1
|
Brahms A, Pravdivtsev AN, Thorns L, Sönnichsen FD, Hövener JB, Herges R. Exceptionally Mild and High-Yielding Synthesis of Vinyl Esters of Alpha-Ketocarboxylic Acids, Including Vinyl Pyruvate, for Parahydrogen-Enhanced Metabolic Spectroscopy and Imaging. J Org Chem 2023; 88:15018-15028. [PMID: 37824795 DOI: 10.1021/acs.joc.3c01461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Metabolic changes often occur long before pathologies manifest and treatment becomes challenging. As key elements of energy metabolism, α-ketocarboxylic acids (α-KCA) are particularly interesting, e.g., as the upregulation of pyruvate to lactate conversion is a hallmark of cancer (Warburg effect). Magnetic resonance imaging with hyperpolarized metabolites has enabled imaging of this effect non-invasively and in vivo, allowing the early detection of cancerous tissue and its treatment. Hyperpolarization by means of dynamic nuclear polarization, however, is complex, slow, and expensive, while available precursors often limit parahydrogen-based alternatives. Here, we report the synthesis for novel 13C, deuterated ketocarboxylic acids, and a much-improved synthesis of 1-13C-vinyl pruvate-d6, arguably the most promising tracer for hyperpolarizing pyruvate using parahydrogen-induced hyperpolarization by side arm hydrogenation. The new synthesis is scalable and provides a high yield of 52%. We elucidated the mechanism of our Pd-catalyzed trans-vinylation reaction. Hydrogenation with parahydrogen allowed us to monitor the addition, which was found to depend on the electron demand of the vinyl ester. Electron-poor α-keto vinyl esters react slower than "normal" alkyl vinyl esters. This synthesis of 13C, deuterated α-ketocarboxylic acids opens up an entirely new class of biomolecules for fast and cost-efficient hyperpolarization with parahydrogen and their use for metabolic imaging.
Collapse
Affiliation(s)
- Arne Brahms
- Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn Platz 4, 24098 Kiel, Germany
| | - Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24114 Kiel, Germany
| | - Lynn Thorns
- Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn Platz 4, 24098 Kiel, Germany
| | - Frank D Sönnichsen
- Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn Platz 4, 24098 Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24114 Kiel, Germany
| | - Rainer Herges
- Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn Platz 4, 24098 Kiel, Germany
| |
Collapse
|
2
|
Brahms A, Pravdivtsev AN, Stamp T, Ellermann F, Sönnichsen FD, Hövener J, Herges R. Synthesis of 13 C and 2 H Labeled Vinyl Pyruvate and Hyperpolarization of Pyruvate. Chemistry 2022; 28:e202201210. [PMID: 35905033 PMCID: PMC9804285 DOI: 10.1002/chem.202201210] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 01/05/2023]
Abstract
The hyperpolarization of nuclear spins has enabled unique applications in chemistry, biophysics, and particularly metabolic imaging. Parahydrogen-induced polarization (PHIP) offers a fast and cost-efficient way of hyperpolarization. Nevertheless, PHIP lags behind dynamic nuclear polarization (DNP), which is already being evaluated in clinical studies. This shortcoming is mainly due to problems in the synthesis of the corresponding PHIP precursor molecules. The most widely used DNP tracer in clinical studies, particularly for the detection of prostate cancer, is 1-13 C-pyruvate. The ideal derivative for PHIP is the deuterated vinyl ester because the spin physics allows for 100 % polarization. Unfortunately, there is no efficient synthesis for vinyl esters of β-ketocarboxylic acids in general and pyruvate in particular. Here, we present an efficient new method for the preparation of vinyl esters, including 13 C labeled, fully deuterated vinyl pyruvate using a palladium-catalyzed procedure. Using 50 % enriched parahydrogen and mild reaction conditions, a 13 C polarization of 12 % was readily achieved; 36 % are expected with 100 % pH2 . Higher polarization values can be potentially achieved with optimized reaction conditions.
Collapse
Affiliation(s)
- Arne Brahms
- Otto Diels Institute for Organic ChemistryKiel UniversityOtto-Hahn-Platz 424118KielGermany
| | - Andrey N. Pravdivtsev
- Section Biomedical ImagingMolecular Imaging North Competence Center (MOIN CC)Department of Radiology and NeuroradiologyUniversity Medical Center KielKiel UniversityAm Botanischen Garten 1424118KielGermany
| | - Tim Stamp
- Otto Diels Institute for Organic ChemistryKiel UniversityOtto-Hahn-Platz 424118KielGermany
| | - Frowin Ellermann
- Section Biomedical ImagingMolecular Imaging North Competence Center (MOIN CC)Department of Radiology and NeuroradiologyUniversity Medical Center KielKiel UniversityAm Botanischen Garten 1424118KielGermany
| | - Frank D. Sönnichsen
- Otto Diels Institute for Organic ChemistryKiel UniversityOtto-Hahn-Platz 424118KielGermany
| | - Jan‐Bernd Hövener
- Section Biomedical ImagingMolecular Imaging North Competence Center (MOIN CC)Department of Radiology and NeuroradiologyUniversity Medical Center KielKiel UniversityAm Botanischen Garten 1424118KielGermany
| | - Rainer Herges
- Otto Diels Institute for Organic ChemistryKiel UniversityOtto-Hahn-Platz 424118KielGermany
| |
Collapse
|
3
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Schmidt AB, Zimmermann M, Berner S, de Maissin H, Müller CA, Ivantaev V, Hennig J, Elverfeldt DV, Hövener JB. Quasi-continuous production of highly hyperpolarized carbon-13 contrast agents every 15 seconds within an MRI system. Commun Chem 2022; 5:21. [PMID: 36697573 PMCID: PMC9814607 DOI: 10.1038/s42004-022-00634-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/25/2022] [Indexed: 01/28/2023] Open
Abstract
Hyperpolarized contrast agents (HyCAs) have enabled unprecedented magnetic resonance imaging (MRI) of metabolism and pH in vivo. Producing HyCAs with currently available methods, however, is typically time and cost intensive. Here, we show virtually-continuous production of HyCAs using parahydrogen-induced polarization (PHIP), without stand-alone polarizer, but using a system integrated in an MRI instead. Polarization of ≈2% for [1-13C]succinate-d2 or ≈19% for hydroxyethyl-[1-13C]propionate-d3 was created every 15 s, for which fast, effective, and well-synchronized cycling of chemicals and reactions in conjunction with efficient spin-order transfer was key. We addressed these challenges using a dedicated, high-pressure, high-temperature reactor with integrated water-based heating and a setup operated via the MRI pulse program. As PHIP of several biologically relevant HyCAs has recently been described, this Rapid-PHIP technique promises fast preclinical studies, repeated administration or continuous infusion within a single lifetime of the agent, as well as a prolonged window for observation with signal averaging and dynamic monitoring of metabolic alterations.
Collapse
Affiliation(s)
- Andreas B Schmidt
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany.
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany.
| | - Mirko Zimmermann
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Stephan Berner
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Henri de Maissin
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Christoph A Müller
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Vladislav Ivantaev
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Jürgen Hennig
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Dominik V Elverfeldt
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany.
| |
Collapse
|
5
|
Schmidt AB, Bowers CR, Buckenmaier K, Chekmenev EY, de Maissin H, Eills J, Ellermann F, Glöggler S, Gordon JW, Knecht S, Koptyug IV, Kuhn J, Pravdivtsev AN, Reineri F, Theis T, Them K, Hövener JB. Instrumentation for Hydrogenative Parahydrogen-Based Hyperpolarization Techniques. Anal Chem 2022; 94:479-502. [PMID: 34974698 PMCID: PMC8784962 DOI: 10.1021/acs.analchem.1c04863] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Andreas B. Schmidt
- Department of Radiology – Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - C. Russell Bowers
- Department of Chemistry, University of Florida, 2001 Museum Road, Gainesville, Florida 32611, USA
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Kai Buckenmaier
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 11, 72076, Tübingen, Germany
| | - Eduard Y. Chekmenev
- Intergrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, Detroit, MI 48202, United States
- Russian Academy of Sciences (RAS), Leninskiy Prospect, 14, 119991 Moscow, Russia
| | - Henri de Maissin
- Department of Radiology – Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - James Eills
- Institute for Physics, Johannes Gutenberg University, D-55090 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Helmholtz-Institut Mainz, 55128 Mainz, Germany
| | - Frowin Ellermann
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group Max Planck Institutefor Biophysical Chemistry Am Fassberg 11, 37077 Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration of UMG Von-Siebold-Str. 3A, 37075 Göttingen, Germany
| | - Jeremy W. Gordon
- Department of Radiology & Biomedical Imaging, University of California San Francisco, 185 Berry St., San Francisco, CA, 94158, USA
| | | | - Igor V. Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Jule Kuhn
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Andrey N. Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Francesca Reineri
- Dept. Molecular Biotechnology and Health Sciences, Via Nizza 52, University of Torino, Italy
| | - Thomas Theis
- Departments of Chemistry, Physics and Biomedical Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kolja Them
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| |
Collapse
|
6
|
Schmidt AB, Brahms A, Ellermann F, Knecht S, Berner S, Hennig J, von Elverfeldt D, Herges R, Hövener JB, Pravdivtsev AN. Selective excitation of hydrogen doubles the yield and improves the robustness of parahydrogen-induced polarization of low-γ nuclei. Phys Chem Chem Phys 2021; 23:26645-26652. [PMID: 34846056 DOI: 10.1039/d1cp04153c] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We describe a new method for pulsed spin order transfer of parahydrogen-induced polarization (PHIP) that enables high polarization in incompletely 2H-labeled molecules by exciting only the desired protons in a frequency-selective manner. This way, the effect of selected J-couplings is suspended. Experimentally 1.25% 13C polarization were obtained for 1-13C-ethyl pyruvate and 50% pH2 at 9.4 Tesla.
Collapse
Affiliation(s)
- Andreas B Schmidt
- Department of Radiology, Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany. .,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Im Neuen-heimer Feld 280, Heidelberg 69120, Germany.,Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Arne Brahms
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn-Platz 5, 24118, Kiel, Germany
| | - Frowin Ellermann
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | | | - Stephan Berner
- Department of Radiology, Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany.
| | - Jürgen Hennig
- Department of Radiology, Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany.
| | - Dominik von Elverfeldt
- Department of Radiology, Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany.
| | - Rainer Herges
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn-Platz 5, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| |
Collapse
|
7
|
Schmidt AB, Wörner J, Pravdivtsev A, Knecht S, Scherer H, Weber S, Hennig J, von Elverfeldt D, Hövener J. Lifetime of Parahydrogen in Aqueous Solutions and Human Blood. Chemphyschem 2019; 20:2408-2412. [PMID: 31479580 PMCID: PMC7687157 DOI: 10.1002/cphc.201900670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/16/2019] [Indexed: 02/03/2023]
Abstract
Molecular hydrogen has unique nuclear spin properties. Its nuclear spin isomer, parahydrogen (pH2 ), was instrumental in the early days of quantum mechanics and allows to boost the NMR signal by several orders of magnitude. pH2- induced polarization (PHIP) is based on the survival of pH2 spin order in solution, yet its lifetime has not been investigated in aqueous or biological media required for in vivo applications. Herein, we report longitudinal relaxation times (T1 ) and lifetimes of pH2 ( τ P O C ) in methanol and water, with or without O2 , NaCl, rhodium-catalyst or human blood. Furthermore, we present a relaxation model that uses T1 and τ P O C for more precise theoretical predictions of the H2 spin state in PHIP experiments. All measured T1 values were in the range of 1.4-2 s and τ P O C values were of the order of 10-300 minutes. These relatively long lifetimes hold great promise for emerging in vivo implementations and applications of PHIP.
Collapse
Affiliation(s)
- Andreas B. Schmidt
- Department of Radiology, Medical Physics Albert-Ludwigs-Universität FreiburgUniversitätsklinikum FreiburgKilianstr. 5A79106FreiburgGermany.
- Department of Radiology and Neuroradiology Section Biomedical Imaging, MOIN CCUniversitätsklinikum Schleswig-Holstein, Universität KielAm Botanischen Garten 1424118KielGermany
| | - Jakob Wörner
- Institut für Physikalische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| | - Andrey Pravdivtsev
- Department of Radiology and Neuroradiology Section Biomedical Imaging, MOIN CCUniversitätsklinikum Schleswig-Holstein, Universität KielAm Botanischen Garten 1424118KielGermany
| | - Stephan Knecht
- Department of Radiology, Medical Physics Albert-Ludwigs-Universität FreiburgUniversitätsklinikum FreiburgKilianstr. 5A79106FreiburgGermany.
- Chemie, Arbeitskreis BuntkowskyTechnische Universität DarmstadtAlarich-Weiss-Str. 864287DarmstadtGermany
| | - Harald Scherer
- Institut für Anorganische und Analytische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| | - Stefan Weber
- Institut für Physikalische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| | - Jürgen Hennig
- Department of Radiology, Medical Physics Albert-Ludwigs-Universität FreiburgUniversitätsklinikum FreiburgKilianstr. 5A79106FreiburgGermany.
| | - Dominik von Elverfeldt
- Department of Radiology, Medical Physics Albert-Ludwigs-Universität FreiburgUniversitätsklinikum FreiburgKilianstr. 5A79106FreiburgGermany.
| | - Jan‐Bernd Hövener
- Department of Radiology and Neuroradiology Section Biomedical Imaging, MOIN CCUniversitätsklinikum Schleswig-Holstein, Universität KielAm Botanischen Garten 1424118KielGermany
| |
Collapse
|