1
|
Olgenblum GI, Hutcheson BO, Pielak GJ, Harries D. Protecting Proteins from Desiccation Stress Using Molecular Glasses and Gels. Chem Rev 2024; 124:5668-5694. [PMID: 38635951 PMCID: PMC11082905 DOI: 10.1021/acs.chemrev.3c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 04/20/2024]
Abstract
Faced with desiccation stress, many organisms deploy strategies to maintain the integrity of their cellular components. Amorphous glassy media composed of small molecular solutes or protein gels present general strategies for protecting against drying. We review these strategies and the proposed molecular mechanisms to explain protein protection in a vitreous matrix under conditions of low hydration. We also describe efforts to exploit similar strategies in technological applications for protecting proteins in dry or highly desiccated states. Finally, we outline open questions and possibilities for future explorations.
Collapse
Affiliation(s)
- Gil I. Olgenblum
- Institute
of Chemistry, Fritz Haber Research Center, and The Harvey M. Krueger
Family Center for Nanoscience & Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| | - Brent O. Hutcheson
- Department
of Chemistry, University of North Carolina
at Chapel Hill (UNC-CH), Chapel
Hill, North Carolina 27599, United States
| | - Gary J. Pielak
- Department
of Chemistry, University of North Carolina
at Chapel Hill (UNC-CH), Chapel
Hill, North Carolina 27599, United States
- Department
of Chemistry, Department of Biochemistry & Biophysics, Integrated
Program for Biological & Genome Sciences, Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Daniel Harries
- Institute
of Chemistry, Fritz Haber Research Center, and The Harvey M. Krueger
Family Center for Nanoscience & Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| |
Collapse
|
2
|
Olgenblum GI, Carmon N, Harries D. Not Always Sticky: Specificity of Protein Stabilization by Sugars Is Conferred by Protein-Water Hydrogen Bonds. J Am Chem Soc 2023; 145:23308-23320. [PMID: 37845197 PMCID: PMC10603812 DOI: 10.1021/jacs.3c08702] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Solutes added to buffered solutions directly impact protein folding. Protein stabilization by cosolutes or crowders has been shown to be largely driven by protein-cosolute volume exclusion complemented by chemical and soft interactions. By contrast to previous studies that indicate the invariably destabilizing role of soft protein-sugar attractions, we show here that soft interactions with sugar cosolutes are protein-specific and can be stabilizing or destabilizing. We experimentally follow the folding of two model miniproteins that are only marginally stable but in the presence of sugars and polyols fold into representative and distinct secondary structures: β-hairpin or α-helix. Our mean-field model reveals that while protein-sugar excluded volume interactions have a similar stabilizing effect on both proteins, the soft interactions add a destabilizing contribution to one miniprotein but further stabilize the other. Using molecular dynamics simulations, we link the soft protein-cosolute interactions to the weakening of direct protein-water hydrogen bonding due to the presence of sugars. Although these weakened hydrogen bonds destabilize both the native and denatured states of the two proteins, the resulting contribution to the folding free energy can be positive or negative depending on the amino acid sequence. This study indicates that the significant variation between proteins in their soft interactions with sugar determines the specific response of different proteins, even to the same sugar.
Collapse
Affiliation(s)
- Gil I Olgenblum
- The Fritz Haber Research Center, and the Harvey M. Kruger Center for Nanoscience & Nanotechnology, Institute of Chemistry, The Hebrew University, Jerusalem 9190401, Israel
| | - Neta Carmon
- The Fritz Haber Research Center, and the Harvey M. Kruger Center for Nanoscience & Nanotechnology, Institute of Chemistry, The Hebrew University, Jerusalem 9190401, Israel
| | - Daniel Harries
- The Fritz Haber Research Center, and the Harvey M. Kruger Center for Nanoscience & Nanotechnology, Institute of Chemistry, The Hebrew University, Jerusalem 9190401, Israel
| |
Collapse
|
3
|
Zheng N, Long M, Zhang Z, Du S, Huang X, Osire T, Xia X. Behavior of enzymes under high pressure in food processing: mechanisms, applications, and developments. Crit Rev Food Sci Nutr 2023; 64:9829-9843. [PMID: 37243343 DOI: 10.1080/10408398.2023.2217268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
High pressure processing (HPP) offers the benefits of safety, uniformity, energy-efficient, and low waste, which is widely applied for microbial inactivation and shelf-life extension for foods. Over the past forty years, HPP has been extensively researched in the food industry, enabling the inactivation or activation of different enzymes in future food by altering their molecular structure and active site conformation. Such activation or inactivation of enzymes effectively hinders the spoilage of food and the production of beneficial substances, which is crucial for improving food quality. This paper reviews the mechanism in which high pressure affects the stability and activity of enzymes, concludes the roles of key enzymes in the future food processed using high pressure technologies. Moreover, we discuss the application of modified enzymes based on high pressure, providing insights into the future direction of enzyme evolution under complex food processing conditions (e.g. high temperature, high pressure, high shear, and multiple elements). Finally, we conclude with prospects of high pressure technology and research directions in the future. Although HPP has shown positive effects in improving the future food quality, there is still a pressing need to develop new and effective combined processing methods, upgrade processing modes, and promote sustainable lifestyles.
Collapse
Affiliation(s)
- Nan Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Mengfei Long
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zehua Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shuang Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xinlei Huang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Tolbert Osire
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Xiaole Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Knop JM, Mukherjee S, Jaworek MW, Kriegler S, Manisegaran M, Fetahaj Z, Ostermeier L, Oliva R, Gault S, Cockell CS, Winter R. Life in Multi-Extreme Environments: Brines, Osmotic and Hydrostatic Pressure─A Physicochemical View. Chem Rev 2023; 123:73-104. [PMID: 36260784 DOI: 10.1021/acs.chemrev.2c00491] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Elucidating the details of the formation, stability, interactions, and reactivity of biomolecular systems under extreme environmental conditions, including high salt concentrations in brines and high osmotic and high hydrostatic pressures, is of fundamental biological, astrobiological, and biotechnological importance. Bacteria and archaea are able to survive in the deep ocean or subsurface of Earth, where pressures of up to 1 kbar are reached. The deep subsurface of Mars may host high concentrations of ions in brines, such as perchlorates, but we know little about how these conditions and the resulting osmotic stress conditions would affect the habitability of such environments for cellular life. We discuss the combined effects of osmotic (salts, organic cosolvents) and hydrostatic pressures on the structure, stability, and reactivity of biomolecular systems, including membranes, proteins, and nucleic acids. To this end, a variety of biophysical techniques have been applied, including calorimetry, UV/vis, FTIR and fluorescence spectroscopy, and neutron and X-ray scattering, in conjunction with high pressure techniques. Knowledge of these effects is essential to our understanding of life exposed to such harsh conditions, and of the physical limits of life in general. Finally, we discuss strategies that not only help us understand the adaptive mechanisms of organisms that thrive in such harsh geological settings but could also have important ramifications in biotechnological and pharmaceutical applications.
Collapse
Affiliation(s)
- Jim-Marcel Knop
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Sanjib Mukherjee
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Michel W Jaworek
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Simon Kriegler
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Magiliny Manisegaran
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Zamira Fetahaj
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Lena Ostermeier
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Rosario Oliva
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany.,Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126Naples, Italy
| | - Stewart Gault
- UK Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, EH9 3FDEdinburgh, United Kingdom
| | - Charles S Cockell
- UK Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, EH9 3FDEdinburgh, United Kingdom
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| |
Collapse
|
5
|
Oliva R, Winter R. Harnessing Pressure-Axis Experiments to Explore Volume Fluctuations, Conformational Substates, and Solvation of Biomolecular Systems. J Phys Chem Lett 2022; 13:12099-12115. [PMID: 36546666 DOI: 10.1021/acs.jpclett.2c03186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Intrinsic thermodynamic fluctuations within biomolecules are crucial for their function, and flexibility is one of the strategies that evolution has developed to adapt to extreme environments. In this regard, pressure perturbation is an important tool for mechanistically exploring the causes and effects of volume fluctuations in biomolecules and biomolecular assemblies, their role in biomolecular interactions and reactions, and how they are affected by the solvent properties. High hydrostatic pressure is also a key parameter in the context of deep-sea and subsurface biology and the study of the origin and physical limits of life. We discuss the role of pressure-axis experiments in revealing intrinsic structural fluctuations as well as high-energy conformational substates of proteins and other biomolecular systems that are important for their function and provide some illustrative examples. We show that the structural and dynamic information obtained from such pressure-axis studies improves our understanding of biomolecular function, disease, biological evolution, and adaptation.
Collapse
Affiliation(s)
- Rosario Oliva
- Department of Chemistry and Chemical Biology, Physical Chemistry I, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Strasse 6, Dortmund44227, Germany
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126Naples, Italy
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Physical Chemistry I, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Strasse 6, Dortmund44227, Germany
| |
Collapse
|
6
|
Wang W, Yang P, Rao L, Zhao L, Wu X, Wang Y, Liao X. Effect of high hydrostatic pressure processing on the structure, functionality, and nutritional properties of food proteins: A review. Compr Rev Food Sci Food Saf 2022; 21:4640-4682. [PMID: 36124402 DOI: 10.1111/1541-4337.13033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/19/2022] [Accepted: 08/05/2022] [Indexed: 01/28/2023]
Abstract
Proteins are important food ingredients that possess both functional and nutritional properties. High hydrostatic pressure (HHP) is an emerging nonthermal food processing technology that has been subject to great advancements in the last two decades. It is well established that pressure can induce changes in protein folding and oligomerization, and consequently, HHP has the potential to modify the desired protein properties. In this review article, the research progress over the last 15 years regarding the effect of HHP on protein structures, as well as the applications of HHP in modifying protein functionalities (i.e., solubility, water/oil holding capacity, emulsification, foaming and gelation) and nutritional properties (i.e., digestibility and bioactivity) are systematically discussed. Protein unfolding generally occurs during HHP treatment, which can result in increased conformational flexibility and the exposure of interior residues. Through the optimization of HHP and environmental conditions, a balance in protein hydrophobicity and hydrophilicity may be obtained, and therefore, the desired protein functionality can be improved. Moreover, after HHP treatment, there might be greater accessibility of the interior residues to digestive enzymes or the altered conformation of specific active sites, which may lead to modified nutritional properties. However, the practical applications of HHP in developing functional protein ingredients are underutilized and require more research concerning the impact of other food components or additives during HHP treatment. Furthermore, possible negative impacts on nutritional properties of proteins and other compounds must be also considered.
Collapse
Affiliation(s)
- Wenxin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Peiqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Key laboratory for Food Non-Thermal Processing, Beijing, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China.,Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaomeng Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Key laboratory for Food Non-Thermal Processing, Beijing, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China.,Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Key laboratory for Food Non-Thermal Processing, Beijing, China.,National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China.,Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
7
|
Alvarado YJ, Olivarez Y, Lossada C, Vera-Villalobos J, Paz JL, Vera E, Loroño M, Vivas A, Torres FJ, Jeffreys LN, Hurtado-León ML, González-Paz L. Interaction of the new inhibitor paxlovid (PF-07321332) and ivermectin with the monomer of the main protease SARS-CoV-2: A volumetric study based on molecular dynamics, elastic networks, classical thermodynamics and SPT. Comput Biol Chem 2022; 99:107692. [PMID: 35640480 PMCID: PMC9107165 DOI: 10.1016/j.compbiolchem.2022.107692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 02/04/2023]
Abstract
The COVID-19 pandemic has accelerated the study of drugs, most notably ivermectin and more recently Paxlovid (PF-07321332) which is in phase III clinical trials with experimental data showing covalent binding to the viral protease Mpro. Theoretical developments of catalytic site-directed docking support thermodynamically feasible non-covalent binding to Mpro. Here we show that Paxlovid binds non-covalently at regions other than the catalytic sites with energies stronger than reported and at the same binding site as the ivermectin B1a homologue, all through theoretical methodologies, including blind docking. We volumetrically characterize the non-covalent interaction of the ivermectin homologues (avermectins B1a and B1b) and Paxlovid with the mMpro monomer, through molecular dynamics and scaled particle theory (SPT). Using the fluctuation-dissipation theorem (FDT), we estimated the electric dipole moment fluctuations at the surface of each of complex involved in this study, with similar trends to that observed in the interaction volume. Using fluctuations of the intrinsic volume and the number of flexible fragments of proteins using anisotropic and Gaussian elastic networks (ANM+GNM) suggests the complexes with ivermectin are more dynamic and flexible than the unbound monomer. In contrast, the binding of Paxlovid to mMpro shows that the mMpro-PF complex is the least structurally dynamic of all the species measured in this investigation. The results support a differential molecular mechanism of the ivermectin and PF homologues in the mMpro monomer. Finally, the results showed that Paxlovid despite beingbound in different sites through covalent or non-covalent forms behaves similarly in terms of its structural flexibility and volumetric behaviour.
Collapse
Affiliation(s)
- Ysaias José Alvarado
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Bolivarian Republic of Venezuela.
| | - Yosmari Olivarez
- Universidad del Zulia (LUZ). Facultad Experimental de Ciencias (FEC), Departamento de Quimica, Laboratorio de Electronica Molecular, 4001 Maracaibo, Bolivarian Republic of Venezuela
| | - Carla Lossada
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Bolivarian Republic of Venezuela
| | - Joan Vera-Villalobos
- Facultad de Ciencias Naturales y Matemáticas, Departamento de Química y Ciencias Ambientales, Laboratorio de Análisis Químico Instrumental (LAQUINS), Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - José Luis Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Eddy Vera
- Universidad del Zulia (LUZ). Facultad Experimental de Ciencias (FEC), Departamento de Quimica, Laboratorio de Electronica Molecular, 4001 Maracaibo, Bolivarian Republic of Venezuela
| | - Marcos Loroño
- Departamento Académico de Química Analítica e Instrumental, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Alejandro Vivas
- Universidad del Zulia (LUZ). Facultad Experimental de Ciencias (FEC), Departamento de Quimica, Laboratorio de Electronica Molecular, 4001 Maracaibo, Bolivarian Republic of Venezuela
| | - Fernando Javier Torres
- Grupo de Química Computacional y Teórica (QCT-UR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Grupo de Química Computacional y Teórica (QCT-USFQ), Instituto de Simulación Computacional (ISC-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito (USFQ), Quito, Ecuador
| | - Laura N Jeffreys
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - María Laura Hurtado-León
- Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio de Genética y Biología Molecular (LGBM), Maracaibo 4001, Zulia, Bolivarian Republic of Venezuela
| | - Lenin González-Paz
- Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio de Genética y Biología Molecular (LGBM), Maracaibo 4001, Zulia, Bolivarian Republic of Venezuela; Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Estudios Botanicos y Agroforestales, (CEBA), Laboratorio de Proteccion Vegetal, 4001 Maracaibo, Bolivarian Republic of Venezuela.
| |
Collapse
|
8
|
Dreydoppel M, Balbach J, Weininger U. Monitoring protein unfolding transitions by NMR-spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2022; 76:3-15. [PMID: 34984658 PMCID: PMC9018662 DOI: 10.1007/s10858-021-00389-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/28/2021] [Indexed: 06/01/2023]
Abstract
NMR-spectroscopy has certain unique advantages for recording unfolding transitions of proteins compared e.g. to optical methods. It enables per-residue monitoring and separate detection of the folded and unfolded state as well as possible equilibrium intermediates. This allows a detailed view on the state and cooperativity of folding of the protein of interest and the correct interpretation of subsequent experiments. Here we summarize in detail practical and theoretical aspects of such experiments. Certain pitfalls can be avoided, and meaningful simplification can be made during the analysis. Especially a good understanding of the NMR exchange regime and relaxation properties of the system of interest is beneficial. We show by a global analysis of signals of the folded and unfolded state of GB1 how accurate values of unfolding can be extracted and what limits different NMR detection and unfolding methods. E.g. commonly used exchangeable amides can lead to a systematic under determination of the thermodynamic protein stability. We give several perspectives of how to deal with more complex proteins and how the knowledge about protein stability at residue resolution helps to understand protein properties under crowding conditions, during phase separation and under high pressure.
Collapse
Affiliation(s)
- Matthias Dreydoppel
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Jochen Balbach
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Ulrich Weininger
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| |
Collapse
|
9
|
Sentell Z, Spooner J, Weinberg N. Molecular Dynamics Calculations of Partial Molar Volumes of Amino Acids in Aqueous Solutions. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Partial molar volumes of amino acids in their zwitterionic and molecular forms have been calculated using molecular dynamics simulations of these systems in aqueous solutions. Calculations performed with the TIP4P, SPC (rigid and flexible), SPC/E, and polarizable water models show that the choice of water model can have a significant impact on the calculated volumes. The effect of treatment of long-range electrostatic interactions on the calculated results was also investigated. Volumes obtained in simulations with a properly chosen water model fit well the experimental data for both molecular and zwitterionic forms of amino acids.
Collapse
Affiliation(s)
- Zachary Sentell
- University of the Fraser Valley, 1011, Department of Chemistry, Abbotsford, Canada
| | - Jacob Spooner
- University of the Fraser Valley, 1011, Department of Chemistry, Abbotsford, Canada, V2S 7M8
| | - Noham Weinberg
- University of the Fraser Valley, 1011, Department of Chemistry, Abbotsford, Canada, V2S 7M8
| |
Collapse
|
10
|
Prangé T, Carpentier P, Dhaussy AC, van der Linden P, Girard E, Colloc'h N. Comparative study of the effects of high hydrostatic pressure per se and high argon pressure on urate oxidase ligand stabilization. Acta Crystallogr D Struct Biol 2022; 78:162-173. [DOI: 10.1107/s2059798321012134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/15/2021] [Indexed: 11/11/2022] Open
Abstract
The stability of the tetrameric enzyme urate oxidase in complex with excess of 8-azaxanthine was investigated either under high hydrostatic pressure per se or under a high pressure of argon. The active site is located at the interface of two subunits, and the catalytic activity is directly related to the integrity of the tetramer. This study demonstrates that applying pressure to a protein–ligand complex drives the thermodynamic equilibrium towards ligand saturation of the complex, revealing a new binding site. A transient dimeric intermediate that occurs during the pressure-induced dissociation process was characterized under argon pressure and excited substates of the enzyme that occur during the catalytic cycle can be trapped by pressure. Comparison of the different structures under pressure infers an allosteric role of the internal hydrophobic cavity in which argon is bound, since this cavity provides the necessary flexibility for the active site to function.
Collapse
|
11
|
Boosting the kinetic efficiency of formate dehydrogenase by combining the effects of temperature, high pressure and co-solvent mixtures. Colloids Surf B Biointerfaces 2021; 208:112127. [PMID: 34626897 DOI: 10.1016/j.colsurfb.2021.112127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
The application of co-solvents and high pressure has been shown to be an efficient means to modify the kinetics of enzyme-catalyzed reactions without compromising enzyme stability, which is often limited by temperature modulation. In this work, the high-pressure stopped-flow methodology was applied in conjunction with fast UV/Vis detection to investigate kinetic parameters of formate dehydrogenase reaction (FDH), which is used in biotechnology for cofactor recycling systems. Complementary FTIR spectroscopic and differential scanning fluorimetric studies were performed to reveal pressure and temperature effects on the structure and stability of the FDH. In neat buffer solution, the kinetic efficiency increases by one order of magnitude by increasing the temperature from 25° to 45 °C and the pressure from ambient up to the kbar range. The addition of particular co-solvents further doubled the kinetic efficiency of the reaction, in particular the compatible osmolyte trimethylamine-N-oxide and its mixtures with the macromolecular crowding agent dextran. The thermodynamic model PC-SAFT was successfully applied within a simplified activity-based Michaelis-Menten framework to predict the effects of co-solvents on the kinetic efficiency by accounting for interactions involving substrate, co-solvent, water, and FDH. Especially mixtures of the co-solvents at high concentrations were beneficial for the kinetic efficiency and for the unfolding temperature.
Collapse
|
12
|
Hindson SA, Bunzel HA, Frank B, Svistunenko DA, Williams C, van der Kamp MW, Mulholland AJ, Pudney CR, Anderson JLR. Rigidifying a De Novo Enzyme Increases Activity and Induces a Negative Activation Heat Capacity. ACS Catal 2021; 11:11532-11541. [PMID: 34557328 PMCID: PMC8453482 DOI: 10.1021/acscatal.1c01776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/29/2021] [Indexed: 12/22/2022]
Abstract
![]()
Conformational sampling
profoundly impacts the overall activity
and temperature dependence of enzymes. Peroxidases have emerged as
versatile platforms for high-value biocatalysis owing to their broad
palette of potential biotransformations. Here, we explore the role
of conformational sampling in mediating activity in the de
novo peroxidase C45. We demonstrate that 2,2,2-triflouoroethanol
(TFE) affects the equilibrium of enzyme conformational states, tending
toward a more globally rigid structure. This is correlated with increases
in both stability and activity. Notably, these effects are concomitant
with the emergence of curvature in the temperature-activity profile,
trading off activity gains at ambient temperature with losses at high
temperatures. We apply macromolecular rate theory (MMRT) to understand
enzyme temperature dependence data. These data point to an increase
in protein rigidity associated with a difference in the distribution
of protein dynamics between the ground and transition states. We compare
the thermodynamics of the de novo enzyme activity
to those of a natural peroxidase, horseradish peroxidase. We find
that the native enzyme resembles the rigidified de novo enzyme in terms of the thermodynamics of enzyme catalysis and the
putative distribution of protein dynamics between the ground and transition
states. The addition of TFE apparently causes C45 to behave more like
the natural enzyme. Our data suggest robust, generic strategies for
improving biocatalytic activity by manipulating protein rigidity;
for functional de novo protein catalysts in particular,
this can provide more enzyme-like catalysts without further rational
engineering, computational redesign, or directed evolution.
Collapse
Affiliation(s)
- Sarah A. Hindson
- Department of Biology and Biochemistry, Centre for Sustainable Chemical Technology, University of Bath, Bath BA2 7AY, U.K
| | - H. Adrian Bunzel
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, U.K
- Centre for Computational Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Bettina Frank
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, U.K
- Bristol Centre for Functional Nanomaterials, School of Physics, University of Bristol, Bristol BS8 1TL, U.K
| | | | | | | | | | - Christopher R. Pudney
- Department of Biology and Biochemistry, Centre for Sustainable Chemical Technology, University of Bath, Bath BA2 7AY, U.K
| | | |
Collapse
|
13
|
Timpmann K, Linnanto JM, Yadav D, Kangur L, Freiberg A. Hydrostatic High-Pressure-Induced Denaturation of LH2 Membrane Proteins. J Phys Chem B 2021; 125:9979-9989. [PMID: 34460261 DOI: 10.1021/acs.jpcb.1c05789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The denaturation of globular proteins by high pressure is frequently associated with the release of internal voids and/or the exposure of the hydrophobic protein interior to a polar aqueous solvent. Similar evidence with respect to membrane proteins is not available. Here, we investigate the impact of hydrostatic pressures reaching 12 kbar on light-harvesting 2 integral membrane complexes of purple photosynthetic bacteria using two types of innate chromophores in separate strategic locations: bacteriochlorophyll-a in the hydrophobic interior and tryptophan at both protein-solvent interfacial gateways to internal voids. The complexes from mutant Rhodobacter sphaeroides with low resilience against pressure were considered in parallel with the naturally robust complexes of Thermochromatium tepidum. In the former case, a firm correlation was established between the abrupt blue shift of the bacteriochlorophyll-a exciton absorption, a known indicator of the breakage of tertiary structure pigment-protein hydrogen bonds, and the quenching of tryptophan fluorescence, a supposed result of further protein solvation. No such effects were observed in the reference complex. While these data may be naively taken as supporting evidence of the governing role of hydration, the analysis of atomistic model structures of the complexes confirmed the critical part of the structure in the pressure-induced denaturation of the membrane proteins studied.
Collapse
Affiliation(s)
- Kõu Timpmann
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu 50411, Estonia
| | - Juha Matti Linnanto
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu 50411, Estonia
| | - Dheerendra Yadav
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu 50411, Estonia
| | - Liina Kangur
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu 50411, Estonia
| | - Arvi Freiberg
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu 50411, Estonia.,Estonian Academy of Sciences, Kohtu Str. 6, Tallinn 10130, Estonia
| |
Collapse
|
14
|
Chalikian TV, Macgregor RB. Volumetric Properties of Four-Stranded DNA Structures. BIOLOGY 2021; 10:813. [PMID: 34440045 PMCID: PMC8389613 DOI: 10.3390/biology10080813] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/27/2022]
Abstract
Four-stranded non-canonical DNA structures including G-quadruplexes and i-motifs have been found in the genome and are thought to be involved in regulation of biological function. These structures have been implicated in telomere biology, genomic instability, and regulation of transcription and translation events. To gain an understanding of the molecular determinants underlying the biological role of four-stranded DNA structures, their biophysical properties have been extensively studied. The limited libraries on volume, expansibility, and compressibility accumulated to date have begun to provide insights into the molecular origins of helix-to-coil and helix-to-helix conformational transitions involving four-stranded DNA structures. In this article, we review the recent progress in volumetric investigations of G-quadruplexes and i-motifs, emphasizing how such data can be used to characterize intra-and intermolecular interactions, including solvation. We describe how volumetric data can be interpreted at the molecular level to yield a better understanding of the role that solute-solvent interactions play in modulating the stability and recognition events of nucleic acids. Taken together, volumetric studies facilitate unveiling the molecular determinants of biological events involving biopolymers, including G-quadruplexes and i-motifs, by providing one more piece to the thermodynamic puzzle describing the energetics of cellular processes in vitro and, by extension, in vivo.
Collapse
Affiliation(s)
- Tigran V. Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada;
| | | |
Collapse
|
15
|
Dreydoppel M, Dorn B, Modig K, Akke M, Weininger U. Transition-State Compressibility and Activation Volume of Transient Protein Conformational Fluctuations. JACS AU 2021; 1:833-842. [PMID: 34467336 PMCID: PMC8395657 DOI: 10.1021/jacsau.1c00062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 06/13/2023]
Abstract
Proteins are dynamic entities that intermittently depart from their ground-state structures and undergo conformational transitions as a critical part of their functions. Central to understanding such transitions are the structural rearrangements along the connecting pathway, where the transition state plays a special role. Using NMR relaxation at variable temperature and pressure to measure aromatic ring flips inside a protein core, we obtain information on the structure and thermodynamics of the transition state. We show that the isothermal compressibility coefficient of the transition state is similar to that of short-chain hydrocarbon liquids, implying extensive local unfolding of the protein. Our results further indicate that the required local volume expansions of the protein can occur not only with a net positive activation volume of the protein, as expected from previous studies, but also with zero activation volume by compaction of remote void volume, when averaged over the ensemble of states.
Collapse
Affiliation(s)
- Matthias Dreydoppel
- Institute
of Physics, Biophysics, Martin-Luther-University
Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Britta Dorn
- Institute
of Physics, Biophysics, Martin-Luther-University
Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Kristofer Modig
- Division
of Biophysical Chemistry, Center for Molecular Protein Science, Department
of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Mikael Akke
- Division
of Biophysical Chemistry, Center for Molecular Protein Science, Department
of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Ulrich Weininger
- Institute
of Physics, Biophysics, Martin-Luther-University
Halle-Wittenberg, D-06120 Halle (Saale), Germany
| |
Collapse
|
16
|
Wang Y, Guo Z, Tan T, Ji Y, Hu J, Zhang Y. The effects of nanobubbles on the assembly of glucagon amyloid fibrils. SOFT MATTER 2021; 17:3486-3493. [PMID: 33657201 DOI: 10.1039/d0sm02279a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Some recent studies have shown that the surface and interface play an important role in the assembly and aggregation of amyloid proteins. However, it is unclear how the gas-liquid interface affects the protein assembly at the nanometer scale although the presence of gas-liquid interfaces is very common in in vitro experiments. Nanobubbles have a large specific surface area, which provides a stage for interactions with various proteins and peptides on the nanometer scale. In this work, nanobubbles produced in solution were employed for studying the effects of the gas-liquid interface on the assembly of glucagon proteins. Atomic force microscopy (AFM) studies showed that nanobubble-treated glucagon solution formed fibrils with an apparent height of 4.02 ± 0.71 nm, in contrast to the fibrils formed with a height of 2.14 ± 0.53 nm in the control. Transmission electron microscopy (TEM) results also showed that nanobubbles promoted the assembly of glucagon to form more fibrils. Thioflavin T (ThT) fluorescence and Fourier transform infrared (FTIR) analyses indicated that the nanobubbles induced the change of the glucagon conformation to a β-sheet structure. A mechanism that explains how nanobubbles affect the assembly of glucagon amyloid fibrils was proposed based on the above-mentioned experimental results. Given the fact that there are a considerable amount of nanobubbles existing in protein solutions, our results indicate that nanobubbles should be considered for fully understanding the protein aggregation events in vitro.
Collapse
Affiliation(s)
- Yujiao Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | | | | | | | | | | |
Collapse
|
17
|
Gault S, Jaworek MW, Winter R, Cockell CS. High pressures increase α-chymotrypsin enzyme activity under perchlorate stress. Commun Biol 2020; 3:550. [PMID: 33009512 PMCID: PMC7532203 DOI: 10.1038/s42003-020-01279-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022] Open
Abstract
Deep subsurface environments can harbour high concentrations of dissolved ions, yet we know little about how this shapes the conditions for life. We know even less about how the combined effects of high pressure influence the way in which ions constrain the possibilities for life. One such ion is perchlorate, which is found in extreme environments on Earth and pervasively on Mars. We investigated the interactions of high pressure and high perchlorate concentrations on enzymatic activity. We demonstrate that high pressures increase α-chymotrypsin enzyme activity even in the presence of high perchlorate concentrations. Perchlorate salts were shown to shift the folded α-chymotrypsin phase space to lower temperatures and pressures. The results presented here may suggest that high pressures increase the habitability of environments under perchlorate stress. Therefore, deep subsurface environments that combine these stressors, potentially including the subsurface of Mars, may be more habitable than previously thought. Gault et al. show that high pressures increase α-chymotrypsin enzyme activity in the presence of high perchlorate concentrations. These perchlorate salts shift the folded enzyme phase space to lower temperatures and pressure and may move the optimum enzyme activity towards lower temperatures in addition to higher pressures, which has implications for Martian habitability.
Collapse
Affiliation(s)
- Stewart Gault
- UK Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
| | - Michel W Jaworek
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I - Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 4a, D-44227, Dortmund, Germany
| | - Roland Winter
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I - Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 4a, D-44227, Dortmund, Germany
| | - Charles S Cockell
- UK Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| |
Collapse
|
18
|
Weinbender T, Knierbein M, Bittorf L, Held C, Siewert R, Verevkin SP, Sadowski G, Reiser O. High-Pressure-Mediated Thiourea-Organocatalyzed Asymmetric Michael Addition to (Hetero)aromatic Nitroolefins: Prediction of Reaction Parameters by PCP-SAFT Modelling. Chempluschem 2020; 85:1292-1296. [PMID: 32543128 DOI: 10.1002/cplu.202000364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/26/2020] [Indexed: 11/08/2022]
Abstract
Thiourea-organocatalyzed Michael additions of diethyl malonate to various heteroaromatic nitroolefins (13 examples) have been studied under high-pressure (up to 800 MPa) and ambient pressure conditions. High pressure was conducive to enhanced product yields by a factor of 2-12 at a given reaction time, high reaction rates (reaction times were decreased from 72-24 h down to 4-24 h) and high enantioselectivity. Elucidating the effects of solvents for maximizing reaction rates and yields has been carried out using the Perturbed-Chain Polar Statistical Associating Fluid Theory (PCP-SAFT), allowing for the first time a prediction of the kinetic profiles under high-hydrostatic-pressure conditions.
Collapse
Affiliation(s)
- Thomas Weinbender
- Institute of Organic Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Michael Knierbein
- Laboratory of Thermodynamics, TU Dortmund University, Emil-Figge-Str. 70, 44227, Dortmund, Germany
| | - Lukas Bittorf
- Laboratory of Thermodynamics, TU Dortmund University, Emil-Figge-Str. 70, 44227, Dortmund, Germany
| | - Christoph Held
- Laboratory of Thermodynamics, TU Dortmund University, Emil-Figge-Str. 70, 44227, Dortmund, Germany
| | - Riko Siewert
- Department of Physical Chemistry, University of Rostock, Dr-Lorenz-Weg 1, 18059, Rostock, Germany
| | - Sergey P Verevkin
- Department of Physical Chemistry, University of Rostock, Dr-Lorenz-Weg 1, 18059, Rostock, Germany
| | - Gabriele Sadowski
- Laboratory of Thermodynamics, TU Dortmund University, Emil-Figge-Str. 70, 44227, Dortmund, Germany
| | - Oliver Reiser
- Institute of Organic Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| |
Collapse
|
19
|
Jaworek MW, Ruggiero A, Graziano G, Winter R, Vitagliano L. On the extraordinary pressure stability of the Thermotoga maritima arginine binding protein and its folded fragments - a high-pressure FTIR spectroscopy study. Phys Chem Chem Phys 2020; 22:11244-11248. [PMID: 32400824 DOI: 10.1039/d0cp01618g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The arginine binding protein from T. maritima (ArgBP) exhibits several distinctive biophysical and structural properties. Here we show that ArgBP is also endowed with a ramarkable pressure stability as it undergoes minor structural changes only, even at 10 kbar. A similar stability is also observed for its folded fragments (truncated monomer and individual domains). A survey of literature data on the pressure stability of proteins highlights the uncommon behavior of ArgBP.
Collapse
Affiliation(s)
- Michel W Jaworek
- Faculty of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn Str. 4a, D-44227 Dortmund, Germany.
| | | | | | | | | |
Collapse
|
20
|
Czeslik C, Wittemann A. Adsorption mechanism, secondary structure and local distribution of proteins at polyelectrolyte brushes. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-019-04590-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
21
|
Yagi T, Nishiyama M. High hydrostatic pressure induces vigorous flagellar beating in Chlamydomonas non-motile mutants lacking the central apparatus. Sci Rep 2020; 10:2072. [PMID: 32029813 PMCID: PMC7005269 DOI: 10.1038/s41598-020-58832-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/19/2020] [Indexed: 11/09/2022] Open
Abstract
The beating of eukaryotic flagella (also called cilia) depends on the sliding movements between microtubules powered by dynein. In cilia/flagella of most organisms, microtubule sliding is regulated by the internal structure of cilia comprising the central pair of microtubules (CP) and radial spokes (RS). Chlamydomonas paralyzed-flagella (pf) mutants lacking CP or RS are non-motile under physiological conditions. Here, we show that high hydrostatic pressure induces vigorous flagellar beating in pf mutants. The beating pattern at 40 MPa was similar to that of wild type at atmospheric pressure. In addition, at 80 MPa, flagella underwent an asymmetric-to-symmetric waveform conversion, similar to the one triggered by an increase in intra-flagella Ca2+ concentration during cell's response to strong light. Thus, our study establishes that neither beating nor waveform conversion of cilia/flagella requires the presence of CP/RS in the axoneme.
Collapse
Affiliation(s)
- Toshiki Yagi
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima, 727-0023, Japan.
| | - Masayoshi Nishiyama
- The Hakubi Center for Advanced Research, Kyoto University, Yoshida, Kyoto, 606-8501, Japan.
- Department of Physics, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka City, Osaka, 577-8502, Japan.
| |
Collapse
|
22
|
Jaworek MW, Möbitz S, Gao M, Winter R. Stability of the chaperonin system GroEL-GroES under extreme environmental conditions. Phys Chem Chem Phys 2020; 22:3734-3743. [PMID: 32010904 DOI: 10.1039/c9cp06468k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chaperonin system GroEL-GroES is present in all kingdoms of life and rescues proteins from improper folding and aggregation upon internal and external stress conditions, including high temperatures and pressures. Here, we set out to explore the thermo- and piezostability of GroEL, GroES and the GroEL-GroES complex in the presence of cosolvents, nucleotides and salts employing quantitative FTIR spectroscopy and small-angle X-ray scattering. Owing to its high biological relevance and lack of data, our focus was especially on the effect of pressure on the chaperonin system. The experimental results reveal that the GroEL-GroES complex is remarkably temperature stable with an unfolding temperature beyond 70 °C, which can still be slightly increased by compatible cosolutes like TMAO. Conversely, the pressure stability of GroEL and hence the GroEL-GroES complex is rather limited and much less than that of monomeric proteins. Whereas GroES is pressure stable up to ∼5 kbar, GroEl and the GroEl-GroES complex undergo minor structural changes already beyond 1 kbar, which can be attributed to a dissociation-induced conformational drift. Quite unexpectedly, no significant unfolding of GroEL is observed even up to 10 kbar, however, i.e., the subunits themselves are very pressure stable. As for the physiological relevance, the structural integrity of the chaperonin system is retained in a relatively narrow pressure range, from about 1 to 1000 bar, which is just the pressure range encountered by life on Earth.
Collapse
Affiliation(s)
- Michel W Jaworek
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany.
| | - Simone Möbitz
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany.
| | - Mimi Gao
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany.
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany.
| |
Collapse
|
23
|
Watanabe N, Morimatsu M, Fujita A, Teranishi M, Sudevan S, Watanabe M, Iwasa H, Hata Y, Kagi H, Nishiyama M, Naruse K, Higashitani A. Increased hydrostatic pressure induces nuclear translocation of DAF-16/FOXO in C. elegans. Biochem Biophys Res Commun 2020; 523:853-858. [PMID: 31954516 DOI: 10.1016/j.bbrc.2020.01.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/07/2020] [Indexed: 12/18/2022]
Abstract
Mechanical stimulation is well known to be important for maintaining tissue and organ homeostasis. Here, we found that hydrostatic pressure induced nuclear translocation of a forkhead box O (FOXO) transcription factor DAF-16, in C. elegans within minutes, whereas the removal of this pressure resulted in immediate export of DAF-16 to the cytoplasm. We also monitored DAF-16-dependent transcriptional changes by exposure to 1 MPa pressure for 5 min, and found significant changes in collagen and other genes in a DAF-16 dependent manner. Lifespan was markedly prolonged with exposure to cyclic pressure treatment (1 MPa once a day for 5 min from L1 larvae until death). Furthermore, age-dependent decline in locomotor activity was suppressed by the treatment. In contrast, the nuclear translocation of the yes-associated protein YAP-1 was not induced under the same pressure conditions. Thus, moderate hydrostatic pressure improves ageing progression through activation of DAF-16/FOXO in C. elegans.
Collapse
Affiliation(s)
- Naoshi Watanabe
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan; Faculty of Education, Miyagi University of Education, Sendai, 980-0845, Japan.
| | - Masatoshi Morimatsu
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan.
| | - Ayano Fujita
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Mika Teranishi
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Surabhi Sudevan
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Masaru Watanabe
- Graduate School of Environmental Studies, Tohoku University, Sendai, 980-8579, Japan; Research Center of Supercritical Fluid Technology, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Hiroaki Iwasa
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Hiroyuki Kagi
- Geochemical Research Center, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Masayoshi Nishiyama
- Faculty of Science and Engineering, Kindai University, Osaka, 577-8502, Japan
| | - Keiji Naruse
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan.
| | - Atsushi Higashitani
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan.
| |
Collapse
|
24
|
Salvador-Castell M, Golub M, Martinez N, Ollivier J, Peters J, Oger P. The first study on the impact of osmolytes in whole cells of high temperature-adapted microorganisms. SOFT MATTER 2019; 15:8381-8391. [PMID: 31613294 DOI: 10.1039/c9sm01196j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The hyperthermophilic piezophile, Thermococcus barophilus displays a strong stress response characterized by the accumulation of the organic osmolyte, mannosylglycerate during growth under sub-optimal pressure conditions (0.1 MPa). Taking advantage of this known effect, the impact of osmolytes in piezophiles in an otherwise identical cellular context was investigated, by comparing T. barophilus cells grown under low or optimal pressures (40 MPa). Using neutron scattering techniques, we studied the molecular dynamics of live cells of T. barophilus at different pressures and temperatures. We show that in the presence of osmolytes, cells present a higher diffusion coefficient of hydration water and an increase of bulk water motions at a high temperature. In the absence of osmolytes, the T. barophilus cellular dynamics is more responsive to high temperature and high hydrostatic pressure. These results therefore give clear evidence for a protecting effect of osmolytes on proteins.
Collapse
|
25
|
Gasic AG, Boob MM, Prigozhin MB, Homouz D, Wirth AJ, Daugherty CM, Gruebele M, Cheung MS. Critical phenomena in the temperature-pressure-crowding phase diagram of a protein. PHYSICAL REVIEW. X 2019; 9:041035. [PMID: 32642303 PMCID: PMC7343146 DOI: 10.1103/physrevx.9.041035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the cell, proteins fold and perform complex functions through global structural rearrangements. Function requires a protein to be at the brink of stability to be susceptible to small environmental fluctuations, yet stable enough to maintain structural integrity. These apparently conflicting behaviors are exhibited by systems near a critical point, where distinct phases merge-a concept beyond previous studies indicating proteins have a well-defined folded/unfolded phase boundary in the pressure-temperature plane. Here, by modeling the protein phosphoglycerate kinase (PGK) on the temperature (T), pressure (P), and crowding volume-fraction (ϕ) phase diagram, we demonstrate a critical transition where phases merge, and PGK exhibits large structural fluctuations. Above the critical point, the difference between the intermediate and unfolded phases disappears. When ϕ increases, the critical point moves to lower T c. We verify the calculations with experiments mapping the T-P-ϕ space, which likewise reveal a critical point at 305 K and 170 MPa that moves to lower T c as ϕ increases. Crowding places PGK near a critical line in its natural parameter space, where large conformational changes can occur without costly free energy barriers. Specific structures are proposed for each phase based on simulation.
Collapse
Affiliation(s)
- Andrei G. Gasic
- University of Houston, Department of Physics, Houston, Texas, 77204, United States
- Center for Theoretical Biological Physics, Rice University, 77005, United States
| | - Mayank M. Boob
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States
| | - Maxim B. Prigozhin
- Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, United States
| | - Dirar Homouz
- University of Houston, Department of Physics, Houston, Texas, 77204, United States
- Center for Theoretical Biological Physics, Rice University, 77005, United States
- Khalifa University of Science and Technology, Department of Physics, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Anna Jean Wirth
- Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, United States
| | - Caleb M. Daugherty
- University of Houston, Department of Physics, Houston, Texas, 77204, United States
- Center for Theoretical Biological Physics, Rice University, 77005, United States
| | - Martin Gruebele
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, United States
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States
| | - Margaret S. Cheung
- University of Houston, Department of Physics, Houston, Texas, 77204, United States
- Center for Theoretical Biological Physics, Rice University, 77005, United States
| |
Collapse
|
26
|
Munte CE, Karl M, Kauter W, Eberlein L, Pham TV, Erlach MB, Kast SM, Kremer W, Kalbitzer HR. High pressure response of 1H NMR chemical shifts of purine nucleotides. Biophys Chem 2019; 254:106261. [PMID: 31522070 DOI: 10.1016/j.bpc.2019.106261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/01/2019] [Accepted: 09/01/2019] [Indexed: 11/25/2022]
Abstract
The study of the pressure response by NMR spectroscopy provides information on the thermodynamics of conformational equilibria in proteins and nucleic acids. For obtaining a database for expected pressure effects on free nucleotides and nucleotides bound in macromolecular complexes, the pressure response of 1H chemical shifts and J-coupling constants of the purine 5'-ribonucleotides AMP, ADP, ATP, GMP, GDP, and GTP were studied in the absence and presence of Mg2+-ions. Experiments are supported by quantum-chemical calculations of populations and chemical shift differences in order to corroborate structural interpretations and to estimate missing data for AMP. The preference of the ribose S puckering obtained from the analysis of the experimental J-couplings is also confirmed by the calculations. In addition, the pressure response of the non-hydrolysable GTP analogues GppNHp, GppCH2p, and GTPγS was examined within a pressure range up to 200 MPa. As observed earlier for 31P NMR chemical shifts of these nucleotides the pressure dependence of chemical shifts is clearly non-linear in most cases. In di- and tri-phospho nucleosides, the resonances of the two protons bound to the ribose 5' carbon are non-equivalent and can be observed separately. The gg-rotamer at C4'- C5' bond is strongly preferred and the downfield shifted resonance can be assigned to the H5″ proton in the nucleotides. In contrast, in adenosine itself the frequencies of the two resonances are interchanged.
Collapse
Affiliation(s)
- Claudia E Munte
- University of Regensburg, Institute of Biophysics and Physical Biochemistry, Center of Magnetic Resonance in Chemistry and Biomedicine, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Matthias Karl
- University of Regensburg, Institute of Biophysics and Physical Biochemistry, Center of Magnetic Resonance in Chemistry and Biomedicine, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Waldemar Kauter
- University of Regensburg, Institute of Biophysics and Physical Biochemistry, Center of Magnetic Resonance in Chemistry and Biomedicine, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Lukas Eberlein
- TU Dortmund University, Physical Chemistry III, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany
| | - Thuy-Vy Pham
- University of Regensburg, Institute of Biophysics and Physical Biochemistry, Center of Magnetic Resonance in Chemistry and Biomedicine, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Markus Beck Erlach
- University of Regensburg, Institute of Biophysics and Physical Biochemistry, Center of Magnetic Resonance in Chemistry and Biomedicine, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Stefan M Kast
- TU Dortmund University, Physical Chemistry III, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany
| | - Werner Kremer
- University of Regensburg, Institute of Biophysics and Physical Biochemistry, Center of Magnetic Resonance in Chemistry and Biomedicine, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Hans Robert Kalbitzer
- University of Regensburg, Institute of Biophysics and Physical Biochemistry, Center of Magnetic Resonance in Chemistry and Biomedicine, Universitätsstraße 31, 93053 Regensburg, Germany.
| |
Collapse
|
27
|
Held C, Stolzke T, Knierbein M, Jaworek MW, Luong TQ, Winter R, Sadowski G. Cosolvent and pressure effects on enzyme-catalysed hydrolysis reactions. Biophys Chem 2019; 252:106209. [DOI: 10.1016/j.bpc.2019.106209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022]
|
28
|
Kumar N, Marx D. How do ribozymes accommodate additional water molecules upon hydrostatic compression deep into the kilobar pressure regime? Biophys Chem 2019; 252:106192. [DOI: 10.1016/j.bpc.2019.106192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022]
|
29
|
Cinar H, Fetahaj Z, Cinar S, Vernon RM, Chan HS, Winter RHA. Temperature, Hydrostatic Pressure, and Osmolyte Effects on Liquid-Liquid Phase Separation in Protein Condensates: Physical Chemistry and Biological Implications. Chemistry 2019; 25:13049-13069. [PMID: 31237369 DOI: 10.1002/chem.201902210] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/23/2019] [Indexed: 01/04/2023]
Abstract
Liquid-liquid phase separation (LLPS) of proteins and other biomolecules play a critical role in the organization of extracellular materials and membrane-less compartmentalization of intra-organismal spaces through the formation of condensates. Structural properties of such mesoscopic droplet-like states were studied by spectroscopy, microscopy, and other biophysical techniques. The temperature dependence of biomolecular LLPS has been studied extensively, indicating that phase-separated condensed states of proteins can be stabilized or destabilized by increasing temperature. In contrast, the physical and biological significance of hydrostatic pressure on LLPS is less appreciated. Summarized here are recent investigations of protein LLPS under pressures up to the kbar-regime. Strikingly, for the cases studied thus far, LLPSs of both globular proteins and intrinsically disordered proteins/regions are typically more sensitive to pressure than the folding of proteins, suggesting that organisms inhabiting the deep sea and sub-seafloor sediments, under pressures up to 1 kbar and beyond, have to mitigate this pressure-sensitivity to avoid unwanted destabilization of their functional biomolecular condensates. Interestingly, we found that trimethylamine-N-oxide (TMAO), an osmolyte upregulated in deep-sea fish, can significantly stabilize protein droplets under pressure, pointing to another adaptive advantage for increased TMAO concentrations in deep-sea organisms besides the osmolyte's stabilizing effect against protein unfolding. As life on Earth might have originated in the deep sea, pressure-dependent LLPS is pertinent to questions regarding prebiotic proto-cells. Herein, we offer a conceptual framework for rationalizing the recent experimental findings and present an outline of the basic thermodynamics of temperature-, pressure-, and osmolyte-dependent LLPS as well as a molecular-level statistical mechanics picture in terms of solvent-mediated interactions and void volumes.
Collapse
Affiliation(s)
- Hasan Cinar
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| | - Zamira Fetahaj
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| | - Süleyman Cinar
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| | - Robert M Vernon
- Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Hue Sun Chan
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Ontario, M5S 1A8, Canada.,Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Ontario, M5S 1A8, Canada
| | - Roland H A Winter
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| |
Collapse
|
30
|
High-pressure study of magnetic nanoparticles with a polyelectrolyte brush as carrier particles for enzymes. Colloids Surf B Biointerfaces 2019; 182:110344. [PMID: 31284146 DOI: 10.1016/j.colsurfb.2019.110344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/19/2019] [Accepted: 07/02/2019] [Indexed: 11/20/2022]
Abstract
The recovery of enzymes from a reaction medium can be achieved in a convenient way by using magnetic nanoparticles (MNP) as carriers. Here, we present MNP with a polyelectrolyte brush composed of poly(ethylene imine) (PEI) to provide a benign environment for the immobilized enzyme molecules. Yeast alcohol dehydrogenase (ADH) has been tested for enzymatic activity when it is free in solution or adsorbed on the PEI brush-MNP. Furthermore, the effect of pressure on the enzymatic activity has been studied to reveal activation volumes, which are a sensitive probe of the transition state geometry. The results of this study indicate that the secondary structure of ADH is pressure-stable up to 9 kbar. The enzymatic activity of ADH can be analyzed using Michaelis-Menten kinetics free in solution and adsorbed on the PEI brush-MNP. Remarkably, no significant changes of the Michaelis constant and the activation volume are observed upon adsorption. Thus, it can be assumed that the turnover number of ADH is also the same in the free and adsorbed state. However, the maximum enzymatic rate is reduced when ADH is adsorbed, which must be explained by a lower effective enzyme concentration due to steric hindrance of the enzyme inside the PEI brush of the MNP. In this way, the pressure experiments carried out in this study enable a distinction between steric and kinetic effects on the enzymatic rate of adsorbed ADH.
Collapse
|
31
|
Lopes RP, Mota MJ, Sousa S, Gomes AM, Delgadillo I, Saraiva JA. Combined effect of pressure and temperature for yogurt production. Food Res Int 2019; 122:222-229. [PMID: 31229075 DOI: 10.1016/j.foodres.2019.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 04/04/2019] [Accepted: 04/06/2019] [Indexed: 12/16/2022]
Abstract
Fermentation under non-conventional conditions has gained prominence in the last years, due to the possible process improvements. Fermentation under sub-lethal pressures is one of such cases, and may bring novel characteristics and features to fermentative processes and products. In this work, the effect of both pressure (10-100 MPa) and temperature (25-50 °C) on yogurt production fermentation kinetics was studied, as a case-study. Product formation and substrate consumption were evaluated over fermentation time and the profiles were highly dependent on the fermentation conditions used. For instance, the increase of pressure slowed down yogurt fermentation, but fermentative profiles similar to atmospheric pressure (0.1 MPa) were obtained at 10 MPa at almost all temperatures tested. Regarding temperature, higher fermentative rates were achieved at 43 °C for all pressures tested. Moreover, the inhibitory effect of pressure increased when temperature decreased, with complete inhibition of fermentation occurring at 50 MPa for 25-35 °C, contrasting to 43 °C where inhibition occurred only at 100 MPa. Therefore, an antagonistic effect seems to occur, since yogurt fermentation was slowed down by pressure increasing, on one hand, and by temperature decreasing, on the other hand. Additionally, some kinetic parameters were calculated and fermentation at 43 °C presented the best results for yogurt production, with lower fermentation times and higher lactic acid productivities. Interestingly, fermentation at 10 MPa/43 °C presented the optimal conditions, with improved yield and lactic acid production efficiency, when compared to fermentation at 0.1 MPa (efficiency of 75% at 10 MPa, against 40% at 0.1 MPa). As the authors are aware, this work gives the first insights about the simultaneous effect of pressure and temperature variation on a microbial fermentation process, which can be combined to modulate the metabolic activity of microorganisms during fermentation in order to improve the fermentative yields and productivities of the desired product.
Collapse
Affiliation(s)
- Rita P Lopes
- QOPNA, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Maria J Mota
- QOPNA, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sérgio Sousa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Ana M Gomes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Ivonne Delgadillo
- QOPNA, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Jorge A Saraiva
- QOPNA, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
32
|
Levin A, Cinar S, Paulus M, Nase J, Winter R, Czeslik C. Analyzing protein-ligand and protein-interface interactions using high pressure. Biophys Chem 2019; 252:106194. [PMID: 31177023 DOI: 10.1016/j.bpc.2019.106194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 01/06/2023]
Abstract
All protein function is based on interactions with the environment. Proteins can bind molecules for their transport, their catalytic conversion, or for signal transduction. They can bind to each other, and they adsorb at interfaces, such as lipid membranes or material surfaces. An experimental characterization is needed to understand the underlying mechanisms, but also to make use of proteins in biotechnology or biomedicine. When protein interactions are studied under high pressure, volume changes are revealed that directly describe spatial contributions to these interactions. Moreover, the strength of protein interactions with ligands or interfaces can be tuned in a smooth way by pressure modulation, which can be utilized in the design of drugs and bio-responsive interfaces. In this short review, selected studies of protein-ligand and protein-interface interactions are presented that were carried out under high pressure. Furthermore, a perspective on bio-responsive interfaces is given where protein-ligand binding is applied to create functional interfacial structures.
Collapse
Affiliation(s)
- Artem Levin
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Süleyman Cinar
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Michael Paulus
- Technische Universität Dortmund, Fakultät Physik/Delta, D-44221 Dortmund, Germany
| | - Julia Nase
- Technische Universität Dortmund, Fakultät Physik/Delta, D-44221 Dortmund, Germany
| | - Roland Winter
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Claus Czeslik
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany.
| |
Collapse
|
33
|
Schummel PH, Anders C, Jaworek MW, Winter R. Cosolvent and Crowding Effects on the Temperature- and Pressure-Dependent Dissociation Process of the α/β-Tubulin Heterodimer. Chemphyschem 2019; 20:1098-1109. [PMID: 30829441 DOI: 10.1002/cphc.201900115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/01/2019] [Indexed: 11/09/2022]
Abstract
Tubulin is one of the main components of the cytoskeleton of eukaryotic cells. The formation of microtubules depends strongly on environmental and solution conditions, and has been found to be among the most pressure sensitive processes in vivo. We explored the effects of different types of cosolvents, such as trimethylamine-N-oxide (TMAO), sucrose and urea, and crowding agents to mimic cell-like conditions, on the temperature and pressure stability of the building block of microtubules, i. e. the α/β-tubulin heterodimer. To this end, fluorescence and FTIR spectroscopy, differential scanning and pressure perturbation calorimetry as well as fluorescence anisotropy and correlation spectroscopies were applied. The pressure and temperature of dissociation of α/β-tubulin as well as the underlying thermodynamic parameters upon dissociation, such as volume and enthalpy changes, have been determined for the different solution conditions. The temperature and pressure of dissociation of the α/β-tubulin heterodimer and hence its stability increases dramatically in the presence of TMAO and the nanocrowder sucrose. We show that by adjusting the levels of compatible cosolutes and crowders, cells are able to withstand deteriorating effects of pressure even up to the kbar-range.
Collapse
Affiliation(s)
- Paul Hendrik Schummel
- Faculty of Chemistry and Chemical Biology, Physical Chemistry-Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Christian Anders
- Faculty of Chemistry and Chemical Biology, Physical Chemistry-Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Michel W Jaworek
- Faculty of Chemistry and Chemical Biology, Physical Chemistry-Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Roland Winter
- Faculty of Chemistry and Chemical Biology, Physical Chemistry-Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| |
Collapse
|
34
|
Golub M, Pieper J, Peters J, Kangur L, Martin EC, Hunter CN, Freiberg A. Picosecond Dynamical Response to a Pressure-Induced Break of the Tertiary Structure Hydrogen Bonds in a Membrane Chromoprotein. J Phys Chem B 2019; 123:2087-2093. [PMID: 30739452 DOI: 10.1021/acs.jpcb.8b11196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We used elastic incoherent neutron scattering (EINS) to find out if structural changes accompanying local hydrogen bond rupture are also reflected in global dynamical response of the protein complex. Chromatophore membranes from LH2-only strains of the photosynthetic bacterium Rhodobacter sphaeroides, with spheroidenone or neurosporene as the major carotenoids, were subjected to high hydrostatic pressure at ambient temperature. Optical spectroscopy conducted at high pressure confirmed rupture of tertiary structure hydrogen bonds. In parallel, we used EINS to follow average motions of the hydrogen atoms in LH2, which reflect the flexibility of this complex. A decrease of the average atomic mean square displacements of hydrogen atoms was observed up to a pressure of 5 kbar in both carotenoid samples due to general stiffening of protein structures, while at higher pressures a slight increase of the displacements was detected in the neurosporene mutant LH2 sample only. These data show a correlation between the local pressure-induced breakage of H-bonds, observed in optical spectra, with the altered protein dynamics monitored by EINS. The slightly higher compressibility of the neurosporene mutant sample shows that even subtle alterations of carotenoids are manifested on a larger scale and emphasize a close connection between the local structure and global dynamics of this membrane protein complex.
Collapse
Affiliation(s)
- Maksym Golub
- Institute of Physics , University of Tartu , W. Ostwald Str. 1 , 50411 Tartu , Estonia
| | - Jörg Pieper
- Institute of Physics , University of Tartu , W. Ostwald Str. 1 , 50411 Tartu , Estonia
| | - Judith Peters
- Institut Laue Langevin , F-38042 Grenoble Cedex 9 , France.,University Grenoble Alpes, CNRS, LIPhy , 38000 Grenoble , France
| | - Liina Kangur
- Institute of Physics , University of Tartu , W. Ostwald Str. 1 , 50411 Tartu , Estonia
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology , University of Sheffield , S10 2TN Sheffield , U.K
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology , University of Sheffield , S10 2TN Sheffield , U.K
| | - Arvi Freiberg
- Institute of Physics , University of Tartu , W. Ostwald Str. 1 , 50411 Tartu , Estonia.,Institute of Molecular and Cell Biology , University of Tartu , Riia 23 , 51010 Tartu , Estonia
| |
Collapse
|
35
|
Julius K, Weine J, Gao M, Latarius J, Elbers M, Paulus M, Tolan M, Winter R. Impact of Macromolecular Crowding and Compression on Protein–Protein Interactions and Liquid–Liquid Phase Separation Phenomena. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02476] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Karin Julius
- Experimental Physics EIA/DELTA−Department of Physics, TU Dortmund University, Otto-Hahn-Str. 4, 44227 Dortmund, Germany
| | - Jonathan Weine
- Experimental Physics EIA/DELTA−Department of Physics, TU Dortmund University, Otto-Hahn-Str. 4, 44227 Dortmund, Germany
| | - Mimi Gao
- Physical Chemistry I−Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Jan Latarius
- Experimental Physics EIA/DELTA−Department of Physics, TU Dortmund University, Otto-Hahn-Str. 4, 44227 Dortmund, Germany
| | - Mirko Elbers
- Experimental Physics EIA/DELTA−Department of Physics, TU Dortmund University, Otto-Hahn-Str. 4, 44227 Dortmund, Germany
| | - Michael Paulus
- Experimental Physics EIA/DELTA−Department of Physics, TU Dortmund University, Otto-Hahn-Str. 4, 44227 Dortmund, Germany
| | - Metin Tolan
- Experimental Physics EIA/DELTA−Department of Physics, TU Dortmund University, Otto-Hahn-Str. 4, 44227 Dortmund, Germany
| | - Roland Winter
- Physical Chemistry I−Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| |
Collapse
|
36
|
Klamt A, Nagarathinam K, Tanabe M, Kumar A, Balbach J. Hyperbolic Pressure-Temperature Phase Diagram of the Zinc-Finger Protein apoKti11 Detected by NMR Spectroscopy. J Phys Chem B 2019; 123:792-801. [PMID: 30608169 DOI: 10.1021/acs.jpcb.8b11019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For a comprehensive understanding of the thermodynamic state functions describing the stability of a protein, the influence of the intensive properties of temperature and pressure has to be known. With the zinc-finger-containing Kti11, we found a suitable protein for this purpose because folding and unfolding transitions occur at an experimentally accessible temperature (280-330 °K) and pressure (0.1-240 MPa) range. We solved the crystal structure of the apo form of Kti11 to reveal two disulfide bonds at the metal-binding site, which seals off a cavity in the β-barrel part of the protein. From a generally applicable proton NMR approach, we could determine the populations of folded and unfolded chains under all conditions, leading to a hyperbolic pressure-temperature phase diagram rarely observed for proteins. A global fit of a two-state model to all derived populations disclosed reliable values for the change in Gibbs free energy, volume, entropy, heat capacity, compressibility, and thermal expansion upon unfolding. The unfolded state of apoKti11 has a lower compressibility compared to the native state and a smaller volume at ambient pressure. Therefore, a pressure increase up to 200 MPa reduces the population of the native state, and above this value, the native population increases again. Pressure-induced chemical-shift changes in two-dimensional 1H-15N NMR spectra could be employed for a molecular interpretation of the thermodynamic properties of apoKti11.
Collapse
Affiliation(s)
- Andi Klamt
- Institute of Physics, Biophysics , Martin-Luther University Halle-Wittenberg , Betty-Heimann Street 7 , 06120 Halle , Germany
| | - Kumar Nagarathinam
- HALOmem, Membrane Protein Biochemistry , Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Street 3 , 06120 Halle (Saale) , Germany.,Institute of Virology , Hannover Medical School , Carl-Neuberg-Straße 1 , D-30625 Hannover , Germany
| | - Mikio Tanabe
- HALOmem, Membrane Protein Biochemistry , Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Street 3 , 06120 Halle (Saale) , Germany.,Structural Biology Research Center, Institute of Materials Structure Science , KEK/High Energy Accelerator Research Organization , 1-1 Oho , Tsukuba , Ibaraki , 305-0801 , Japan
| | - Amit Kumar
- Institute of Physics, Biophysics , Martin-Luther University Halle-Wittenberg , Betty-Heimann Street 7 , 06120 Halle , Germany.,Department of Diabetes, Faculty of Lifesciences and Medicine , King's College London , Great Maze Pond , London SE1 1UL , U.K
| | - Jochen Balbach
- Institute of Physics, Biophysics , Martin-Luther University Halle-Wittenberg , Betty-Heimann Street 7 , 06120 Halle , Germany.,HALOmem, Membrane Protein Biochemistry , Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Street 3 , 06120 Halle (Saale) , Germany
| |
Collapse
|
37
|
Chalikian TV, Macgregor RB. On empirical decomposition of volumetric data. Biophys Chem 2018; 246:8-15. [PMID: 30597448 DOI: 10.1016/j.bpc.2018.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 11/26/2022]
Abstract
Volumetric characterization of proteins and their recognition events has been instrumental in providing information on the role of intra- and intermolecular interactions, including hydration, in stabilizing biomolecules. The credibility of molecular models and interpretation schemes used to rationalize experimental data are essential for the validity of microscopic insights derived from volumetric results. Current empirical schemes used to interpret volumetric data suffer from a lack of theoretical and computational substantiation. In this contribution, we take advantage age of recent MD simulations of proteins in solution coupled with Voronoi-Delaunay tessellation of simulated structures that have provided an exceptional level of structural detail on the nature of protein-water interfaces. We use these structural insights to re-evaluate empirical frameworks used for interpretation of volumetric data. An important issue in this respect is the actual dividing surface between water and protein atoms that is used in volumetric studies when the solute and solvent are treated as hard spheres enclosed within their respective van der Waals surfaces. In one development, using Voronoi tessellation of MD simulated protein-water systems the dividing surface has been defined as the points equidistant from the water and protein atoms. The interstitial void volume between the solute and the dividing surface corresponds to thermal volume envisaged by Scaled Particle Theory. In this communication, we explicitly account for the contributions of thermal volume to the partial molar volume, compressibility, and expansibility of proteins and re-examine and redefine the intrinsic and hydration volumetric contributions. We discuss the implications of our results for protein transitions and association events.
Collapse
Affiliation(s)
- Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada.
| | - Robert B Macgregor
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
38
|
Structural stability of human butyrylcholinesterase under high hydrostatic pressure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:107-113. [PMID: 30414450 DOI: 10.1016/j.bbapap.2018.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 11/23/2022]
Abstract
Human butyrylcholinesterase is a nonspecific enzyme of clinical, pharmacological and toxicological significance. Although the enzyme is relatively stable, its activity is affected by numerous factors, including pressure. In this work, hydrostatic pressure dependence of the intrinsic tryptophan fluorescence in native and salted human butyrylcholinesterase was studied up to the maximum pressure at ambient temperature of about 1200 MPa. A correlated large shift toward long wavelengths and broadening observed at pressures between 200 and 700 MPa was interpreted as due to high pressure-induced denaturation of the protein, leading to an enhanced exposure of tryptophan residues into polar solvent environment. This transient process in native butyrylcholinesterase presumably involves conformational changes of the enzyme at both tertiary and secondary structure levels. Pressure-induced mixing of emitting local indole electronic transitions with quenching charge transfer states likely describes the accompanying fluorescence quenching that reveals different course from spectral changes. All the pressure-induced changes turned irreversible after passing a mid-point pressure of about 400 ± 50 MPa. Addition of either 0.1 M ammonium sulphate (a kosmotropic salt) or 0.1 M lithium thiocyanate (a chaotropic salt) to native enzyme similarly destabilized its structure.
Collapse
|
39
|
Levin A, Czeslik C. Interaction of calmodulin with poly(acrylic acid) brushes: Effects of high pressure, pH-value and ligand binding. Colloids Surf B Biointerfaces 2018; 171:478-484. [DOI: 10.1016/j.colsurfb.2018.07.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022]
|
40
|
Dreydoppel M, Becker P, Raum HN, Gröger S, Balbach J, Weininger U. Equilibrium and Kinetic Unfolding of GB1: Stabilization of the Native State by Pressure. J Phys Chem B 2018; 122:8846-8852. [PMID: 30185038 DOI: 10.1021/acs.jpcb.8b06888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
NMR spectroscopy allows an all-atom view on pressure-induced protein folding, separate detection of different folding states, determination of their population, and the measurement of the folding kinetics at equilibrium. Here, we studied the folding of protein GB1 at pH 2 in a temperature and pressure dependent way. We find that the midpoints of temperature-induced unfolding increase with higher pressure. NMR relaxation dispersion experiments disclosed that the unfolding kinetics slow down at elevated pressure while the folding kinetics stay virtually the same. Therefore, pressure is stabilizing the native state of GB1. These findings extend the knowledge of the influence of pressure on protein folding kinetics, where so far typically a destabilization by increased activation volumes of folding was observed. Our findings thus point toward an exceptional section in the pressure-temperature phase diagram of protein unfolding. The stabilization of the native state could potentially be caused by a shift of p Ka values of glutamates and aspartates in favor of the negatively charged state as judged from pH sensitive chemical shifts.
Collapse
Affiliation(s)
- Matthias Dreydoppel
- Institute of Physics, Biophysics , Martin-Luther-University Halle-Wittenberg , D-06120 Halle (Saale) , Germany
| | - Paul Becker
- Institute of Physics, Biophysics , Martin-Luther-University Halle-Wittenberg , D-06120 Halle (Saale) , Germany
| | - Heiner N Raum
- Institute of Physics, Biophysics , Martin-Luther-University Halle-Wittenberg , D-06120 Halle (Saale) , Germany
| | - Stefan Gröger
- Institute of Physics, Biophysics , Martin-Luther-University Halle-Wittenberg , D-06120 Halle (Saale) , Germany
| | - Jochen Balbach
- Institute of Physics, Biophysics , Martin-Luther-University Halle-Wittenberg , D-06120 Halle (Saale) , Germany
| | - Ulrich Weininger
- Institute of Physics, Biophysics , Martin-Luther-University Halle-Wittenberg , D-06120 Halle (Saale) , Germany
| |
Collapse
|
41
|
Jaworek MW, Schuabb V, Winter R. Pressure and cosolvent modulation of the catalytic activity of amyloid fibrils. Chem Commun (Camb) 2018; 54:5696-5699. [PMID: 29691524 DOI: 10.1039/c8cc00699g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report on the effects of pressure and cosolvents on the catalytic activity of a designed amyloid fibril by applying a high-pressure stopped-flow methodology with rapid spectroscopic detection. FTIR spectroscopic data revealed a remarkable pressure and temperature stability of the fibrillar catalyst. The activity is further enhanced by osmolytes and macromolecular crowding.
Collapse
Affiliation(s)
- Michel W Jaworek
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany.
| | | | | |
Collapse
|
42
|
Tribst AAL, de Morais MAB, Tominaga CY, Nascimento AFZ, Murakami MT, Cristianini M. How high pressure pre-treatments affect the function and structure of hen egg-white lysozyme. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Cinar H, Cinar S, Chan HS, Winter R. Pressure-Induced Dissolution and Reentrant Formation of Condensed, Liquid-Liquid Phase-Separated Elastomeric α-Elastin. Chemistry 2018; 24:8286-8291. [PMID: 29738068 DOI: 10.1002/chem.201801643] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/07/2018] [Indexed: 02/05/2023]
Abstract
We investigated the combined effects of temperature and pressure on liquid-liquid phase separation (LLPS) phenomena of α-elastin up to the multi-kbar regime. FT-IR spectroscopy, CD, UV/Vis absorption, phase-contrast light and fluorescence microscopy techniques were employed to reveal structural changes and mesoscopic phase states of the system. A novel pressure-induced reentrant LLPS was observed in the intermediate temperature range. A molecular-level picture, in particular on the role of hydrophobic interactions, hydration, and void volume in controlling LLPS phenomena is presented. The potential role of the LLPS phenomena in the development of early cellular compartmentalization is discussed, which might have started in the deep sea, where pressures up to the kbar level are encountered.
Collapse
Affiliation(s)
- Hasan Cinar
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Süleyman Cinar
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Hue Sun Chan
- Departments of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| |
Collapse
|
44
|
Cinar S, Czeslik C. Inhibitor and peptide binding to calmodulin characterized by high pressure Fourier transform infrared spectroscopy and Förster resonance energy transfer. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:617-623. [DOI: 10.1016/j.bbapap.2018.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/09/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
|
45
|
Cinar S, Al-Ayoubi S, Sternemann C, Peters J, Winter R, Czeslik C. A high pressure study of calmodulin-ligand interactions using small-angle X-ray and elastic incoherent neutron scattering. Phys Chem Chem Phys 2018; 20:3514-3522. [PMID: 29336441 DOI: 10.1039/c7cp07399b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Calmodulin (CaM) is a Ca2+ sensor and mediates Ca2+ signaling through binding of numerous target ligands. The binding of ligands by Ca2+-saturated CaM (holo-CaM) is governed by attractive hydrophobic and electrostatic interactions that are weakened under high pressure in aqueous solutions. Moreover, the potential formation of void volumes upon ligand binding creates a further source of pressure sensitivity. Hence, high pressure is a suitable thermodynamic variable to probe protein-ligand interactions. In this study, we compare the binding of two different ligands to holo-CaM as a function of pressure by using X-ray and neutron scattering techniques. The two ligands are the farnesylated hypervariable region (HVR) of the K-Ras4B protein, which is a natural binding partner of holo-CaM, and the antagonist trifluoperazine (TFP), which is known to inhibit holo-CaM activity. From small-angle X-ray scattering experiments performed up to 3000 bar, we observe a pressure-induced partial unfolding of the free holo-CaM in the absence of ligands, where the two lobes of the dumbbell-shaped protein are slightly swelled. In contrast, upon binding TFP, holo-CaM forms a closed globular conformation, which is pressure stable at least up to 3000 bar. The HVR of K-Ras4B shows a different binding behavior, and the data suggest the dissociation of the holo-CaM/HVR complex under high pressure, probably due to a less dense protein contact of the HVR as compared to TFP. The elastic incoherent neutron scattering experiments corroborate these findings. Below 2000 bar, pressure induces enhanced atomic fluctuations in both holo-CaM/ligand complexes, but those of the holo-CaM/HVR complex seem to be larger. Thus, the inhibition of holo-CaM by TFP is supported by a low-volume ligand binding, albeit this is not associated with a rigidification of the complex structure on the sub-ns Å-scale.
Collapse
Affiliation(s)
- Süleyman Cinar
- Department of Chemistry and Chemical Biology, TU Dortmund University, D-44221 Dortmund, Germany.
| | | | | | | | | | | |
Collapse
|
46
|
Effects of Cosolvents and Macromolecular Crowding on the Phase Transitions and Temperature-Pressure Stability of Chiral and Racemic Poly-Lysine. Z PHYS CHEM 2018. [DOI: 10.1515/zpch-2017-1012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
FTIR spectroscopy has been used to reveal the effects of different types of cosolvents (TMAO, urea) as well as macromolecular crowding (using the crowding agent Ficoll) on the temperature and pressure dependent structure of poly-L-lysine, poly-D-lysine and their racemic mixture. Compared to the effects of cosolvents on the unfolding transition of proteins, their effects on the α-helix to aggregated β-sheet transition of polylysine are quite small. High hydrostatic pressure has been found to favor the α-helical state over the aggregated β-sheet structure which is reflected in a volume decrease of ΔV=−32 mL mol−1, indicating that the packing mode is more efficient in the α-helical structure. Both, addition of urea and TMAO lead to a decrease in pressure stability of the aggregated β-sheet structure, which is accompanied by a three-fold decrease in ΔV, whereas the macromolecular crowder has little effect on the β-to-α transition. The more than 3 kbar higher β-to-α transition pressure of the racemic mixture compared with PLL confirms the drastic stabilization of β-sheet aggregates if the stereoisomers PLL and PDL are combined. Changes in hydration and packing of the polypeptide occurs upon interaction and fine packing of the polypeptide’s chains of opposed chirality, which are slightly modulated by the properties of cosolute and crowding, only. The underlying solvational and packing mechanisms observed here may be decisive factors responsible for the spontaneous protein aggregation in general and, as such, may shed additional light on the molecular basis of amyloid-associated diseases.
Collapse
|
47
|
Jaworek MW, Schuabb V, Winter R. The effects of glycine, TMAO and osmolyte mixtures on the pressure dependent enzymatic activity of α-chymotrypsin. Phys Chem Chem Phys 2018; 20:1347-1354. [DOI: 10.1039/c7cp06042d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Different natural osmolytes modulate the pressure dependent enzyme kinetics in different ways.
Collapse
Affiliation(s)
- Michel W. Jaworek
- Physical Chemistry I – Biophysical Chemistry
- Faculty of Chemistry and Chemical Biology
- Technical University Dortmund
- 44227 Dortmund
- Germany
| | - Vitor Schuabb
- Physical Chemistry I – Biophysical Chemistry
- Faculty of Chemistry and Chemical Biology
- Technical University Dortmund
- 44227 Dortmund
- Germany
| | - Roland Winter
- Physical Chemistry I – Biophysical Chemistry
- Faculty of Chemistry and Chemical Biology
- Technical University Dortmund
- 44227 Dortmund
- Germany
| |
Collapse
|
48
|
Patra S, Anders C, Schummel PH, Winter R. Antagonistic effects of natural osmolyte mixtures and hydrostatic pressure on the conformational dynamics of a DNA hairpin probed at the single-molecule level. Phys Chem Chem Phys 2018; 20:13159-13170. [DOI: 10.1039/c8cp00907d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Osmolyte mixtures from deep sea organisms are able to rescue nucleic acids from pressure-induced unfolding.
Collapse
Affiliation(s)
- Satyajit Patra
- Physical Chemistry I – Biophysical Chemistry
- Faculty of Chemistry and Chemical Biology
- TU Dortmund University
- D-44227 Dortmund
- Germany
| | - Christian Anders
- Physical Chemistry I – Biophysical Chemistry
- Faculty of Chemistry and Chemical Biology
- TU Dortmund University
- D-44227 Dortmund
- Germany
| | - Paul Hendrik Schummel
- Physical Chemistry I – Biophysical Chemistry
- Faculty of Chemistry and Chemical Biology
- TU Dortmund University
- D-44227 Dortmund
- Germany
| | - Roland Winter
- Physical Chemistry I – Biophysical Chemistry
- Faculty of Chemistry and Chemical Biology
- TU Dortmund University
- D-44227 Dortmund
- Germany
| |
Collapse
|
49
|
The Effect of Natural Osmolyte Mixtures on the Temperature-Pressure Stability of the Protein RNase A. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/zpch-2017-1039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In biological cells, osmolytes appear as complex mixtures with variable compositions, depending on the particular environmental conditions of the organism. Based on various spectroscopic, thermodynamic and small-angle scattering data, we explored the effect of two different natural osmolyte mixtures, which are found in shallow-water and deep-sea shrimps, on the temperature and pressure stability of a typical monomeric protein, RNase A. Both natural osmolyte mixtures stabilize the protein against thermal and pressure denaturation. This effect seems to be mainly caused by the major osmolyte components of the osmolyte mixtures, i.e. by glycine and trimethylamine-N-oxide (TMAO), respectively. A minor compaction of the structure, in particular in the unfolded state, seems to be largely due to TMAO. Differences in thermodynamic properties observed for glycine and TMAO, and hence also for the two osmolyte mixtures, are most likely due to different solvation properties and interactions with the protein. Different from TMAO, glycine seems to interact with the amino acid side chains and/or the backbone of the protein, thus competing with hydration water and leading to a less hydrated protein surface.
Collapse
|
50
|
Nishiyama M. High-pressure microscopy for tracking dynamic properties of molecular machines. Biophys Chem 2017; 231:71-78. [DOI: 10.1016/j.bpc.2017.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 01/29/2023]
|