1
|
Wang W, Yang L, Sun H, Peng X, Yuan J, Zhong W, Chen J, He X, Ye L, Zeng Y, Gao Z, Li Y, Qu X. Cellular nucleus image-based smarter microscope system for single cell analysis. Biosens Bioelectron 2024; 250:116052. [PMID: 38266616 DOI: 10.1016/j.bios.2024.116052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/31/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Cell imaging technology is undoubtedly a powerful tool for studying single-cell heterogeneity due to its non-invasive and visual advantages. It covers microscope hardware, software, and image analysis techniques, which are hindered by low throughput owing to abundant hands-on time and expertise. Herein, a cellular nucleus image-based smarter microscope system for single-cell analysis is reported to achieve high-throughput analysis and high-content detection of cells. By combining the hardware of an automatic fluorescence microscope and multi-object recognition/acquisition software, we have achieved more advanced process automation with the assistance of Robotic Process Automation (RPA), which realizes a high-throughput collection of single-cell images. Automated acquisition of single-cell images has benefits beyond ease and throughout and can lead to uniform standard and higher quality images. We further constructed a single-cell image database-based convolutional neural network (Efficient Convolutional Neural Network, E-CNN) exceeding 20618 single-cell nucleus images. Computational analysis of large and complex data sets enhances the content and efficiency of single-cell analysis with the assistance of Artificial Intelligence (AI), which breaks through the super-resolution microscope's hardware limitation, such as specialized light sources with specific wavelengths, advanced optical components, and high-performance graphics cards. Our system can identify single-cell nucleus images that cannot be artificially distinguished with an accuracy of 95.3%. Overall, we build an ordinary microscope into a high-throughput analysis and high-content smarter microscope system, making it a candidate tool for Imaging cytology.
Collapse
Affiliation(s)
- Wentao Wang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, Guangdong Province, 518017, China
| | - Lin Yang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, Guangdong Province, 518017, China
| | - Hang Sun
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, Guangdong Province, 518017, China
| | - Xiaohong Peng
- YueYang Central Hospital, YueYang, Hunan Province, 414000, China
| | - Junjie Yuan
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, Guangdong Province, 518017, China
| | - Wenhao Zhong
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, Guangdong Province, 518017, China
| | - Jinqi Chen
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, Guangdong Province, 518017, China
| | - Xin He
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, Guangdong Province, 518017, China
| | - Lingzhi Ye
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, Guangdong Province, 518017, China
| | - Yi Zeng
- College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Zhifan Gao
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, Guangdong Province, 518017, China.
| | - Yunhui Li
- Department of Laboratory Medical Center, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning Province, 110016, China.
| | - Xiangmeng Qu
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, Guangdong Province, 518017, China.
| |
Collapse
|
2
|
Xu X, Qiu K, Tian Z, Aryal C, Rowan F, Chen R, Sun Y, Diao J. Probing the dynamic crosstalk of lysosomes and mitochondria with structured illumination microscopy. Trends Analyt Chem 2023; 169:117370. [PMID: 37928815 PMCID: PMC10621629 DOI: 10.1016/j.trac.2023.117370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Structured illumination microscopy (SIM) is a super-resolution technology for imaging living cells and has been used for studying the dynamics of lysosomes and mitochondria. Recently, new probes and analyzing methods have been developed for SIM imaging, enabling the quantitative analysis of these subcellular structures and their interactions. This review provides an overview of the working principle and advances of SIM, as well as the organelle-targeting principles and types of fluorescence probes, including small molecules, metal complexes, nanoparticles, and fluorescent proteins. Additionally, quantitative methods based on organelle morphology and distribution are outlined. Finally, the review provides an outlook on the current challenges and future directions for improving the combination of SIM imaging and image analysis to further advance the study of organelles. We hope that this review will be useful for researchers working in the field of organelle research and help to facilitate the development of SIM imaging and analysis techniques.
Collapse
Affiliation(s)
- Xiuqiong Xu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kangqiang Qiu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Zhiqi Tian
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Chinta Aryal
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Fiona Rowan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Rui Chen
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
3
|
Orientia tsutsugamushi OtDUB Is Expressed and Interacts with Adaptor Protein Complexes during Infection. Infect Immun 2022; 90:e0046922. [PMID: 36374099 PMCID: PMC9753657 DOI: 10.1128/iai.00469-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Orientia tsutsugamushi is an etiologic agent of scrub typhus, a globally emerging rickettsiosis that can be fatal. The bacterium's obligate intracellular lifestyle requires its interaction with host eukaryotic cellular pathways. The proteins it employs to do so and their functions during infection are understudied. Recombinant versions of the recently characterized O. tsutsugamushi deubiquitylase (OtDUB) exhibit high-affinity ubiquitin binding, mediate guanine nucleotide exchange to activate Rho GTPases, bind clathrin adaptor protein complexes 1 and 2, and bind the phospholipid phosphatidylserine. Whether OtDUB is expressed and its function during O. tsutsugamushi infection have yet to be explored. Here, OtDUB expression, location, and interactome during infection were examined. O. tsutsugamushi transcriptionally and translationally expresses OtDUB throughout infection of epithelial, monocytic, and endothelial cells. Results from structured illumination microscopy, surface trypsinization of intact bacteria, and acetic acid extraction of non-integral membrane proteins indicate that OtDUB peripherally associates with the O. tsutsugamushi cell wall and is at least partially present on the bacterial surface. Analyses of the proteins with which OtDUB associates during infection revealed several known O. tsutsugamushi cell wall proteins and others. It also forms an interactome with adapter protein complex 2 and other endosomal membrane traffic regulators. This study documents the first interactors of OtDUB during O. tsutsugamushi infection and establishes a strong link between OtDUB and the host endocytic pathway.
Collapse
|
4
|
Tinning P, Donnachie M, Christopher J, Uttamchandani D, Bauer R. Miniaturized structured illumination microscopy using two 3-axis MEMS micromirrors. BIOMEDICAL OPTICS EXPRESS 2022; 13:6443-6456. [PMID: 36589569 PMCID: PMC9774859 DOI: 10.1364/boe.475811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
We present the development and performance characterisation of a novel structured illumination microscope (SIM) in which the grating pattern is generated using two optical beams controlled via 2 micro-electro-mechanical system (MEMS) three-axis scanning micromirrors. The implementation of MEMS micromirrors to accurately and repeatably control angular, radial and phase positioning delivers flexible control of the fluorescence excitation illumination, with achromatic beam delivery through the same optical path, reduced spatial footprint and cost-efficient integration being further benefits. Our SIM architecture enables the direct implementation of multi-color imaging in a compact and adaptable package. The two-dimensional SIM system approach is enabled by a pair of 2 mm aperture electrostatically actuated three-axis micromirrors having static angular tilt motion along the x- and y-axes and static piston motion along the z-axis. This allows precise angular, radial and phase positioning of two optical beams, generating a fully controllable spatial interference pattern at the focal plane by adjusting the positions of the beam in the back-aperture of a microscope objective. This MEMS-SIM system was applied to fluorescent bead samples and cell specimens, and was able to obtain a variable lateral resolution improvement between 1.3 and 1.8 times the diffraction limited resolution.
Collapse
Affiliation(s)
- Peter Tinning
- Centre for Microsystems and Photonics, Department of Electronic and Electrical Engineering, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
- Currently with the Department of Physics,
University of Strathclyde, 107 Rotten Row,
Glasgow, G1 1XJ, UK
| | - Mark Donnachie
- Centre for Microsystems and Photonics, Department of Electronic and Electrical Engineering, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Jay Christopher
- Centre for Microsystems and Photonics, Department of Electronic and Electrical Engineering, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Deepak Uttamchandani
- Centre for Microsystems and Photonics, Department of Electronic and Electrical Engineering, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Ralf Bauer
- Centre for Microsystems and Photonics, Department of Electronic and Electrical Engineering, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| |
Collapse
|
5
|
Xu Y, Dang D, Zhang N, Zhang J, Xu R, Wang Z, Zhou Y, Zhang H, Liu H, Yang Z, Meng L, Lam JWY, Tang BZ. Aggregation-Induced Emission (AIE) in Super-resolution Imaging: Cationic AIE Luminogens (AIEgens) for Tunable Organelle-Specific Imaging and Dynamic Tracking in Nanometer Scale. ACS NANO 2022; 16:5932-5942. [PMID: 35344346 DOI: 10.1021/acsnano.1c11125] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organelle-specific imaging and dynamic tracking in ultrahigh resolution is essential for understanding their functions in biological research, but this remains a challenge. Therefore, a facile strategy by utilizing anion-π+ interactions is proposed here to construct an aggregation-induced emission luminogen (AIEgen) of DTPAP-P, not only restricting the intramolecular motions but also blocking their strong π-π interactions. DTPAP-P exhibits a high photoluminescence quantum yield (PLQY) of 35.04% in solids, favorable photostability and biocompatibility, indicating its potential application in super-resolution imaging (SRI) via stimulated emission depletion (STED) nanoscopy. It is also observed that this cationic DTPAP-P can specifically target to mitochondria or nucleus dependent on the cell status, resulting in tunable organelle-specific imaging in nanometer scale. In live cells, mitochondria-specific imaging and their dynamic monitoring (fission and fusion) can be obtained in ultrahigh resolution with a full-width-at-half-maximum (fwhm) value of only 165 nm by STED nanoscopy. This is about one-sixth of the fwhm value in confocal microscopy (1028 nm). However, a migration process occurs for fixed cells from mitochondria to nucleus under light activation (405 nm), leading to nucleus-targeted super-resolution imaging (fwhm= 184 nm). These findings indicate that tunable organelle-specific imaging and dynamic tracking by a single AIEgen at a superior resolution can be achieved in our case here via STED nanoscopy, thus providing an efficient method to further understand organelle's functions and roles in biological research.
Collapse
Affiliation(s)
- Yanzi Xu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Dongfeng Dang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Ning Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Jianyu Zhang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Ruohan Xu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Zhi Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Yu Zhou
- Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
- School of Physics, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 311215, P. R. China
| | - Haixiang Liu
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Zhiwei Yang
- School of Physics, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Lingjie Meng
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
- Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Jacky W Y Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong Shenzhen, Shenzhen 518172, P. R. China
| |
Collapse
|
6
|
Zheng Y, Chen J, Wu C, Gong W, Si K. Adaptive optics for structured illumination microscopy based on deep learning. Cytometry A 2021; 99:622-631. [PMID: 33543823 DOI: 10.1002/cyto.a.24319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/10/2021] [Accepted: 02/01/2021] [Indexed: 11/10/2022]
Abstract
Structured illumination microscopy (SIM) is widely used in biological imaging for its high resolution, fast imaging speed, and simple optical setup. However, when imaging thick samples, the structured illumination patterns in SIM will suffer from optical aberrations, leading to a serious deterioration in resolution. Therefore, it is necessary to reconstruct structured illumination patterns with high quality and efficiency in deep tissue imaging. Here we demonstrate an adaptive optics (AO) correction method based on deep learning in wide-field SIM imaging system. The mapping between the coefficients of the first 15 Zernike modes and their corresponding distorted patterns is established to train the convolution neural network (CNN). The results show that the optimized CNN can predict the aberration phase within ~10.1 ms with a personal computer. The correlation index between the aberration phases and their corresponding predicted aberration phase is up to 0.9986. This method is highly robust and effective for patterns with various spatial densities and illumination conditions and able to effectively correct the imaging distortion caused by optical aberration in SIM system.
Collapse
Affiliation(s)
- Yao Zheng
- Department of Neurology of the First Affiliated Hospital, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University School of Medicine, Hangzhou, China.,College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jiajia Chen
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Chenxue Wu
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Wei Gong
- Research Units for Emotion and Emotion Disorders, Chinese Academy of Medical Sciences, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Ke Si
- Department of Neurology of the First Affiliated Hospital, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University School of Medicine, Hangzhou, China.,College of Optical Science and Engineering, Zhejiang University, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, Chinese Academy of Medical Sciences, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Schubert V, Neumann P, Marques A, Heckmann S, Macas J, Pedrosa-Harand A, Schubert I, Jang TS, Houben A. Super-Resolution Microscopy Reveals Diversity of Plant Centromere Architecture. Int J Mol Sci 2020; 21:E3488. [PMID: 32429054 PMCID: PMC7278974 DOI: 10.3390/ijms21103488] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022] Open
Abstract
Centromeres are essential for proper chromosome segregation to the daughter cells during mitosis and meiosis. Chromosomes of most eukaryotes studied so far have regional centromeres that form primary constrictions on metaphase chromosomes. These monocentric chromosomes vary from point centromeres to so-called "meta-polycentromeres", with multiple centromere domains in an extended primary constriction, as identified in Pisum and Lathyrus species. However, in various animal and plant lineages centromeres are distributed along almost the entire chromosome length. Therefore, they are called holocentromeres. In holocentric plants, centromere-specific proteins, at which spindle fibers usually attach, are arranged contiguously (line-like), in clusters along the chromosomes or in bands. Here, we summarize findings of ultrastructural investigations using immunolabeling with centromere-specific antibodies and super-resolution microscopy to demonstrate the structural diversity of plant centromeres. A classification of the different centromere types has been suggested based on the distribution of spindle attachment sites. Based on these findings we discuss the possible evolution and advantages of holocentricity, and potential strategies to segregate holocentric chromosomes correctly.
Collapse
Affiliation(s)
- Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany; (S.H.); (I.S.); (A.H.)
| | - Pavel Neumann
- Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; (P.N.); (J.M.); (T.-S.J.)
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
| | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany; (S.H.); (I.S.); (A.H.)
| | - Jiri Macas
- Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; (P.N.); (J.M.); (T.-S.J.)
| | - Andrea Pedrosa-Harand
- Department of Botany, Federal University of Pernambuco (UFPE), Recife 50670-901, Pernambuco, Brazil;
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany; (S.H.); (I.S.); (A.H.)
| | - Tae-Soo Jang
- Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; (P.N.); (J.M.); (T.-S.J.)
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany; (S.H.); (I.S.); (A.H.)
| |
Collapse
|
8
|
Image scanning microscopy. Curr Opin Chem Biol 2019; 51:74-83. [DOI: 10.1016/j.cbpa.2019.05.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/01/2019] [Accepted: 05/13/2019] [Indexed: 12/27/2022]
|
9
|
|
10
|
Jünger F, Rohrbach A. Strong cytoskeleton activity on millisecond timescales upon particle binding revealed by ROCS microscopy. Cytoskeleton (Hoboken) 2018; 75:410-424. [PMID: 30019494 DOI: 10.1002/cm.21478] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 01/09/2023]
Abstract
Cells change their shape within seconds, cellular protrusions even on subsecond timescales enabling various responses to stimuli of approaching bacteria, viruses or pharmaceutical drugs. Typical response patterns are governed by a complex reorganization of the actin cortex, where single filaments and molecules act on even faster timescales. These dynamics have remained mostly invisible due to a superposition of slow and fast motions, but also due to a lack of adequate imaging technology. Whereas fluorescence techniques require too long integration times, novel coherent techniques such as ROCS microscopy can achieve sufficiently high spatiotemporal resolution. ROCS uses rotating back-scattered laser light from cellular structures and generates a consistently high image contrast at 150 nm resolution and frame rates of 100 Hz-without fluorescence or bleaching. Here, we present an extension of ROCS microscopy that exploits the principles of dynamic light scattering for precise localization, visualization and quantification of the cytoskeleton activity of mouse macrophages. The locally observed structural reorganization processes, encoded by dynamic speckle patterns, occur upon distinct mechanical stimuli, such as soft contacts with optically trapped beads. We find that a substantial amount of the near-membrane cytoskeleton activity takes place on millisecond timescales, which is much faster than reported ever before.
Collapse
Affiliation(s)
- Felix Jünger
- Laboratory for Bio- and Nano-Photonics, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Alexander Rohrbach
- Laboratory for Bio- and Nano-Photonics, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
| |
Collapse
|
11
|
Baroux C, Schubert V. Technical Review: Microscopy and Image Processing Tools to Analyze Plant Chromatin: Practical Considerations. Methods Mol Biol 2018; 1675:537-589. [PMID: 29052212 DOI: 10.1007/978-1-4939-7318-7_31] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
In situ nucleus and chromatin analyses rely on microscopy imaging that benefits from versatile, efficient fluorescent probes and proteins for static or live imaging. Yet the broad choice in imaging instruments offered to the user poses orientation problems. Which imaging instrument should be used for which purpose? What are the main caveats and what are the considerations to best exploit each instrument's ability to obtain informative and high-quality images? How to infer quantitative information on chromatin or nuclear organization from microscopy images? In this review, we present an overview of common, fluorescence-based microscopy systems and discuss recently developed super-resolution microscopy systems, which are able to bridge the resolution gap between common fluorescence microscopy and electron microscopy. We briefly present their basic principles and discuss their possible applications in the field, while providing experience-based recommendations to guide the user toward best-possible imaging. In addition to raw data acquisition methods, we discuss commercial and noncommercial processing tools required for optimal image presentation and signal evaluation in two and three dimensions.
Collapse
Affiliation(s)
- Célia Baroux
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland.
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| |
Collapse
|
12
|
|
13
|
The Gain-of-Function Integrin β3 Pro33 Variant Alters the Serotonin System in the Mouse Brain. J Neurosci 2017; 37:11271-11284. [PMID: 29038237 DOI: 10.1523/jneurosci.1482-17.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 12/26/2022] Open
Abstract
Engagement of integrins by the extracellular matrix initiates signaling cascades that drive a variety of cellular functions, including neuronal migration and axonal pathfinding in the brain. Multiple lines of evidence link the ITGB3 gene encoding the integrin β3 subunit with the serotonin (5-HT) system, likely via its modulation of the 5-HT transporter (SERT). The ITGB3 coding polymorphism Leu33Pro (rs5918, PlA2) produces hyperactive αvβ3 receptors that influence whole-blood 5-HT levels and may influence the risk for autism spectrum disorder (ASD). Using a phenome-wide scan of psychiatric diagnoses, we found significant, male-specific associations between the Pro33 allele and attention-deficit hyperactivity disorder and ASDs. Here, we used knock-in (KI) mice expressing an Itgb3 variant that phenocopies the human Pro33 variant to elucidate the consequences of constitutively enhanced αvβ3 signaling to the 5-HT system in the brain. KI mice displayed deficits in multiple behaviors, including anxiety, repetitive, and social behaviors. Anatomical studies revealed a significant decrease in 5-HT synapses in the midbrain, accompanied by decreases in SERT activity and reduced localization of SERTs to integrin adhesion complexes in synapses of KI mice. Inhibition of focal adhesion kinase (FAK) rescued SERT function in synapses of KI mice, demonstrating that constitutive active FAK signaling downstream of the Pro32Pro33 integrin αvβ3 suppresses SERT activity. Our studies identify a complex regulation of 5-HT homeostasis and behaviors by integrin αvβ3, revealing an important role for integrins in modulating risk for neuropsychiatric disorders.SIGNIFICANCE STATEMENT The integrin β3 Leu33Pro coding polymorphism has been associated with autism spectrum disorders (ASDs) within a subgroup of patients with elevated blood 5-HT levels, linking integrin β3, 5-HT, and ASD risk. We capitalized on these interactions to demonstrate that the Pro33 coding variation in the murine integrin β3 recapitulates the sex-dependent neurochemical and behavioral attributes of ASD. Using state-of-the-art techniques, we show that presynaptic 5-HT function is altered in these mice, and that the localization of 5-HT transporters to specific compartments within the synapse, disrupted by the integrin β3 Pro33 mutation, is critical for appropriate reuptake of 5-HT. Our studies provide fundamental insight into the genetic network regulating 5-HT neurotransmission in the CNS that is also associated with ASD risk.
Collapse
|
14
|
Ivask A, Mitchell AJ, Malysheva A, Voelcker NH, Lombi E. Methodologies and approaches for the analysis of cell-nanoparticle interactions. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10:e1486. [DOI: 10.1002/wnan.1486] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/12/2017] [Accepted: 06/20/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Angela Ivask
- Laboratory of Environmental Toxicology; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
- Future Industries Institute; University of South Australia; Mawson Lakes Australia
| | - Andrew J. Mitchell
- Materials Characterisation and Fabrication Platform; University of Melbourne; Melbourne Australia
| | - Anzhela Malysheva
- Future Industries Institute; University of South Australia; Mawson Lakes Australia
| | - Nicolas H. Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Australia
| | - Enzo Lombi
- Future Industries Institute; University of South Australia; Mawson Lakes Australia
| |
Collapse
|
15
|
Demmerle J, Innocent C, North AJ, Ball G, Müller M, Miron E, Matsuda A, Dobbie IM, Markaki Y, Schermelleh L. Strategic and practical guidelines for successful structured illumination microscopy. Nat Protoc 2017; 12:988-1010. [DOI: 10.1038/nprot.2017.019] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
16
|
Sharif M, Silva E, Shah STA, Miller DJ. Redistribution of soluble N-ethylmaleimide-sensitive-factor attachment protein receptors in mouse sperm membranes prior to the acrosome reaction. Biol Reprod 2017; 96:352-365. [PMID: 28203732 DOI: 10.1095/biolreprod.116.143735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/12/2016] [Accepted: 01/10/2017] [Indexed: 02/03/2023] Open
Abstract
Formation of complexes between soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) proteins on opposing membranes is the minimal requirement for intracellular membrane fusion. The SNARE, syntaxin 2, is found on the sperm plasma membrane and a second SNARE, vesicle associated membrane protein 2 (VAMP2, also known as synaptobrevin 2, SYB2), is on the apposing outer acrosomal membrane. During the acrosome reaction, the outer acrosomal membrane fuses at hundreds of points with the plasma membrane. We hypothesized that syntaxin 2 and VAMP2 redistribute within their respective membranes prior to the acrosome reaction to form trans-SNARE complexes and promote membrane fusion. Immunofluorescence and superresolution structured illumination microscopy were used to localize syntaxin 2 and VAMP2 in mouse sperm during capacitation. Initially, syntaxin 2 was found in puncta throughout the acrosomal region. At 60 and 120 min of capacitation, syntaxin 2 was localized in puncta primarily in the apical ridge. Although deletion of bicarbonate during incubation had no effect, syntaxin 2 puncta were relocated in the restricted region in less than 20% of sperm incubated without albumin. In contrast, VAMP2 was already found in puncta within the apical ridge prior to capacitation. The puncta containing syntaxin 2 and VAMP2 did not precisely co-localize at 0 or 60 min of capacitation time. In summary, syntaxin 2 shifted its location to the apical ridge on the plasma membrane during capacitation in an albumin-dependent manner but VAMP2 was already localized to the apical ridge. Puncta containing VAMP2 did not co-localize with those containing syntaxin 2 during capacitation; therefore, formation of trans-SNARE complexes containing these SNAREs does not occur until after capacitation, immediately prior to acrosomal exocytosis.
Collapse
Affiliation(s)
- Momal Sharif
- Institute of Animal Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Elena Silva
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, USA
| | - Syed Tahir Abbas Shah
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, USA
| | - David J Miller
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, USA
| |
Collapse
|
17
|
Banno M, Onda K, Yui H. Improvement of Spatial Resolution for Nonlinear Raman Microscopy by Spatial Light Modulation. ANAL SCI 2017; 33:69-74. [PMID: 28070079 DOI: 10.2116/analsci.33.69] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The development of a stimulated Raman scattering (SRS) microscope with a wavefront modulation unit is presented. In the apparatus, two beams for introducing the SRS process were focused into the sample with an objective lens. In the pathway of the Stokes beam, which is one of the two incident beams, a spatial light modulator (SLM) was located. Using the SLM, the wavefront of the Stokes beam was modulated to make the shape of the focal point a concentric circular pattern. By this spot shaping technique, the area where the SRS signal generates is restricted. The instrument response function (IRF) of the SRS microscope was examined by measuring the SRS intensity while scanning the sample position. From the result, the width of the IRF was reduced by about 15% by the wavefront modulation. It is suggested that the introduction of SLM is a way to improve the IRF of vibrational spectroscopic microscopes.
Collapse
Affiliation(s)
- Motohiro Banno
- Department of Chemistry, Faculty of Science, Tokyo University of Science
| | | | | |
Collapse
|
18
|
Schubert V. Super-resolution Microscopy - Applications in Plant Cell Research. FRONTIERS IN PLANT SCIENCE 2017; 8:531. [PMID: 28450874 PMCID: PMC5390026 DOI: 10.3389/fpls.2017.00531] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/24/2017] [Indexed: 05/10/2023]
Abstract
Most of the present knowledge about cell organization and function is based on molecular and genetic methods as well as cytological investigations. While electron microscopy allows identifying cell substructures until a resolution of ∼1 nm, the resolution of fluorescence microscopy is restricted to ∼200 nm due to the diffraction limit of light. However, the advantage of this technique is the possibility to identify and co-localize specifically labeled structures and molecules. The recently developed super-resolution microscopy techniques, such as Structured Illumination Microscopy, Photoactivated Localization Microscopy, Stochastic Optical Reconstruction Microscopy, and Stimulated Emission Depletion microscopy allow analyzing structures and molecules beyond the diffraction limit of light. Recently, there is an increasing application of these techniques in cell biology. This review evaluates and summarizes especially the data achieved until now in analyzing the organization and function of plant cells, chromosomes and interphase nuclei using super-resolution techniques.
Collapse
|
19
|
Sivaguru M, Urban MA, Fried G, Wesseln CJ, Mander L, Punyasena SW. Comparative performance of airyscan and structured illumination superresolution microscopy in the study of the surface texture and 3D shape of pollen. Microsc Res Tech 2016; 81:101-114. [DOI: 10.1002/jemt.22732] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/03/2016] [Accepted: 07/05/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Mayandi Sivaguru
- Institute for Genomic Biology, University of Illinois; 1206 West Gregory Drive, Urbana Illinois 61801
| | - Michael A. Urban
- Department of Plant Biology; University of Illinois; 505 South Goodwin Avenue, Urbana Illinois 61801
| | - Glenn Fried
- Institute for Genomic Biology, University of Illinois; 1206 West Gregory Drive, Urbana Illinois 61801
| | - Cassandra J. Wesseln
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois; 505 South Goodwin Avenue, Urbana Illinois 61801
| | - Luke Mander
- Department of Environment Earth and Ecosystems; The Open University; Milton Keynes MK7 6AA United Kingdom
| | - Surangi W. Punyasena
- Department of Plant Biology; University of Illinois; 505 South Goodwin Avenue, Urbana Illinois 61801
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois; 505 South Goodwin Avenue, Urbana Illinois 61801
| |
Collapse
|
20
|
Tian H, Fürstenberg A, Huber T. Labeling and Single-Molecule Methods To Monitor G Protein-Coupled Receptor Dynamics. Chem Rev 2016; 117:186-245. [DOI: 10.1021/acs.chemrev.6b00084] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- He Tian
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Alexandre Fürstenberg
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Thomas Huber
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| |
Collapse
|
21
|
Truchan HK, Cockburn CL, Hebert KS, Magunda F, Noh SM, Carlyon JA. The Pathogen-Occupied Vacuoles of Anaplasma phagocytophilum and Anaplasma marginale Interact with the Endoplasmic Reticulum. Front Cell Infect Microbiol 2016; 6:22. [PMID: 26973816 PMCID: PMC4771727 DOI: 10.3389/fcimb.2016.00022] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/08/2016] [Indexed: 11/13/2022] Open
Abstract
The genus Anaplasma consists of tick-transmitted obligate intracellular bacteria that invade white or red blood cells to cause debilitating and potentially fatal infections. A. phagocytophilum, a human and veterinary pathogen, infects neutrophils to cause granulocytic anaplasmosis. A. marginale invades bovine erythrocytes. Evidence suggests that both species may also infect endothelial cells in vivo. In mammalian and arthropod host cells, A. phagocytophilum and A. marginale reside in host cell derived pathogen-occupied vacuoles (POVs). While it was recently demonstrated that the A. phagocytophilum-occupied vacuole (ApV) intercepts membrane traffic from the trans-Golgi network, it is unclear if it or the A. marginale-occupied vacuole (AmV) interacts with other secretory organelles. Here, we demonstrate that the ApV and AmV extensively interact with the host endoplasmic reticulum (ER) in endothelial, myeloid, and/or tick cells. ER lumen markers, calreticulin, and protein disulfide isomerase, and the ER membrane marker, derlin-1, were pronouncedly recruited to the peripheries of both POVs. ApV association with the ER initiated early and continued throughout the infection cycle. Both the ApV and AmV interacted with the rough ER and smooth ER. However, only derlin-1-positive rough ER derived vesicles were delivered into the ApV lumen where they localized with intravacuolar bacteria. Transmission electron microscopy identified multiple ER-POV membrane contact sites on the cytosolic faces of both species' vacuoles that corresponded to areas on the vacuoles' lumenal faces where intravacuolar Anaplasma organisms closely associated. A. phagocytophilum is known to hijack Rab10, a GTPase that regulates ER dynamics and morphology. Yet, ApV-ER interactions were unhindered in cells in which Rab10 had been knocked down, demonstrating that the GTPase is dispensable for the bacterium to parasitize the ER. These data establish the ApV and AmV as pathogen-host interfaces that directly engage the ER in vertebrate and invertebrate host cells and evidence the conservation of ER parasitism between two Anaplasma species.
Collapse
Affiliation(s)
- Hilary K Truchan
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| | - Chelsea L Cockburn
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| | - Kathryn S Hebert
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| | - Forgivemore Magunda
- Program in Vector Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State UniversityPullman, WA, USA; The Paul G. Allen School for Global Animal Health, Washington State UniversityPullman, WA, USA
| | - Susan M Noh
- Program in Vector Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State UniversityPullman, WA, USA; Animal Disease Research Unit, Agricultural Research Service, U. S. Department of AgriculturePullman, WA, USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Throughout history, development of novel microscopy techniques has been of fundamental importance to advance the vascular biology field.This review offers a concise summary of the most recently developed imaging techniques and discusses how they can be applied to vascular biology. In addition, we reflect upon the most important fluorescent reporters for vascular research that are currently available. RECENT FINDINGS Recent advances in light sheet-based imaging techniques now offer the ability to live image the vascular system in whole organs or even in whole animals during development and in pathological conditions with a satisfactory spatial and temporal resolution. Conversely, super resolution microscopy now allows studying cellular processes at a near-molecular resolution. SUMMARY Major recent improvements in a number of imaging techniques now allow study of vascular biology in ways that could not be considered previously. Researchers now have well-developed tools to specifically examine the dynamic nature of vascular development during angiogenic sprouting, remodeling and regression as well as the vascular responses in disease situations in vivo. In addition, open questions in endothelial and lymphatic cell biology that require subcellular resolution such as actin dynamics, junctional complex formation and stability, vascular permeability and receptor trafficking can now be approached with high resolution.
Collapse
Affiliation(s)
- Bàrbara Laviña
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
23
|
Truchan HK, VieBrock L, Cockburn CL, Ojogun N, Griffin BP, Wijesinghe DS, Chalfant CE, Carlyon JA. Anaplasma phagocytophilum Rab10-dependent parasitism of the trans-Golgi network is critical for completion of the infection cycle. Cell Microbiol 2016; 18:260-81. [PMID: 26289115 PMCID: PMC4891814 DOI: 10.1111/cmi.12500] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/03/2015] [Accepted: 08/18/2015] [Indexed: 02/01/2023]
Abstract
Anaplasma phagocytophilum is an emerging human pathogen and obligate intracellular bacterium. It inhabits a host cell-derived vacuole and cycles between replicative reticulate cell (RC) and infectious dense-cored (DC) morphotypes. Host-pathogen interactions that are critical for RC-to-DC conversion are undefined. We previously reported that A. phagocytophilum recruits green fluorescent protein (GFP)-tagged Rab10, a GTPase that directs exocytic traffic from the sphingolipid-rich trans-Golgi network (TGN) to its vacuole in a guanine nucleotide-independent manner. Here, we demonstrate that endogenous Rab10-positive TGN vesicles are not only routed to but also delivered into the A. phagocytophilum-occupied vacuole (ApV). Consistent with this finding, A. phagocytophilum incorporates sphingolipids while intracellular and retains them when naturally released from host cells. TGN vesicle delivery into the ApV is Rab10 dependent, up-regulates expression of the DC-specific marker, APH1235, and is critical for the production of infectious progeny. The A. phagocytophilum surface protein, uridine monophosphate kinase, was identified as a guanine nucleotide-independent, Rab10-specific ligand. These data delineate why Rab10 is important for the A. phagocytophilum infection cycle and expand the understanding of the benefits that exploiting host cell membrane traffic affords intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Hilary K. Truchan
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Lauren VieBrock
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Chelsea L. Cockburn
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Nore Ojogun
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Brian P. Griffin
- Molecular Biology and Genetics Program, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Dayanjan S. Wijesinghe
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Charles E. Chalfant
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- The Victoria Johnson Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Institute for Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Research and Development, Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA, USA
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Molecular Biology and Genetics Program, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
24
|
The Localization and Action of Topoisomerase IV in Escherichia coli Chromosome Segregation Is Coordinated by the SMC Complex, MukBEF. Cell Rep 2015; 13:2587-2596. [PMID: 26686641 PMCID: PMC5061553 DOI: 10.1016/j.celrep.2015.11.034] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/23/2015] [Accepted: 11/10/2015] [Indexed: 01/15/2023] Open
Abstract
The type II topoisomerase TopoIV, which has an essential role in Escherichia coli chromosome decatenation, interacts with MukBEF, an SMC (structural maintenance of chromosomes) complex that acts in chromosome segregation. We have characterized the intracellular dynamics of individual TopoIV molecules and the consequences of their interaction with MukBEF clusters by using photoactivated-localization microscopy. We show that ∼15 TopoIV molecules per cell are associated with MukBEF clusters that are preferentially localized to the replication origin region (ori), close to the long axis of the cell. A replication-dependent increase in the fraction of immobile molecules, together with a proposed catalytic cycle of ∼1.8 s, is consistent with the majority of active TopoIV molecules catalyzing decatenation, with a minority maintaining steady-state DNA supercoiling. Finally, we show that the MukB-ParC interaction is crucial for timely decatenation and segregation of newly replicated ori DNA. Individual molecules of topoisomerase IV (TopoIV) were tracked in live E. coli cells TopoIV was monitored in cellular space and in time throughout the cell cycle The interaction of TopoIV and MukBEF directs TopoIV to its sites of action The TopoIV-MukBEF interaction promotes timely segregation of newly replicated DNA
Collapse
|
25
|
Sednev MV, Belov VN, Hell SW. Fluorescent dyes with large Stokes shifts for super-resolution optical microscopy of biological objects: a review. Methods Appl Fluoresc 2015; 3:042004. [DOI: 10.1088/2050-6120/3/4/042004] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
Manor U, Bartholomew S, Golani G, Christenson E, Kozlov M, Higgs H, Spudich J, Lippincott-Schwartz J. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division. eLife 2015; 4:e08828. [PMID: 26305500 PMCID: PMC4574297 DOI: 10.7554/elife.08828] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/24/2015] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial division, essential for survival in mammals, is enhanced by an inter-organellar process involving ER tubules encircling and constricting mitochondria. The force for constriction is thought to involve actin polymerization by the ER-anchored isoform of the formin protein inverted formin 2 (INF2). Unknown is the mechanism triggering INF2-mediated actin polymerization at ER-mitochondria intersections. We show that a novel isoform of the formin-binding, actin-nucleating protein Spire, Spire1C, localizes to mitochondria and directly links mitochondria to the actin cytoskeleton and the ER. Spire1C binds INF2 and promotes actin assembly on mitochondrial surfaces. Disrupting either Spire1C actin- or formin-binding activities reduces mitochondrial constriction and division. We propose Spire1C cooperates with INF2 to regulate actin assembly at ER-mitochondrial contacts. Simulations support this model's feasibility and demonstrate polymerizing actin filaments can induce mitochondrial constriction. Thus, Spire1C is optimally positioned to serve as a molecular hub that links mitochondria to actin and the ER for regulation of mitochondrial division.
Collapse
Affiliation(s)
- Uri Manor
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Sadie Bartholomew
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| | - Gonen Golani
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
| | - Eric Christenson
- Unit on Structural and Chemical Biology of Membrane Proteins, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Michael Kozlov
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
| | - Henry Higgs
- Department of Biochemistry, Geisel School of Medicine, Hanover, United States
| | - James Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| | - Jennifer Lippincott-Schwartz
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| |
Collapse
|
27
|
Megens RT, Bianchini M, Schmitt MM, Weber C. Optical Imaging Innovations for Atherosclerosis Research. Arterioscler Thromb Vasc Biol 2015; 35:1339-46. [DOI: 10.1161/atvbaha.115.304875] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/09/2015] [Indexed: 11/16/2022]
Abstract
Cardiovascular disease is the leading cause of death and morbidity worldwide. Improving vascular prevention and therapy based on a refined mechanistic pervasion of atherosclerosis as the underlying pathology could limit the effect of vascular disease in aging societies. During the past decades, microscopy has contributed greatly to a better understanding of vascular physiology and pathology by allowing imaging of living specimen with subcellular resolution and high specificity. An important advance has been accomplished through the application of multiphoton microscopy in the vascular domain, a technological development that enabled multidimensional and dynamic imaging deep into the cellular architecture of intact tissue under physiological conditions. To identify and validate new targets for treating atherosclerosis, novel imaging strategies with nanoscale resolution will be essential to visualize molecular processes in intracellular and extracellular compartments. This review will discuss the current use of 2-photon microscopy and will provide an overview and outlook on options for introducing nanoscopic optical imaging modalities in atherosclerosis research.
Collapse
Affiliation(s)
- Remco T.A. Megens
- From the Institute for Prevention of Cardiovascular Diseases (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (R.T.A.M., M.B., M.M.N.S., C.W.); Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands (R.T.A.M., C.W.); and DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (C.W.)
| | - Mariaelvy Bianchini
- From the Institute for Prevention of Cardiovascular Diseases (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (R.T.A.M., M.B., M.M.N.S., C.W.); Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands (R.T.A.M., C.W.); and DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (C.W.)
| | - Martin M.N. Schmitt
- From the Institute for Prevention of Cardiovascular Diseases (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (R.T.A.M., M.B., M.M.N.S., C.W.); Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands (R.T.A.M., C.W.); and DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (C.W.)
| | - Christian Weber
- From the Institute for Prevention of Cardiovascular Diseases (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (R.T.A.M., M.B., M.M.N.S., C.W.); Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands (R.T.A.M., C.W.); and DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (C.W.)
| |
Collapse
|
28
|
Komis G, Mistrik M, Šamajová O, Doskočilová A, Ovečka M, Illés P, Bartek J, Šamaj J. Dynamics and organization of cortical microtubules as revealed by superresolution structured illumination microscopy. PLANT PHYSIOLOGY 2014; 165:129-48. [PMID: 24686112 PMCID: PMC4012574 DOI: 10.1104/pp.114.238477] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/28/2014] [Indexed: 05/07/2023]
Abstract
Plants employ acentrosomal mechanisms to organize cortical microtubule arrays essential for cell growth and differentiation. Using structured illumination microscopy (SIM) adopted for the optimal documentation of Arabidopsis (Arabidopsis thaliana) hypocotyl epidermal cells, dynamic cortical microtubules labeled with green fluorescent protein fused to the microtubule-binding domain of the mammalian microtubule-associated protein MAP4 and with green fluorescent protein-fused to the alpha tubulin6 were comparatively recorded in wild-type Arabidopsis plants and in the mitogen-activated protein kinase mutant mpk4 possessing the former microtubule marker. The mpk4 mutant exhibits extensive microtubule bundling, due to increased abundance and reduced phosphorylation of the microtubule-associated protein MAP65-1, thus providing a very useful genetic tool to record intrabundle microtubule dynamics at the subdiffraction level. SIM imaging revealed nano-sized defects in microtubule bundling, spatially resolved microtubule branching and release, and finally allowed the quantification of individual microtubules within cortical bundles. Time-lapse SIM imaging allowed the visualization of subdiffraction, short-lived excursions of the microtubule plus end, and dynamic instability behavior of both ends during free, intrabundle, or microtubule-templated microtubule growth and shrinkage. Finally, short, rigid, and nondynamic microtubule bundles in the mpk4 mutant were observed to glide along the parent microtubule in a tip-wise manner. In conclusion, this study demonstrates the potential of SIM for superresolution time-lapse imaging of plant cells, showing unprecedented details accompanying microtubule dynamic organization.
Collapse
Affiliation(s)
- George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic (G.K., O.Š., A.D., M.O., P.I., J.Š.)
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic (M.M., J.B.); and
- Danish Cancer Society Research Center, DK–2100 Copenhagen, Denmark (J.B.)
| | - Martin Mistrik
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic (G.K., O.Š., A.D., M.O., P.I., J.Š.)
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic (M.M., J.B.); and
- Danish Cancer Society Research Center, DK–2100 Copenhagen, Denmark (J.B.)
| | - Olga Šamajová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic (G.K., O.Š., A.D., M.O., P.I., J.Š.)
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic (M.M., J.B.); and
- Danish Cancer Society Research Center, DK–2100 Copenhagen, Denmark (J.B.)
| | - Anna Doskočilová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic (G.K., O.Š., A.D., M.O., P.I., J.Š.)
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic (M.M., J.B.); and
- Danish Cancer Society Research Center, DK–2100 Copenhagen, Denmark (J.B.)
| | - Miroslav Ovečka
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic (G.K., O.Š., A.D., M.O., P.I., J.Š.)
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic (M.M., J.B.); and
- Danish Cancer Society Research Center, DK–2100 Copenhagen, Denmark (J.B.)
| | - Peter Illés
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic (G.K., O.Š., A.D., M.O., P.I., J.Š.)
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic (M.M., J.B.); and
- Danish Cancer Society Research Center, DK–2100 Copenhagen, Denmark (J.B.)
| | - Jiri Bartek
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic (G.K., O.Š., A.D., M.O., P.I., J.Š.)
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic (M.M., J.B.); and
- Danish Cancer Society Research Center, DK–2100 Copenhagen, Denmark (J.B.)
| | | |
Collapse
|