1
|
Rîmbu GA, Pîslaru-Dănescu L, Zărnescu GC, Ștefănescu CA, Iordoc M, Teișanu AA, Telipan G. Electrochemical Sensor for Hydrogen Leakage Detection at Room Temperature. SENSORS (BASEL, SWITZERLAND) 2025; 25:264. [PMID: 39797056 PMCID: PMC11723446 DOI: 10.3390/s25010264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
The use of hydrogen as fuel presents many safety challenges due to its flammability and explosive nature, combined with its lack of color, taste, and odor. The purpose of this paper is to present an electrochemical sensor that can achieve rapid and accurate detection of hydrogen leakage. This paper presents both the component elements of the sensor, like sensing material, sensing element, and signal conditioning, as well as the electronic protection and signaling module of the critical concentrations of H2. The sensing material consists of a catalyst type Vulcan XC72 40% Pt, from FuelCellStore, (Bryan, TX, USA). The sensing element is based on a membrane electrode assembly (MEA) system that includes a cathode electrode, an ion-conducting membrane type Nafion 117, from FuelCellStore, (Bryan, TX, USA). and an anode electrode mounted in a coin cell type CR2016, from Xiamen Tob New Energy Technology Co., Ltd, (Xiamen City, Fujian Province, China). The electronic block for electrical signal conditioning, which is delivered by the sensing element, uses an INA111, from Burr-Brown by Texas Instruments Corporation, (Dallas, TX, USA). instrumentation operational amplifier. The main characteristics of the electrochemical sensor for hydrogen leakage detection are operation at room temperature so it does not require a heater, maximum amperometric response time of 1 s, fast recovery time of maximum 1 s, and extended range of hydrogen concentrations detection in a range of up to 20%.
Collapse
Affiliation(s)
- Gimi Aurelian Rîmbu
- Department of Energy, Environment and Climate Change, National Institute for Research and Development in Electrical Engineering ICPE-CA, 030138 Bucharest, Romania
| | - Lucian Pîslaru-Dănescu
- Laboratory of Sensors/Actuators and Energy Harvesting, National Institute for Research and Development in Electrical Engineering ICPE-CA, 030138 Bucharest, Romania
| | - George-Claudiu Zărnescu
- Laboratory of Sensors/Actuators and Energy Harvesting, National Institute for Research and Development in Electrical Engineering ICPE-CA, 030138 Bucharest, Romania
| | - Carmen Alina Ștefănescu
- Department of Energy, Environment and Climate Change, National Institute for Research and Development in Electrical Engineering ICPE-CA, 030138 Bucharest, Romania
| | - Mihai Iordoc
- Department of Energy, Environment and Climate Change, National Institute for Research and Development in Electrical Engineering ICPE-CA, 030138 Bucharest, Romania
| | - Aristofan Alexandru Teișanu
- Department of Energy, Environment and Climate Change, National Institute for Research and Development in Electrical Engineering ICPE-CA, 030138 Bucharest, Romania
| | - Gabriela Telipan
- Laboratory of Sensors/Actuators and Energy Harvesting, National Institute for Research and Development in Electrical Engineering ICPE-CA, 030138 Bucharest, Romania
| |
Collapse
|
2
|
Liu X, Chen L, Yang Y, Xu L, Sun J, Gan T. MXene-reinforced octahedral PtCu nanocages with boosted electrocatalytic performance towards endocrine disrupting pollutants sensing. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130000. [PMID: 36137886 DOI: 10.1016/j.jhazmat.2022.130000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/28/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Rational tailoring of hollow and porous bimetallic structures with excellent electrocatalytic performance is appealing yet challenging. Further, combining independent bimetallic nanoparticles with flexible two-dimensional substrate by forming stable heterocomplex is still highly desired for electrocatalysis. Herein, hierarchical PtCu alloy octahedrons with hollow interiors and nanosheet-assembled nanoshells were synthesized by a facile and efficient chemical transformation strategy using Cu2O as sacrificial templates. Such octahedral PtCu nanocages displayed significantly enhanced electrocatalytic activity owing to their unique hollow and porous architectures which provided easy access for analytes to the catalyst surface. Thereafter, introduction of Ti3C2Tx MXene was realized via simple incubation of Ti3C2Tx in solution containing the 3-aminopropyltriethoxysilane-capped PtCu, and their electrostatic interaction guaranteed the firm adsorption of PtCu nanocages on Ti3C2Tx nanosheets. It turned out that the sensitivity of the hybrid sensor was remarkably improved for electrochemical monitoring of endocrine disrupting pollutants in water, exhibiting ultrawide linear ranges and sub-nanomole detection limits. The eminent electrode performance is attributed to the high specific area, fast electrochemical kinetics, decent electrical catalytic ability, and the synergistic effect between Pt, Cu, and MXene.
Collapse
Affiliation(s)
- Xian Liu
- College of Chemistry and Chemical Engineering & Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, Xinyang 464000, PR China
| | - Like Chen
- College of Chemistry and Chemical Engineering & Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, Xinyang 464000, PR China
| | - Yang Yang
- College of Chemistry and Chemical Engineering & Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, Xinyang 464000, PR China
| | - Liping Xu
- College of Chemistry and Chemical Engineering & Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, Xinyang 464000, PR China
| | - Junyong Sun
- College of Chemistry and Chemical Engineering & Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, Xinyang 464000, PR China; Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China; Fujian Provincial University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 363000, PR China
| | - Tian Gan
- College of Chemistry and Chemical Engineering & Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, Xinyang 464000, PR China.
| |
Collapse
|
3
|
Wu H, Zhong H, Pan Y, Li H, Peng Y, Yang L, Luo S, Banham D, Zeng J. Highly stable and active Pt-skinned octahedral PtCu/C for oxygen reduction reaction. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Li H, Zhao H, Tao B, Xu G, Gu S, Wang G, Chang H. Pt-Based Oxygen Reduction Reaction Catalysts in Proton Exchange Membrane Fuel Cells: Controllable Preparation and Structural Design of Catalytic Layer. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4173. [PMID: 36500796 PMCID: PMC9735689 DOI: 10.3390/nano12234173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Proton exchange membrane fuel cells (PEMFCs) have attracted extensive attention because of their high efficiency, environmental friendliness, and lack of noise pollution. However, PEMFCs still face many difficulties in practical application, such as insufficient power density, high cost, and poor durability. The main reason for these difficulties is the slow oxygen reduction reaction (ORR) on the cathode due to the insufficient stability and catalytic activity of the catalyst. Therefore, it is very important to develop advanced platinum (Pt)-based catalysts to realize low Pt loads and long-term operation of membrane electrode assembly (MEA) modules to improve the performance of PEMFC. At present, the research on PEMFC has mainly been focused on two areas: Pt-based catalysts and the structural design of catalytic layers. This review focused on the latest research progress of the controllable preparation of Pt-based ORR catalysts and structural design of catalytic layers in PEMFC. Firstly, the design principle of advanced Pt-based catalysts was introduced. Secondly, the controllable preparation of catalyst structure, morphology, composition and support, and their influence on catalytic activity of ORR and overall performance of PEMFC, were discussed. Thirdly, the effects of optimizing the structure of the catalytic layer (CL) on the performance of MEA were analyzed. Finally, the challenges and prospects of Pt-based catalysts and catalytic layer design were discussed.
Collapse
Affiliation(s)
- Hongda Li
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Zhao
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Boran Tao
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guoxiao Xu
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Shaonan Gu
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guofu Wang
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Haixin Chang
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
5
|
Zhang X, Truong-Phuoc L, Asset T, Pronkin S, Pham-Huu C. Are Fe–N–C Electrocatalysts an Alternative to Pt-Based Electrocatalysts for the Next Generation of Proton Exchange Membrane Fuel Cells? ACS Catal 2022. [DOI: 10.1021/acscatal.2c02146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiong Zhang
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), UMR 7515 CNRS-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex
02, France
| | - Lai Truong-Phuoc
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), UMR 7515 CNRS-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex
02, France
| | - Tristan Asset
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), UMR 7515 CNRS-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex
02, France
| | - Sergey Pronkin
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), UMR 7515 CNRS-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex
02, France
| | - Cuong Pham-Huu
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), UMR 7515 CNRS-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex
02, France
| |
Collapse
|
6
|
Highly dispersed L12-Pt3Fe intermetallic particles supported on single atom Fe-N -C active sites for enhanced activity and durability towards oxygen reduction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Capabilities and limitations of rotating disk electrodes versus membrane electrode assemblies in the investigation of electrocatalysts. Nat Catal 2022. [DOI: 10.1038/s41929-022-00776-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Yun Q, Xu J, Wei T, Ruan Q, Zhu X, Kan C. Synthesis of Pd nanorod arrays on Au nanoframes for excellent ethanol electrooxidation. NANOSCALE 2022; 14:736-743. [PMID: 34939638 DOI: 10.1039/d1nr05987d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Au-Pd hollow nanostructures have attracted a lot of attention because of their excellent ethanol electrooxidation performance. Herein, we report a facile preparation of Au nanoframe@Pd array electrocatalysts in the presence of cetylpyridinium chloride. The reduced Pd atoms were directed to mainly deposit on the surface of the Au nanoframes in the form of rods, leading to the formation of Au nanoframe@Pd arrays with a super-large specific surface area. The red shift and damping of the plasmon peak were ascribed to the deposition of the Pd arrays on the surface of the Au nanoframes and nanobipyramids, which was verified by electrodynamic simulations. Surfactants, temperature and reaction time determine the growth process and thereby the architecture of the obtained Au-Pd hollow nanostructures. Compared with the Au nanoframe@Pd nanostructures and Au nanobipyramid@Pd arrays, the Au nanoframe@Pd arrays exhibit an enhanced electrocatalytic performance towards ethanol electrooxidation due to an abundance of catalytic active sites. The Au NF@Pd arrays display 4.1 times higher specific activity and 13.7 times higher mass activity than the commercial Pd/C electrocatalyst. Moreover, the nanostructure shows improved stability towards the ethanol oxidation reaction. This study enriches the manufacturing technology to increase the active sites of noble metal nanocatalysts and promotes the development of direct ethanol fuel cells.
Collapse
Affiliation(s)
- Qinru Yun
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Juan Xu
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Tingcha Wei
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
- Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China
| | - Qifeng Ruan
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372
| | - Xingzhong Zhu
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
- Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China
| | - Caixia Kan
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
- Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China
| |
Collapse
|
9
|
Guo J, Zhang M, Xu J, Fang J, Luo S, Yang C. Core-shell Pd-P@Pt-Ni nanoparticles with enhanced activity and durability as anode electrocatalyst for methanol oxidation reaction. RSC Adv 2022; 12:2246-2252. [PMID: 35425232 PMCID: PMC8979267 DOI: 10.1039/d1ra07998k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/07/2022] [Indexed: 12/17/2022] Open
Abstract
Pd-P@Pt-Ni core-shell nanoparticles, which consisted of a Pd-P alloy as a core and Pt-Ni thin layer as a shell, were explored as electrocatalysts for methanol oxidation reaction. The crystallographic information and the electronic properties were fully investigated by X-ray diffraction and X-ray photoelectron spectroscopy. In the methanol electrooxidation reaction, the particles showed high catalytic activity and strong resistance to the poisoning carbonaceous species in comparison with those of commercial Pt/C and the as-prepared Pt/C catalysts. The excellent durability was demonstrated by electrochemically active surface area loss and chronoamperometric measurements. These results would be due to the enhanced catalytic properties of Pt by the double synergistic effects from the core part and the nickel species in the shell part.
Collapse
Affiliation(s)
- Jiangbin Guo
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou 362000 P. R. China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200433 P. R. China
| | - Jing Xu
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou 362000 P. R. China
| | - Jun Fang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou 362000 P. R. China
| | - Shuiyuan Luo
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou 362000 P. R. China
| | - Chaolong Yang
- School of Materials Science and Engineering, Chongqing University of Technology Chongqing 400054 P. R. China
| |
Collapse
|
10
|
Chen G, Singh SK, Takeyasu K, Hill JP, Nakamura J, Ariga K. Versatile nanoarchitectonics of Pt with morphology control of oxygen reduction reaction catalysts. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:413-423. [PMID: 35756168 PMCID: PMC9225698 DOI: 10.1080/14686996.2022.2088040] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Electro-catalytic activity of Pt in the oxygen reduction reaction (ORR) depends strongly on its morphology. For an understanding of how morphology affects the catalytic properties of Pt, the investigation of Pt materials having well-defined morphologies is required. However, the challenges remain in rational and facile synthesis of Pt particles with tuneable well-defined morphology. A promising approach for the controlled synthesis of Pt particles is 'self-assembly of building blocks'. Here, we report a unique synthesis method to control Pt morphology by using a self-assembly route, where nanoflower, nanowire, nanosheet and nanotube morphologies of Pt particles have been produced in a controlled manner. In the growth mechanism, Pt nanoparticles (5-11 nm) are rapidly prepared by using NaBH4 as a reductant, followed by their agglomeration promoted by adding 1,2-ethylenediamine. The morphology of the resulting Pt particles can be easily controlled by tuning hydrophobic/hydrophilic interactions by the addition of isopropanol and H2O. Of the Pt particles prepared using this method, Pt nanotubes show the highest ORR catalytic activity in an acid electrolyte with an onset potential of 1.02 V vs. RHE.
Collapse
Affiliation(s)
- Guoping Chen
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Santosh K. Singh
- Faculty of Pure and Applied Sciences, Tsukuba Research Centre for Energy and Materials Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kotaro Takeyasu
- Faculty of Pure and Applied Sciences, Tsukuba Research Centre for Energy and Materials Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Jonathan P. Hill
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Junji Nakamura
- Faculty of Pure and Applied Sciences, Tsukuba Research Centre for Energy and Materials Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Junji Nakamura Faculty of Pure and Applied Sciences, Tsukuba Research Centre for Energy and Materials Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki305-8573, Japan
| | - Katsuhiko Ariga
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
- CONTACT Katsuhiko Ariga Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba277-0827, Japan
| |
Collapse
|
11
|
Hornberger E, Klingenhof M, Polani S, Paciok P, Kormányos A, Chattot R, MacArthur KE, Wang X, Pan L, Drnec J, Cherevko S, Heggen M, Dunin-Borkowski RE, Strasser P. On the electrocatalytical oxygen reduction reaction activity and stability of quaternary RhMo-doped PtNi/C octahedral nanocrystals. Chem Sci 2022; 13:9295-9304. [PMID: 36093024 PMCID: PMC9384817 DOI: 10.1039/d2sc01585d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/01/2022] [Indexed: 12/01/2022] Open
Abstract
Recently proposed bimetallic octahedral Pt–Ni electrocatalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cell (PEMFC) cathodes suffer from particle instabilities in the form of Ni corrosion and shape degradation. Advanced trimetallic Pt-based electrocatalysts have contributed to their catalytic performance and stability. In this work, we propose and analyse a novel quaternary octahedral (oh-)Pt nanoalloy concept with two distinct metals serving as stabilizing surface dopants. An efficient solvothermal one-pot strategy was developed for the preparation of shape-controlled oh-PtNi catalysts doped with Rh and Mo in its surface. The as-prepared quaternary octahedral PtNi(RhMo) catalysts showed exceptionally high ORR performance accompanied by improved activity and shape integrity after stability tests compared to previously reported bi- and tri-metallic systems. Synthesis, performance characteristics and degradation behaviour are investigated targeting deeper understanding for catalyst system improvement strategies. A number of different operando and on-line analysis techniques were employed to monitor the structural and elemental evolution, including identical location scanning transmission electron microscopy and energy dispersive X-ray analysis (IL-STEM-EDX), operando wide angle X-ray spectroscopy (WAXS), and on-line scanning flow cell inductively coupled plasma mass spectrometry (SFC-ICP-MS). Our studies show that doping PtNi octahedral catalysts with small amounts of Rh and Mo suppresses detrimental Pt diffusion and thus offers an attractive new family of shaped Pt alloy catalysts for deployment in PEMFC cathode layers. PtNi nano-octahedra with Rh and Mo dopants are highly active catalysts for the oxygen reduction reaction with excellent stability and shape integrity. We investigate the morphological, structural, and compositional evolution during stability testing.![]()
Collapse
Affiliation(s)
- Elisabeth Hornberger
- Electrochemical Energy, Catalysis and Material Science Laboratory, Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany
| | - Malte Klingenhof
- Electrochemical Energy, Catalysis and Material Science Laboratory, Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany
| | - Shlomi Polani
- Electrochemical Energy, Catalysis and Material Science Laboratory, Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany
| | - Paul Paciok
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Peter Grünberg Institute, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Attila Kormányos
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, 91058 Erlangen, Germany
| | - Raphaël Chattot
- ID 31 Beamline, BP 220, European Synchrotron Radiation Facility, 38043 Grenoble, France
| | - Katherine E. MacArthur
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Peter Grünberg Institute, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Xingli Wang
- Electrochemical Energy, Catalysis and Material Science Laboratory, Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany
| | - Lujin Pan
- Electrochemical Energy, Catalysis and Material Science Laboratory, Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany
| | - Jakub Drnec
- ID 31 Beamline, BP 220, European Synchrotron Radiation Facility, 38043 Grenoble, France
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, 91058 Erlangen, Germany
| | - Marc Heggen
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Peter Grünberg Institute, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Rafal E. Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Peter Grünberg Institute, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Peter Strasser
- Electrochemical Energy, Catalysis and Material Science Laboratory, Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany
| |
Collapse
|
12
|
Gram-Scale Synthesis of CoO/C as Base for PtCo/C High-Performance Catalysts for the Oxygen Reduction Reaction. Catalysts 2021. [DOI: 10.3390/catal11121539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The composition, structure, catalytic activity in the ORR and stability of PtCo/C materials, obtained in two stages and compared with commercial Pt/C analogs, were studied. At the first stage of the synthesis performed by electrodeposition of cobalt on a carbon support, a CoOx/C composite containing 8% and 25 wt% cobalt oxide was successfully obtained. In the second step, PtCoOx/C catalysts of Pt1.56Co and Pt1.12Co composition containing 14 and 30 wt% Pt, respectively, were synthesized based on the previously obtained composites. According to the results of the composition and structure analysis of the obtained PtCoOx/C catalysts by X-ray diffraction (XRD), X-ray fluorescence analysis (XRF), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) methods, the formation of small bimetallic nanoparticles on the carbon support surface has been proved. The resulting catalysts demonstrated up to two times higher specific catalytic activity in the ORR and high stability compared to commercial Pt/C analogs.
Collapse
|
13
|
Ying J. Atomic-Scale Design of High-Performance Pt-Based Electrocatalysts for Oxygen Reduction Reaction. Front Chem 2021; 9:753604. [PMID: 34604177 PMCID: PMC8481695 DOI: 10.3389/fchem.2021.753604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Fuel cells are regarded as one of the most promising energy conversion devices because of their high energy density and zero emission. Development of high-performance Pt-based electrocatalysts for the oxygen reduction reaction (ORR) is vital to the commercial application of these fuel cell devices. Herein, we review the most significant breakthroughs in the development of high-performance Pt-based ORR electrocatalysts in the past decade. Novel and preferred nanostructures, including biaxially strained core-shell nanoplates, ultrafine jagged nanowires, nanocages with subnanometer-thick walls and nanoframes with three-dimensional surfaces, for excellent performance in ORR are emphasized. Important effects of strain, particle proximity, and surface morphology are fully discussed. The remaining changes and prospective research directions are also proposed.
Collapse
Affiliation(s)
- Jie Ying
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
14
|
Jang JH, Jeffery AA, Min J, Jung N, Yoo SJ. Emerging carbon shell-encapsulated metal nanocatalysts for fuel cells and water electrolysis. NANOSCALE 2021; 13:15116-15141. [PMID: 34554169 DOI: 10.1039/d1nr01328a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of low-cost, high-efficiency electrocatalysts is of primary importance for hydrogen energy technology. Noble metal-based catalysts have been extensively studied for decades; however, activity and durability issues still remain a challenge. In recent years, carbon shell-encapsulated metal (M@C) catalysts have drawn great attention as novel materials for water electrolysis and fuel cell applications. These electrochemical reactions are governed mainly by interfacial charge transfer between the core metal and the outer carbon shell, which alters the electronic structure of the catalyst surface. Furthermore, the rationally designed and fine-tuned carbon shell plays a very interesting role as a protective layer or molecular sieve layer to improve the performance and durability of energy conversion systems. Herein, we review recent advances in the use of M@C type nanocatalysts for extensive applications in fuel cells and water electrolysis with a focus on the structural design and electronic structure modulation of carbon shell-encapsulated metal/alloys. Finally, we highlight the current challenges and future perspectives of these catalytic materials and related technologies in this field.
Collapse
Affiliation(s)
- Jue-Hyuk Jang
- Center for Hydrogen·Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - A Anto Jeffery
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Jiho Min
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Namgee Jung
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Sung Jong Yoo
- Center for Hydrogen·Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Energy & Environmental Technology, KIST school, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
15
|
Sargeant E, Illas F, Rodríguez P, Calle-Vallejo F. Importance of the gas-phase error correction for O2 when using DFT to model the oxygen reduction and evolution reactions. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Guadagnini A, Agnoli S, Badocco D, Pastore P, Pilot R, Ravelle-Chapuis R, van Raap MBF, Amendola V. Kinetically Stable Nonequilibrium Gold-Cobalt Alloy Nanoparticles with Magnetic and Plasmonic Properties Obtained by Laser Ablation in Liquid. Chemphyschem 2021; 22:657-664. [PMID: 33559943 DOI: 10.1002/cphc.202100021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/08/2021] [Indexed: 12/21/2022]
Abstract
Nonequilibrium nanoalloys are metastable solids obtained at the nanoscale under nonequilibrium conditions that allow the study of kinetically frozen atoms and the discovery of new physical and chemical properties. However, the stabilization of metastable phases in the nanometric size regime is challenging and the synthetic route should be easy and sustainable, for the nonequilibrium nanoalloys to be practically available. Here we report on the one-step laser ablation synthesis in solution (LASiS) of nonequilibrium Au-Co alloy nanoparticles (NPs) and their characterization on ensembles and at the single nanoparticle level. The NPs are obtained as a polycrystalline solid solution stable in air and water, although surface cobalt atoms undergo oxidation to Co(II). Since gold is a renowned plasmonic material and metallic cobalt is ferromagnetic at room temperature, these properties are both found in the NPs. Besides, surface conjugation with thiolated molecules is possible and it was exploited to obtain colloidally stable solutions in water. Taking advantage of these features, an array of magnetic-plasmonic dots was obtained and used for surface-enhanced Raman scattering experiments. Overall, this study confirms that LASiS is an effective method for the formation of kinetically stable nonequilibrium nanoalloys and shows that Au-Co alloy NPs are appealing magnetically responsive plasmonic building blocks for several nanotechnological applications.
Collapse
Affiliation(s)
- Andrea Guadagnini
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, I-35131, Padova, Italy
| | - Stefano Agnoli
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, I-35131, Padova, Italy
| | - Denis Badocco
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, I-35131, Padova, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, I-35131, Padova, Italy
| | - Roberto Pilot
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, I-35131, Padova, Italy.,Consorzio INSTM, UdR Padova, Italy
| | | | - Marcela B Fernández van Raap
- Physics Institute of La Plata (IFLP-CONICET), Physics Department Faculty of Exact Sciences, National University of La Plata, La Plata, Argentina
| | - Vincenzo Amendola
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, I-35131, Padova, Italy
| |
Collapse
|
17
|
Belles L, Moularas C, Smykała S, Deligiannakis Y. Flame Spray Pyrolysis Co 3O 4/CoO as Highly-Efficient Nanocatalyst for Oxygen Reduction Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:925. [PMID: 33916435 PMCID: PMC8066371 DOI: 10.3390/nano11040925] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 12/30/2022]
Abstract
The oxygen reduction reaction (ORR) is the rate-limiting reaction in the cathode side of fuel cells. In the quest for alternatives to Pt-electrodes as cathodes in ORR, appropriate transition metal oxide-based electrocatalysts are needed. In the present work, we have synthesized Co3O4 and CoO/Co3O4 nanostructures using flame spray pyrolysis (FSP), as electrocatalysts for ORR in acidic and alkaline media. A detailed study of the effect of (Co-oxide)/Pt ratio on ORR efficiency shows that the present FSP-made Co-oxides are able to perform ORR at very low-Pt loading, 0.4% of total metal content. In acid medium, an electrode with (5.2% Pt + 4.8% Co3O4), achieved the highest ORR performance (Jmax = 8.31 mA/cm2, E1/2 = 0.66 V). In alkaline medium, superior performance and stability have been achieved by an electrode with (0.4%Pt + 9.6% (CoO/Co3O4)) with ORR activity (Jmax = 3.5 mA/cm2, E1/2 = 0.08 V). Using XRD, XPS, Raman and TEM data, we discuss the structural and electronic aspects of the FSP-made Co-oxide catalysts in relation to the ORR performance. Cyclic voltammetry data indicate that the ORR process involves active sites associated with Co3+ cations at the cobalt oxide surface. Technology-wise, the present work demonstrates that the developed FSP-protocols, constitutes a novel scalable process for production of co-oxides appropriate for oxygen reduction reaction electrodes.
Collapse
Affiliation(s)
- Loukas Belles
- Laboratory of Physics Chemistry of Materials & Environment, Department of Physics, University of Ioannina, 45550 Ioannina, Greece; (L.B.); (C.M.)
| | - Constantinos Moularas
- Laboratory of Physics Chemistry of Materials & Environment, Department of Physics, University of Ioannina, 45550 Ioannina, Greece; (L.B.); (C.M.)
| | - Szymon Smykała
- Institute of Engineering Materials and Biomaterials, Silesian University of Technology, 18a Konarskiego St, 44-100 Gliwice, Poland;
| | - Yiannis Deligiannakis
- Laboratory of Physics Chemistry of Materials & Environment, Department of Physics, University of Ioannina, 45550 Ioannina, Greece; (L.B.); (C.M.)
| |
Collapse
|
18
|
Zhao Q, Wang C, Wang H, Wang J. A mass-producible integrative structure Pt alloy oxygen reduction catalyst synthesized with atomically dispersive metal-organic framework precursors. J Colloid Interface Sci 2021; 583:351-361. [PMID: 33011405 DOI: 10.1016/j.jcis.2020.09.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/03/2020] [Accepted: 09/20/2020] [Indexed: 10/23/2022]
Abstract
Oxygen reduction reaction (ORR) catalyst is one of the most significant influential factors for the application of proton exchange membrane fuel cells. This work introduces a mass-producible high-performance PtZn alloy integrative structure ORR catalyst, synthesized with the atomically dispersive metal-organic framework precursors. This PtZn catalyst displays excellent catalytic activity with the onset reduction potential of 1.0 VRHE@ 0.16 mA cm-2 (Reversible hydrogen electrode; RHE) and the half-wave potential of 0.934 VRHE for the ORR catalysis. The calculated specific activity and mass activity at 0.9 V are 9.44 A m-2 and 544 A gPt-1, respectively, which are 5.62 times and 5.77 times as high as the commercial Pt/C. The mass activity is remarkably higher than the target put forward by the Department of Energy (DOE; 440 A gPt-1). Furthermore, this PtZn catalyst also exhibits outstanding stability after the 10,000 potential cyclic degeneration test. The ORR current is much higher than Pt/C in the whole potential range not only before but also after the 10,000 potential cycles with identical Pt loading. This catalyst has a multifarious active-site catalytic structure with PtZn alloyed particles and atomically dispersive metal-N active sites on the N-doped graphited carbon matrix, exhibiting appealing ORR catalytic activity and sound stability for the application and scalable production of fuel cell catalysts.
Collapse
Affiliation(s)
- Qing Zhao
- Zhang Jiagang Joint Institute for Hydrogen Energy and Lithium-Ion Battery Technology, INET, Tsinghua University, Beijing, PR China
| | - Cheng Wang
- Zhang Jiagang Joint Institute for Hydrogen Energy and Lithium-Ion Battery Technology, INET, Tsinghua University, Beijing, PR China.
| | | | - Jianlong Wang
- Zhang Jiagang Joint Institute for Hydrogen Energy and Lithium-Ion Battery Technology, INET, Tsinghua University, Beijing, PR China
| |
Collapse
|
19
|
Zysler M, Klingbell T, Amos CD, Ferreira PJ, Zitoun D. Carbon supported Pt–Ni octahedral electrocatalysts as a model to monitor nickel corrosion and particle detachment. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00463h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Pt–Ni oxygen reduction reaction catalyst are reacted with chelating agents to model their stability in a fuel cell. All chelating agents do show Ni dealloying and we discovered that amino-rich chelates do also detach the NPs from the carbon support.
Collapse
Affiliation(s)
- Melina Zysler
- Department of Chemistry and
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA)
- Bar-Ilan University
- Ramat Gan 5290002
- Israel
| | - Tal Klingbell
- Department of Chemistry and
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA)
- Bar-Ilan University
- Ramat Gan 5290002
- Israel
| | - Charles D. Amos
- Department of Advanced Electron Microscopy, Imaging, and Spectroscopy
- International Iberian Nanotechnology Laboratory (INL)
- Portugal
| | - Paulo J. Ferreira
- Department of Advanced Electron Microscopy, Imaging, and Spectroscopy
- International Iberian Nanotechnology Laboratory (INL)
- Portugal
- Materials Science and Engineering Program
- The University of Texas at Austin
| | - David Zitoun
- Department of Chemistry and
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA)
- Bar-Ilan University
- Ramat Gan 5290002
- Israel
| |
Collapse
|
20
|
Lu J, Zhu B, Sakaki S. O 2 activation by core-shell Ru 13@Pt 42 particles in comparison with Pt 55 particles: a DFT study. RSC Adv 2020; 10:36090-36100. [PMID: 35517069 PMCID: PMC9057003 DOI: 10.1039/d0ra05738j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/03/2020] [Indexed: 11/21/2022] Open
Abstract
The reaction of O2 with a Ru13@Pt42 core-shell particle consisting of a Ru13 core and a Pt42 shell was theoretically investigated in comparison with Pt55. The O2 binding energy with Pt55 is larger than that with Ru13@Pt42, and O-O bond cleavage occurs more easily with a smaller activation barrier (E a) on Pt55 than on Ru13@Pt42. Protonation to the Pt42 surface followed by one-electron reduction leads to the formation of an H atom on the surface with considerable exothermicity. The H atom reacts with the adsorbed O2 molecule to afford an OOH species with a larger E a value on Pt55 than on Ru13@Pt42. An OOH species is also formed by protonation of the adsorbed O2 molecule, followed by one-electron reduction, with a large exothermicity in both Pt55 and Ru13@Pt42. O-OH bond cleavage occurs with a smaller E a on Pt55 than on Ru13@Pt42. The lower reactivity of Ru13@Pt42 than that of Pt55 on the O-O and O-OH bond cleavages arises from the presence of lower energy in the d-valence band-top and d-band center in Ru13@Pt42 than in Pt55. The smaller E a for OOH formation on Ru13@Pt42 than on Pt55 arises from weaker Ru13@Pt42-O2 and Ru13@Pt42-H bonds than the Pt55-O2 and Pt55-H bonds, respectively. The low-energy d-valence band-top is responsible for the weak Ru13@Pt42-O and Ru13@Pt42-OH bonds. Thus, the low-energy d-valence band-top and d-band center are important properties of the Ru13@Pt42 particle.
Collapse
Affiliation(s)
- Jing Lu
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University Wuhan 430200 China
| | - Bo Zhu
- Element Strategy Initiative for Catalysts and Batteries, Kyoto University Goryo-Ohara 1-30, Nishikyo-ku Kyoto 615-8245 Japan +81-75-383-3047 +81-75-383-3036
| | - Shigeyoshi Sakaki
- Element Strategy Initiative for Catalysts and Batteries, Kyoto University Goryo-Ohara 1-30, Nishikyo-ku Kyoto 615-8245 Japan +81-75-383-3047 +81-75-383-3036.,Fukui Institute for Fundamental Chemistry (FIFC), Kyoto University Takano-Nishihiraki-cho 34-4, Sakyou-ku Kyoto 606-8103 Japan
| |
Collapse
|
21
|
Zhou M, Li C, Fang J. Noble-Metal Based Random Alloy and Intermetallic Nanocrystals: Syntheses and Applications. Chem Rev 2020; 121:736-795. [DOI: 10.1021/acs.chemrev.0c00436] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ming Zhou
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Can Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
22
|
A synergistic approach of Vulcan carbon and CeO2 in their composite as an efficient oxygen reduction reaction catalyst. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01461-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Wang Y, Hu ZP, Lv X, Chen L, Yuan ZY. Ultrasmall PtZn bimetallic nanoclusters encapsulated in silicalite-1 zeolite with superior performance for propane dehydrogenation. J Catal 2020. [DOI: 10.1016/j.jcat.2020.02.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Yin S, Ding Y. Bimetallic PtAu electrocatalysts for the oxygen reduction reaction: challenges and opportunities. Dalton Trans 2020; 49:4189-4199. [PMID: 32191785 DOI: 10.1039/d0dt00205d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly active, durable oxygen reduction reaction (ORR) electrocatalysts have an essential role in promoting the continuous operation of advanced energy technologies such as fuel cells and metal-air batteries. Considering the scarce reserve of Pt and its unsatisfactory overall performance, there is an urgent demand for the development of new generation ORR electrocatalysts that are substantially better than the state-of-the-art supported Pt-based nanocatalysts, such as Pt/C. Among various nanostructures, bimetallic PtAu represents one unique alloy system where highly contradictory performance has been reported. While it is generally accepted that Au may contribute to stabilizing Pt, its role in modulating the intrinsic activity of Pt remains unclear. This perspective will discuss critical structural issues that affect the intrinsic ORR activities of bimetallic PtAu, with an eye on elucidating the origin of seemingly inconsistent experimental results from the literature. As a relatively new class of electrodes, we will also highlight the performance of dealloyed nanoporous gold (NPG) based electrocatalysts, which allow a unique combination of structural properties highly desired for this important reaction. Finally, we will put forward the challenges and opportunities for the incorporation of these advanced electrocatalysts into membrane electrode assemblies (MEA) for actual fuel cells.
Collapse
Affiliation(s)
- Shuai Yin
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Yi Ding
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
25
|
Kumar K, Dubau L, Mermoux M, Li J, Zitolo A, Nelayah J, Jaouen F, Maillard F. On the Influence of Oxygen on the Degradation of Fe‐N‐C Catalysts. Angew Chem Int Ed Engl 2020; 59:3235-3243. [DOI: 10.1002/anie.201912451] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Kavita Kumar
- Univ. Grenoble AlpesUniv. Savoie Mont BlancCNRSGrenoble INPLEPMI 38000 Grenoble France
| | - Laetitia Dubau
- Univ. Grenoble AlpesUniv. Savoie Mont BlancCNRSGrenoble INPLEPMI 38000 Grenoble France
| | - Michel Mermoux
- Univ. Grenoble AlpesUniv. Savoie Mont BlancCNRSGrenoble INPLEPMI 38000 Grenoble France
| | - Jingkun Li
- CNRSUniversité de MontpellierENSCMInstitut Charles Gerhardt Montpellier UMR 5253 2 Place Eugène Bataillon 34095 Montpellier France
| | - Andrea Zitolo
- Synchrotron SOLEIL L'orme des Merisiers, BP 48 Saint Aubin 91192 Gif-sur-Yvette France
| | - Jaysen Nelayah
- Université de ParisLaboratoire Matériaux et Phénomènes QuantiquesCNRS 75013 Paris France
| | - Frédéric Jaouen
- CNRSUniversité de MontpellierENSCMInstitut Charles Gerhardt Montpellier UMR 5253 2 Place Eugène Bataillon 34095 Montpellier France
| | - Frédéric Maillard
- Univ. Grenoble AlpesUniv. Savoie Mont BlancCNRSGrenoble INPLEPMI 38000 Grenoble France
| |
Collapse
|
26
|
Kumar K, Dubau L, Mermoux M, Li J, Zitolo A, Nelayah J, Jaouen F, Maillard F. On the Influence of Oxygen on the Degradation of Fe‐N‐C Catalysts. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912451] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kavita Kumar
- Univ. Grenoble Alpes Univ. Savoie Mont Blanc CNRS Grenoble INP LEPMI 38000 Grenoble France
| | - Laetitia Dubau
- Univ. Grenoble Alpes Univ. Savoie Mont Blanc CNRS Grenoble INP LEPMI 38000 Grenoble France
| | - Michel Mermoux
- Univ. Grenoble Alpes Univ. Savoie Mont Blanc CNRS Grenoble INP LEPMI 38000 Grenoble France
| | - Jingkun Li
- CNRS Université de Montpellier ENSCM Institut Charles Gerhardt Montpellier UMR 5253 2 Place Eugène Bataillon 34095 Montpellier France
| | - Andrea Zitolo
- Synchrotron SOLEIL L'orme des Merisiers, BP 48 Saint Aubin 91192 Gif-sur-Yvette France
| | - Jaysen Nelayah
- Université de Paris Laboratoire Matériaux et Phénomènes Quantiques CNRS 75013 Paris France
| | - Frédéric Jaouen
- CNRS Université de Montpellier ENSCM Institut Charles Gerhardt Montpellier UMR 5253 2 Place Eugène Bataillon 34095 Montpellier France
| | - Frédéric Maillard
- Univ. Grenoble Alpes Univ. Savoie Mont Blanc CNRS Grenoble INP LEPMI 38000 Grenoble France
| |
Collapse
|
27
|
Hussain S, Kongi N, Erikson H, Rähn M, Merisalu M, Matisen L, Paiste P, Aruväli J, Sammelselg V, Estudillo-Wong LA, Tammeveski K, Alonso-Vante N. Platinum nanoparticles photo-deposited on SnO2-C composites: An active and durable electrocatalyst for the oxygen reduction reaction. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.104] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
Yi S, Jiang H, Bao X, Zou S, Liao J, Zhang Z. Recent progress of Pt-based catalysts for oxygen reduction reaction in preparation strategies and catalytic mechanism. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113279] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Saw MJ, Nguyen MT, Zhu S, Wang Y, Yonezawa T. Synthesis of Sn/Ag-Sn nanoparticles via room temperature galvanic reaction and diffusion. RSC Adv 2019; 9:21786-21792. [PMID: 35518847 PMCID: PMC9066527 DOI: 10.1039/c9ra02987g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/30/2019] [Indexed: 11/21/2022] Open
Abstract
Tin (Sn) has a low melting temperature, i.e., 231.9 °C for the bulk, and the capability to form compounds with many metals. The galvanic reaction between Sn nanoparticles (NPs) as the core and silver nitrate at room temperature under argon gas in an organic solvent without any reducing power, was employed for the first time to coat an Ag-Sn intermetallic shell, i.e., Ag3Sn and/or Ag4Sn, on Sn NPs. For spherical Sn NPs, the NPs retained a spherical shape after coating. Uniform and Janus structures consisting of a β-Sn core with Ag-Sn shell were observed in the resulting NPs and their population related to the input molar ratios of the metal precursors. The observation of the intermetallic shell is general for both spherical and rod-shape Sn NPs. The formation of the intermetallic shell indicated that two reactions occurred sequentially, first reduction of Ag ions to Ag atoms by the Sn core, followed by interdiffusion of Ag and Sn to form the Ag-Sn intermetallic shell.
Collapse
Affiliation(s)
- Min Jia Saw
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan
| | - Mai Thanh Nguyen
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan
| | - Shilei Zhu
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan
| | - Yongming Wang
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan
| | - Tetsu Yonezawa
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan
| |
Collapse
|
30
|
Gommes CJ, Asset T, Drnec J. Small-angle scattering by supported nanoparticles: exact results and useful approximations. J Appl Crystallogr 2019. [DOI: 10.1107/s1600576719003935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In functional materials, nanoparticles are often dispersed in a porous support for the purpose of stabilizing them. This makes their characterization by small-angle scattering challenging because the signal comprises contributions from the nanoparticles of interest, from the inert support and from their cross-correlation. Exact analytical expressions for all three contributions are derived in the case of a Gaussian-field model of the porous support, with nanoparticles randomly distributed over the surface. For low nanoparticle loading, the expressions simplify to the addition of properly scaled support and particle scattering. For higher loadings, however, the cross-correlation cannot be ignored. Two approximations are introduced, which capture correlation effects in cases where the pores of the support are much larger or only slightly larger than the nanoparticles. The methods of the paper are illustrated with the small-angle X-ray scattering analysis of hollow metallic nanoparticles supported on porous carbon.
Collapse
|
31
|
Zhao Y, Liao L, Yu G, Wei P, Liu J. B‐Doped Fe/N/C Porous Catalyst for High‐Performance Oxygen Reduction in Anion‐Exchange Membrane Fuel Cells. ChemElectroChem 2019. [DOI: 10.1002/celc.201801688] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ye‐Min Zhao
- Key Laboratory for Advanced Materials School of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P.R. China
| | - Li‐Mei Liao
- Key Laboratory for Advanced Materials School of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P.R. China
| | - Guo‐Qiang Yu
- Key Laboratory for Advanced Materials School of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P.R. China
| | - Ping‐Jie Wei
- Key Laboratory for Advanced Materials School of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P.R. China
| | - Jin‐Gang Liu
- Key Laboratory for Advanced Materials School of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P.R. China
| |
Collapse
|
32
|
Yu C, Guo X, Muzzio M, Seto CT, Sun S. Self‐Assembly of Nanoparticles into Two‐Dimensional Arrays for Catalytic Applications. Chemphyschem 2018; 20:23-30. [DOI: 10.1002/cphc.201800870] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/14/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Chao Yu
- Department of Chemistry Brown University Providence, RI 02912 United States
| | - Xuefeng Guo
- Department of Chemistry Brown University Providence, RI 02912 United States
| | - Michelle Muzzio
- Department of Chemistry Brown University Providence, RI 02912 United States
| | | | - Shouheng Sun
- Department of Chemistry Brown University Providence, RI 02912 United States
| |
Collapse
|
33
|
Jiang Z, Yu J, Huang T, Sun M. Recent Advance on Polyaniline or Polypyrrole-Derived Electrocatalysts for Oxygen Reduction Reaction. Polymers (Basel) 2018; 10:polym10121397. [PMID: 30961322 PMCID: PMC6401833 DOI: 10.3390/polym10121397] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/02/2022] Open
Abstract
The fuel cell, as one of the most promising electrochemical devices, is sustainable, clean, and environmentally benign. The sluggish oxygen reduction reaction (ORR) is an important fuel cell cathodic reaction that decides the efficiency of the overall energy conversion. In order to improve ORR efficiency, many efficient catalysts have been developed, in which the N-doped material is most popular. Polyaniline and polypyrrole as common aromatic polymers containing nitrogen were widely applied in the N-doped material. The shape-controlled N-doped carbon material can be prepared from the pyrolysis of the polyaniline or polypyrrole, which is effective to catalyze the ORR. This review is focused on the recent advance of polyaniline or polypyrrole-based ORR electrocatalysts.
Collapse
Affiliation(s)
- Zhankun Jiang
- School of Chemistry and Chemical Engineering, University of Jinan, 336 West Nanxinzhuang Road, Jinan 250022, China.
| | - Jiemei Yu
- School of Chemistry and Chemical Engineering, University of Jinan, 336 West Nanxinzhuang Road, Jinan 250022, China.
| | - Taizhong Huang
- School of Chemistry and Chemical Engineering, University of Jinan, 336 West Nanxinzhuang Road, Jinan 250022, China.
| | - Min Sun
- School of Chemistry and Chemical Engineering, University of Jinan, 336 West Nanxinzhuang Road, Jinan 250022, China.
| |
Collapse
|
34
|
Park J, Kwon T, Kim J, Jin H, Kim HY, Kim B, Joo SH, Lee K. Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions. Chem Soc Rev 2018; 47:8173-8202. [PMID: 30009297 DOI: 10.1039/c8cs00336j] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
While the realization of clean and sustainable energy conversion systems primarily requires the development of highly efficient catalysts, one of the main issues had been designing the structure of the catalysts to fulfill minimum cost as well as maximum performance. Until now, noble metal-based nanocatalysts had shown outstanding performances toward the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). However, the scarcity and high cost of them impeded their practical use. Recently, hollow nanostructures including nanocages and nanoframes had emerged as a burgeoning class of promising electrocatalysts. The hollow nanostructures could expose a high proportion of active surfaces while saving the amounts of expensive noble metals. In this review, we introduced recent advances in the synthetic methodologies for generating noble metal-based hollow nanostructures based on thermodynamic and kinetic approaches. We summarized electrocatalytic applications of hollow nanostructures toward the ORR, OER, and HER. We next provided strategies that could endow structural robustness to the flimsy structural nature of hollow structures. Finally, we concluded this review with perspectives to facilitate the development of hollow nanostructure-based catalysts for energy applications.
Collapse
Affiliation(s)
- Jongsik Park
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|