1
|
Panerai RB, Davies A, Alshehri A, Beishon LC, Minhas JS. Subcomponent analysis of the directional sensitivity of dynamic cerebral autoregulation. Am J Physiol Heart Circ Physiol 2025; 328:H37-H46. [PMID: 39570199 DOI: 10.1152/ajpheart.00498.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
The origin of the directional sensitivity (DS) of dynamic cerebral autoregulation (dCA) is not known. In 140 healthy participants (67 male, 27.5 ± 6.1 yr old), middle cerebral artery velocity (MCAv, transcranial Doppler), arterial blood pressure (ABP, Finometer), and end-tidal CO2 (EtCO2, capnography) were recorded at rest. Critical closing pressure (CrCP) and resistance-area product (RAP) were obtained for each cardiac cycle, as well as mean MCAv and ABP (MAP). The integrated positive and negative derivatives of MAP (MAP+D and MAP-D, respectively) were used as simultaneous inputs to an autoregressive moving average model to generate two distinct MCAv step responses. Similar models allowed the estimation of corresponding MAP-CrCP and MAP-RAP responses to step changes in MAP+D and MAP-D. The strength of DS (ΔDS) was expressed by the difference in mean values of the step responses for the time interval 12-18 s. ΔDS was significant for MCAv (8.5 ± 46.9% vs. 26.7 ± 42.0%, P < 0.001) and RAP (-93.9 ± 48.1 vs. -74.5 ± 43.0%, P < 0.001), respectively, for MAP+D and MAP-D inputs, but not for CrCP (2.2 ± 48.1% vs. 0.72 ± 42.9%, P = 0.76). Compared with males, female participants had higher MCAv (63.9 ± 15.6 cm/s vs. 55.4 ± 12.9 cm/s, P < 0.001) but lower EtCO2 (P < 0.001) and RAP (P = 0.015). Sex did not influence ΔDS for any of the three-step responses. The presence of directional sensitivity in the RAP, but not in the CrCP transfer function, suggests that the origin could be solely myogenic, without metabolic involvement.NEW & NOTEWORTHY The directional sensitivity of the cerebral blood velocity response to a sudden change in mean arterial blood pressure (MAP) is mediated by the resistance-area product, without involvement from the cerebral critical closing pressure. The reduced amplitude of MAP spontaneous fluctuations at rest suggests that it is less likely that directional sensitivity has origins in the sympathetic control of cerebral blood vessels, thus generating the need to consider other alternatives.
Collapse
Affiliation(s)
- Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Aaron Davies
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Abdulaziz Alshehri
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- Emergency Medical Services Department, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Lucy C Beishon
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
2
|
Wang J, Xu J, Liu T, Yu C, Xu F, Wang G, Li S, Dai X. Biomechanics-mediated endocytosis in atherosclerosis. Front Cardiovasc Med 2024; 11:1337679. [PMID: 38638885 PMCID: PMC11024446 DOI: 10.3389/fcvm.2024.1337679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/04/2024] [Indexed: 04/20/2024] Open
Abstract
Biomechanical forces, including vascular shear stress, cyclic stretching, and extracellular matrix stiffness, which influence mechanosensitive channels in the plasma membrane, determine cell function in atherosclerosis. Being highly associated with the formation of atherosclerotic plaques, endocytosis is the key point in molecule and macromolecule trafficking, which plays an important role in lipid transportation. The process of endocytosis relies on the mobility and tension of the plasma membrane, which is sensitive to biomechanical forces. Several studies have advanced the signal transduction between endocytosis and biomechanics to elaborate the developmental role of atherosclerosis. Meanwhile, increased plaque growth also results in changes in the structure, composition and morphology of the coronary artery that contribute to the alteration of arterial biomechanics. These cross-links of biomechanics and endocytosis in atherosclerotic plaques play an important role in cell function, such as cell phenotype switching, foam cell formation, and lipoprotein transportation. We propose that biomechanical force activates the endocytosis of vascular cells and plays an important role in the development of atherosclerosis.
Collapse
Affiliation(s)
- Jinxuan Wang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
- Department of Cardiology, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jianxiong Xu
- School of Health Management, Xihua University, Chengdu, China
| | - Tianhu Liu
- Department of Cardiology, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Cardiology and Vascular Health Research Center, Chengdu Medical College, Chengdu, China
| | - Chaoping Yu
- Department of Cardiology, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Cardiology and Vascular Health Research Center, Chengdu Medical College, Chengdu, China
| | - Fengcheng Xu
- Department of Cardiology, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Cardiology and Vascular Health Research Center, Chengdu Medical College, Chengdu, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Shun Li
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Xiaozhen Dai
- Department of Cardiology, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Cardiology and Vascular Health Research Center, Chengdu Medical College, Chengdu, China
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
3
|
De Moudt S, Leloup A, Fransen P. Aortic Stiffness Hysteresis in Isolated Mouse Aortic Segments Is Intensified by Contractile Stimuli, Attenuated by Age, and Reversed by Elastin Degradation. Front Physiol 2021; 12:723972. [PMID: 34650441 PMCID: PMC8507434 DOI: 10.3389/fphys.2021.723972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Aim: Cyclic stretch of vascular tissue at any given pressure reveals greater dimensions during unloading than during loading, which determines the cardiac beat-by-beat hysteresis loop on the pressure-diameter/volume relationship. The present study did not focus on hysteresis during a single stretch cycle but investigated whether aortic stiffness determined during continuous stretch at different pressures also displayed hysteresis phenomena. Methods: Aortic segments from C57Bl6 mice were mounted in the Rodent Oscillatory Set-up for Arterial Compliance (ROTSAC), where they were subjected to high frequency (10 Hz) cyclic stretch at alternating loads equivalent to a constant theoretical pulse pressure of 40 mm Hg. Diastolic and systolic diameter, compliance, and the Peterson elastic modulus (Ep), as a measure of aortic stiffness, was determined starting at cyclic stretch between alternating loads corresponding to 40 and 80 mm Hg, at each gradual load increase equivalent to 20 mm Hg, up to loads equivalent to pressures of 220 and 260 mm Hg (loading direction) and then repeated in the downward direction (unloading direction). This was performed in baseline conditions and following contraction by α1 adrenergic stimulation with phenylephrine or by depolarization with high extracellular K+ in aortas of young (5 months), aged (26 months) mice, and in segments treated with elastase. Results: In baseline conditions, diastolic/systolic diameters and compliance for a pulse pressure of 40 mm Hg were larger at any given pressure upon unloading (decreasing pressure) than loading (increasing pressure) of the aortic segments. The pressure-aortic stiffness (Ep) relationship was similar in the loading and unloading directions, and aortic hysteresis was absent. On the other hand, hysteresis was evident after activation of the VSMCs with the α1 adrenergic agonist phenylephrine and with depolarization by high extracellular K+, especially after inhibition of basal NO release with L-NAME. Aortic stiffness was significantly smaller in the unloading than in the loading direction. In comparison with young mice, old-mouse aortic segments also displayed contraction-dependent aortic hysteresis, but hysteresis was shifted to a lower pressure range. Elastase-treated segments showed higher stiffness upon unloading over nearly the whole pressure range. Conclusions: Mouse aortic segments display pressure- and contraction-dependent diameter, compliance, and stiffness hysteresis phenomena, which are modulated by age and VSMC-extracellular matrix interactions. This may have implications for aortic biomechanics in pathophysiological conditions and aging.
Collapse
Affiliation(s)
- Sofie De Moudt
- Physiopharmacology, Department Pharmaceutical Sciences, University of Antwerp, Antwerpen, Belgium
| | - Arthur Leloup
- Physiopharmacology, Department Pharmaceutical Sciences, University of Antwerp, Antwerpen, Belgium
| | - Paul Fransen
- Physiopharmacology, Department Pharmaceutical Sciences, University of Antwerp, Antwerpen, Belgium
| |
Collapse
|
4
|
Pecchiari M, Pontikis K, Alevrakis E, Vasileiadis I, Kompoti M, Koutsoukou A. Cardiovascular Responses During Sepsis. Compr Physiol 2021; 11:1605-1652. [PMID: 33792902 DOI: 10.1002/cphy.c190044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sepsis is the life-threatening organ dysfunction arising from a dysregulated host response to infection. Although the specific mechanisms leading to organ dysfunction are still debated, impaired tissue oxygenation appears to play a major role, and concomitant hemodynamic alterations are invariably present. The hemodynamic phenotype of affected individuals is highly variable for reasons that have been partially elucidated. Indeed, each patient's circulatory condition is shaped by the complex interplay between the medical history, the volemic status, the interval from disease onset, the pathogen, the site of infection, and the attempted resuscitation. Moreover, the same hemodynamic pattern can be generated by different combinations of various pathophysiological processes, so the presence of a given hemodynamic pattern cannot be directly related to a unique cluster of alterations. Research based on endotoxin administration to healthy volunteers and animal models compensate, to an extent, for the scarcity of clinical studies on the evolution of sepsis hemodynamics. Their results, however, cannot be directly extrapolated to the clinical setting, due to fundamental differences between the septic patient, the healthy volunteer, and the experimental model. Numerous microcirculatory derangements might exist in the septic host, even in the presence of a preserved macrocirculation. This dissociation between the macro- and the microcirculation might account for the limited success of therapeutic interventions targeting typical hemodynamic parameters, such as arterial and cardiac filling pressures, and cardiac output. Finally, physiological studies point to an early contribution of cardiac dysfunction to the septic phenotype, however, our defective diagnostic tools preclude its clinical recognition. © 2021 American Physiological Society. Compr Physiol 11:1605-1652, 2021.
Collapse
Affiliation(s)
- Matteo Pecchiari
- Dipartimento di Fisiopatologia Medico Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - Konstantinos Pontikis
- Intensive Care Unit, 1st Department of Pulmonary Medicine, National & Kapodistrian University of Athens, General Hospital for Diseases of the Chest 'I Sotiria', Athens, Greece
| | - Emmanouil Alevrakis
- 4th Department of Pulmonary Medicine, General Hospital for Diseases of the Chest 'I Sotiria', Athens, Greece
| | - Ioannis Vasileiadis
- Intensive Care Unit, 1st Department of Pulmonary Medicine, National & Kapodistrian University of Athens, General Hospital for Diseases of the Chest 'I Sotiria', Athens, Greece
| | - Maria Kompoti
- Intensive Care Unit, Thriassio General Hospital of Eleusis, Magoula, Greece
| | - Antonia Koutsoukou
- Intensive Care Unit, 1st Department of Pulmonary Medicine, National & Kapodistrian University of Athens, General Hospital for Diseases of the Chest 'I Sotiria', Athens, Greece
| |
Collapse
|
5
|
Camasão DB, Mantovani D. The mechanical characterization of blood vessels and their substitutes in the continuous quest for physiological-relevant performances. A critical review. Mater Today Bio 2021; 10:100106. [PMID: 33889837 PMCID: PMC8050780 DOI: 10.1016/j.mtbio.2021.100106] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/07/2021] [Accepted: 02/27/2021] [Indexed: 11/29/2022] Open
Abstract
During the last 50 years, novel biomaterials and tissue engineering techniques have been investigated to produce alternative vascular substitutes that recapitulate the unique elastic mechanical features of blood vessels. A large variation in mechanical characterization, including the test type, protocol, and data analysis, is present in literature which complicates the comparison among studies and prevents the blooming and the advancement of this field. In addition, a limited mechanical assessment of the substitute for the intended application is often provided. In this light, this review presents the mechanical environment of blood vessels, discusses their mechanical behavior responsible for the suited blood flow into the body (non-linearity, anisotropy, hysteresis, and compliance), and compares the mechanical properties reported in literature (obtained with compression, tensile, stress-relaxation, creep, dynamic mechanical analysis, burst pressure, and dynamic compliance tests). This perspective highlights that the mechanical properties extracted through conventional tests are not always suitable indicators of the mechanical performance during the working life of a vascular substitute. The available tests can be then strategically used at different stages of the substitute development, prioritizing the simplicity of the method at early stages, and the physiological pertinence at later stages, following as much as possible ISO standards in the field. A consistent mechanical characterization focused on the behavior to which they will be subdued during real life is one key and missing element in the quest for physiological-like mechanical performance of vascular substitutes.
Collapse
Affiliation(s)
- D B Camasão
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Québec, Division of Regenerative Medicine, Laval University, Québec, QC, G1V 0A6, Canada
| | - D Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Québec, Division of Regenerative Medicine, Laval University, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
6
|
Su J, Guo L, Wu C. A mechanoresponsive PINCH-1-Notch2 interaction regulates smooth muscle differentiation of human placental mesenchymal stem cells. Stem Cells 2021; 39:650-668. [PMID: 33529444 DOI: 10.1002/stem.3347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/06/2021] [Indexed: 01/05/2023]
Abstract
Extracellular matrix (ECM) stiffness plays an important role in the decision making process of smooth muscle differentiation of mesenchymal stem cells (MSCs) but the underlying mechanisms are incompletely understood. Here we show that a signaling axis consisting of PINCH-1 and Notch2 is critically involved in mediating the effect of ECM stiffness on smooth muscle differentiation of MSCs. Notch2 level is markedly increased in ECM stiffness-induced smooth muscle differentiation of human placental MSCs. Knockdown of Notch2 from human placental MSCs effectively inhibits ECM stiffness-induced smooth muscle differentiation, whereas overexpression of North intracellular domain (NICD2) is sufficient to drive human placental MSC differentiation toward smooth muscle cells. At the molecular level, Notch2 directly interacts with PINCH-1. The interaction of Notch2 with PINCH-1 is significantly increased in response to ECM stiffness favoring smooth muscle differentiation. Furthermore, depletion of PINCH-1 from human placental MSCs reduces Notch2 level and consequently suppresses ECM stiffness-induced smooth muscle differentiation. Re-expression of PINCH-1, but not that of a Notch2-binding defective PINCH-1 mutant, in PINCH-1 knockdown human placental MSCs restores smooth muscle differentiation. Finally, overexpression of NICD2 is sufficient to override PINCH-1 deficiency-induced defect in smooth muscle differentiation. Our results identify an ECM stiffness-responsive PINCH-1-Notch2 interaction that is critically involved in ECM stiffness-induced smooth muscle differentiation of human placental MSCs.
Collapse
Affiliation(s)
- Jie Su
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Ling Guo
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, People's Republic of China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Chuanyue Wu
- Department of Pathology and the McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Cavinato C, Badel P, Krasny W, Avril S, Morin C. Experimental Characterization of Adventitial Collagen Fiber Kinematics Using Second-Harmonic Generation Imaging Microscopy: Similarities and Differences Across Arteries, Species and Testing Conditions. MULTI-SCALE EXTRACELLULAR MATRIX MECHANICS AND MECHANOBIOLOGY 2020. [DOI: 10.1007/978-3-030-20182-1_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Vahabikashi A, Park CY, Perkumas K, Zhang Z, Deurloo EK, Wu H, Weitz DA, Stamer WD, Goldman RD, Fredberg JJ, Johnson M. Probe Sensitivity to Cortical versus Intracellular Cytoskeletal Network Stiffness. Biophys J 2019; 116:518-529. [PMID: 30685055 DOI: 10.1016/j.bpj.2018.12.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 12/04/2018] [Accepted: 12/20/2018] [Indexed: 11/19/2022] Open
Abstract
In development, wound healing, and pathology, cell biomechanical properties are increasingly recognized as being of central importance. To measure these properties, experimental probes of various types have been developed, but how each probe reflects the properties of heterogeneous cell regions has remained obscure. To better understand differences attributable to the probe technology, as well as to define the relative sensitivity of each probe to different cellular structures, here we took a comprehensive approach. We studied two cell types-Schlemm's canal endothelial cells and mouse embryonic fibroblasts (MEFs)-using four different probe technologies: 1) atomic force microscopy (AFM) with sharp tip, 2) AFM with round tip, 3) optical magnetic twisting cytometry (OMTC), and 4) traction microscopy (TM). Perturbation of Schlemm's canal cells with dexamethasone treatment, α-actinin overexpression, or RhoA overexpression caused increases in traction reported by TM and stiffness reported by sharp-tip AFM as compared to corresponding controls. By contrast, under these same experimental conditions, stiffness reported by round-tip AFM and by OMTC indicated little change. Knockout (KO) of vimentin in MEFs caused a diminution of traction reported by TM, as well as stiffness reported by sharp-tip and round-tip AFM. However, stiffness reported by OMTC in vimentin-KO MEFs was greater than in wild type. Finite-element analysis demonstrated that this paradoxical OMTC result in vimentin-KO MEFs could be attributed to reduced cell thickness. Our results also suggest that vimentin contributes not only to intracellular network stiffness but also cortex stiffness. Taken together, this evidence suggests that AFM sharp tip and TM emphasize properties of the actin-rich shell of the cell, whereas round-tip AFM and OMTC emphasize those of the noncortical intracellular network.
Collapse
Affiliation(s)
- Amir Vahabikashi
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Chan Young Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kristin Perkumas
- Department of Ophthalmology, Duke University, Durham, North Carolina
| | - Zhiguo Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Emily K Deurloo
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Huayin Wu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - David A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts; Department of Physics, Harvard University, Cambridge, Massachusetts
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, North Carolina; Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jeffrey J Fredberg
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Mark Johnson
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois; Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Department of Mechanical Engineering, Northwestern University, Evanston, Illinois.
| |
Collapse
|
9
|
Klein D. iPSCs-based generation of vascular cells: reprogramming approaches and applications. Cell Mol Life Sci 2018; 75:1411-1433. [PMID: 29243171 PMCID: PMC5852192 DOI: 10.1007/s00018-017-2730-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022]
Abstract
Recent advances in the field of induced pluripotent stem cells (iPSCs) research have opened a new avenue for stem cell-based generation of vascular cells. Based on their growth and differentiation potential, human iPSCs constitute a well-characterized, generally unlimited cell source for the mass generation of lineage- and patient-specific vascular cells without any ethical concerns. Human iPSCs-derived vascular cells are perfectly suited for vascular disease modeling studies because patient-derived iPSCs possess the disease-causing mutation, which might be decisive for full expression of the disease phenotype. The application of vascular cells for autologous cell replacement therapy or vascular engineering derived from immune-compatible iPSCs possesses huge clinical potential, but the large-scale production of vascular-specific lineages for regenerative cell therapies depends on well-defined, highly reproducible culture and differentiation conditions. This review will focus on the different strategies to derive vascular cells from human iPSCs and their applications in regenerative therapy, disease modeling and drug discovery approaches.
Collapse
Affiliation(s)
- Diana Klein
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Virchowstr. 173, 45122, Essen, Germany.
| |
Collapse
|
10
|
Song HHG, Rumma RT, Ozaki CK, Edelman ER, Chen CS. Vascular Tissue Engineering: Progress, Challenges, and Clinical Promise. Cell Stem Cell 2018; 22:340-354. [PMID: 29499152 PMCID: PMC5849079 DOI: 10.1016/j.stem.2018.02.009] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although the clinical demand for bioengineered blood vessels continues to rise, current options for vascular conduits remain limited. The synergistic combination of emerging advances in tissue fabrication and stem cell engineering promises new strategies for engineering autologous blood vessels that recapitulate not only the mechanical properties of native vessels but also their biological function. Here we explore recent bioengineering advances in creating functional blood macro and microvessels, particularly featuring stem cells as a seed source. We also highlight progress in integrating engineered vascular tissues with the host after implantation as well as the exciting pre-clinical and clinical applications of this technology.
Collapse
Affiliation(s)
- H-H Greco Song
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Rowza T Rumma
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - C Keith Ozaki
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Elazer R Edelman
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Cardiology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Christopher S Chen
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Eddinger TJ. Reversible plasticity of detrusor smooth muscle: evidence for a key role of “slipping” actomyosin cross-bridges in the control of urinary bladder compliance. Am J Physiol Renal Physiol 2017; 313:F862-F863. [DOI: 10.1152/ajprenal.00227.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
Neal CJ, Lin JB, Hurley T, Miner AS, Speich JE, Klausner AP, Ratz PH. Slowly cycling Rho kinase-dependent actomyosin cross-bridge "slippage" explains intrinsic high compliance of detrusor smooth muscle. Am J Physiol Renal Physiol 2017; 313:F126-F134. [PMID: 28356291 DOI: 10.1152/ajprenal.00633.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 01/12/2023] Open
Abstract
Biological soft tissues are viscoelastic because they display time-independent pseudoelasticity and time-dependent viscosity. However, there is evidence that the bladder may also display plasticity, defined as an increase in strain that is unrecoverable unless work is done by the muscle. In the present study, an electronic lever was used to induce controlled changes in stress and strain to determine whether rabbit detrusor smooth muscle (rDSM) is best described as viscoelastic or viscoelastic plastic. Using sequential ramp loading and unloading cycles, stress-strain and stiffness-stress analyses revealed that rDSM displayed reversible viscoelasticity, and that the viscous component was responsible for establishing a high stiffness at low stresses that increased only modestly with increasing stress compared with the large increase produced when the viscosity was absent and only pseudoelasticity governed tissue behavior. The study also revealed that rDSM underwent softening correlating with plastic deformation and creep that was reversed slowly when tissues were incubated in a Ca2+-containing solution. Together, the data support a model of DSM as a viscoelastic-plastic material, with the plasticity resulting from motor protein activation. This model explains the mechanism of intrinsic bladder compliance as "slipping" cross bridges, predicts that wall tension is dependent not only on vesicle pressure and radius but also on actomyosin cross-bridge activity, and identifies a novel molecular target for compliance regulation, both physiologically and therapeutically.
Collapse
Affiliation(s)
- Christopher J Neal
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia; and
| | - Jia B Lin
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Tanner Hurley
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Amy S Miner
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - John E Speich
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia; and
| | - Adam P Klausner
- Department of Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Paul H Ratz
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia;
| |
Collapse
|
13
|
Chen Q, Wang Y, Li ZY. Re-examination of the mechanical anisotropy of porcine thoracic aorta by uniaxial tensile tests. Biomed Eng Online 2016; 15:167. [PMID: 28155705 PMCID: PMC5259859 DOI: 10.1186/s12938-016-0279-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objective Considering past studies on the orthotropic anisotropy of arteries in the circumferential and axial directions, this work aims to experimentally study the anisotropic behaviour of arteries by tensioning multi-directional strips of porcine thoracic aorta. Methods Histology is first analyzed by staining arterial sections of three orthotropic (axial, circumferential, and radial) planes. 168 stripped samples from 21 aortas are categorized into three loading-rate groups to investigate the influence of loading rates on the Young’s modulus and ultimate stress. Basing on the Young’s modulus and ultimate stress, the degree of anisotropy is calculated. Moreover, 24 stripped samples from 3 aortas are tested to study the relaxation anisotropy of arteries by fitting the experimental data with a five-parameter Maxwell reduced relaxation function. Results Histological analysis shows the parallel orientation of crimpled collagen and elastin fibres. The Young’s modulus and ultimate stress reach the greatest in the circumferential direction, and the smallest in the axial direction, respectively, and the values in the other directions are in-between; moreover, the two parameters monotonously increase as the samples orientate from the axial to circumferential directions. The Young’s modulus is more sensitive to the loading rate than the ultimate stress. The degree of anisotropy calculated by the Young's modulus is similar to that by the ultimate stress, and it is independent of loading rates. Stress-relaxation also exhibits anisotropy, whose variation is consistent with those of the two parameters. Conclusions Due to the stress-growth rule, fibre preferably orientates in the circumferential direction, and the preferable orientation results in great mechanical parameters, anisotropy, and small relaxation behaviour of arteries. The work extends the studies on the arterial anisotropy instead of only the circumferential and axial directions, and could be useful to comprehensively understand the anisotropy of arteries.
Collapse
Affiliation(s)
- Qiang Chen
- Biomechanics Laboratory, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| | - Yan Wang
- Biomechanics Laboratory, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Zhi-Yong Li
- Biomechanics Laboratory, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China. .,School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|