1
|
Stadler K, Ilatovskaya DV. Renal Epithelial Mitochondria: Implications for Hypertensive Kidney Disease. Compr Physiol 2023; 14:5225-5242. [PMID: 38158371 PMCID: PMC11194858 DOI: 10.1002/cphy.c220033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
According to the Centers for Disease Control and Prevention, 1 in 2 U.S. adults have hypertension, and more than 1 in 7 chronic kidney disease. In fact, hypertension is the second leading cause of kidney failure in the United States; it is a complex disease characterized by, leading to, and caused by renal dysfunction. It is well-established that hypertensive renal damage is accompanied by mitochondrial damage and oxidative stress, which are differentially regulated and manifested along the nephron due to the diverse structure and functions of renal cells. This article provides a summary of the relevant knowledge of mitochondrial bioenergetics and metabolism, focuses on renal mitochondrial function, and discusses the evidence that has been accumulated regarding the role of epithelial mitochondrial bioenergetics in the development of renal tissue dysfunction in hypertension. © 2024 American Physiological Society. Compr Physiol 14:5225-5242, 2024.
Collapse
Affiliation(s)
- Krisztian Stadler
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Daria V. Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
2
|
Rodrigues AF, Bader M. The contribution of the AT1 receptor to erythropoiesis. Biochem Pharmacol 2023; 217:115805. [PMID: 37714274 DOI: 10.1016/j.bcp.2023.115805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The renin-angiotensin system (RAS) comprises a broad set of functional peptides and receptors that play a role in cardiovascular homeostasis and contribute to cardiovascular pathologies. Angiotensin II (Ang II) is the most potent peptide hormone produced by the RAS due to its high abundance and its strong and pleiotropic impact on the cardiovascular system. Formation of Ang II takes place in the bloodstream and additionally in tissues in the so-called local RAS. Of the two Ang II receptors (AT1 and AT2) that Ang II binds to, AT1 is the most expressed throughout the mammalian body. AT1 expression is not restricted to cells of the cardiovascular system but in fact AT1 protein is found in nearly all organs, hence, Ang II takes part in several modulatory physiological processes one of which is erythropoiesis. In this review, we present multiple evidence supporting that Ang II modulates physiological and pathological erythropoiesis processes trough the AT1 receptor. Cumulative evidence indicates that Ang II by three distinct mechanisms influences erythropoiesis: 1) stimulation of renal erythropoietin synthesis; 2) direct action on bone marrow precursor cells; and 3) modulation of sympathetic nerve activity to the bone marrow. The text highlights clinical and preclinical evidence focusing on mechanistic studies using rodent models.
Collapse
Affiliation(s)
- André F Rodrigues
- Max Delbrück Center (MDC), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany.
| | - Michael Bader
- Max Delbrück Center (MDC), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany; Charité Universitätsmedizin Berlin, Berlin, Germany; Institute for Biology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
3
|
Kurtz T, Pravenec M, DiCarlo S. Mechanism-based strategies to prevent salt sensitivity and salt-induced hypertension. Clin Sci (Lond) 2022; 136:599-620. [PMID: 35452099 PMCID: PMC9069470 DOI: 10.1042/cs20210566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 12/15/2022]
Abstract
High-salt diets are a major cause of hypertension and cardiovascular (CV) disease. Many governments are interested in using food salt reduction programs to reduce the risk for salt-induced increases in blood pressure and CV events. It is assumed that reducing the salt concentration of processed foods will substantially reduce mean salt intake in the general population. However, contrary to expectations, reducing the sodium density of nearly all foods consumed in England by 21% had little or no effect on salt intake in the general population. This may be due to the fact that in England, as in other countries including the U.S.A., mean salt intake is already close to the lower normal physiologic limit for mean salt intake of free-living populations. Thus, mechanism-based strategies for preventing salt-induced increases in blood pressure that do not solely depend on reducing salt intake merit attention. It is now recognized that the initiation of salt-induced increases in blood pressure often involves a combination of normal increases in sodium balance, blood volume and cardiac output together with abnormal vascular resistance responses to increased salt intake. Therefore, preventing either the normal increases in sodium balance and cardiac output, or the abnormal vascular resistance responses to salt, can prevent salt-induced increases in blood pressure. Suboptimal nutrient intake is a common cause of the hemodynamic disturbances mediating salt-induced hypertension. Accordingly, efforts to identify and correct the nutrient deficiencies that promote salt sensitivity hold promise for decreasing population risk of salt-induced hypertension without requiring reductions in salt intake.
Collapse
Affiliation(s)
- Theodore W. Kurtz
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94017-0134, U.S.A
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Stephen E. DiCarlo
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
4
|
Ernsberger U, Deller T, Rohrer H. The sympathies of the body: functional organization and neuronal differentiation in the peripheral sympathetic nervous system. Cell Tissue Res 2021; 386:455-475. [PMID: 34757495 PMCID: PMC8595186 DOI: 10.1007/s00441-021-03548-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
During the last 30 years, our understanding of the development and diversification of postganglionic sympathetic neurons has dramatically increased. In parallel, the list of target structures has been critically extended from the cardiovascular system and selected glandular structures to metabolically relevant tissues such as white and brown adipose tissue, lymphoid tissues, bone, and bone marrow. A critical question now emerges for the integration of the diverse sympathetic neuron classes into neural circuits specific for these different target tissues to achieve the homeostatic regulation of the physiological ends affected.
Collapse
Affiliation(s)
- Uwe Ernsberger
- Institute for Clinical Neuroanatomy, Goethe University, Frankfurt/Main, Germany.
| | - Thomas Deller
- Institute for Clinical Neuroanatomy, Goethe University, Frankfurt/Main, Germany
| | - Hermann Rohrer
- Institute for Clinical Neuroanatomy, Goethe University, Frankfurt/Main, Germany.
| |
Collapse
|
5
|
Kurtz TW, DiCarlo SE, Pravenec M, Morris RC. No evidence of racial disparities in blood pressure salt sensitivity when potassium intake exceeds levels recommended in the US dietary guidelines. Am J Physiol Heart Circ Physiol 2021; 320:H1903-H1918. [PMID: 33797275 DOI: 10.1152/ajpheart.00980.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
On average, black individuals are widely believed to be more sensitive than white individuals to blood pressure (BP) effects of changes in salt intake. However, few studies have directly compared the BP effects of changing salt intake in black versus white individuals. In this narrative review, we analyze those studies and note that when potassium intake substantially exceeds the recently recommended US dietary goal of 87 mmol/day, black adults do not appear more sensitive than white adults to BP effects of short-term or long-term increases in salt intake (from an intake ≤50 mmol/day up to 150 mmol/day or more). However, with lower potassium intakes, racial differences in salt sensitivity are observed. Mechanistic studies suggest that racial differences in salt sensitivity are related to differences in vascular resistance responses to changes in salt intake mediated by vasodilator and vasoconstrictor pathways. With respect to cause and prevention of racial disparities in salt sensitivity, it is noteworthy that 1) on average, black individuals consume less potassium than white individuals and 2) consuming supplemental potassium bicarbonate, or potassium rich foods can prevent racial disparities in salt sensitivity. However, the new US dietary guidelines reduced the dietary potassium goal well below the amount associated with preventing racial disparities in salt sensitivity. These observations should motivate research on the impact of the new dietary potassium guidelines on racial disparities in salt sensitivity, the risks and benefits of potassium-containing salt substitutes or supplements, and methods for increasing consumption of foods rich in nutrients that protect against salt-induced hypertension.
Collapse
Affiliation(s)
- Theodore W Kurtz
- Department of Laboratory Medicine, University of California, San Francisco, California
| | - Stephen E DiCarlo
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - R Curtis Morris
- Department of Medicine, University of California, San Francisco, California
| |
Collapse
|
6
|
GRK4-mediated adiponectin receptor-1 phosphorylative desensitization as a novel mechanism of reduced renal sodium excretion in hypertension. Clin Sci (Lond) 2020; 134:2453-2467. [PMID: 32940654 DOI: 10.1042/cs20200671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
Hypertensive patients have impaired sodium excretion. However, the mechanisms are incompletely understood. Despite the established association between obesity/excess adiposity and hypertension, whether and how adiponectin, one of the adipokines, contributes to impaired sodium excretion in hypertension has not been previously investigated. The current study tested the hypothesis that adiponectin promotes natriuresis and diuresis in the normotensive state. However, impaired adiponectin-mediated natriuresis and diuresis are involved in pathogenesis of hypertension. We found that sodium excretion was reduced in adiponectin knockout (Adipo-/-) mice; intrarenal arterial infusion of adiponectin-induced natriuresis and diuresis in Wistar-Kyoto (WKY) rats. However, the natriuretic and diuretic effects of adiponectin were impaired in spontaneously hypertensive rats (SHRs), which were ascribed to the hyperphosphorylation of adiponectin receptor and subsequent uncoupling from Gαi. Inhibition of adiponectin receptor phosphorylation by a specific point mutation restored its coupling with Gαi and the adiponectin-mediated inhibition of Na+-K+-ATPase activity in renal proximal tubule (RPT) cells from SHRs. Finally, we identified G protein-coupled receptor kinase 4 (GRK4) as a mediator of adiponectin receptor hyperphosphorylation; mice transgenic for a hyperphosphorylating variant of GRK4 replicated the abnormal adiponectin function observed in SHRs, whereas down-regulation of GRK4 by renal ultrasound-directed small interfering RNA (siRNA) restored the adiponectin-mediated sodium excretion and reduced the blood pressure in SHRs. We conclude that the stimulatory effect of adiponectin on sodium excretion is impaired in hypertension, which is ascribed to the increased renal GRK4 expression and activity. Targeting GRK4 restores impaired adiponectin-mediated sodium excretion in hypertension, thus representing a novel strategy against hypertension.
Collapse
|
7
|
Brands MW. Unifying Approach for Interpreting the Physiological Effect of High Salt Intake. Hypertension 2020; 75:620-622. [PMID: 31957523 DOI: 10.1161/hypertensionaha.119.14030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Michael W Brands
- From the Department of Physiology, Medical College of Georgia, Augusta
| |
Collapse
|
8
|
Teulon J, Planelles G, Sepúlveda FV, Andrini O, Lourdel S, Paulais M. Renal Chloride Channels in Relation to Sodium Chloride Transport. Compr Physiol 2018; 9:301-342. [DOI: 10.1002/cphy.c180024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Brands MW. Role of Insulin-Mediated Antinatriuresis in Sodium Homeostasis and Hypertension. Hypertension 2018; 72:1255-1262. [DOI: 10.1161/hypertensionaha.118.11728] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Michael W. Brands
- From the Department of Physiology, Medical College of Georgia, Augusta, GA
| |
Collapse
|
10
|
Kurtz TW, DiCarlo SE, Pravenec M, Morris RC. Changing views on the common physiologic abnormality that mediates salt sensitivity and initiation of salt-induced hypertension: Japanese research underpinning the vasodysfunction theory of salt sensitivity. Hypertens Res 2018; 42:6-18. [DOI: 10.1038/s41440-018-0122-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/24/2022]
|
11
|
Bie P. Mechanisms of sodium balance: total body sodium, surrogate variables, and renal sodium excretion. Am J Physiol Regul Integr Comp Physiol 2018; 315:R945-R962. [DOI: 10.1152/ajpregu.00363.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The classical concepts of human sodium balance include 1) a total pool of Na+ of ≈4,200 mmol (total body sodium, TBS) distributed primarily in the extracellular fluid (ECV) and bone, 2) intake variations of 0.03 to ≈6 mmol·kg body mass−1·day−1, 3) asymptotic transitions between steady states with a halftime (T½) of 21 h, 4) changes in TBS driven by sodium intake measuring ≈1.3 day [ΔTBS/Δ(Na+ intake/day)], 5) adjustment of Na+ excretion to match any diet thus providing metabolic steady state, and 6) regulation of TBS via controlled excretion (90–95% renal) mediated by surrogate variables. The present focus areas include 1) uneven, nonosmotic distribution of increments in TBS primarily in “skin,” 2) long-term instability of TBS during constant Na+ intake, and 3) physiological regulation of renal Na+ excretion primarily by neurohumoral mechanisms dependent on ECV rather than arterial pressure. Under physiological conditions 1) the nonosmotic distribution of Na+ seems conceptually important, but quantitatively ill defined; 2) long-term variations in TBS represent significant deviations from steady state, but the importance is undetermined; and 3) the neurohumoral mechanisms of sodium homeostasis competing with pressure natriuresis are essential for systematic analysis of short-term and long-term regulation of TBS. Sodium homeostasis and blood pressure regulation are intimately related. Real progress is slow and will accelerate only through recognition of the present level of ignorance. Nonosmotic distribution of sodium, pressure natriuresis, and volume-mediated regulation of renal sodium excretion are essential intertwined concepts in need of clear definitions, conscious models, and future attention.
Collapse
Affiliation(s)
- Peter Bie
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
12
|
Functional foods for augmenting nitric oxide activity and reducing the risk for salt-induced hypertension and cardiovascular disease in Japan. J Cardiol 2018; 72:42-49. [PMID: 29544657 DOI: 10.1016/j.jjcc.2018.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/24/2022]
Abstract
High salt intake is one of the major dietary determinants of hypertension and cardiovascular disease in Japan and throughout the world. Although dietary salt restriction may be of clinical benefit in salt-sensitive individuals, many individuals may not wish, or be able to, reduce their intake of salt. Thus, identification of functional foods that can help protect against mechanistic abnormalities mediating salt-induced hypertension is an issue of considerable medical and scientific interest. According to the "vasodysfunction" theory of salt-induced hypertension, the hemodynamic abnormality initiating salt-induced increases in blood pressure usually involves subnormal vasodilation and abnormally increased vascular resistance in response to increased salt intake. Because disturbances in nitric oxide activity can contribute to subnormal vasodilator responses to increased salt intake that often mediate blood pressure salt sensitivity, increased intake of functional foods that support nitric oxide activity may help to reduce the risk for salt-induced hypertension. Mounting evidence indicates that increased consumption of traditional Japanese vegetables and other vegetables with high nitrate content such as table beets and kale can promote the formation of nitric oxide through an endothelial independent pathway that involves reduction of dietary nitrate to nitrite and nitric oxide. In addition, recent studies in animal models have demonstrated that modest increases in nitrate intake can protect against the initiation of salt-induced hypertension. These observations are: (1) consistent with the view that increased intake of many traditional Japanese vegetables and other nitrate rich vegetables, and of functional foods derived from such vegetables, may help maintain healthy blood pressure despite a high salt diet; (2) support government recommendations to increase vegetable intake in the Japanese population.
Collapse
|
13
|
The pivotal role of renal vasodysfunction in salt sensitivity and the initiation of salt-induced hypertension. Curr Opin Nephrol Hypertens 2018; 27:83-92. [DOI: 10.1097/mnh.0000000000000394] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Wiig H, Luft FC, Titze JM. The interstitium conducts extrarenal storage of sodium and represents a third compartment essential for extracellular volume and blood pressure homeostasis. Acta Physiol (Oxf) 2018; 222. [PMID: 29193764 DOI: 10.1111/apha.13006] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/31/2017] [Accepted: 11/23/2017] [Indexed: 12/15/2022]
Abstract
The role of salt in the pathogenesis of arterial hypertension is not well understood. According to the current understanding, the central mechanism for blood pressure (BP) regulation relies on classical studies linking BP and Na+ balance, placing the kidney at the very centre of long-term BP regulation. To maintain BP homeostasis, the effective circulating fluid volume and thereby body Na+ content has to be maintained within very narrow limits. From recent work in humans and rats, the notion has emerged that Na+ could be stored somewhere in the body without commensurate water retention to buffer free extracellular Na+ and that previously unidentified extrarenal, tissue-specific regulatory mechanisms are operative regulating the release and storage of Na+ from a kidney-independent reservoir. Moreover, immune cells from the mononuclear phagocyte system not only function as local on-site sensors of interstitial electrolyte concentration, but also, together with lymphatics, act as systemic regulators of body fluid volume and BP. These studies have established new and unexpected targets in studies of BP control and thus the pathophysiology of hypertension: the interstitium/extracellular matrix of the skin, its inherent interstitial fluid and the lymphatic vasculature forming a vessel network in the interstitium. Aspects of the interstitium in relation to Na+ balance and hypertension are the focus of this review. Taken together, observations of salt storage in the skin to buffer free extracellular Na+ and macrophage modulation of the extracellular matrix and lymphatics suggest that electrolyte homeostasis in the body cannot be achieved by renal excretion alone, but also relies on extrarenal regulatory mechanisms.
Collapse
Affiliation(s)
- H. Wiig
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - F. C. Luft
- Experimental and Clinical Research Center; Max-Delbrück Center for Molecular Medicine; Charité Medical Faculty; Berlin Germany
- Division of Clinical Pharmacology; Department of Medicine; Vanderbilt University School of Medicine; Nashville TN USA
| | - J. M. Titze
- Division of Clinical Pharmacology; Department of Medicine; Vanderbilt University School of Medicine; Nashville TN USA
| |
Collapse
|
15
|
Irsik DL, Chen JK, Brands MW. Chronic renal artery insulin infusion increases mean arterial pressure in male Sprague-Dawley rats. Am J Physiol Renal Physiol 2018; 314:F81-F88. [PMID: 28971990 PMCID: PMC6048445 DOI: 10.1152/ajprenal.00374.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/13/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022] Open
Abstract
Hyperinsulinemia has been hypothesized to cause hypertension in obesity, type 2 diabetes, and metabolic syndrome through a renal mechanism. However, it has been challenging to isolate renal mechanisms in chronic experimental models due, in part, to technical difficulties. In this study, we tested the hypothesis that a renal mechanism underlies insulin hypertension. We developed a novel technique to permit continuous insulin infusion through the renal artery in conscious rats for 7 days. Mean arterial pressure increased by ~10 mmHg in rats that were infused intravenously (IV) with insulin and glucose. Renal artery doses were 20% of the intravenous doses and did not raise systemic insulin levels or cause differences in blood glucose. The increase in blood pressure was not different from the IV group. Mean arterial pressure did not change in vehicle-infused rats, and there were no differences in renal injury scoring due to the renal artery catheter. Glomerular filtration rate, plasma renin activity, and urinary sodium excretion did not differ between groups at baseline and did not change significantly with insulin infusion. Thus, by developing a novel approach for chronic, continuous renal artery insulin infusion, we provided new evidence that insulin causes hypertension in rats through actions initiated within the kidney.
Collapse
Affiliation(s)
- Debra L Irsik
- Department of Physiology, Medical College of Georgia at Augusta University , Augusta, Georgia
| | - Jian-Kang Chen
- Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University , Augusta, Georgia
| | - Michael W Brands
- Department of Physiology, Medical College of Georgia at Augusta University , Augusta, Georgia
| |
Collapse
|
16
|
Mehta V. Addictive salt may not be solely responsible for causing hypertension: A sweet and fatty hypothesis. HIPERTENSION Y RIESGO VASCULAR 2017; 35:S1889-1837(17)30060-0. [PMID: 28927660 DOI: 10.1016/j.hipert.2017.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/11/2017] [Accepted: 08/07/2017] [Indexed: 10/18/2022]
Abstract
In literature, since many decades, it is often believed and condoned that excessive common salt (Nacl) ingestion can lead to hypertension. Hence, every health organisation, agencies and physicians have been advising salt restriction to hypertensive patients. However, there is no concrete evidence suggesting that salt restriction can reduce the risk of hypertension (HTN). The present article is based on the current literature search which was performed using MEDLINE, EMBASE, Google Scholar and PubMed. The meta-analysis, randomised control trials, clinical trials and review articles were chosen. The present review article suggests that consumption of high salt diet does not lead to hypertension and there are other factors which can lead to hypertension, sugar and fats being the main reasons. Salt can however lead to addiction and generally, these salty food items have a larger proportion of sugar and fats, which if over-consumed has a potential to cause obesity, hyperlipidaemia and subsequently, hypertension and other cardiovascular disorders. Hence, through the present review, I would like to suggest all the physicians to ask the hypertensive patients to cut down the intake of sugar and fat containing food items and keep a check on addiction of salty food items.
Collapse
Affiliation(s)
- V Mehta
- Mount Sinai Hospital, New York, US; MGM Medical College, Navi Mumbai, India.
| |
Collapse
|
17
|
DiNicolantonio JJ, Mehta V, O'Keefe JH. Is Salt a Culprit or an Innocent Bystander in Hypertension? A Hypothesis Challenging the Ancient Paradigm. Am J Med 2017; 130:893-899. [PMID: 28373112 DOI: 10.1016/j.amjmed.2017.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 12/21/2022]
Abstract
For decades the notion that an excessive consumption of salt (NaCl) leads to hypertension has persisted. However, this idea is based on opinion, not scientific proof. Despite this, every health organization, agency, and clinicians around the world have been advising salt restriction, especially to hypertensive patients. The present review article suggests that the consumption of a high-salt diet is not the cause of hypertension and that there are other factors, such as added sugars, which are causative for inducing hypertension and cardiovascular disease.
Collapse
Affiliation(s)
| | - Varshil Mehta
- Mount Sinai Hospital, New York, NY; MGM Medical College, Navi Mumbai, India
| | | |
Collapse
|
18
|
Tuka V, Matoulek M, Zelinka T, Rosa J, Petrák O, Mikeš O, Krátká Z, Štrauch B, Holaj R, Widimský J. Lower physical fitness in patients with primary aldosteronism is linked to the severity of hypertension and kalemia. Physiol Res 2017; 66:41-48. [PMID: 27782749 DOI: 10.33549/physiolres.933320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Hypokalemia as a typical feature of primary aldosteronism (PA) is associated with muscle weakness and could contribute to lower cardiopulmonary fitness. The aim of this study was to describe cardiopulmonary fitness and exercise blood pressure and their determinants during a symptom-limited exercise stress test in patients with PA. We performed a cross-sectional study of patients with confirmed PA who were included before adrenal vein sampling on whom a symptom-limited exercise stress test with expired gas analysis was performed. Patients were switched to the treatment with doxazosin and verapamil at least two weeks before the study. In 27 patients (17 male) the VO(2peak) was 25.4+/-6.0 ml/kg/min which corresponds to 80.8+/-18.9 % of Czech national norm. Linear regression analysis shows that VO(2peak) depends on doxazosin dose (DX) (p=0.001) and kalemia (p=0.02): VO(2peak) = 4.2 - 1.0 * DX + 7.6 * Kalemia. Patients with higher doxazosin doses had a longer history of hypertension and had used more antihypertensives before examination, thus indicating that VO(2peak) also depends on the severity of hypertension. In patients with PA, lower cardiopulmonary fitness depends inversely on the severity of hypertension and on lower plasma potassium level.
Collapse
Affiliation(s)
- V Tuka
- Third Department of Internal Medicine, General University Hospital in Prague, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Barros ER, Carvajal CA. Urinary Exosomes and Their Cargo: Potential Biomarkers for Mineralocorticoid Arterial Hypertension? Front Endocrinol (Lausanne) 2017; 8:230. [PMID: 28951728 PMCID: PMC5599782 DOI: 10.3389/fendo.2017.00230] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022] Open
Abstract
Arterial hypertension (AHT) currently affects approximately 40% of adults worldwide, and its pathological mechanisms are mainly related to renal, vascular, and endocrine systems. Steroid hormones as aldosterone and cortisol are highly relevant to human endocrine physiology, and also to endocrine hypertension. Pathophysiological conditions, such as primary aldosteronism, affect approximately 10% of patients diagnosed with AHT and are secondary to a high production of aldosterone, increasing the risk also for cardiovascular damage and heart diseases. Excess of aldosterone or cortisol increases the activity of the mineralocorticoid receptor (MR) in epithelial and non-epithelial cells. Current research in this field highlights the potential regulatory mechanisms of the MR pathway, including pre-receptor regulation of the MR (action of 11BHSD2), MR activating proteins, and the downstream genes/proteins sensitive to MR (e.g., epithelial sodium channel, NCC, NKCC2). Mineralocorticoid AHT is present in 15-20% of hypertensive subjects, but the mechanisms associated to this condition have been poorly described, due mainly to the absence of reliable biomarkers. In this way, steroids, peptides, and lately urinary exosomes are thought to be potential reporters of biological processes. This review highlight exosomes and their cargo as potential biomarkers of metabolic changes associated to mineralocorticoid AHT. Recent reports have shown the presence of RNA, microRNAs, and proteins in urinary exosomes, which could be used as biomarkers in physiological and pathophysiological conditions. However, more studies are needed in order to benefit from exosomes and the exosomal cargo as a diagnostic tool in mineralocorticoid AHT.
Collapse
Affiliation(s)
- Eric R. Barros
- Center of Translational Endocrinology (CETREN), Faculty of Medicine, Endocrinology Department, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristian A. Carvajal
- Center of Translational Endocrinology (CETREN), Faculty of Medicine, Endocrinology Department, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Cristian A. Carvajal,
| |
Collapse
|
20
|
Bie P, Evans RG. Normotension, hypertension and body fluid regulation: brain and kidney. Acta Physiol (Oxf) 2017; 219:288-304. [PMID: 27214656 DOI: 10.1111/apha.12718] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/13/2016] [Accepted: 05/17/2016] [Indexed: 01/11/2023]
Abstract
The fraction of hypertensive patients with essential hypertension (EH) is decreasing as the knowledge of mechanisms of secondary hypertension increases, but in most new cases of hypertension the pathophysiology remains unknown. Separate neurocentric and renocentric concepts of aetiology have prevailed without much interaction. In this regard, several questions regarding the relationships between body fluid and blood pressure regulation are pertinent. Are all forms of EH associated with sympathetic overdrive or a shift in the pressure-natriuresis curve? Is body fluid homoeostasis normally driven by the influence of arterial blood pressure directly on the kidney? Does plasma renin activity, driven by renal nerve activity and renal arterial pressure, provide a key to stratification of EH? Our review indicates that (i) a narrow definition of EH is useful; (ii) in EH, indices of cardiovascular sympathetic activity are elevated in about 50% of cases; (iii) in EH as in normal conditions, mediators other than arterial blood pressure are the major determinants of renal sodium excretion; (iv) chronic hypertension is always associated with a shift in the pressure-natriuresis curve, but this may be an epiphenomenon; (v) plasma renin levels are useful in the analysis of EH only after metabolic standardization and then determination of the renin function line (plasma renin as a function of sodium intake); and (vi) angiotensin II-mediated hypertension is not a model of EH. Recent studies of baroreceptors and renal nerves as well as sodium intake and renin secretion help bridge the gap between the neurocentric and renocentric concepts.
Collapse
Affiliation(s)
- P. Bie
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
- Cardiovascular Disease Program; Biomedicine Discovery Institute and Department of Physiology; Monash University; Melbourne Vic. Australia
| | - R. G. Evans
- Cardiovascular Disease Program; Biomedicine Discovery Institute and Department of Physiology; Monash University; Melbourne Vic. Australia
| |
Collapse
|
21
|
Cicero AFG, Rosticci M, Fogacci F, Grandi E, D'Addato S, Borghi C. High serum uric acid is associated to poorly controlled blood pressure and higher arterial stiffness in hypertensive subjects. Eur J Intern Med 2017; 37:38-42. [PMID: 27498274 DOI: 10.1016/j.ejim.2016.07.026] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 07/17/2016] [Accepted: 07/24/2016] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Serum uric acid (SUA) has been associated to incident hypertension and increased risk of cardiovascular diseases. MATERIALS AND METHODS Among the 2191 subjects enrolled during the last population survey of the Brisighella Heart Study, we identified 146 new cases of arterial hypertension and 394 treated but uncontrolled hypertensive patients with different levels of SUA. Their hemodynamic characteristics have been compared with those of age- and sex-matched normotensive (N. 324) and controlled hypertensive (N. 470) subjects. Then, by logistic regression analysis, we evaluated which factors were associated with a worse BP control under pharmacological treatment. RESULTS SUA levels were significantly higher in untreated hypertensive and uncontrolled hypertensive patients when compared to normotensives and controlled hypertensive patients. Pulse wave velocity (PWV) was significantly higher (p<0.001) in undiagnosed and uncontrolled hypertensive patients, while controlled hypertensive patients had PWV values comparable to normotensive controls. A similar trend has been observed for the augmentation index (AI). A worse BP control was associated with SUA levels (OR 1277, 95% CI 1134-1600 per mg/dL), AI (OR 1066, 95%CI 1041-1092 per unit), and PWV (OR 1201, 95% CI 1089-1423, per m/s), but not with age, body mass index, nor estimated glomerular filtration rate. CONCLUSION Based on our data, SUA seems to be associated with an inadequate BP control in subjects treated with antihypertensive drugs, and subjects with both uncontrolled BP and relatively high SUA levels have also an increased arterial stiffness that (per se) could be a cause of worse BP control under treatment.
Collapse
Affiliation(s)
- Arrigo F G Cicero
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna, Italy.
| | - Martina Rosticci
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna, Italy
| | - Federica Fogacci
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna, Italy
| | - Elisa Grandi
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna, Italy
| | - Sergio D'Addato
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna, Italy
| | - Claudio Borghi
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
22
|
Kurtz TW, DiCarlo SE, Morris RC. Logical Issues With the Pressure Natriuresis Theory of Chronic Hypertension. Am J Hypertens 2016. [PMID: 28637271 DOI: 10.1093/ajh/hpw073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The term "abnormal pressure natriuresis" refers to a subnormal effect of a given level of blood pressure (BP) on sodium excretion. It is widely believed that abnormal pressure natriuresis causes an initial increase in BP to be sustained. We refer to this view as the "pressure natriuresis theory of chronic hypertension." The proponents of the theory contend that all forms of chronic hypertension are sustained by abnormal pressure natriuresis, irrespective of how hypertension is initiated. This theory would appear to follow from "the three laws of long-term arterial pressure regulation" stated by Guyton and Coleman more than 3 decades ago. These "laws" articulate the concept that for a given level of salt intake, the relationship between arterial pressure and sodium excretion determines the chronic level of BP. Here, we review and examine the recent assertion by Beard that these "laws" of long-term BP control amount to nothing more than a series of tautologies. Our analysis supports Beard's assertion, and also indicates that contemporary investigators often use tautological reasoning in support of the pressure natriuresis theory of chronic hypertension. Although the theory itself is not a tautology, it does not appear to be testable because it holds that abnormal pressure natriuresis causes salt-induced hypertension to be sustained through abnormal increases in cardiac output that are too small to be detected.
Collapse
Affiliation(s)
- Theodore W Kurtz
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Stephen E DiCarlo
- Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - R Curtis Morris
- Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
23
|
Pollock DM. Comprehensive Physiology: a tool for advanced education in physiology. ADVANCES IN PHYSIOLOGY EDUCATION 2016; 40:275-277. [PMID: 27445273 DOI: 10.1152/advan.00087.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Affiliation(s)
- David M Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
24
|
An alternative hypothesis to the widely held view that renal excretion of sodium accounts for resistance to salt-induced hypertension. Kidney Int 2016; 90:965-973. [PMID: 27546606 DOI: 10.1016/j.kint.2016.05.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 12/24/2022]
Abstract
It is widely held that in response to high salt diets, normal individuals are acutely and chronically resistant to salt-induced hypertension because they rapidly excrete salt and retain little of it so that their blood volume, and therefore blood pressure, does not increase. Conversely, it is also widely held that salt-sensitive individuals develop salt-induced hypertension because of an impaired renal capacity to excrete salt that causes greater salt retention and blood volume expansion than that which occurs in normal salt-resistant individuals. Here we review results of both acute and chronic salt-loading studies that have compared salt-induced changes in sodium retention and blood volume between normal subjects (salt-resistant normotensive control subjects) and salt-sensitive subjects. The results of properly controlled studies strongly support an alternative view: during acute or chronic increases in salt intake, normal salt-resistant subjects undergo substantial salt retention and do not excrete salt more rapidly, retain less sodium, or undergo lesser blood volume expansion than do salt-sensitive subjects. These observations: (i) directly conflict with the widely held view that renal excretion of sodium accounts for resistance to salt-induced hypertension, and (ii) have implications for contemporary understanding of how various genetic, immunologic, and other factors determine acute and chronic blood pressure responses to high salt diets.
Collapse
|
25
|
Morris RC, Schmidlin O, Sebastian A, Tanaka M, Kurtz TW. Vasodysfunction That Involves Renal Vasodysfunction, Not Abnormally Increased Renal Retention of Sodium, Accounts for the Initiation of Salt-Induced Hypertension. Circulation 2016; 133:881-93. [PMID: 26927006 DOI: 10.1161/circulationaha.115.017923] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- R Curtis Morris
- From the Departments of Medicine (R.C.M., O.S., A.S., M.T.) and Laboratory Medicine (T.W.K.), University of California, San Francisco.
| | - Olga Schmidlin
- From the Departments of Medicine (R.C.M., O.S., A.S., M.T.) and Laboratory Medicine (T.W.K.), University of California, San Francisco
| | - Anthony Sebastian
- From the Departments of Medicine (R.C.M., O.S., A.S., M.T.) and Laboratory Medicine (T.W.K.), University of California, San Francisco
| | - Masae Tanaka
- From the Departments of Medicine (R.C.M., O.S., A.S., M.T.) and Laboratory Medicine (T.W.K.), University of California, San Francisco
| | - Theodore W Kurtz
- From the Departments of Medicine (R.C.M., O.S., A.S., M.T.) and Laboratory Medicine (T.W.K.), University of California, San Francisco.
| |
Collapse
|
26
|
|