1
|
Benkowska-Biernacka D, Mucha SG, Matczyszyn K. Three-Dimensional Imaging of Bioinspired Lipidic Mesophases Using Multicolored Light-Emitting Carbon Nanodots. J Phys Chem Lett 2024; 15:6383-6391. [PMID: 38859759 PMCID: PMC11194803 DOI: 10.1021/acs.jpclett.4c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Recent progress in the design of carbon nanostructures exhibiting strong multiphoton-excited emission opens new pathways to explore the self-organization of lipids found in living organisms. Phospholipid-based lyotropic myelin figures (MFs) are promising materials as simplified models of biomembranes due to their structural resemblance to a multilamellar sheath insulating the axon. This study demonstrates the possibility of selective labeling of MFs by strongly emitting multicolor phloroglucinol-derived carbon nanodots (PG CNDs). Such dopants are efficiently excited by visible and near-infrared light; therefore, one- and two-photon fluorescence microscopies are incorporated to gain 3D insights into the MFs. Combining nondestructive fluorescence microscopy and spectroscopy techniques along with polarized light microscopy gives details on the stability and morphology of lipidic mesophases. Our findings suggest that PG CNDs can be a viable and simple alternative to conventional fluorescent lipid stains to image biologically relevant phospholipid-based structures.
Collapse
Affiliation(s)
- Dominika Benkowska-Biernacka
- Institute
of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Sebastian G. Mucha
- Laboratoire
Charles Coulomb (L2C), UMR5221,
Université de Montpellier (CNRS), Campus Triolet, Place Eugene Bataillon, Montpellier 34095, France
| | - Katarzyna Matczyszyn
- Institute
of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
- International
Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM), Hiroshima University, Higashihiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
2
|
Chen J. Current advances in anisotropic structures for enhanced osteogenesis. Colloids Surf B Biointerfaces 2023; 231:113566. [PMID: 37797464 DOI: 10.1016/j.colsurfb.2023.113566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Bone defects are a challenge to healthcare systems, as the aging population experiences an increase in bone defects. Despite the development of biomaterials for bone fillers and scaffolds, there is still an unmet need for a bone-mimetic material. Cortical bone is highly anisotropic and displays a biological liquid crystalline (LC) arrangement, giving it exceptional mechanical properties and a distinctive microenvironment. However, the biofunctions, cell-tissue interactions, and molecular mechanisms of cortical bone anisotropic structure are not well understood. Incorporating anisotropic structures in bone-facilitated scaffolds has been recognised as essential for better outcomes. Various approaches have been used to create anisotropic micro/nanostructures, but biomimetic bone anisotropic structures are still in the early stages of development. Most scaffolds lack features at the nanoscale, and there is no comprehensive evaluation of molecular mechanisms or characterisation of calcium secretion. This manuscript provides a review of the latest development of anisotropic designs for osteogenesis and discusses current findings on cell-anisotropic structure interactions. It also emphasises the need for further research. Filling knowledge gaps will enable the fabrication of scaffolds for improved and more controllable bone regeneration.
Collapse
Affiliation(s)
- Jishizhan Chen
- UCL Mechanical Engineering, University College London, WC1E 7JE, UK.
| |
Collapse
|
3
|
Zatloukalova M, Poltorak L, Bilewicz R, Vacek J. Lipid-based liquid crystalline materials in electrochemical sensing and nanocarrier technology. Mikrochim Acta 2023; 190:187. [PMID: 37071228 PMCID: PMC10113356 DOI: 10.1007/s00604-023-05727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/02/2023] [Indexed: 04/19/2023]
Abstract
Some biologically active substances are unstable and poorly soluble in aqueous media, at the same time exhibiting low bioavailability. The incorporation of these biologically active compounds into the structure of a lipid-based lyotropic liquid crystalline phase or nanoparticles can increase or improve their stability and transport properties, subsequent bioavailability, and applicability in general. The aim of this short overview is (1) to clarify the principle of self-assembly of lipidic amphiphilic molecules in an aqueous environment and (2) to present lipidic bicontinuous cubic and hexagonal phases and their current biosensing (with a focus on electrochemical protocols) and biomedical applications.
Collapse
Affiliation(s)
- Martina Zatloukalova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15, Olomouc, Czech Republic.
| | - Lukasz Poltorak
- Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15, Olomouc, Czech Republic.
| |
Collapse
|
4
|
Davis VA. Anisotropic Nanomaterial Liquid Crystals: From Fiber Spinning to Additive Manufacturing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3829-3836. [PMID: 36897798 DOI: 10.1021/acs.langmuir.2c03519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
There have long been synergistic relationships among the discovery of new anisotropic materials, advancements in liquid crystal science, and the production of manufactured goods with exciting new properties. Ongoing progress in understanding the phase behavior and shear response of lyotropic liquid crystals comprised of one-dimensional and two-dimensional nanomaterials, coupled with advancements in extrusion-based manufacturing methods, promises to enable the scalable production of solid materials with outstanding properties and controlled order across multiple length scales. This Perspective highlights progress in using anisotropic nanomaterial liquid crystals in two extrusion-based manufacturing methods: solution spinning and direct ink writing. It also describes current challenges and opportunities at the interface of nanotechnology, liquid crystalline science, and manufacturing. The intent is to inspire additional transdisciplinary research that will enable nanotechnology to fulfill its potential for producing advanced materials with precisely controlled morphologies and properties.
Collapse
Affiliation(s)
- Virginia A Davis
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
5
|
2-Pyridinyl-Terminated Iminobenzoate: Type and Orientation of Mesogenic Core Effect, Geometrical DFT Investigation. CRYSTALS 2022. [DOI: 10.3390/cryst12070902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
A new liquid crystal series of pyridin-2-yl 4-[4-(alkylphenyl)iminomethyl]benzoate was synthesized and characterized for their mesomorphic behavior. These compounds contain Schiff base and carboxylate ester mesogenic cores, in addition to terminal alkyl chains with a different number of carbons. The structures were confirmed via FT-IR, and 1H NMR spectroscopy. The phase transitions were studied by differential thermal analysis (DSC) and the mesophase types were identified by polarized optical microscopy (POM). A comparative study was performed between the synthesized compounds and previously reported compounds. Density functional theory (DFT) calculations were included in the study to compute the dipole moment and the polarizability, as well as the frontier molecular orbitals and the charge distribution mapping, which impact the terminal and lateral interactions of the compounds. The theoretical results were discussed to confirm the experimental data and explain the mesomorphic behavior of the compounds. Finally, the energy gap, global softness, and chemical hardness were calculated to determine the suitability of the liquid crystalline compounds to be employed in applications.
Collapse
|
6
|
Vaňkátová P, Kubíčková A, Kalíková K. Enantioseparation of liquid crystals and their utilization as enantiodiscrimination materials. J Chromatogr A 2022; 1673:463074. [DOI: 10.1016/j.chroma.2022.463074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/28/2022]
|
7
|
Qu R, Li G. Overview of Liquid Crystal Biosensors: From Basic Theory to Advanced Applications. BIOSENSORS 2022; 12:205. [PMID: 35448265 PMCID: PMC9032088 DOI: 10.3390/bios12040205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 05/06/2023]
Abstract
Liquid crystals (LCs), as the remarkable optical materials possessing stimuli-responsive property and optical modulation property simultaneously, have been utilized to fabricate a wide variety of optical devices. Integrating the LCs and receptors together, LC biosensors aimed at detecting various biomolecules have been extensively explored. Compared with the traditional biosensing technologies, the LC biosensors are simple, visualized, and efficient. Owning to the irreplaceable superiorities, the research enthusiasm for the LC biosensors is rapidly rising. As a result, it is necessary to overview the development of the LC biosensors to guide future work. This article reviews the basic theory and advanced applications of LC biosensors. We first discuss different mesophases and geometries employed to fabricate LC biosensors, after which we introduce various detecting mechanisms involved in biomolecular detection. We then focus on diverse detection targets such as proteins, enzymes, nucleic acids, glucose, cholesterol, bile acids, and lipopolysaccharides. For each of these targets, the development history and state-of-the-art work are exhibited in detail. Finally, the current challenges and potential development directions of the LC biosensors are introduced briefly.
Collapse
Affiliation(s)
- Ruixiang Qu
- Intelligent Optical Imaging and Sensing Group, Zhejiang Laboratory, Hangzhou 311121, China
| | - Guoqiang Li
- Intelligent Optical Imaging and Sensing Group, Zhejiang Laboratory, Hangzhou 311121, China
| |
Collapse
|
8
|
Shah S, Marandi P, Neelakandan PP. Advances in the Supramolecular Chemistry of Tetracoordinate Boron-Containing Organic Molecules into Organogels and Mesogens. Front Chem 2021; 9:708854. [PMID: 34557473 PMCID: PMC8452935 DOI: 10.3389/fchem.2021.708854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Boron-containing organic compounds are well accepted as a class of compounds having excellent photophysical properties. In addition to the unique photophysical properties, the ease of synthesis and structural robustness make tetracoordinate boron complexes ideal for a variety of applications. While significant light has been thrown on their luminescence properties, there is no collective attention to their supramolecular chemistry. In this mini review, we discuss the progress made in the supramolecular chemistry of these compounds which includes their utility as building blocks for liquid crystalline materials and gels largely driven by various non-covalent interactions like H-bonding, CH-π interactions, BF-π interactions and Van der Waals forces. The organoboron compounds presented here are prepared from easy-to-synthesize chelating units such as imines, diiminates, ketoiminates and diketonates. Moreover, the presence of heteroatoms such as nitrogen, oxygen and sulfur, and the presence of aromatic rings facilitate non-covalent interactions which not only favor their formation but also helps to stabilize the self-assembled structures.
Collapse
Affiliation(s)
- Sanchita Shah
- Energy and Environment Unit, Institute of Nano Science and Technology, Mohali, India
| | - Parvati Marandi
- Energy and Environment Unit, Institute of Nano Science and Technology, Mohali, India
| | - P P Neelakandan
- Energy and Environment Unit, Institute of Nano Science and Technology, Mohali, India
| |
Collapse
|
9
|
Silvestrini AVP, Caron AL, Viegas J, Praça FG, Bentley MVLB. Advances in lyotropic liquid crystal systems for skin drug delivery. Expert Opin Drug Deliv 2020; 17:1781-1805. [DOI: 10.1080/17425247.2020.1819979] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Angelo Luis Caron
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Juliana Viegas
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Fabíola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
10
|
Jeong GH, Sasikala SP, Yun T, Lee GY, Lee WJ, Kim SO. Nanoscale Assembly of 2D Materials for Energy and Environmental Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907006. [PMID: 32243010 DOI: 10.1002/adma.201907006] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/17/2019] [Indexed: 06/11/2023]
Abstract
Rational design of 2D materials is crucial for the realization of their profound implications in energy and environmental fields. The past decade has witnessed significant developments in 2D material research, yet a number of critical challenges remain for real-world applications. Nanoscale assembly, precise control over the orientational and positional ordering, and complex interfaces among 2D layers are essential for the continued progress of 2D materials, especially for energy storage and conversion and environmental remediation. Herein, recent progress, the status, future prospects, and challenges associated with nanoscopic assembly of 2D materials are highlighted, specifically targeting energy and environmental applications. Geometric dimensional diversity of 2D material assembly is focused on, based on novel assembly mechanisms, including 1D fibers from the colloidal liquid crystalline phase, 2D films by interfacial tension (Marangoni effect), and 3D nanoarchitecture assembly by electrochemical processes. Relevant critical advantages of 2D material assembly are highlighted for application fields, including secondary batteries, supercapacitors, catalysts, gas sensors, desalination, and water decontamination.
Collapse
Affiliation(s)
- Gyoung Hwa Jeong
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Suchithra Padmajan Sasikala
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Taeyeong Yun
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Gil Yong Lee
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Won Jun Lee
- Department of Fiber System Engineering, Dankook University, Yongin-si, Gyeonggi-do, 16890, Republic of Korea
| | - Sang Ouk Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
11
|
de Souza JF, da Silva Pontes K, Alves TFR, Torqueti de Barros C, Amaral VA, de Moura Crescencio KM, Rios AC, Batain F, Souto EB, Severino P, Komatsu D, de Alencar Hausen M, Chaud MV. Structural comparison, physicochemical properties, and in vitro release profile of curcumin-loaded lyotropic liquid crystalline nanoparticle: Influence of hydrotrope as interface stabilizers. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Abstract
The present work intends to provide a brief account of the most recent advances in the use of ionic liquid crystals (ILCs) in the field of tribology, that is, the development of new lubricants with the ability to reduce the coefficients of friction and the wear rates of materials under sliding conditions. After a definition of ILCs and their relationship with neutral liquid crystals (LCs) and ionic liquids (ILs), the review will be focused on the influence of molecular structure and composition on the tribological performance, the combination with base oils, surfactants or water, and the different sliding configuration and potential applications. The main mechanisms proposed in order to justify the lubricating ability of ILCs will be analyzed. Special emphasis will be made for recent results obtained for fatty acid derivatives due to their renewable and environmentally friendly nature.
Collapse
|
13
|
Hu J, Albadawi H, Oklu R, Chong BW, Deipolyi AR, Sheth RA, Khademhosseini A. Advances in Biomaterials and Technologies for Vascular Embolization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901071. [PMID: 31168915 PMCID: PMC7014563 DOI: 10.1002/adma.201901071] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/24/2019] [Indexed: 05/03/2023]
Abstract
Minimally invasive transcatheter embolization is a common nonsurgical procedure in interventional radiology used for the deliberate occlusion of blood vessels for the treatment of diseased or injured vasculature. A wide variety of embolic agents including metallic coils, calibrated microspheres, and liquids are available for clinical practice. Additionally, advances in biomaterials, such as shape-memory foams, biodegradable polymers, and in situ gelling solutions have led to the development of novel preclinical embolic agents. The aim here is to provide a comprehensive overview of current and emerging technologies in endovascular embolization with respect to devices, materials, mechanisms, and design guidelines. Limitations and challenges in embolic materials are also discussed to promote advancement in the field.
Collapse
Affiliation(s)
- Jingjie Hu
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Hassan Albadawi
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Rahmi Oklu
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Brian W Chong
- Departments of Radiology and Neurological Surgery, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Amy R. Deipolyi
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical Center, 1275 York Avenue, New York, New York 10065, USA
| | - Rahul A. Sheth
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Ali Khademhosseini
- Department of Bioengineering, Department of Radiological Sciences, Department of Chemical and Biomolecular Engineering, Center for Minimally Invasive Therapeutics, California Nanosystems Institute, University of California, 410 Westwood Plaza, Los Angeles, California 90095, USA
| |
Collapse
|
14
|
Jullien A, Scarangella A, Bortolozzo U, Residori S, Mitov M. Nanoscale hyperspectral imaging of tilted cholesteric liquid crystal structures. SOFT MATTER 2019; 15:3256-3263. [PMID: 30919852 DOI: 10.1039/c8sm02506a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ongoing research on chiral liquid crystals takes advantage of the peculiar behavior of twisted structures subject to curvature. We demonstrate the fine tunability of the characteristics of the bandgap of a cholesteric structure in which the orientation of the helix axis spatially changes. To date, the spectral resolution of the order of 6 nm, herein reached by hyperspectral imaging, has not been solved in tilted helices. A correlation between spectral shifts and spatial twists is thus made possible.
Collapse
Affiliation(s)
- Aurélie Jullien
- Institut de Physique de Nice (InPhyNi), Université Côte d'Azur, CNRS UMR 7010, 1361 route des Lucioles, 06560 Valbonne, France.
| | | | | | | | | |
Collapse
|
15
|
Martella D, Parmeggiani C. Advances in Cell Scaffolds for Tissue Engineering: The Value of Liquid Crystalline Elastomers. Chemistry 2018; 24:12206-12220. [DOI: 10.1002/chem.201800477] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Daniele Martella
- Chemistry Department “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 Sesto Fiorentino Italy
- CNR-INO; European Laboratory for Non-Linear Spectroscopy (LENS); University of Florence; via Nello Carrara 1 Sesto Fiorentino Italy
| | - Camilla Parmeggiani
- Chemistry Department “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 Sesto Fiorentino Italy
- CNR-INO; European Laboratory for Non-Linear Spectroscopy (LENS); University of Florence; via Nello Carrara 1 Sesto Fiorentino Italy
| |
Collapse
|
16
|
Abstract
Macrofibrils are the main structural component of the hair cortex, and are a composite material in which trichokeratin intermediate filaments (IFs) are arranged as organised arrays embedded in a matrix composed of keratin-associated proteins (KAPs) and keratin head groups. Various architecture of macrofibrils is possible, with many having a central core around which IFs are helically arranged, an organisation most accurately described as a double-twist arrangement. In this chapter we describe the architecture of macrofibrils and then cover their formation, with most of the material focusing on the theory that the initial stages of macrofibril formation are as liquid crystals.
Collapse
|
17
|
Lejček L, Glogarová M, Těšínská E. Commemorative plaque of Prof. Friedrich Reinitzer installed in Prague. LIQUID CRYSTALS TODAY 2017. [DOI: 10.1080/1358314x.2017.1359141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Lubor Lejček
- Academy of Sciences of the Czech Republic, Institute of Physics, Prague 8, Czech Republic
| | - Milada Glogarová
- Academy of Sciences of the Czech Republic, Institute of Physics, Prague 8, Czech Republic
| | - Emilie Těšínská
- Academy of Sciences of the Czech Republic, Centre for the History of Science, Institute of Contemporary History, Prague 6, Czech Republic
| |
Collapse
|
18
|
Abstract
Liquid crystals play an important role in biology because the combination of order and mobility is a basic requirement for self-organisation and structure formation in living systems. Cholesteric liquid crystals are omnipresent in living matter under both in vivo and in vitro conditions and address the major types of molecules essential to life. In the animal and plant kingdoms, the cholesteric structure is a recurring design, suggesting a convergent evolution to an optimised left-handed helix. Herein, we review the recent advances in the cholesteric organisation of DNA, chromatin, chitin, cellulose, collagen, viruses, silk and cholesterol ester deposition in atherosclerosis. Cholesteric structures can be found in bacteriophages, archaea, eukaryotes, bacterial nucleoids, chromosomes of unicellular algae, sperm nuclei of many vertebrates, cuticles of crustaceans and insects, bone, tendon, cornea, fish scales and scutes, cuttlebone and squid pens, plant cell walls, virus suspensions, silk produced by spiders and silkworms, and arterial wall lesions. This article specifically aims at describing the consequences of the cholesteric geometry in living matter, which are far from being fully defined and understood, and discusses various perspectives. The roles and functions of biological cholesteric liquid crystals include maximisation of packing efficiency, morphogenesis, mechanical stability, optical information, radiation protection and evolution pressure.
Collapse
Affiliation(s)
- Michel Mitov
- Centre d'Elaboration de Matériaux et d'Etudes Structurales (CEMES), CNRS, BP 94347, 29 rue Jeanne-Marvig, F-31055 Toulouse Cedex 4, France.
| |
Collapse
|
19
|
Dierking I, Mitov M, Osipov MA. Smectic layer instabilities in liquid crystals. SOFT MATTER 2015; 11:819-837. [PMID: 25523439 DOI: 10.1039/c4sm02505a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Scientists aspire to understand the underlying physics behind the formation of instabilities in soft matter and how to manipulate them for diverse investigations, while engineers aim to design materials that inhibit or impede the nucleation and growth of these instabilities in critical applications. The present paper reviews the field-induced rotational instabilities which may occur in chiral smectic liquid-crystalline layers when subjected to an asymmetric electric field. Such instabilities destroy the so-named bookshelf geometry (in which the smectic layers are normal to the cell surfaces) and have a detrimental effect on all applications of ferroelectric liquid crystals as optical materials. The transformation of the bookshelf geometry into horizontal chevron structures (in which each layer is in a V-shaped structure), and the reorientation dynamics of these chevrons, are discussed in details with respect to the electric field conditions, the material properties and the boundary conditions. Particular attention is given to the polymer-stabilisation of smectic phases as a way to forbid the occurrence of instabilities and the decline of related electro-optical performances. It is also shown which benefit may be gained from layer instabilities to enhance the alignment of the liquid-crystalline geometry in practical devices, such as optical recording by ferroelectric liquid crystals. Finally, the theoretical background of layer instabilities is given and discussed in relation to the experimental data.
Collapse
Affiliation(s)
- Ingo Dierking
- School of Physics and Astronomy, University of Manchester, Schuster Building, Oxford Road, Manchester M13 9PL, UK.
| | | | | |
Collapse
|