, Environment Park, Via Livorno 60, 10144 Torino, Italy; (P.A.); (G.S.)
| |
Collapse
|
41
|
Montepietra D, Bellingeri M, Ross AM, Scotognella F, Cassi D. Modelling photosystem I as a complex interacting network. J R Soc Interface 2020; 17:20200813. [PMID: 33171073 DOI: 10.1098/rsif.2020.0813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this paper, we model the excitation energy transfer (EET) of photosystem I (PSI) of the common pea plant Pisum sativum as a complex interacting network. The magnitude of the link energy transfer between nodes/chromophores is computed by Forster resonant energy transfer (FRET) using the pairwise physical distances between chromophores from the PDB 5L8R (Protein Data Bank). We measure the global PSI network EET efficiency adopting well-known network theory indicators: the network efficiency (Eff) and the largest connected component (LCC). We also account the number of connected nodes/chromophores to P700 (CN), a new ad hoc measure we introduce here to indicate how many nodes in the network can actually transfer energy to the P700 reaction centre. We find that when progressively removing the weak links of lower EET, the Eff decreases, while the EET paths integrity (LCC and CN) is still preserved. This finding would show that the PSI is a resilient system owning a large window of functioning feasibility and it is completely impaired only when removing most of the network links. From the study of different types of chromophore, we propose different primary functions within the PSI system: chlorophyll a (CLA) molecules are the central nodes in the EET process, while other chromophore types have different primary functions. Furthermore, we perform nodes removal simulations to understand how the nodes/chromophores malfunctioning may affect PSI functioning. We discover that the removal of the CLA triggers the fastest decrease in the Eff, confirming that CAL is the main contributors to the high EET efficiency. Our outcomes open new perspectives of research, such comparing the PSI energy transfer efficiency of different natural and agricultural plant species and investigating the light-harvesting mechanisms of artificial photosynthesis both in plant agriculture and in the field of solar energy applications.
Collapse
Affiliation(s)
- D Montepietra
- Dipartimento di Fisica, Università di Modena e Reggio Emilia, via Campi, 213/a, 41125 Modena, Italy.,CNR NANO S3, Via Campi 213/A, 41125 Modena, Italy
| | - M Bellingeri
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, via G.P. Usberti, 7/a, 43124 Parma, Italy.,Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - A M Ross
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - F Scotognella
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.,Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milan, Italy
| | - D Cassi
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, via G.P. Usberti, 7/a, 43124 Parma, Italy
| |
Collapse
|
42
|
Guo H, Zhang X, Lu G. Shedding light on moiré excitons: A first-principles perspective. SCIENCE ADVANCES 2020; 6:6/42/eabc5638. [PMID: 33067234 PMCID: PMC7567599 DOI: 10.1126/sciadv.abc5638] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/29/2020] [Indexed: 05/31/2023]
Abstract
Moiré superlattices in van der Waals (vdW) heterostructures could trap long-lived interlayer excitons. These moiré excitons could form ordered quantum dot arrays, paving the way for unprecedented optoelectronic and quantum information applications. Here, we perform first-principles simulations to shed light on moiré excitons in twisted MoS2/WS2 heterostructures. We provide direct evidence of localized interlayer moiré excitons in vdW heterostructures. The interlayer and intralayer moiré potentials are mapped out based on spatial modulations of energy gaps. Nearly flat valence bands are observed in the heterostructures. The dependence of spatial localization and binding energy of the moiré excitons on the twist angle of the heterostructures is examined. We explore how vertical electric field can be tuned to control the position, polarity, emission energy, and hybridization strength of the moiré excitons. We predict that alternating electric fields could modulate the dipole moments of hybridized moiré excitons and suppress their diffusion in moiré lattices.
Collapse
Affiliation(s)
- Hongli Guo
- Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330-8268, USA
| | - Xu Zhang
- Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330-8268, USA
| | - Gang Lu
- Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330-8268, USA.
| |
Collapse
|
43
|
Gorka M, Cherepanov DA, Semenov AY, Golbeck JH. Control of electron transfer by protein dynamics in photosynthetic reaction centers. Crit Rev Biochem Mol Biol 2020; 55:425-468. [PMID: 32883115 DOI: 10.1080/10409238.2020.1810623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Trehalose and glycerol are low molecular mass sugars/polyols that have found widespread use in the protection of native protein states, in both short- and long-term storage of biological materials, and as a means of understanding protein dynamics. These myriad uses are often attributed to their ability to form an amorphous glassy matrix. In glycerol, the glass is formed only at cryogenic temperatures, while in trehalose, the glass is formed at room temperature, but only upon dehydration of the sample. While much work has been carried out to elucidate a mechanistic view of how each of these matrices interact with proteins to provide stability, rarely have the effects of these two independent systems been directly compared to each other. This review aims to compile decades of research on how different glassy matrices affect two types of photosynthetic proteins: (i) the Type II bacterial reaction center from Rhodobacter sphaeroides and (ii) the Type I Photosystem I reaction center from cyanobacteria. By comparing aggregate data on electron transfer, protein structure, and protein dynamics, it appears that the effects of these two distinct matrices are remarkably similar. Both seem to cause a "tightening" of the solvation shell when in a glassy state, resulting in severely restricted conformational mobility of the protein and associated water molecules. Thus, trehalose appears to be able to mimic, at room temperature, nearly all of the effects on protein dynamics observed in low temperature glycerol glasses.
Collapse
Affiliation(s)
- Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.,Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
44
|
Goswami S, Mundakkathparambil Parameswaran A, Köppel H. A quantum dynamical investigation of the excitation transfer in two doubly hydrogen-bonded molecular dimers. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1762011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Sugata Goswami
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg, Germany
| | | | - H. Köppel
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|
45
|
Sener M, Levy S, Stone JE, Christensen AJ, Isralewitz B, Patterson R, Borkiewicz K, Carpenter J, Hunter CN, Luthey-Schulten Z, Cox D. Multiscale modeling and cinematic visualization of photosynthetic energy conversion processes from electronic to cell scales. PARALLEL COMPUTING 2020; 102:102698. [PMID: 34824485 PMCID: PMC8612599 DOI: 10.1016/j.parco.2020.102698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Conversion of sunlight into chemical energy, namely photosynthesis, is the primary energy source of life on Earth. A visualization depicting this process, based on multiscale computational models from electronic to cell scales, is presented in the form of an excerpt from the fulldome show Birth of Planet Earth. This accessible visual narrative shows a lay audience, including children, how the energy of sunlight is captured, converted, and stored through a chain of proteins to power living cells. The visualization is the result of a multi-year collaboration among biophysicists, visualization scientists, and artists, which, in turn, is based on a decade-long experimental-computational collaboration on structural and functional modeling that produced an atomic detail description of a bacterial bioenergetic organelle, the chromatophore. Software advancements necessitated by this project have led to significant performance and feature advances, including hardware-accelerated cinematic ray tracing and instanced visualizations for efficient cell-scale modeling. The energy conversion steps depicted feature an integration of function from electronic to cell levels, spanning nearly 12 orders of magnitude in time scales. This atomic detail description uniquely enables a modern retelling of one of humanity's earliest stories-the interplay between light and life.
Collapse
Affiliation(s)
- Melih Sener
- Beckman Institute, University of Illinois at Urbana-Champaign
| | - Stuart Levy
- Advanced Visualization Laboratory, NCSA, University of Illinois at Urbana-Champaign
| | - John E. Stone
- Beckman Institute, University of Illinois at Urbana-Champaign
| | - AJ Christensen
- Advanced Visualization Laboratory, NCSA, University of Illinois at Urbana-Champaign
| | | | - Robert Patterson
- Advanced Visualization Laboratory, NCSA, University of Illinois at Urbana-Champaign
| | - Kalina Borkiewicz
- Advanced Visualization Laboratory, NCSA, University of Illinois at Urbana-Champaign
| | - Jeffrey Carpenter
- Advanced Visualization Laboratory, NCSA, University of Illinois at Urbana-Champaign
| | - C. Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, U.K
| | | | - Donna Cox
- Beckman Institute, University of Illinois at Urbana-Champaign
| |
Collapse
|
46
|
Kell A, Khmelnitskiy AY, Reinot T, Jankowiak R. On uncorrelated inter-monomer Förster energy transfer in Fenna-Matthews-Olson complexes. J R Soc Interface 2020; 16:20180882. [PMID: 30958204 DOI: 10.1098/rsif.2018.0882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Fenna-Matthews-Olson (FMO) light-harvesting antenna protein of green sulfur bacteria is a long-studied pigment-protein complex which funnels energy from the chlorosome to the reaction centre where photochemistry takes place. The structure of the FMO protein from Chlorobaculum tepidum is known as a homotrimeric complex containing eight bacteriochlorophyll a per monomer. Owing to this structure FMO has strong intra-monomer and weak inter-monomer electronic coupling constants. While long-lived (sub-picosecond) coherences within a monomer have been a prevalent topic of study over the past decade, various experimental evidence supports the presence of subsequent inter-monomer energy transfer on a picosecond time scale. The latter has been neglected by most authors in recent years by considering only sub-picosecond time scales or assuming that the inter-monomer coupling between low-energy states is too weak to warrant consideration of the entire trimer. However, Förster theory predicts that energy transfer of the order of picoseconds is possible even for very weak (less than 5 cm-1) electronic coupling between chromophores. This work reviews experimental data (with a focus on emission and hole-burned spectra) and simulations of exciton dynamics which demonstrate inter-monomer energy transfer. It is shown that the lowest energy 825 nm absorbance band cannot be properly described by a single excitonic state. The energy transfer through FMO is modelled by generalized Förster theory using a non-Markovian, reduced density matrix approach to describe the electronic structure. The disorder-averaged inter-monomer transfer time across the 825 nm band is about 27 ps. While only isolated FMO proteins are presented, the presence of inter-monomer energy transfer in the context of the overall photosystem is also briefly discussed.
Collapse
Affiliation(s)
- Adam Kell
- 1 Department of Chemistry, Kansas State University , Manhattan, KS , USA
| | | | - Tonu Reinot
- 1 Department of Chemistry, Kansas State University , Manhattan, KS , USA
| | - Ryszard Jankowiak
- 1 Department of Chemistry, Kansas State University , Manhattan, KS , USA.,2 Department of Physics, Kansas State University , Manhattan, KS , USA
| |
Collapse
|
47
|
Tong AL, Fiebig OC, Nairat M, Harris D, Giansily M, Chenu A, Sturgis JN, Schlau-Cohen GS. Comparison of the Energy-Transfer Rates in Structural and Spectral Variants of the B800-850 Complex from Purple Bacteria. J Phys Chem B 2020; 124:1460-1469. [PMID: 31971387 DOI: 10.1021/acs.jpcb.9b11899] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photosynthetic light harvesting can occur with a remarkable near-unity quantum efficiency. The B800-850 complex, also known as light-harvesting complex 2 (LH2), is the primary light-harvesting complex in purple bacteria and has been extensively studied as a model system. The bacteriochlorophylls of the B800-850 complex are organized into two concentric rings, known as the B800 and B850 rings. However, depending on the species and growth conditions, the number of constituent subunits, the pigment geometry, and the absorption energies vary. While the dynamics of some B800-850 variants have been exhaustively characterized, others have not been measured. Furthermore, a direct and simultaneous comparison of how both structural and spectral differences between variants affect these dynamics has not been performed. In this work, we utilize ultrafast transient absorption measurements to compare the B800 to B850 energy-transfer rates in the B800-850 complex as a function of the number of subunits, geometry, and absorption energies. The nonameric B800-850 complex from Rhodobacter (Rb.) sphaeroides is 40% faster than the octameric B800-850 complex from Rhodospirillum (Rs.) molischianum, consistent with structure-based predictions. In contrast, the blue-shifted B800-820 complex from Rs. molischianum is only 20% faster than the B800-850 complex from Rs. molischianum despite an increase in the spectral overlap between the rings that would be expected to produce a larger increase in the energy-transfer rate. These measurements support current models that contain dark, higher-lying excitonic states to bridge the energy gap between rings, thereby maintaining similar energy-transfer dynamics. Overall, these results demonstrate that energy-transfer dynamics in the B800-850 complex are robust to the spectral and structural variations between species used to optimize energy capture and flow in purple bacteria.
Collapse
Affiliation(s)
- Ashley L Tong
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Olivia C Fiebig
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Muath Nairat
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Dvir Harris
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Marcel Giansily
- LISM UMR 7255 , CNRS and Aix-Marseille University , 31 Chemin Joseph Aiguier , Marseille Cedex 9 13402 , France
| | - Aurélia Chenu
- Donostia International Physics Center , E-20018 San Sebastián , Spain.,Ikerbasque, Basque Foundation for Science , E-48013 Bilbao , Spain
| | - James N Sturgis
- LISM UMR 7255 , CNRS and Aix-Marseille University , 31 Chemin Joseph Aiguier , Marseille Cedex 9 13402 , France
| | - Gabriela S Schlau-Cohen
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
48
|
Hou S, Chen Y, Lu D, Xiong Q, Lim Y, Duan H. A Self-Assembled Plasmonic Substrate for Enhanced Fluorescence Resonance Energy Transfer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906475. [PMID: 31943423 DOI: 10.1002/adma.201906475] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Fluorescence resonance energy transfer (FRET) has found widespread uses in biosensing, molecular imaging, and light harvesting. Plasmonic metal nanostructures offer the possibility of engineering photonic environment of specific fluorophores to enhance the FRET efficiency. However, the potential of plasmonic nanostructures to enable tailored FRET enhancement on planar substrates remains largely unrealized, which are of considerable interest for high-performance on-surface bioassays and photovoltaics. The main challenge lies in the necessitated concurrent control over the spectral properties of plasmonic substrates to match that of fluorophores and the fluorophore-substrate spacing. Here, a self-assembled plasmonic substrate based on polydopamine (PDA)-coated plasmonic nanocrystals is developed to effectively address this challenge. The PDA coating not only drives interfacial self-assembly of the nanocrystals to form closely packed arrays with customized optical properties, but also can serve as a tailored nanoscale spacer between the fluorophores and plasmonic nanocrystals, which collectively lead to optimized fluorescence enhancement. The biocompatible plasmonic substrate that allows convenient bioconjugation imparted by PDA has afforded improved FRET efficiency in DNA microarray assay and FRET imaging of live cells. It is envisioned that the self-assembled plasmonic substrates can be readily integrated into fluorescence-based platforms for diverse biomedical and photoconversion applications.
Collapse
Affiliation(s)
- Shuai Hou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Yonghao Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Derong Lu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Qirong Xiong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Yun Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
49
|
Calzadilla PI, Kirilovsky D. Revisiting cyanobacterial state transitions. Photochem Photobiol Sci 2020; 19:585-603. [DOI: 10.1039/c9pp00451c] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Critical evaluation of “new” and “old” models of cyanobacterial state transitions. Phycobilisome and membrane contributions to this mechanism are addressed. The signaling transduction pathway is discussed.
Collapse
Affiliation(s)
- Pablo I. Calzadilla
- Université Paris-Saclay
- CNRS
- CEA
- Institute for Integrative Biology of the Cell (I2BC)
- 91198 Gif sur Yvette
| | - Diana Kirilovsky
- Université Paris-Saclay
- CNRS
- CEA
- Institute for Integrative Biology of the Cell (I2BC)
- 91198 Gif sur Yvette
| |
Collapse
|
50
|
Liu X, Kühn O. The light-harvesting complex 2 of Allochromatium vinosum: B800 absorption band splitting and exciton relaxation. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.110476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|