1
|
Karuga FF, Kaczmarski P, Białasiewicz P, Szmyd B, Jaromirska J, Grzybowski F, Gebuza P, Sochal M, Gabryelska A. REM-OSA as a Tool to Understand Both the Architecture of Sleep and Pathogenesis of Sleep Apnea-Literature Review. J Clin Med 2023; 12:5907. [PMID: 37762848 PMCID: PMC10531579 DOI: 10.3390/jcm12185907] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Sleep is a complex physiological state, which can be divided into the non-rapid eye movement (NREM) phase and the REM phase. Both have some unique features and functions. This difference is best visible in electroencephalography recordings, respiratory system activity, arousals, autonomic nervous system activity, or metabolism. Obstructive sleep apnea (OSA) is a common condition characterized by recurrent episodes of pauses in breathing during sleep caused by blockage of the upper airways. This common condition has multifactorial ethiopathogenesis (e.g., anatomical predisposition, sex, obesity, and age). Within this heterogenous syndrome, some distinctive phenotypes sharing similar clinical features can be recognized, one of them being REM sleep predominant OSA (REM-OSA). The aim of this review was to describe the pathomechanism of REM-OSA phenotype, its specific clinical presentation, and its consequences. Available data suggest that in this group of patients, the severity of specific cardiovascular and metabolic complications is increased. Due to the impact of apneas and hypopneas predominance during REM sleep, patients are more prone to develop hypertension or glucose metabolism impairment. Additionally, due to the specific function of REM sleep, which is predominantly fragmented in the REM-OSA, this group presents with decreased neurocognitive performance, reflected in memory deterioration, and mood changes including depression. REM-OSA clinical diagnosis and treatment can alleviate these outcomes, surpassing the traditional treatment and focusing on a more personalized approach, such as using longer therapy of continuous positive airway pressure or oral appliance use.
Collapse
Affiliation(s)
- Filip Franciszek Karuga
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Mazowiecka St. 6/8, 92-251 Lodz, Poland (F.G.)
| | - Piotr Kaczmarski
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Mazowiecka St. 6/8, 92-251 Lodz, Poland (F.G.)
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Mazowiecka St. 6/8, 92-251 Lodz, Poland (F.G.)
| | - Bartosz Szmyd
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Sporna St. 36/50, 91-738 Lodz, Poland
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153 Lodz, Poland
| | - Julia Jaromirska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Mazowiecka St. 6/8, 92-251 Lodz, Poland (F.G.)
| | - Filip Grzybowski
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Mazowiecka St. 6/8, 92-251 Lodz, Poland (F.G.)
| | - Piotr Gebuza
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Mazowiecka St. 6/8, 92-251 Lodz, Poland (F.G.)
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Mazowiecka St. 6/8, 92-251 Lodz, Poland (F.G.)
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Mazowiecka St. 6/8, 92-251 Lodz, Poland (F.G.)
| |
Collapse
|
2
|
Alcantara-Zapata DE, Lucero N, De Gregorio N, Astudillo Cornejo P, Ibarra Villanueva C, Baltodano-Calle MJ, Gonzales GF, Behn C. Women's mood at high altitude. sexual dimorphism in hypoxic stress modulation by the tryptophan-melatonin axis. Front Physiol 2023; 13:1099276. [PMID: 36733695 PMCID: PMC9887123 DOI: 10.3389/fphys.2022.1099276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Sexual (and gender)-dimorphism in tolerance to hypobaric hypoxia increasingly matters for a differential surveillance of human activities at high altitude (HA). At low altitudes, the prevalence of anxiety and depression in women has already been found to double when compared with men; it could be expected to even increase on exposure to HA. In purposefully caring for the health of women at HA, the present work explores the potential involvement of the tryptophan (Trp)-melatonin axis in mood changes on exposure to hypobaric hypoxia. The present work highlights some already known anxiogenic effects of HA exposure. Hypoxia and insomnia reduce serotonin (5-HT) availability; the latter defect being expressed as failure of brown adipose tissue (BAT) activation and mood disorders. Rapid eye movement (REM) sleep organization and synapsis restoration that are additionally affected by hypoxia impair memory consolidation. Affective complaints may thus surge, evolving into anxiety and depression. Sex-related differences in neural network organization and hormonal changes during the menstrual cycle, and certainly also during the life cycle, underscore the possibility of 5-HT-related mood alterations, particularly in women on HA exposure. The mean brain rate of 5-HT synthesis at sea level is already 1.5-fold higher in males than in females. sexual dimorphism also evidences the overexpression effects of SERT, a 5-HT transporter protein. Gonadal and thyroid hormones, as influenced by HA exposure, further modulate 5-HT availability and its effects in women. Besides caring for adequate oxygenation and maintenance of one's body core temperature, special precautions concerning women sojourning at HA should include close observations of hormonal cycles and, perhaps, also trials with targeted antidepressants.
Collapse
Affiliation(s)
- D. E. Alcantara-Zapata
- Laboratorio de Endocrinología y Reproducción, Laboratorios de Investigación y Desarrollo (LID), Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - N. Lucero
- Occupational Health Program, School of Public Health, University of Chile, Santiago, Chile
| | - N. De Gregorio
- Laboratory of Extreme Environments, Department of Physiology and Biophysics, Biomedical Science Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - P. Astudillo Cornejo
- Occupational Ergonomics Program, Department of Kinesiology, University of Atacama, Copiapó, Chile
| | - C. Ibarra Villanueva
- Occupational Ergonomics Program, Department of Kinesiology, University of Atacama, Copiapó, Chile
| | - M. J. Baltodano-Calle
- Laboratorio de Endocrinología y Reproducción, Laboratorios de Investigación y Desarrollo (LID), Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - G. F. Gonzales
- Laboratorio de Endocrinología y Reproducción, Laboratorios de Investigación y Desarrollo (LID), Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
- High Altitude Research Institute, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - C. Behn
- Laboratory of Extreme Environments, Department of Physiology and Biophysics, Biomedical Science Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Faculty of Medicine, University of Atacama, Copiapó, Chile
| |
Collapse
|
3
|
McCabe SM, Abbiss CR, Libert JP, Bach V. Functional links between thermoregulation and sleep in children with neurodevelopmental and chronic health conditions. Front Psychiatry 2022; 13:866951. [PMID: 36451768 PMCID: PMC9703054 DOI: 10.3389/fpsyt.2022.866951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
The bi-directional relationship between sleep and wake is recognized as important for all children. It is particularly consequential for children who have neurodevelopmental disorders (NDDs) or health conditions which challenge their sleep and biological rhythms, and their ability to maintain rhythms of participation in everyday activities. There are many studies which report the diverse reasons for disruption to sleep in these populations. Predominantly, there is focus on respiratory, pharmaceutical, and behavioral approaches to management. There is, however, little exploration and explanation of the important effects of body thermoregulation on children's sleep-wake patterns, and associated behaviors. Circadian patterns of sleep-wake are dependent on patterns of body temperature change, large enough to induce sleep preparedness but remaining within a range to avoid sleep disturbances when active thermoregulatory responses against heat or cold are elicited (to maintain thermoneutrality). Additionally, the subjective notion of thermal comfort (which coincides with the objective concept of thermoneutrality) is of interest as part of general comfort and associated behavioral responses for sleep onset and maintenance. Children's thermoregulation and thermal comfort are affected by diverse biological functions, as well as their participation in everyday activities, within their everyday environments. Hence, the aforementioned populations are additionally vulnerable to disruption of their thermoregulatory system and their capacity for balance of sleep and wakefulness. The purpose of this paper is to present hitherto overlooked information, for consideration by researchers and clinicians toward determining assessment and intervention approaches to support children's thermoregulation functions and promote their subjective thermal comfort, for improved regulation of their sleep and wake functions.
Collapse
Affiliation(s)
- Susan M McCabe
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Chris R Abbiss
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | | | - Véronique Bach
- PeriTox UMR_I 01, University of Picardie Jules Verne, Amiens, France
| |
Collapse
|
4
|
Rivas M, Serantes D, Peña F, González J, Ferreira A, Torterolo P, Benedetto L. Role of Hypocretin in the Medial Preoptic Area in the Regulation of Sleep, Maternal Behavior and Body Temperature of Lactating Rats. Neuroscience 2021; 475:148-162. [PMID: 34500018 DOI: 10.1016/j.neuroscience.2021.08.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 12/11/2022]
Abstract
Hypocretins (HCRT), also known as orexins, includes two neuroexcitatory peptides, HCRT-1 and HCRT-2 (orexin A y B, respectively), synthesized by neurons located in the postero-lateral hypothalamus, whose projections and receptors are widely distributed throughout the brain, including the medial preoptic area (mPOA). HCRT have been associated with a wide range of physiological functions including sleep-wake cycle, maternal behavior and body temperature, all regulated by the mPOA. Previously, we showed that HCRT in the mPOA facilitates certain active maternal behaviors, while the blockade of HCRT-R1 increases the time spent in nursing. As mother rats mainly sleep while they nurse, we hypothesize that HCRT in the mPOA of lactating rats reduce sleep and nursing, while intra-mPOA administration of a dual orexin receptor antagonist (DORA) would cause the opposite effect. Therefore, the aim of this study was to determine the role of HCRT within the mPOA, in the regulation and integration of the sleep-wake cycle, maternal behavior and body temperature of lactating rats. For that purpose, we assessed the sleep-wake states, maternal behavior and body temperature of lactating rats following microinjections of HCRT-1 (100 and 200 µM) and DORA (5 mM) into the mPOA. As expected, our data show that HCRT-1 in mPOA promote wakefulness and a slightly increase in body temperature, whereas DORA increases both NREM and REM sleep together with an increment of nursing and milk ejection. Taken together, our results strongly suggest that the endogenous reduction of HCRT within the mPOA contribute to the promotion of sleep, milk ejection and nursing behavior in lactating rats.
Collapse
Affiliation(s)
- Mayda Rivas
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Diego Serantes
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Florencia Peña
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Joaquín González
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Annabel Ferreira
- Sección de Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Luciana Benedetto
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
5
|
Local administration of bicuculline into the ventrolateral and medial preoptic nuclei modifies sleep and maternal behavior in lactating rats. Physiol Behav 2021; 238:113491. [PMID: 34090866 DOI: 10.1016/j.physbeh.2021.113491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/21/2022]
Abstract
The preoptic area (POA) is a brain structure classically involved in a wide variety of animal behavior including sleep and maternal care. In the current study, we evaluate the specific effect of disinhibition of two specific regions of the POA, the medial POA nucleus (mPOA) and the ventrolateral POA area (VLPO) on sleep and maternal behavior in lactating rats. For this purpose, mother rats on postpartum day 1 (PPD1) were implanted for polysomnographic recordings and with bilateral cannulae either in the mPOA or in the VLPO. The rats were tested for sleep and maternal behavior on PPD4-8 after the infusion of the GABA-A antagonist, bicuculline (0, 10 or 30 ng/0.2 µl/side). Infusion of bicuculline into the mPOA augmented retrieving and nest building behaviors and reduced both nursing and milk ejections but had almost no effect on sleep. When bicuculine was microinjected into the VLPO, the rats significantly increase the number of retrievings and mouthings and reduced the nursing time without changes in milk ejections, which was associated with an increase in wakefulness and a reduction in light sleep. Our results show that disinhibition of the mPOA, a key area in the control of maternal behavior, increased active maternal behaviors and reduced nursing without affecting wakefulness or sleep time. In contrast, the enhancement of some active maternal behaviors when the drug was infused into the VLPO, a sleep-promoting area, with a concomitant increase in wakefulness suggests that mother rats devote this additional waking time in the active maternal care of the pups. We hypothesize that maternal behavior changes after bicuculine microinjection into the VLPO are caused by a reduction in the sleep drive, rather than a direct effect on maternal behavior.
Collapse
|
6
|
Becker RC. Autonomic dysfunction in SARS-COV-2 infection acute and long-term implications COVID-19 editor's page series. J Thromb Thrombolysis 2021; 52:692-707. [PMID: 34403043 PMCID: PMC8367772 DOI: 10.1007/s11239-021-02549-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 12/13/2022]
Abstract
Abstract The autonomic nervous system (ANS) is a complex network of nerves originating in the brain, brain stem, spinal cord, heart and extracardiac organs that regulates neural and physiological responses to internal and external environments and conditions. A common observation among patients with the 2019 Coronavirus (CoV) (SARS-severe acute respiratory syndrome CoV-2) (SARS-CoV-2) or COVID-19 [CO for corona, VI for virus, D for disease and 19 for when the outbreak was first identified (31 December 2019)] in the acute and chronic phases of the disease is tachycardia, labile blood pressure, muscular fatigue and shortness of breath. Because abnormalities in the ANS can contribute to each of these symptoms, herein a review of autonomic dysfunction in SARS-COV-2 infection is provided to guide diagnostic testing, patient care and research initiatives. Graphic abstract The autonomic nervous system is a complex network of nerves originating in the brain, brain stem, spinal cord, heart and extracardiac organs that regulates neural and physiological responses to internal and external environments and conditions. A common collection of signs and symptoms among patients with the 2019 Coronavirus (CoV) (SARS-severe acute respiratory syndrome CoV-2) (SARS-CoV-2) or COVID-19 [CO for corona, VI for virus, D for disease and 19 for when the outbreak was first identified (31 December 2019)] is tachycardia, labile blood pressure, muscular fatigue and shortness of breath. Abnormalities in the autonomic nervous system (ANS) can contribute to each of these identifiers, potentially offering a unifying pathobiology for acute, subacute and the long-term sequelae of SARS-CoV-2 infection (PASC) and a target for intervention.
Collapse
Affiliation(s)
- Richard C Becker
- Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA.
| |
Collapse
|