1
|
Vanderslice EJ, Golding SGH, Jacot JG. Vascularization of PEGylated fibrin hydrogels increases the proliferation of human iPSC-cardiomyocytes. J Biomed Mater Res A 2024; 112:625-634. [PMID: 38155509 PMCID: PMC10922460 DOI: 10.1002/jbm.a.37662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023]
Abstract
Studies have long sought to develop engineered heart tissue for the surgical correction of structural heart defects, as well as other applications and vascularization of this tissue has presented a challenge. Recent studies suggest that vascular cells and a vascular network may have regenerative effects on implanted cardiomyocytes (CM) and nearby heart tissue separate from perfusion of oxygen and nutrients. The goal of this study was to test whether vascular cells or a formed vascular network in a fibrin-based hydrogel would alter the proliferation of human iPSC-derived CM. First, vascular network formation in a slowly degrading PEGylated fibrin hydrogel was optimized by altering the cell ratio of human umbilical vein endothelial cells to human dermal fibroblasts, the inclusion of growth factors, and the total cell concentration. An endothelial to fibroblast ratio of 5:1 and a total cell concentration of 1.1 × 106 cells/mL without additional growth factors generated robust vascular networks while minimizing the number of cells required. Using this optimized system, human iPSC-derived CM were cultured on hydrogels without vascular cells, hydrogels with unorganized encapsulated vascular cells, or hydrogels with encapsulated vascular cells organized into networks for 7 days. CM proliferation and gene expression were assayed following 7 days of culture on the hydrogels. The presence of vascular cells in the hydrogel, whether unorganized or in vascular networks, significantly increased CM proliferation compared to an acellular hydrogel. Hydrogels with unorganized vascular cells resulted in lower CM maturity evidenced by decreased expression of cardiac troponin t (TNNT2), myosin light chain 7, and phospholamban compared to hydrogels without vascular cells and hydrogels with vascular networks. Altogether, this study details a robust method of forming rudimentary vascular networks in a fibrin-based hydrogel and shows that a hydrogel containing endothelial cells and fibroblasts can induce proliferation in adjacent CM, and these cells do not hinder CM gene expression when organized into a vascular network.
Collapse
Affiliation(s)
- Ethan J. Vanderslice
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| | - Staunton G. H. Golding
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA 37235
| | - Jeffrey G. Jacot
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
- Department of Pediatrics, Children’s Hospital Colorado, Aurora, CO, USA 80045
| |
Collapse
|
2
|
Rabino M, Sommariva E, Zacchigna S, Pompilio G. From bedside to the bench: patient-specific hiPSC-EC models uncover endothelial dysfunction in genetic cardiomyopathies. Front Physiol 2023; 14:1237101. [PMID: 37538375 PMCID: PMC10394630 DOI: 10.3389/fphys.2023.1237101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/07/2023] [Indexed: 08/05/2023] Open
Abstract
Genetic cardiomyopathies are a group of inherited disorders in which myocardial structure and function are damaged. Many of these pathologies are rare and present with heterogenous phenotypes, thus personalized models are required to completely uncover their pathological mechanisms and develop valuable therapeutic strategies. Both cardiomyocytes and fibroblasts, differentiated from patient-specific human induced pluripotent stem cells, represent the most studied human cardiac cell models in the context of genetic cardiomyopathies. While endothelial dysfunction has been recognized as a possible pathogenetic mechanism, human induced pluripotent stem cell-derived endothelial cells are less studied, despite they constitute a suitable model to specifically dissect the role of the dysfunctional endothelium in the development and progression of these pathologies. In this review, we summarize the main studies in which human induced pluripotent stem cell-derived endothelial cells are used to investigate endothelial dysfunction in genetic-based cardiomyopathies to highlight new potential targets exploitable for therapeutic intervention, and we discuss novel perspectives that encourage research in this direction.
Collapse
Affiliation(s)
- Martina Rabino
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino—IRCCS, Milan, Italy
| | - Elena Sommariva
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino—IRCCS, Milan, Italy
| | - Serena Zacchigna
- Unit of Cardio-Oncology, Centro Cardiologico Monzino—IRCCS, Milan, Italy
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino—IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
3
|
Mansfield C, Zhao MT, Basu M. Translational potential of hiPSCs in predictive modeling of heart development and disease. Birth Defects Res 2022; 114:926-947. [PMID: 35261209 PMCID: PMC9458775 DOI: 10.1002/bdr2.1999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 11/11/2022]
Abstract
Congenital heart disease (CHD) represents a major class of birth defects worldwide and is associated with cardiac malformations that often require surgical intervention immediately after birth. Despite the intense efforts from multicentric genome/exome sequencing studies that have identified several genetic variants, the etiology of CHD remains diverse and often unknown. Genetically modified animal models with candidate gene deficiencies continue to provide novel molecular insights that are responsible for fetal cardiac development. However, the past decade has seen remarkable advances in the field of human induced pluripotent stem cell (hiPSC)-based disease modeling approaches to better understand the development of CHD and discover novel preventative therapies. The iPSCs are derived from reprogramming of differentiated somatic cells to an embryonic-like pluripotent state via overexpression of key transcription factors. In this review, we describe how differentiation of hiPSCs to specialized cardiac cellular identities facilitates our understanding of the development and pathogenesis of CHD subtypes. We summarize the molecular and functional characterization of hiPSC-derived differentiated cells in support of normal cardiogenesis, those that go awry in CHD and other heart diseases. We illustrate how stem cell-based disease modeling enables scientists to dissect the molecular mechanisms of cell-cell interactions underlying CHD. We highlight the current state of hiPSC-based studies that are in the verge of translating into clinical trials. We also address limitations including hiPSC-model reproducibility and scalability and differentiation methods leading to cellular heterogeneity. Last, we provide future perspective on exploiting the potential of hiPSC technology as a predictive model for patient-specific CHD, screening pharmaceuticals, and provide a source for cell-based personalized medicine. In combination with existing clinical and animal model studies, data obtained from hiPSCs will yield further understanding of oligogenic, gene-environment interaction, pathophysiology, and management for CHD and other genetic cardiac disorders.
Collapse
Affiliation(s)
- Corrin Mansfield
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Ming-Tao Zhao
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Madhumita Basu
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
4
|
Stein JM, Arslan U, Franken M, de Greef JC, E Harding S, Mohammadi N, Orlova VV, Bellin M, Mummery CL, van Meer BJ. Software Tool for Automatic Quantification of Sarcomere Length and Organization in Fixed and Live 2D and 3D Muscle Cell Cultures In Vitro. Curr Protoc 2022; 2:e462. [PMID: 35789134 DOI: 10.1002/cpz1.462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sarcomeres are the structural units of the contractile apparatus in cardiac and skeletal muscle cells. Changes in sarcomere characteristics are indicative of changes in the sarcomeric proteins and function during development and disease. Assessment of sarcomere length, alignment, and organization provides insight into disease and drug responses in striated muscle cells and models, ranging from cardiomyocytes and skeletal muscle cells derived from human pluripotent stem cells to adult muscle cells isolated from animals or humans. However, quantification of sarcomere length is typically time consuming and prone to user-specific selection bias. Automated analysis pipelines exist but these often require either specialized software or programming experience. In addition, these pipelines are often designed for only one type of cell model in vitro. Here, we present an easy-to-implement protocol and software tool for automated sarcomere length and organization quantification in a variety of striated muscle in vitro models: Two dimensional (2D) cardiomyocytes, three dimensional (3D) cardiac microtissues, isolated adult cardiomyocytes, and 3D tissue engineered skeletal muscles. Based on an existing mathematical algorithm, this image analysis software (SotaTool) automatically detects the direction in which the sarcomere organization is highest over the entire image and outputs the length and organization of sarcomeres. We also analyzed videos of live cells during contraction, thereby allowing measurement of contraction parameters like fractional shortening, contraction time, relaxation time, and beating frequency. In this protocol, we give a step-by-step guide on how to prepare, image, and automatically quantify sarcomere and contraction characteristics in different types of in vitro models and we provide basic validation and discussion of the limitations of the software tool. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Staining and analyzing static hiPSC-CMs with SotaTool Alternate Protocol: Sample preparation, acquisition, and quantification of fractional shortening in live reporter hiPSC lines Support Protocol 1: Finding the image resolution Support Protocol 2: Advanced analysis settings Support Protocol 3: Finding sarcomere length in non-aligned cells.
Collapse
Affiliation(s)
- Jeroen M Stein
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ulgu Arslan
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marnix Franken
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jessica C de Greef
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Sian E Harding
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Neda Mohammadi
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Valeria V Orlova
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Biology, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands
| | - Berend J van Meer
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
5
|
Raniga K, Vo NTN, Denning C. Differentiation and Characterization of Human Pluripotent Stem Cell-Derived Cardiac Endothelial Cells for In Vitro Applications. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2441:339-348. [PMID: 35099750 DOI: 10.1007/978-1-0716-2059-5_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Various protocols have been developed to generate endothelial cells for disease modeling, angiogenesis, vascular regeneration, and drug screening. These protocols often require cell sorting, as most differentiation strategies result in a heterogenous population of endothelial cells (ECs). For any given model system, one important consideration is choosing the appropriate EC subtype, as different EC populations have unique molecular signatures.Herein, we describe a protocol for cardiac EC differentiation and a protocol for endothelial cell characterization. This protocol is aimed at investigating differentiation efficiency by measuring endothelial lineage markers, CD31, VE-Cadherin, and VEGFR2 by flow cytometry. Collectively, these protocols comprise the tools required to generate cardiac ECs efficiently and reproducibly from different hPSC lines without the need for cell sorting. Our protocol adds to the panel of hPSCs for cardiac EC differentiation and addresses reproducibility concerns of hPSC-based experiments. The approaches described are also applicable for complex model generation where multiple cardiovascular cell types are involved and may assist in optimizing differentiations for different cell lineages, including cardiomyocytes, cardiac endothelial cells, and cardiac fibroblasts.
Collapse
Affiliation(s)
- Kavita Raniga
- Department of Stem Cell Biology, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Nguyen T N Vo
- Department of Stem Cell Biology, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Chris Denning
- Department of Stem Cell Biology, Biodiscovery Institute, University of Nottingham, Nottingham, UK.
| |
Collapse
|
6
|
Jin G, Floy ME, Simmons AD, Arthur MM, Palecek SP. Spatial Stem Cell Fate Engineering via Facile Morphogen Localization. Adv Healthc Mater 2021; 10:e2100995. [PMID: 34459150 PMCID: PMC8568665 DOI: 10.1002/adhm.202100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/09/2021] [Indexed: 12/21/2022]
Abstract
Spatiotemporally controlled presentation of morphogens and elaborate modulation of signaling pathways elicit pattern formation during development. Though this process is critical for proper organogenesis, unraveling the mechanisms of developmental biology have been restricted by challenges associated with studying human embryos. Human pluripotent stem cells (hPSCs) have been used to model development in vitro, however difficulties in precise spatiotemporal control of the cellular microenvironment have limited the utility of this model in exploring mechanisms of pattern formation. Here, a simple and versatile method is presented to spatially pattern hPSC differentiation in 2-dimensional culture via localized morphogen adsorption on substrates. Morphogens including bone morphogenetic protein 4 (BMP4), activin A, and WNT3a are patterned to induce localized mesendoderm, endoderm, cardiomyocyte (CM), and epicardial cell (EpiC) differentiation from hPSCs and hPSC-derived progenitors. Patterned CM and EpiC co-differentiation allows investigation of intercellular interactions in a spatially controlled manner and demonstrate improved alignment of CMs in proximity to EpiCs. This approach provides a platform for the controlled and systematic study of early pattern formation. Moreover, this study provides a facile approach to generate 2D patterned hPSC-derived tissue structures for modeling disease and drug interactions.
Collapse
Affiliation(s)
- Gyuhyung Jin
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53705, USA
| | - Martha E Floy
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53705, USA
| | - Aaron D Simmons
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53705, USA
| | - Madeline M Arthur
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53705, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53705, USA
| |
Collapse
|
7
|
Stein JM, Mummery CL, Bellin M. Engineered models of the human heart: Directions and challenges. Stem Cell Reports 2021; 16:2049-2057. [PMID: 33338434 PMCID: PMC8452488 DOI: 10.1016/j.stemcr.2020.11.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Human heart (patho)physiology is now widely studied using human pluripotent stem cells, but the immaturity of derivative cardiomyocytes has largely limited disease modeling to conditions associated with mutations in cardiac ion channel genes. Recent advances in tissue engineering and organoids have, however, created new opportunities to study diseases beyond "channelopathies." These synthetic cardiac structures allow quantitative measurement of contraction, force, and other biophysical parameters in three-dimensional configurations, in which the cardiomyocytes in addition become more mature. Multiple cardiac-relevant cell types are also often combined to form organized cardiac tissue mimetic constructs, where cell-cell, cell-extracellular matrix, and paracrine interactions can be mimicked. In this review, we provide an overview of some of the most promising technologies being implemented specifically in personalized heart-on-a-chip models and explore their applications, drawbacks, and potential for future development.
Collapse
Affiliation(s)
- Jeroen M Stein
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands; Department of Applied Stem Cell Technologies, University of Twente, Enschede 7500AE, the Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands; Department of Biology, University of Padua, Padua 35131, Italy; Veneto Institute of Molecular Medicine, Padua 35129, Italy.
| |
Collapse
|
8
|
Helle E, Ampuja M, Dainis A, Antola L, Temmes E, Tolvanen E, Mervaala E, Kivelä R. HiPS-Endothelial Cells Acquire Cardiac Endothelial Phenotype in Co-culture With hiPS-Cardiomyocytes. Front Cell Dev Biol 2021; 9:715093. [PMID: 34422835 PMCID: PMC8378235 DOI: 10.3389/fcell.2021.715093] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/14/2021] [Indexed: 01/05/2023] Open
Abstract
Cell-cell interactions are crucial for organ development and function. In the heart, endothelial cells engage in bidirectional communication with cardiomyocytes regulating cardiac development and growth. We aimed to elucidate the organotypic development of cardiac endothelial cells and cardiomyocyte and endothelial cell crosstalk using human induced pluripotent stem cells (hiPSC). Single-cell RNA sequencing was performed with hiPSC-derived cardiomyocytes (hiPS-CMs) and endothelial cells (hiPS-ECs) in mono- and co-culture. The presence of hiPS-CMs led to increased expression of transcripts related to vascular development and maturation, cardiac development, as well as cardiac endothelial cell and endocardium-specific genes in hiPS-ECs. Interestingly, co-culture induced the expression of cardiomyocyte myofibrillar genes and MYL7 and MYL4 protein expression was detected in hiPS-ECs. Major regulators of BMP- and Notch-signaling pathways were induced in both cell types in co-culture. These results reflect the findings from animal studies and extend them to human endothelial cells, demonstrating the importance of EC-CM interactions during development.
Collapse
Affiliation(s)
- Emmi Helle
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - Minna Ampuja
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alexandra Dainis
- Department of Genetics, Stanford University, Stanford, CA, United States
| | - Laura Antola
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Elina Temmes
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Samaria Health Centre, Espoo, Finland
| | - Erik Tolvanen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eero Mervaala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riikka Kivelä
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Wihuri Research Institute, Helsinki, Finland
| |
Collapse
|
9
|
Lu H, Zhang J, Chen YE, Garcia-Barrio MT. Integration of Transformative Platforms for the Discovery of Causative Genes in Cardiovascular Diseases. Cardiovasc Drugs Ther 2021; 35:637-654. [PMID: 33856594 PMCID: PMC8216854 DOI: 10.1007/s10557-021-07175-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality worldwide. Genome-wide association studies (GWAS) are powerful epidemiological tools to find genes and variants associated with cardiovascular diseases while follow-up biological studies allow to better understand the etiology and mechanisms of disease and assign causality. Improved methodologies and reduced costs have allowed wider use of bulk and single-cell RNA sequencing, human-induced pluripotent stem cells, organoids, metabolomics, epigenomics, and novel animal models in conjunction with GWAS. In this review, we feature recent advancements relevant to cardiovascular diseases arising from the integration of genetic findings with multiple enabling technologies within multidisciplinary teams to highlight the solidifying transformative potential of this approach. Well-designed workflows integrating different platforms are greatly improving and accelerating the unraveling and understanding of complex disease processes while promoting an effective way to find better drug targets, improve drug design and repurposing, and provide insight towards a more personalized clinical practice.
Collapse
Affiliation(s)
- Haocheng Lu
- Department of Internal Medicine, University of Michigan Medical Center, 2800 Plymouth Rd, Ann Arbor, MI, 48109-2800, USA
| | - Jifeng Zhang
- Department of Internal Medicine, University of Michigan Medical Center, 2800 Plymouth Rd, Ann Arbor, MI, 48109-2800, USA
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Y Eugene Chen
- Department of Internal Medicine, University of Michigan Medical Center, 2800 Plymouth Rd, Ann Arbor, MI, 48109-2800, USA.
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA.
| | - Minerva T Garcia-Barrio
- Department of Internal Medicine, University of Michigan Medical Center, 2800 Plymouth Rd, Ann Arbor, MI, 48109-2800, USA.
| |
Collapse
|
10
|
Wang L, Serpooshan V, Zhang J. Engineering Human Cardiac Muscle Patch Constructs for Prevention of Post-infarction LV Remodeling. Front Cardiovasc Med 2021; 8:621781. [PMID: 33718449 PMCID: PMC7952323 DOI: 10.3389/fcvm.2021.621781] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/04/2021] [Indexed: 12/20/2022] Open
Abstract
Tissue engineering combines principles of engineering and biology to generate living tissue equivalents for drug testing, disease modeling, and regenerative medicine. As techniques for reprogramming human somatic cells into induced pluripotent stem cells (iPSCs) and subsequently differentiating them into cardiomyocytes and other cardiac cells have become increasingly efficient, progress toward the development of engineered human cardiac muscle patch (hCMP) and heart tissue analogs has accelerated. A few pilot clinical studies in patients with post-infarction LV remodeling have been already approved. Conventional methods for hCMP fabrication include suspending cells within scaffolds, consisting of biocompatible materials, or growing two-dimensional sheets that can be stacked to form multilayered constructs. More recently, advanced technologies, such as micropatterning and three-dimensional bioprinting, have enabled fabrication of hCMP architectures at unprecedented spatiotemporal resolution. However, the studies working on various hCMP-based strategies for in vivo tissue repair face several major obstacles, including the inadequate scalability for clinical applications, poor integration and engraftment rate, and the lack of functional vasculature. Here, we review many of the recent advancements and key concerns in cardiac tissue engineering, focusing primarily on the production of hCMPs at clinical/industrial scales that are suitable for administration to patients with myocardial disease. The wide variety of cardiac cell types and sources that are applicable to hCMP biomanufacturing are elaborated. Finally, some of the key challenges remaining in the field and potential future directions to address these obstacles are discussed.
Collapse
Affiliation(s)
- Lu Wang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
11
|
Helle E, Ampuja M, Antola L, Kivelä R. Flow-Induced Transcriptomic Remodeling of Endothelial Cells Derived From Human Induced Pluripotent Stem Cells. Front Physiol 2020; 11:591450. [PMID: 33178051 PMCID: PMC7593792 DOI: 10.3389/fphys.2020.591450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/16/2020] [Indexed: 12/31/2022] Open
Abstract
The vascular system is essential for the development and function of all organs and tissues in our body. The molecular signature and phenotype of endothelial cells (EC) are greatly affected by blood flow-induced shear stress, which is a vital component of vascular development and homeostasis. Recent advances in differentiation of ECs from human induced pluripotent stem cells (hiPSC) have enabled development of in vitro experimental models of the vasculature containing cells from healthy individuals or from patients harboring genetic variants or diseases of interest. Here we have used hiPSC-derived ECs and bulk- and single-cell RNA sequencing to study the effect of flow on the transcriptomic landscape of hiPSC-ECs and their heterogeneity. We demonstrate that hiPS-ECs are plastic and they adapt to flow by expressing known flow-induced genes. Single-cell RNA sequencing showed that flow induced a more homogenous and homeostatically more stable EC population compared to static cultures, as genes related to cell polarization, barrier formation and glucose and fatty acid transport were induced. The hiPS-ECs increased both arterial and venous markers when exposed to flow. Interestingly, while in general there was a greater increase in the venous markers, one cluster with more arterial-like hiPS-ECs was detected. Single-cell RNA sequencing revealed that not all hiPS-ECs are similar even after sorting, but exposing them to flow increases their homogeneity. Since hiPS-ECs resemble immature ECs and demonstrate high plasticity in response to flow, they provide an excellent model to study vascular development.
Collapse
Affiliation(s)
- Emmi Helle
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- New Children’s Hospital, and Pediatric Research Center Helsinki University Hospital, Helsinki, Finland
| | - Minna Ampuja
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Laura Antola
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riikka Kivelä
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Helsinki, Finland
| |
Collapse
|
12
|
Abstract
The anthracycline doxorubicin (Doxo) and its analogs daunorubicin (Daun), epirubicin (Epi), and idarubicin (Ida) have been cornerstones of anticancer therapy for nearly five decades. However, their clinical application is limited by severe side effects, especially dose-dependent irreversible cardiotoxicity. Other detrimental side effects of anthracyclines include therapy-related malignancies and infertility. It is unclear whether these side effects are coupled to the chemotherapeutic efficacy. Doxo, Daun, Epi, and Ida execute two cellular activities: DNA damage, causing double-strand breaks (DSBs) following poisoning of topoisomerase II (Topo II), and chromatin damage, mediated through histone eviction at selected sites in the genome. Here we report that anthracycline-induced cardiotoxicity requires the combination of both cellular activities. Topo II poisons with either one of the activities fail to induce cardiotoxicity in mice and human cardiac microtissues, as observed for aclarubicin (Acla) and etoposide (Etop). Further, we show that Doxo can be detoxified by chemically separating these two activities. Anthracycline variants that induce chromatin damage without causing DSBs maintain similar anticancer potency in cell lines, mice, and human acute myeloid leukemia patients, implying that chromatin damage constitutes a major cytotoxic mechanism of anthracyclines. With these anthracyclines abstained from cardiotoxicity and therapy-related tumors, we thus uncoupled the side effects from anticancer efficacy. These results suggest that anthracycline variants acting primarily via chromatin damage may allow prolonged treatment of cancer patients and will improve the quality of life of cancer survivors.
Collapse
|
13
|
Giacomelli E, Meraviglia V, Campostrini G, Cochrane A, Cao X, van Helden RWJ, Krotenberg Garcia A, Mircea M, Kostidis S, Davis RP, van Meer BJ, Jost CR, Koster AJ, Mei H, Míguez DG, Mulder AA, Ledesma-Terrón M, Pompilio G, Sala L, Salvatori DCF, Slieker RC, Sommariva E, de Vries AAF, Giera M, Semrau S, Tertoolen LGJ, Orlova VV, Bellin M, Mummery CL. Human-iPSC-Derived Cardiac Stromal Cells Enhance Maturation in 3D Cardiac Microtissues and Reveal Non-cardiomyocyte Contributions to Heart Disease. Cell Stem Cell 2020; 26:862-879.e11. [PMID: 32459996 PMCID: PMC7284308 DOI: 10.1016/j.stem.2020.05.004] [Citation(s) in RCA: 318] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/05/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022]
Abstract
Cardiomyocytes (CMs) from human induced pluripotent stem cells (hiPSCs) are functionally immature, but this is improved by incorporation into engineered tissues or forced contraction. Here, we showed that tri-cellular combinations of hiPSC-derived CMs, cardiac fibroblasts (CFs), and cardiac endothelial cells also enhance maturation in easily constructed, scaffold-free, three-dimensional microtissues (MTs). hiPSC-CMs in MTs with CFs showed improved sarcomeric structures with T-tubules, enhanced contractility, and mitochondrial respiration and were electrophysiologically more mature than MTs without CFs. Interactions mediating maturation included coupling between hiPSC-CMs and CFs through connexin 43 (CX43) gap junctions and increased intracellular cyclic AMP (cAMP). Scaled production of thousands of hiPSC-MTs was highly reproducible across lines and differentiated cell batches. MTs containing healthy-control hiPSC-CMs but hiPSC-CFs from patients with arrhythmogenic cardiomyopathy strikingly recapitulated features of the disease. Our MT model is thus a simple and versatile platform for modeling multicellular cardiac diseases that will facilitate industry and academic engagement in high-throughput molecular screening. Cardiac fibroblasts and endothelial cells induce hiPSC-cardiomyocyte maturation CX43 gap junctions form between cardiac fibroblasts and cardiomyocytes cAMP-pathway activation contributes to hiPSC-cardiomyocyte maturation Patient-derived hiPSC-cardiac fibroblasts cause arrhythmia in microtissues
Collapse
Affiliation(s)
- Elisa Giacomelli
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Viviana Meraviglia
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Giulia Campostrini
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Amy Cochrane
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Xu Cao
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Ruben W J van Helden
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Ana Krotenberg Garcia
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Maria Mircea
- Leiden Institute of Physics, Leiden University, 2333 Leiden, the Netherlands
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Richard P Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Berend J van Meer
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Carolina R Jost
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Abraham J Koster
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - David G Míguez
- Centro de Biologia Molecular Severo Ochoa, Departamento de Física de la Materia Condensada, Instituto Nicolas Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Aat A Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Mario Ledesma-Terrón
- Centro de Biologia Molecular Severo Ochoa, Departamento de Física de la Materia Condensada, Instituto Nicolas Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Luca Sala
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Daniela C F Salvatori
- Central Laboratory Animal Facility, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Roderick C Slieker
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 Leiden, the Netherlands; Department of Epidemiology and Biostatistics, Amsterdam Public Health Institute, VU University Medical Center, 1007 Amsterdam, the Netherlands
| | - Elena Sommariva
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Antoine A F de Vries
- Department of Cardiology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Stefan Semrau
- Leiden Institute of Physics, Leiden University, 2333 Leiden, the Netherlands
| | - Leon G J Tertoolen
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Valeria V Orlova
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands.
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands; Department of Biology, University of Padua, 35121 Padua, Italy; Veneto Institute of Molecular Medicine, 35129 Padua, Italy.
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands; Department of Applied Stem Cell Technologies, University of Twente, 7500 Enschede, the Netherlands.
| |
Collapse
|
14
|
Mandrycky CJ, Williams NP, Batalov I, El-Nachef D, de Bakker BS, Davis J, Kim DH, DeForest CA, Zheng Y, Stevens KR, Sniadecki NJ. Engineering Heart Morphogenesis. Trends Biotechnol 2020; 38:835-845. [PMID: 32673587 DOI: 10.1016/j.tibtech.2020.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/22/2022]
Abstract
Recent advances in stem cell biology and tissue engineering have laid the groundwork for building complex tissues in a dish. We propose that these technologies are ready for a new challenge: recapitulating cardiac morphogenesis in vitro. In development, the heart transforms from a simple linear tube to a four-chambered organ through a complex process called looping. Here, we re-examine heart tube looping through the lens of an engineer and argue that the linear heart tube is an advantageous starting point for tissue engineering. We summarize the structures, signaling pathways, and stresses in the looping heart, and evaluate approaches that could be used to build a linear heart tube and guide it through the process of looping.
Collapse
Affiliation(s)
- Christian J Mandrycky
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Nisa P Williams
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Ivan Batalov
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Danny El-Nachef
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Pathology, University of Washington, Seattle, WA, USA
| | - Bernadette S de Bakker
- Clinical Anatomy and Embryology, Department of Medical Biology, AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jennifer Davis
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA; Department of Pathology, University of Washington, Seattle, WA, USA
| | - Deok-Ho Kim
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Medicine/Cardiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Cole A DeForest
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA; Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Ying Zheng
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Kelly R Stevens
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA; Department of Pathology, University of Washington, Seattle, WA, USA
| | - Nathan J Sniadecki
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
15
|
Colliva A, Braga L, Giacca M, Zacchigna S. Endothelial cell-cardiomyocyte crosstalk in heart development and disease. J Physiol 2019; 598:2923-2939. [PMID: 30816576 PMCID: PMC7496632 DOI: 10.1113/jp276758] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/29/2019] [Indexed: 12/15/2022] Open
Abstract
The crosstalk between endothelial cells and cardiomyocytes has emerged as a requisite for normal cardiac development, but also a key pathogenic player during the onset and progression of cardiac disease. Endothelial cells and cardiomyocytes are in close proximity and communicate through the secretion of paracrine signals, as well as through direct cell-to-cell contact. Here, we provide an overview of the endothelial cell-cardiomyocyte interactions controlling heart development and the main processes affecting the heart in normal and pathological conditions, including ischaemia, remodelling and metabolic dysfunction. We also discuss the possible role of these interactions in cardiac regeneration and encourage the further improvement of in vitro models able to reproduce the complex environment of the cardiac tissue, in order to better define the mechanisms by which endothelial cells and cardiomyocytes interact with a final aim of developing novel therapeutic opportunities.
Collapse
Affiliation(s)
- Andrea Colliva
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 34149, Trieste, Italy
| | - Luca Braga
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 34149, Trieste, Italy
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 34149, Trieste, Italy.,Biotechnology Development Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 34149, Trieste, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 34149, Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, 34149, Trieste, Italy
| |
Collapse
|
16
|
Biomaterializing the promise of cardiac tissue engineering. Biotechnol Adv 2019; 42:107353. [PMID: 30794878 DOI: 10.1016/j.biotechadv.2019.02.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
Abstract
During an average individual's lifespan, the human heart pumps nearly 200 million liters of blood delivered by approximately 3 billion heartbeats. Therefore, it is not surprising that native myocardium under this incredible demand is extraordinarily complex, both structurally and functionally. As a result, successful engineering of adult-mimetic functional cardiac tissues is likely to require utilization of highly specialized biomaterials representative of the native extracellular microenvironment. There is currently no single biomaterial that fully recapitulates the architecture or the biochemical and biomechanical properties of adult myocardium. However, significant effort has gone toward designing highly functional materials and tissue constructs that may one day provide a ready source of cardiac tissue grafts to address the overwhelming burden of cardiomyopathic disease. In the near term, biomaterial-based scaffolds are helping to generate in vitro systems for querying the mechanisms underlying human heart homeostasis and disease and discovering new, patient-specific therapeutics. When combined with advances in minimally-invasive cardiac delivery, ongoing efforts will likely lead to scalable cell and biomaterial technologies for use in clinical practice. In this review, we describe recent progress in the field of cardiac tissue engineering with particular emphasis on use of biomaterials for therapeutic tissue design and delivery.
Collapse
|
17
|
Cochrane A, Albers HJ, Passier R, Mummery CL, van den Berg A, Orlova VV, van der Meer AD. Advanced in vitro models of vascular biology: Human induced pluripotent stem cells and organ-on-chip technology. Adv Drug Deliv Rev 2019; 140:68-77. [PMID: 29944904 DOI: 10.1016/j.addr.2018.06.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 02/06/2023]
Abstract
The vascular system is one of the first to develop during embryogenesis and is essential for all organs and tissues in our body to develop and function. It has many essential roles including controlling the absorption, distribution and excretion of compounds and therefore determines the pharmacokinetics of drugs and therapeutics. Vascular homeostasis is under tight physiological control which is essential for maintaining tissues in a healthy state. Consequently, disruption of vascular homeostasis plays an integral role in many disease processes, making cells of the vessel wall attractive targets for therapeutic intervention. Experimental models of blood vessels can therefore contribute significantly to drug development and aid in predicting the biological effects of new drug entities. The increasing availability of human induced pluripotent stem cells (hiPSC) derived from healthy individuals and patients have accelerated advances in developing experimental in vitro models of the vasculature: human endothelial cells (ECs), pericytes and vascular smooth muscle cells (VSMCs), can now be generated with high efficiency from hiPSC and used in 'microfluidic chips' (also known as 'organ-on-chip' technology) as a basis for in vitro models of blood vessels. These near physiological scaffolds allow the controlled integration of fluid flow and three-dimensional (3D) co-cultures with perivascular cells to mimic tissue- or organ-level physiology and dysfunction in vitro. Here, we review recent multidisciplinary developments in these advanced experimental models of blood vessels that combine hiPSC with microfluidic organ-on-chip technology. We provide examples of their utility in various research areas and discuss steps necessary for further integration in biomedical applications so that they can be contribute effectively to the evaluation and development of new drugs and other therapeutics as well as personalized (patient-specific) treatments.
Collapse
|
18
|
Archer CR, Sargeant R, Basak J, Pilling J, Barnes JR, Pointon A. Characterization and Validation of a Human 3D Cardiac Microtissue for the Assessment of Changes in Cardiac Pathology. Sci Rep 2018; 8:10160. [PMID: 29976997 PMCID: PMC6033897 DOI: 10.1038/s41598-018-28393-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 06/20/2018] [Indexed: 12/12/2022] Open
Abstract
Pharmaceutical agents despite their efficacy to treat disease can cause additional unwanted cardiovascular side effects. Cardiotoxicity is characterized by changes in either the function and/or structure of the myocardium. Over recent years, functional cardiotoxicity has received much attention, however morphological damage to the myocardium and/or loss of viability still requires improved detection and mechanistic insights. A human 3D cardiac microtissue containing human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs), cardiac endothelial cells and cardiac fibroblasts was used to assess their suitability to detect drug induced changes in cardiac structure. Histology and clinical pathology confirmed these cardiac microtissues were morphologically intact, lacked a necrotic/apoptotic core and contained all relevant cell constituents. High-throughput methods to assess mitochondrial membrane potential, endoplasmic reticulum integrity and cellular viability were developed and 15 FDA approved structural cardiotoxins and 14 FDA approved non-structural cardiotoxins were evaluated. We report that cardiac microtissues provide a high-throughput experimental model that is both able to detect changes in cardiac structure at clinically relevant concentrations and provide insights into the phenotypic mechanisms of this liability.
Collapse
Affiliation(s)
- Caroline R Archer
- Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, CB4 0WG, UK
| | - Rebecca Sargeant
- Pathology Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, CB4 0WG, UK
| | - Jayati Basak
- Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, CB4 0WG, UK
| | - James Pilling
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, CB4 0WG, UK
| | - Jennifer R Barnes
- Pathology Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, CB4 0WG, UK
| | - Amy Pointon
- Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, CB4 0WG, UK.
| |
Collapse
|