1
|
Yoshida T, Aoki S, Hirai T, Nakamura Y, Fujii S. Polyhedral Vinyl Polymer Particles Synthesized Via Solvent-Free Radical Polymerization. Macromol Rapid Commun 2024; 45:e2400438. [PMID: 38980977 DOI: 10.1002/marc.202400438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Indexed: 07/11/2024]
Abstract
Liquid marbles (LMs) with a cubic shape are created by using various vinyl monomers as an inner liquid and polymer plates with mm size as a stabilizer. The relationship between the surface tension of the vinyl monomers and formability of the LMs is investigated. LMs can be fabricated using vinyl monomers with surface tensions of 42.7-40.3 mN m-1. The cubic polymer particles are successively synthesized via free-radical polymerizations by irradiation of the cubic LMs with UV light in a solvent-free manner. In addition, controlling the number of polymer plates per one LM, the shape of the plate or the coalescence of the LMs can lead to production of polymer particles with desired forms (e.g., Platonic and rectangular solids) that correspond to the shapes of the original LMs.
Collapse
Affiliation(s)
- Tatsuro Yoshida
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Shoichiro Aoki
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| |
Collapse
|
2
|
Tenjimbayashi M, Mouterde T, Roy PK, Uto K. Liquid marbles: review of recent progress in physical properties, formation techniques, and lab-in-a-marble applications in microreactors and biosensors. NANOSCALE 2023; 15:18980-18998. [PMID: 37990550 DOI: 10.1039/d3nr04966c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Liquid marbles (LMs) are nonsticking droplets whose surfaces are covered with low-wettability particles. Owing to their high mobility, shape reconfigurability, and widely accessible liquid/particle possibilities, the research on LMs has flourished since 2001. Their physical properties, fabrication mechanisms, and functionalisation capabilities indicate their potential for various applications. This review summarises the fundamental properties of LMs, the recent advances (mainly works published in 2020-2023) in the concept of LMs, physical properties, formation methods, LM-templated material design, and biochemical applications. Finally, the potential development and variations of LMs are discussed.
Collapse
Affiliation(s)
- Mizuki Tenjimbayashi
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Timothée Mouterde
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Pritam Kumar Roy
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Koichiro Uto
- Research Center for Macromolecules and Biomaterials, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
3
|
Aoki S, Yoshida T, Nguyen HK, Nakajima K, Hirai T, Nakamura Y, Fujii S. Nonspherical Epoxy Resin Polymer Particles Synthesized via Solvent-Free Polyaddition Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5872-5879. [PMID: 37039828 DOI: 10.1021/acs.langmuir.3c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cubic liquid marbles (LMs) were fabricated by using various epoxy monomers as internal liquids and millimeter-sized polymer plates as stabilizers. Successively, cubic polymer particles were synthesized via solvent-free polyaddition reactions by exposing the cubic LMs to NH3 vapor used as a curing agent. The effect of the solubility parameters (SPs) for the epoxy monomers on the formation of the cubic polymer particles was investigated. As a result, we succeeded in fabricating cubic polymer particles reflecting the shapes of the original LMs by using epoxy monomers with SP values of 23.70-21.66 (MPa)1/2. Furthermore, the shapes of the LMs could be controlled on demand (e.g., pentahedral and rectangular) by control of the number of polymer plates per LM and/or coalescence of the LMs, resulting in fabrication of polymer particles with shapes reflecting those of the LMs.
Collapse
Affiliation(s)
- Shoichiro Aoki
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tatsuro Yoshida
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Hung K Nguyen
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo 152-8552, Japan
| | - Ken Nakajima
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo 152-8552, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
4
|
Abstract
Unconventional and, specifically, wave computing has been repeatedly studied in laboratory based experiments by utilizing chemical systems like a thin film of Belousov–Zhabotinsky (BZ) reactions. Nonetheless, the principles demonstrated by this chemical computer were mimicked by mathematical models to enhance the understanding of these systems and enable a more detailed investigation of their capacity. As expected, the computerized counterparts of the laboratory based experiments are faster and less expensive. A further step of acceleration in wave-based computing is the development of electrical circuits that imitate the dynamics of chemical computers. A key component of the electrical circuits is the memristor which facilitates the non-linear behavior of the chemical systems. As part of this concept, the road-map of the inspiration from wave-based computing on chemical media towards the implementation of equivalent systems on oscillating memristive circuits was studied here. For illustration reasons, the most straightforward example was demonstrated, namely the approximation of Boolean gates.
Collapse
|
5
|
Zhang Z, Xu L, Huang J. Controlling Chemical Waves by Transforming Transient Mass Transfer. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Zeren Zhang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE) Fudan University Shanghai 200438 China
| | - Liujun Xu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE) Fudan University Shanghai 200438 China
| | - Jiping Huang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE) Fudan University Shanghai 200438 China
| |
Collapse
|
6
|
Light sensitive Belousov-Zhabotinsky medium accommodates multiple logic gates. Biosystems 2021; 206:104447. [PMID: 34033907 DOI: 10.1016/j.biosystems.2021.104447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 11/23/2022]
Abstract
Computational functionality has been implemented successfully on chemical reactions in living systems. In the case of Belousov-Zhabotinsky (BZ) reaction, this was achieved by using collision-based techniques and by exploiting the light sensitivity of BZ. In order to unveil the computational capacity of the light sensitive BZ medium and the possibility to implement re-configurable logic, the design of multiple logic gates in a fixed BZ reservoir was investigated. The three basic logic gates (namely NOT, OR and AND) were studied to prove the Turing completeness of the architecture. Namely, all possible Boolean functions can be implemented as a combination of these logic gates. Nonetheless, a more complicated logic function was investigated, aiming to illustrate further capabilities of a fixed size BZ reservoir. The experiments executed within this study were implemented with a Cellular Automata (CA)-based model of the Oregonator equations that simulate excitation and wave propagation on a light sensitive BZ thin film. Given that conventional or von Neumann architecture computations is proved possible on the proposed configuration, the next step would be the realization of unconventional types of computation, such as neuromorphic and fuzzy computations, where the chemical substrate may prove more efficient than silicon.
Collapse
|
7
|
Abstract
The need for miniaturised reaction systems has led to the development of various microreactor platforms, such as droplet-based microreactors. However, these microreactors possess inherent drawbacks, such as rapid evaporation and difficult handling, that limit their use in practical applications. Liquid marbles are droplets covered with hydrophobic particles and are a potential platform that can overcome the weaknesses of bare droplets. The coating particles completely isolate the interior liquids from the surrounding environment, thus conveniently encapsulating the reactions. Great efforts have been made over the past decade to demonstrate the feasibility of liquid marble-based microreactors for chemical and biological applications. This review systemically summarises state-of-the-art implementations of liquid marbles as microreactors. This paper also discusses the various aspects of liquid marble-based microreactors, such as the formation, manipulation, and future perspectives.
Collapse
|