1
|
Cao Z, Jiang X, He Y, Zheng X. Metabolic landscape in venous thrombosis: insights into molecular biology and therapeutic implications. Ann Med 2024; 56:2401112. [PMID: 39297312 DOI: 10.1080/07853890.2024.2401112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/20/2024] [Accepted: 05/12/2024] [Indexed: 09/21/2024] Open
Abstract
The findings of the last decade suggest a complex link between inflammatory cells, coagulation, and the activation of platelets and their synergistic interaction to promote venous thrombosis. Inflammation is present throughout the process of venous thrombosis, and various metabolic pathways of erythrocytes, endothelial cells, and immune cells involved in venous thrombosis, including glucose metabolism, lipid metabolism, homocysteine metabolism, and oxidative stress, are associated with inflammation. While the metabolic microenvironment has been identified as a marker of malignancy, recent studies have revealed that for cancer thrombosis, alterations in the metabolic microenvironment appear to also be a potential risk. In this review, we discuss how the synergy between metabolism and thrombosis drives thrombotic disease. We also explore the great potential of anti-inflammatory strategies targeting venous thrombosis and the complex link between anti-inflammation and metabolism. Furthermore, we suggest how we can use our existing knowledge to reduce the risk of venous thrombosis.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yiyu He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoxin Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Xiao K, Xv Z, Liu L, Yang B, Cao H, Wang J, Xv Y, Li Q, Hou Y, Feng F, Wang J, Feng H. Relationship between homocysteine and chronic total coronary occlusion: a cross-sectional study from southwest China. Cardiol Young 2024; 34:740-747. [PMID: 37811581 DOI: 10.1017/s1047951123003414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BACKGROUND Chronic total coronary occlusion is among the most complex coronary artery diseases. Elevated homocysteine is a risk factor for coronary artery diseases. However, few studies have assessed the relationship between homocysteine and chronic total coronary occlusion. METHODS 1295 individuals from Southwest China were enrolled in the study. Chronic total coronary occlusion was defined as complete occlusion of coronary artery for more than three months. Homocysteine was divided into quartiles according to its level. Univariate and multivariate logistic regression models, receiver operating characteristic curves, and subgroup analysis were applied to assess the relationship between homocysteine and chronic total coronary occlusion. RESULTS Subjects in the higher homocysteine quartile had a higher rate of chronic total coronary occlusion (P < 0.001). After adjustment, the odds ratio for chronic total coronary occlusion in the highest quartile of homocysteine compared with the lowest was 1.918 (95% confidence interval 1.237-2.972). Homocysteine ≥ 15.2 μmol/L was considered an independent indicator of chronic total coronary occlusion (odds ratio 1.53, 95% confidence interval 1.05-2.23; P = 0.0265). The area under the receiver operating characteristic curve was 0.659 (95% confidence interval, 0.618-0.701; P < 0.001). Stronger associations were observed in elderly and in those with hypertension and diabetes. CONCLUSIONS Elevated homocysteine is significantly associated with chronic total coronary occlusion, particularly in elderly and those with hypertension and diabetes.
Collapse
Affiliation(s)
- Kaiyong Xiao
- Department of Cardiology, Guangyuan Central Hospital, Guangyuan, SC, China
| | - Zhe Xv
- Department of Pediatric Medicine, Guangyuan Central Hospital, Guangyuan, SC, China
| | - Liang Liu
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, SX, China
| | - Bin Yang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, SX, China
| | - Huili Cao
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, SX, China
| | - Jianping Wang
- Department of Cardiology, Guangyuan Central Hospital, Guangyuan, SC, China
| | - Yuling Xv
- Sterilization Supply Center, Guangyuan Central Hospital, Guangyuan, SC, China
| | - Qingrui Li
- Department of Cardiology, Guangyuan Central Hospital, Guangyuan, SC, China
| | - Yulin Hou
- Department of Cardiology, Guangyuan Central Hospital, Guangyuan, SC, China
| | - Feifei Feng
- Department of Cardiology, Guangyuan Central Hospital, Guangyuan, SC, China
| | - Jie Wang
- Department of Cardiology, Guangyuan Central Hospital, Guangyuan, SC, China
| | - Hui Feng
- Medical Laboratory Center, Guangyuan Central Hospital, Guangyuan, SC, China
| |
Collapse
|
3
|
Zhou L. Homocysteine and Parkinson's disease. CNS Neurosci Ther 2024; 30:e14420. [PMID: 37641911 PMCID: PMC10848096 DOI: 10.1111/cns.14420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
Homocysteine (Hcy) is an important metabolite in methionine metabolism. When the metabolic pathway of homocysteine is abnormal, it will accumulate in the body and eventually lead to hyperhomocysteinemia. In recent years, many studies have found that hyperhomocysteinemia is related to the occurrence and development of Parkinson's disease. This study reviews the roles of homocysteine in the pathogenesis of Parkinson's disease and illustrates the harmful effects of hyperhomocysteinemia on Parkinson's disease.
Collapse
Affiliation(s)
- Lingyan Zhou
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| |
Collapse
|
4
|
Corona-Trejo A, Gonsebatt ME, Trejo-Solis C, Campos-Peña V, Quintas-Granados LI, Villegas-Vázquez EY, Daniel Reyes-Hernández O, Hernández-Abad VJ, Figueroa-González G, Silva-Adaya D. Transsulfuration pathway: a targeting neuromodulator in Parkinson's disease. Rev Neurosci 2023; 34:915-932. [PMID: 37409540 DOI: 10.1515/revneuro-2023-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/04/2023] [Indexed: 07/07/2023]
Abstract
The transsulfuration pathway (TSP) is a metabolic pathway involving sulfur transfer from homocysteine to cysteine. Transsulfuration pathway leads to many sulfur metabolites, principally glutathione, H2S, taurine, and cysteine. Key enzymes of the TSP, such as cystathionine β-synthase and cystathionine γ-lyase, are essential regulators at multiple levels in this pathway. TSP metabolites are implicated in many physiological processes in the central nervous system and other tissues. TSP is important in controlling sulfur balance and optimal cellular functions such as glutathione synthesis. Alterations in the TSP and related pathways (transmethylation and remethylation) are altered in several neurodegenerative diseases, including Parkinson's disease, suggesting their participation in the pathophysiology and progression of these diseases. In Parkinson's disease many cellular processes are comprised mainly those that regulate redox homeostasis, inflammation, reticulum endoplasmic stress, mitochondrial function, oxidative stress, and sulfur content metabolites of TSP are involved in these damage processes. Current research on the transsulfuration pathway in Parkinson's disease has primarily focused on the synthesis and function of certain metabolites, particularly glutathione. However, our understanding of the regulation of other metabolites of the transsulfuration pathway, as well as their relationships with other metabolites, and their synthesis regulation in Parkinson´s disease remain limited. Thus, this paper highlights the importance of studying the molecular dynamics in different metabolites and enzymes that affect the transsulfuration in Parkinson's disease.
Collapse
Affiliation(s)
- Andrea Corona-Trejo
- Carrera de Biología, Laboratorio de Farmacogenética, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | - María E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Cristina Trejo-Solis
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Mexico, 14269, Mexico
| | - Victoria Campos-Peña
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Mexico, 14269, Mexico
| | | | - Edgar Yebrán Villegas-Vázquez
- Laboratorio de Farmacogenética, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, 09230 Mexico City, Mexico
| | - Octavio Daniel Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | - Vicente Jesús Hernández-Abad
- Laboratorio de Investigación Farmacéutica, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla de 5 de mayo s/n, Col, Ejército de Oriente, 09230 Mexico City, Mexico
| | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, 09230 Mexico City, Mexico
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Mexico, 14269, Mexico
| |
Collapse
|
5
|
Liu Z, Li Y, Cheng F, Zhou Y, Chen M, Ning C, Zhang B, Zhao Y. Homocysteine Combined with Apolipoprotein B as Serum Biomarkers for Predicting Carotid Atherosclerosis in the Oldest-Old. Clin Interv Aging 2023; 18:1961-1972. [PMID: 38033754 PMCID: PMC10683658 DOI: 10.2147/cia.s428776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
Background The measurement of serum biomarkers is a promising decision aid in the assessment of atherosclerosis. However, data on the levels and epidemiological distribution of serum biomarkers of carotid atherosclerosis (CAS) in the oldest-old are limited. This study aimed to investigate the characteristics of CAS serum biomarkers in the oldest-old over 80 and explore their predictive value for CAS. Methods As part of the China Hainan Centenarian Cohort Study, a total of 1565 individuals over 80 years old were included. Atherosclerosis was assessed by carotid plaque and carotid intima-media thickness. Serum biomarker levels, demographic indicators, and physical examination indicators were detected. Prediction factors correlated to the CAS were explored by logistic regression and verified by receiver operating characteristic curve analysis. Multivariate regression models were fitted, along with subgroup analysis and robustness tests. Results Among the oldest-old population, 83.5% (1306) had CAS. In a fully adjusted multivariate logistic regression model, systolic blood pressure (SBP), heart rhythm (HR), serum homocysteine (Hcy), and apolipoprotein B (ApoB) levels were significantly and positively associated with CAS in the oldest-old (PS < 0.001). ROC analysis indicated that the combination of serum Hcy, ApoB, SBP, and HR increased the predictive value for CAS in the oldest-old (area under the curve: 0.856, 95% CI: 0.803-0.879; sensitivity: 81.8%; specificity: 85.9%). Conclusion SBP, HR, Hcy and ApoB are independent risk factors for CAS in the oldest-old. The specific set of biomarkers and their combination with other risk markers may be a promising strategy for assessing CAS in the elderly, especially in global aging.
Collapse
Affiliation(s)
- Zhaoyu Liu
- Clinical Laboratory, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan, People’s Republic of China
| | - Yan Li
- Transfusion Medicine Department, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan, People’s Republic of China
| | - Fei Cheng
- Clinical Laboratory, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan, People’s Republic of China
| | - Yue Zhou
- Clinical Laboratory, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan, People’s Republic of China
| | - Miao Chen
- Clinical Laboratory, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan, People’s Republic of China
| | - Chaoxue Ning
- Central Laboratory, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan, People’s Republic of China
| | - Bingqi Zhang
- Ultrasound Diagnosis Department, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan, People’s Republic of China
| | - Yali Zhao
- Central Laboratory, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan, People’s Republic of China
| |
Collapse
|
6
|
Phokaewvarangkul O, Bhidayasiri R, Garcia-Ruiz P, Odin P, Riederer P, Müller T. Homocysteine, vitamin B metabolites, dopamine-substituting compounds, and symptomatology in Parkinson's disease: clinical and therapeutic considerations. J Neural Transm (Vienna) 2023; 130:1451-1462. [PMID: 37603058 DOI: 10.1007/s00702-023-02684-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023]
Abstract
Emerging studies suggest a correlation between elevated plasma homocysteine (hcy) levels and the risk of atherosclerosis, vascular disorders, and neurodegenerative diseases, including Parkinson's disease (PD). This narrative review delves into the intricate relationships between Hcy, vitamin B metabolites, dopamine-substituting compounds, and various symptoms of PD. Patients undergoing a long-term L-dopa/dopa-decarboxylase inhibitor (DDI) regimen, especially without a concurrent catechol-O-methyl transferase (COMT) inhibitor or methyl group-donating vitamin supplementation, such as vitamins B6 and B12, exhibit an elevation in Hcy and a decline in vitamin B metabolites. These altered concentrations appear to be associated with heightened risks of developing non-motor symptoms, including peripheral neuropathy and cognitive disturbances. The review underscores the impact of levodopa metabolism via COMT on homocysteine levels. In light of these findings, we advocate for the supplementation of methyl group-donating vitamins, notably B6 and B12, in patients undergoing a high-dose L-dopa/DDI regimen, particularly those treated with L-dopa/carbidopa intestinal gel (LCIG) infusion.
Collapse
Affiliation(s)
- Onanong Phokaewvarangkul
- Chulalongkorn Centre of Excellence for Parkinson's Disease & Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson's Disease & Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand.
- The Academy of Science, The Royal Society of Thailand, Bangkok, 10330, Thailand.
| | - Pedro Garcia-Ruiz
- Movement Disorders Unit, Department of Neurology, Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain
| | - Per Odin
- Division of Neurology, Department of Clinical Sciences Lund, Restorative Parkinson Unit, Lund University, 221 84, Lund, Sweden
| | - Peter Riederer
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Margarete-Höppel Platz 1, 97080, Würzburg, Germany
| | - Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weissensee, Gartenstr. 1, 13088, Berlin, Germany
| |
Collapse
|
7
|
Xiao K, Xv Z, Xv Y, Wang J, Xiao L, Kang Z, Zhu J, He Z, Huang G. H-type hypertension is a risk factor for chronic total coronary artery occlusion: a cross-sectional study from southwest China. BMC Cardiovasc Disord 2023; 23:301. [PMID: 37328790 PMCID: PMC10273712 DOI: 10.1186/s12872-023-03345-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Chronic total coronary occlusion (CTO) is serious and the "last bastion" of percutaneous coronary intervention. Hypertension and hyperhomocysteinemia (HHCY) are synergistic and significantly increase cardiovascular event risk. The relationship between H-type hypertension and CTO remains unclear; thus, this cross-sectional study investigated this potential association. METHODS Between January 2018 and June 2022, 1446 individuals from southwest China were recruited to participate in this study. CTO was defined as complete coronary artery occlusion persisting for over three months. H-type hypertension was defined as hypertension with plasma homocysteine levels ≥ 15 µmol/L. Multivariate logistic regression models were applied to assess the association between H-type hypertension and CTO. Receiver operating characteristic (ROC) curves were generated to determine the accuracy of H-type hypertension in predicting CTO. RESULTS Of the 1446 individuals, 397 had CTO, and 545 had H-type hypertension. After multivariate adjustment, the odds ratio (OR) for CTO in individuals with H-type hypertension was 2.3-fold higher (95% CI 1.01-5.26) than that in healthy controls. The risk of CTO is higher in individuals with H-type hypertension than in those with isolated HHCY and hypertension. The area under the ROC curve for CTO was 0.685 (95% CI, 0.653-0.717) for H-type hypertension. CONCLUSIONS In southwest China, H-type hypertension is significantly related to the occurrence of CTO. TRIAL REGISTRATION This retrospective study was registered with the Chinese Clinical Trials Registry ( http://www.chictr.org.cn , ChiCTR2100050519.2.2).
Collapse
Affiliation(s)
- Kaiyong Xiao
- Department of Cardiology, Guangyuan Central Hospital, 16 Jingxiangzi, Lizhou District, Guangyuan, 628017, Sichuan, China.
| | - Zhe Xv
- Department of Pediatric Medicine, Guangyuan Central Hospital, 16 Jingxiangzi, Lizhou District, Guangyuan, 628017, Sichuan, China
| | - Yuling Xv
- Sterilization Supply Center, Guangyuan Central Hospital, 16 Jingxiangzi, Lizhou District, Guangyuan, 628017, Sichuan, China
| | - Jianping Wang
- Department of Cardiology, Guangyuan Central Hospital, 16 Jingxiangzi, Lizhou District, Guangyuan, 628017, Sichuan, China
| | - Lian Xiao
- Department of Cardiology, Guangyuan Central Hospital, 16 Jingxiangzi, Lizhou District, Guangyuan, 628017, Sichuan, China
| | - Zhou Kang
- Department of Medical Statistics, Guangyuan Central Hospital, 16 Jingxiangzi, Lizhou District, Guangyuan, 628017, Sichuan, China
| | - Jianhui Zhu
- Department of Cardiology, Guangyuan Central Hospital, 16 Jingxiangzi, Lizhou District, Guangyuan, 628017, Sichuan, China
| | - Zhongwei He
- Department of Cardiology, Guangyuan Central Hospital, 16 Jingxiangzi, Lizhou District, Guangyuan, 628017, Sichuan, China
| | - Guan Huang
- Medical Laboratory Center, Guangyuan Central Hospital, 16 Jingxiangzi, Lizhou District, Guangyuan, 628017, Sichuan, China
| |
Collapse
|
8
|
Korczowska-Łącka I, Hurła M, Banaszek N, Kobylarek D, Szymanowicz O, Kozubski W, Dorszewska J. Selected Biomarkers of Oxidative Stress and Energy Metabolism Disorders in Neurological Diseases. Mol Neurobiol 2023; 60:4132-4149. [PMID: 37039942 DOI: 10.1007/s12035-023-03329-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/22/2023] [Indexed: 04/12/2023]
Abstract
Neurological diseases can be broadly divided according to causal factors into circulatory system disorders leading to ischemic stroke; degeneration of the nerve cells leading to neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD) diseases, and immune system disorders; bioelectric activity (epileptic) problems; and genetically determined conditions as well as viral and bacterial infections developing inflammation. Regardless of the cause of neurological diseases, they are usually accompanied by disturbances of the central energy in a completely unexplained mechanism. The brain makes up only 2% of the human body's weight; however, while working, it uses as much as 20% of the energy obtained by the body. The energy requirements of the brain are very high, and regulatory mechanisms in the brain operate to ensure adequate neuronal activity. Therefore, an understanding of neuroenergetics is rapidly evolving from a "neurocentric" view to a more integrated picture involving cooperativity between structural and molecular factors in the central nervous system. This article reviewed selected molecular biomarkers of oxidative stress and energy metabolism disorders such as homocysteine, DNA damage such as 8-oxo2dG, genetic variants, and antioxidants such as glutathione in selected neurological diseases including ischemic stroke, AD, PD, and epilepsy. This review summarizes our and others' recent research on oxidative stress in neurological disorders. In the future, the diagnosis and treatment of neurological diseases may be substantially improved by identifying specific early markers of metabolic and energy disorders.
Collapse
Affiliation(s)
- Izabela Korczowska-Łącka
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49, Przybyszewskiego St, 60-355, Poznan, Poland
| | - Mikołaj Hurła
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49, Przybyszewskiego St, 60-355, Poznan, Poland
| | - Natalia Banaszek
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49, Przybyszewskiego St, 60-355, Poznan, Poland
| | - Dominik Kobylarek
- Chair and Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Oliwia Szymanowicz
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49, Przybyszewskiego St, 60-355, Poznan, Poland
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49, Przybyszewskiego St, 60-355, Poznan, Poland.
| |
Collapse
|
9
|
Controlling the Impact of Helicobacter pylori-Related Hyperhomocysteinemia on Neurodegeneration. Medicina (B Aires) 2023; 59:medicina59030504. [PMID: 36984505 PMCID: PMC10056452 DOI: 10.3390/medicina59030504] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Helicobacter pylori infection consists a high global burden affecting more than 50% of the world’s population. It is implicated, beyond substantiated local gastric pathologies, i.e., peptic ulcers and gastric cancer, in the pathophysiology of several neurodegenerative disorders, mainly by inducing hyperhomocysteinemia-related brain cortical thinning (BCT). BCT has been advocated as a possible biomarker associated with neurodegenerative central nervous system disorders such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and/or glaucoma, termed as “ocular Alzheimer’s disease”. According to the infection hypothesis in relation to neurodegeneration, Helicobacter pylori as non-commensal gut microbiome has been advocated as trigger and/or mediator of neurodegenerative diseases, such as the development of Alzheimer’s disease. Among others, Helicobacter pylori-related inflammatory mediators, defensins, autophagy, vitamin D, dietary factors, role of probiotics, and some pathogenetic considerations including relevant involved genes are discussed within this opinion article. In conclusion, by controlling the impact of Helicobacter pylori-related hyperhomocysteinemia on neurodegenerative disorders might offer benefits, and additional research is warranted to clarify this crucial topic currently representing a major worldwide burden.
Collapse
|
10
|
Wang T, Liu L, Deng J, Jiang Y, Yan X, Liu W. Analysis of the mechanism of action of quercetin in the treatment of hyperlipidemia based on metabolomics and intestinal flora. Food Funct 2023; 14:2112-2127. [PMID: 36740912 DOI: 10.1039/d2fo03509j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hyperlipidemia (HLP) is one of the main factors leading to cardiovascular diseases. Quercetin (QUE) is a naturally occurring polyhydroxy flavonoid compound that has a wide range of pharmacological effects. However, the potential mechanism for treating HLP remains unclear. Thus, the study aimed to investigate the role of QUE in HLP development and its underlying mechanisms in HLP rats based on the analysis of gut microbiota and plasma metabolomics. Following the establishment of an HLP model in rats, QUE was orally administered. Plasma samples and fecal samples were collected from HLP rats for microbiome 16S rDNA sequencing and metabolic UPLC-Q-Exactive-MS analysis. The results suggested that QUE could regulate dyslipidemia and inhibit the levels of TC, TG, and LDL-c. Additionally, histopathological findings revealed that QUE could reduce lipid deposition, ameliorate hepatic injury and steatosis in HFD-induced rats, and have a protective effect on the liver. The analysis and identification of plasma metabolomics showed that the intervention effect of QUE on HLP rats was related to 60 differential metabolites and signal pathways such as lactosamine, 11b-hydroxyprogesterone, arachidonic acid, glycerophospholipid, sphingolipid, glycerolipid, and linoleic acid metabolism. Combined with fecal microbiological analysis, it was found that QUE could significantly change the composition of intestinal flora in HLP rats, increase beneficial bacteria, and reduce the composition of harmful bacteria, attenuating the Firmicutes/Bacteroidetes ratio. The results of correlation analysis showed that the relative abundance level of Firmicutes, Deironobacterium, Fusobacterium, Bacteroides, and Escherichia coli was closely related to the change of differential metabolites. In summary, combined with metabolomics and gut microbiota studies, it is found that QUE can reduce lipid levels and improve liver function. The potential mechanism may be the regulation of metabolism and intestinal flora that play a role in reducing lipid levels, to achieve the purpose of treatment of HLP.
Collapse
Affiliation(s)
- Tongtong Wang
- Department of Pharmacy, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha, Hunan, 410000, P. R. China.
| | - Ling Liu
- Department of Pharmacy, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha, Hunan, 410000, P. R. China.
| | - Jun Deng
- Department of Pharmacy, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha, Hunan, 410000, P. R. China.
| | - Yu Jiang
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabolomics, Changsha, Hunan, 410000, P. R. China
| | - Xiao Yan
- Department of Pharmacy, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha, Hunan, 410000, P. R. China.
| | - Wen Liu
- Department of Pharmacy, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha, Hunan, 410000, P. R. China.
| |
Collapse
|
11
|
Ma C, Zhang W, Mao L, Zhang G, Shen Y, Chang H, Xu X, Li Z, Lu H. Hyperhomocysteinemia and intracranial aneurysm: A mendelian randomization study. Front Neurol 2022; 13:948989. [PMID: 36247759 PMCID: PMC9554923 DOI: 10.3389/fneur.2022.948989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To investigate the link between genetic variants associated with plasma homocysteine levels and risk of intracranial aneurysm (IA) using two-sample Mendelian randomization. Methods We used single-nucleotide polymorphisms associated with human plasma homocysteine levels as instrumental variables for the primary analysis in a genome-wide association study of 44,147 subjects of European ancestry. Summary-level statistics were obtained for 79,429 individuals, including 7,495 IA cases and 71,934 controls. To enhance validity, five different Mendelian randomization methods (MR-Egger, weighted median, inverse variance weighted, simple mode, and weighted mode) were used for the analyses. Results The inverse variance weighted analysis method produced P-values of 0.398 for aneurysmal subarachnoid hemorrhage [odds ratio (OR): 1.104; 95% confidence interval (CI): 0.878–1.387], 0.246 for IA (OR: 1.124; 95% CI: 0.923–1.368), and 0.644 for unruptured IA (OR: 1.126; 95% CI: 0.682–1.858). The MR-Egger analysis showed no association between IAs and homocysteine, with all P > 0.05. Conclusion Using gene-related instrumental variables, the Mendelian randomization analyses demonstrated a lack of an association between plasma homocysteine levels and IAs or aneurysmal subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Chencheng Ma
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, China
| | - Weiwei Zhang
- Department of Ophthalmology, Third Medical Center of Chinese PLA General Hospital, Nanjing, China
| | - Lei Mao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, China
| | - Guangjian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, China
| | - Yuqi Shen
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, China
| | - Hanxiao Chang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, China
| | - Xiupeng Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, China
| | - Zheng Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, China
- *Correspondence: Zheng Li
| | - Hua Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, China
- Hua Lu
| |
Collapse
|
12
|
Shcherbitskaia AD, Kovalenko AA, Milyutina YP, Vasilev DS. Thyroid Hormone Production and Transplacental Transfer in the “Mother–Fetus” System during Gestational Hyperhomocysteinemia. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422030102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Fu Y, Yun W, Zhang Z, Ma Y, Xiao L, Zhang M, Zhu W. Homocysteine is related to enlarged perivascular spaces in the brainstem in patients with isolated pontine infarction. BMC Neurol 2022; 22:296. [PMID: 35953791 PMCID: PMC9367109 DOI: 10.1186/s12883-022-02744-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/03/2022] [Indexed: 12/03/2022] Open
Abstract
Background Homocysteine is correlated with several imaging features of cerebral small vessel disease including white matter hyperintensities, lacunes, and enlarged perivascular spaces (EPVS) in the basal ganglia. However, little is known about EPVS in the brainstem. This study aimed to investigate the correlation between serum total homocysteine (tHcy) and EPVS in the brainstem in patients with acute isolated pontine infarction. Methods Consecutive patients with isolated pontine infarction were retrospectively enrolled. Clinical characteristics and laboratory tests including tHcy were recorded. Imaging markers of cerebral small vessel disease including EPVS in the basal ganglia (BG-EPVS), EPVS in the centrum semiovale, and EPVS in the midbrain or pons (brainstem-EPVS) were assessed using conventional magnetic resonance imaging. The relation between tHcy and EPVS of different parts in the brain was analyzed using univariate and multivariate regression model. Results A total of 227 patients were included (mean age 67.10 ± 9.38 years, male sex 58.6%). The frequencies of brainstem-EPVS and moderate to severe BG-EPVS accounted for 40.1% (91/227) and 40.5% (92/227) respectively. After controlling for confounding factors, multivariate logistic regression analyses showed that tHcy was an independent risk factor for both moderate to severe BG-EPVS (P = 0.003, P for trend < 0.001) and the presence of brainstem-EPVS (P < 0.001, P for trend < 0.001) in a dose-dependent manner. Furthermore, multivariate linear regression model indicated that the presence of brainstem-EPVS (β = 0.264, 95% confidence interval = 0.143-0.402, P < 0.001) and the severity of BG-EPVS (β = 0.162, 95% confidence interval = 0.024-0.197, P = 0.013) were positively associated with serum tHcy. Conclusions Serum tHcy is correlated with brainstem-EPVS and BG-EPVS dose-dependently. This study may support a contributing role for homocysteine in the pathophysiology of EPVS in the brainstem and the basal ganglia.
Collapse
Affiliation(s)
- Yunting Fu
- Department of Neurology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, No.29, Xinglong Lane, Changzhou, Jiangsu Province, 213004, China
| | - Wenwei Yun
- Department of Neurology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, No.29, Xinglong Lane, Changzhou, Jiangsu Province, 213004, China
| | - Zhixiang Zhang
- Department of Neurology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, No.29, Xinglong Lane, Changzhou, Jiangsu Province, 213004, China
| | - Yi Ma
- Department of Radiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Lulu Xiao
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Min Zhang
- Department of Neurology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, No.29, Xinglong Lane, Changzhou, Jiangsu Province, 213004, China.
| | - Wusheng Zhu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China. .,Department of Neurology, Jinling Clinical Medical College of Nanjing Medical University, No.305, East Zhongshan Road, Nanjing, 210002, Jiangsu Province, China.
| |
Collapse
|
14
|
Kong J, Deng Y. Pirfenidone alleviates vascular intima injury caused by hyperhomocysteinemia. Rev Port Cardiol 2022; 41:813-819. [DOI: 10.1016/j.repc.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 10/17/2022] Open
|
15
|
Xiong J, Ma F, Ding N, Xu L, Ma S, Yang A, Hao Y, Zhang H, Jiang Y. miR-195-3p alleviates homocysteine-mediated atherosclerosis by targeting IL-31 through its epigenetics modifications. Aging Cell 2021; 20:e13485. [PMID: 34592792 PMCID: PMC8520716 DOI: 10.1111/acel.13485] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/25/2021] [Accepted: 09/12/2021] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a serious age-related disease, which has a tremendous impact on health care globally. Macrophage inflammation is crucial for the initiation and progression of atherosclerosis, and microRNAs (miRNAs) recently have emerged as potent modulators of inflammation, while the underlying mechanisms of its involvement in homocysteine (Hcy)-mediated macrophage inflammation of atherosclerosis remain largely unknown. Here, we demonstrated that elevated Hcy inhibits the expression of miR-195-3p, which in turn enhances IL-31 expression and thereby causes the secretion of macrophages pro-inflammatory factors IL-1β, IL-6 and TNF-α and accelerate atherosclerosis. Furthermore, we identified that Hcy can induce DNA hypermethylation and H3K9 deacetylation of miR-195-3p promoter due to the increased the binding of DNMT3a and HDAC11 at its promoter. More importantly, Sp1 interacts with DNMT3a suppressed the binding of HDAC11 at miR-195-3p promoter and promoted its transcription. In summary, our results revealed a novel mechanism that transcriptional and epigenetic regulation of miR-195-3p inhibits macrophage inflammation through targeting IL-31, which provides a candidate diagnostic marker and novel therapeutic target in cardiovascular diseases induced by Hcy.
Collapse
Affiliation(s)
- Jiantuan Xiong
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| | - Fang Ma
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| | - Ning Ding
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| | - Lingbo Xu
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| | - Shengchao Ma
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| | - Anning Yang
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| | - Yinju Hao
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| | - Huiping Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
- Prenatal Diagnosis Center, General Hospital of Ningxia Medical University Yinchuan China
| | - Yideng Jiang
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| |
Collapse
|
16
|
Ravi R, Kumaraswamy A, Chauhan P, Subramaniam Rajesh B. Exogenous administration of hydrogen sulfide alleviates homocysteine induced inflammation in ARPE-19 cells. Exp Eye Res 2021; 212:108759. [PMID: 34499917 DOI: 10.1016/j.exer.2021.108759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/21/2021] [Accepted: 09/01/2021] [Indexed: 02/03/2023]
Abstract
Plasma homocysteine (Hcy) is an independent risk factor for Age related macular degeneration (AMD) and an inducer of inflammation. Homocysteine catabolism releases hydrogen sulfide (H2S). H2S has controversial effects on inflammation. In this study we have analysed the endogenous and exogenous H2S in modulating inflammation using adult retinal pigment epithelial (ARPE-19) cells as an in vitro model for AMD. ARPE-19 cells were treated with various concentrations of Hcy (15, 30 and 50 μM) for 3 h. Expression of Hcy transulfuration genes (CBS, CSE) by qPCR and western blot. H2S levels were measured using Free Radical Analyzer System (WPI, USA). The inflammatory markers (IL-6 and IL-8) were evaluated using real-time PCR and ELISA. Hcy exposure increased CBS protein expression, hydrogen sulfide levels and pro-inflammatory cytokines, modulating CBS by silencing did not alter H2S levels, but inhibition of CSE with PAG inhibited H2S production and decreased cytokine (IL-6 and IL-8) levels. On the contrary exogenous supply of hydrogen sulfide with NaHS and by compound 1c showed anti-inflammatory effects even in the presence of Hcy. This study shows that exogenous delivery of H2S decreases inflammation in retinal pigment epithelial cells on exposure to Hcy in ARPE-19 cells.
Collapse
Affiliation(s)
- Ramya Ravi
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai, 600006, India; School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, India
| | - Anand Kumaraswamy
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai, 600006, India
| | - Preeti Chauhan
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan Pune, 411 008, Maharashtra, India
| | - Bharathidevi Subramaniam Rajesh
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai, 600006, India.
| |
Collapse
|
17
|
Du T, Gao J, Li P, Wang Y, Qi Q, Liu X, Li J, Wang C, Du L. Pyroptosis, metabolism, and tumor immune microenvironment. Clin Transl Med 2021; 11:e492. [PMID: 34459122 PMCID: PMC8329701 DOI: 10.1002/ctm2.492] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
In response to a wide range of stimulations, host cells activate pyroptosis, a kind of inflammatory cell death which is provoked by the cytosolic sensing of danger signals and pathogen infection. In manipulating the cleavage of gasdermins (GSDMs), researchers have found that GSDM proteins serve as the real executors and the deterministic players in fate decisions of pyroptotic cells. Whether inflammatory characteristics induced by pyroptosis could cause damage the host or improve immune activity is largely dependent on the context, timing, and response degree. Here, we systematically review current points involved in regulatory mechanisms and the multidimensional roles of pyroptosis in several metabolic diseases and the tumor microenvironment. Targeting pyroptosis may reveal potential therapeutic avenues.
Collapse
Affiliation(s)
- Tiantian Du
- Department of Clinical LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Jie Gao
- Department of Clinical LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Peilong Li
- Department of Clinical LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Yunshan Wang
- Department of Clinical LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Qiuchen Qi
- Department of Clinical LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Xiaoyan Liu
- Department of Clinical LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Juan Li
- Department of Clinical LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Chuanxin Wang
- Department of Clinical LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
- Shandong Engineering and Technology Research Center for Tumor Marker DetectionJinanShandongChina
- Shandong Provincial Clinical Medicine Research Center for Clinical LaboratoryJinanShandongChina
| | - Lutao Du
- Department of Clinical LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
- Shandong Engineering and Technology Research Center for Tumor Marker DetectionJinanShandongChina
- Shandong Provincial Clinical Medicine Research Center for Clinical LaboratoryJinanShandongChina
| |
Collapse
|
18
|
Mild Hyperhomocysteinemia Causes Anxiety-like Behavior and Brain Hyperactivity in Rodents: Are ATPase and Excitotoxicity by NMDA Receptor Overstimulation Involved in this Effect? Cell Mol Neurobiol 2021; 42:2697-2714. [PMID: 34324129 DOI: 10.1007/s10571-021-01132-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
Mild hyperhomocysteinemia is a risk factor for psychiatric and neurodegenerative diseases, whose mechanisms between them are not well-known. In the present study, we evaluated the emotional behavior and neurochemical pathways (ATPases, glutamate homeostasis, and cell viability) in amygdala and prefrontal cortex rats subjected to mild hyperhomocysteinemia (in vivo studies). The ex vivo effect of homocysteine on ATPases and redox status, as well as on NMDAR antagonism by MK-801 in same structures slices were also performed. Wistar male rats received a subcutaneous injection of 0.03 µmol Homocysteine/g of body weight or saline, twice a day from 30 to 60th-67th days of life. Hyperhomocysteinemia increased anxiety-like behavior and tended to alter locomotion/exploration of rats, whereas sucrose preference and forced swimming tests were not altered. Glutamate uptake was not changed, but the activities of glutamine synthetase and ATPases were increased. Cell viability was not altered. Ex vivo studies (slices) showed that homocysteine altered ATPases and redox status and that MK801, an NMDAR antagonist, protected amygdala (partially) and prefrontal cortex (totally) effects. Taken together, data showed that mild hyperhomocysteinemia impairs the emotional behavior, which may be associated with changes in ATPase and glutamate homeostasis, including glutamine synthetase and NMDAR overstimulation that could lead to excitotoxicity. These findings may be associated with the homocysteine risk factor on psychiatric disorders development and neurodegeneration.
Collapse
|
19
|
Wu HY, Gao TJ, Cao YW, Diao JY, You PH, Yao XW. Analysis of the association and predictive value of hyperhomocysteinaemia for obstructive coronary artery disease. J Int Med Res 2021; 49:3000605211033495. [PMID: 34292764 PMCID: PMC8312177 DOI: 10.1177/03000605211033495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective To investigate the predictive value of hyperhomocysteinaemia (HHcy) for obstructive coronary artery disease (CAD) in an Asian population in northern China. Methods This retrospective study enrolled patients at their first cardiac assessment and assigned them to an obstructive CAD group or a non-obstructive CAD group according to the coronary angiography results. HHcy was defined as a homocysteine (Hcy) level > 15 µmol/l. Results This study enrolled 2987 participants: 1172 in the non-obstructive CAD group and 1815 in the obstructive CAD group. Hcy level in the obstructive CAD group was significantly higher than in the non-obstructive CAD group. The proportion of patients with HHcy in the obstructive CAD group was significantly greater than in the non-obstructive CAD group. Multivariate logistic regression analysis demonstrated that HHcy was independently correlated with obstructive CAD in both young (aged ≤ 55 years) and old patients (aged > 55 years). HHcy showed a higher sensitivity (93.1%), specificity (86.1%) and accuracy (90.0%) for obstructive CAD. The odds ratio for HHcy was 84.2. The Kappa value (0.8) showed substantial agreement between obstructive CAD and HHcy. Conclusions HHcy was associated with obstructive CAD and may be a potentially independent risk factor for obstructive CAD with good predictive value.
Collapse
Affiliation(s)
- Hao-Yu Wu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, China
| | - Tian-Jiao Gao
- Department of Gastroenterology, Xi'an Children's Hospital, Xi'an, Shaanxi Province, China
| | - Yi-Wei Cao
- Department of Electrocardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, China
| | - Jia-Yu Diao
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, China
| | - Peng-Hua You
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, China
| | - Xiao-Wei Yao
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, China
| |
Collapse
|
20
|
Chen X, Zhang W, Huang J. Homocysteine is potential serological marker for predicting the risk of deep venous thrombosis of the lower extremities in patients received operation of lower limb fracture. Pteridines 2021. [DOI: 10.1515/pteridines-2020-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Objective
The aim of the study is to investigate the correlations among serum homocysteine (Hcy), D-dimer, and the risk of developing deep venous thrombosis (DVT) of the lower extremities in patients who underwent operation for lower limb fracture.
Methods
Seventy-five cases who underwent operation for lower limb fracture were included and further divided into DVT group (n = 26) and control group (n = 49) based on post-DVT diagnostic criteria. The serum Hcy and D-dimer were examined 48 h after operation. The serum Hcy and D-dimer levels were compared between the two groups. The correlation between serum Hcy and D-dimer was investigated by the Pearson correlation test. The receiver-operating characteristic (ROC) curve was applied to evaluate the diagnostic performance of serum Hcy and D-dimer as serological markers for DVT.
Results
The serum Hcy concentrations were 11.96 ± 3.98 μmol/L and 7.92 ± 3.27 μmol/L for DVT and control groups, respectively, with statistical difference (t = 4.72, P < 0.01). The serum D-dimer in the DVT group was significantly higher than that of the control group (8.99 ± 4.50 vs 1.70 ± 2.11) μg/mL with statistical difference (t = 9.56, P < 0.01). Line regression analysis indicated that serum Hcy was positively correlated with serum D-dimer concentration and can be demonstrated by the equation of Y = 0.6651*X + 1.036 for the DVT group. Using serum Hcy as the biomarker for predicting DVT, the prediction sensitivity and specificity were 76.92 and 71.44%, respectively, with the AUC of 0.7804 under the cut-point of 9.54 μmol/L. For serum D-dimer, the prediction sensitivity and specificity were 96.15 and 73.47%, respectively, with the area under the ROC (AUC) of 0.9455 under the cut-point of 1.66 μg/mL.
Conclusion
Serum Hcy was significantly elevated in DTV patients, and hence, it can be applied as a serological marker for DVT prediction in patients who underwent operation for lower limb fracture. However, the DVT prediction performance of serum Hcy was inferior to D-dimer especially for diagnostic sensitivity.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Sports Injury and Arthroscopy, Tianjin Hospital , Tianjin 300211 , China
| | - Weiran Zhang
- Department of Orthopaedics, Tianjin Public Security Hospital , Tianjin 300041 , China
| | - Jingmin Huang
- Department of Sports Injury and Arthroscopy, Tianjin Hospital , Tianjin 300211 , China
| |
Collapse
|
21
|
Sokolov AS, Nekrasov PV, Shaposhnikov MV, Moskalev AA. Hydrogen sulfide in longevity and pathologies: Inconsistency is malodorous. Ageing Res Rev 2021; 67:101262. [PMID: 33516916 DOI: 10.1016/j.arr.2021.101262] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) is one of the biologically active gases (gasotransmitters), which plays an important role in various physiological processes and aging. Its production in the course of methionine and cysteine catabolism and its degradation are finely balanced, and impairment of H2S homeostasis is associated with various pathologies. Despite the strong geroprotective action of exogenous H2S in C. elegans, there are controversial effects of hydrogen sulfide and its donors on longevity in other models, as well as on stress resistance, age-related pathologies and aging processes, including regulation of senescence-associated secretory phenotype (SASP) and senescent cell anti-apoptotic pathways (SCAPs). Here we discuss that the translation potential of H2S as a geroprotective compound is influenced by a multiplicity of its molecular targets, pleiotropic biological effects, and the overlapping ranges of toxic and beneficial doses. We also consider the challenges of the targeted delivery of H2S at the required dose. Along with this, the complexity of determining the natural levels of H2S in animal and human organs and their ambiguous correlations with longevity are reviewed.
Collapse
|
22
|
Monasso GS, Santos S, Geurtsen ML, Heil SG, Felix JF, Jaddoe VWV. Associations of Early Pregnancy and Neonatal Circulating Folate, Vitamin B-12, and Homocysteine Concentrations with Cardiometabolic Risk Factors in Children at 10 y of Age. J Nutr 2021; 151:1628-1636. [PMID: 33758913 PMCID: PMC8243896 DOI: 10.1093/jn/nxab039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/03/2020] [Accepted: 02/02/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Higher circulating folate and vitamin B-12 concentrations and lower circulating homocysteine concentrations during pregnancy seem to be associated with fetal development. These micronutrients may also be associated with cardiometabolic health. OBJECTIVE We examined the associations of circulating folate, vitamin B-12, and homocysteine concentrations during pregnancy and in neonates with childhood cardiometabolic outcomes. METHODS This study was embedded in the Generation R Study, a population-based prospective cohort study from early pregnancy onward. We sampled blood in early pregnancy and cord blood. We measured cardiometabolic outcomes in the children at school age. Among 4449 children aged 10 y (median: 9.7; 95% range: 9.3, 10.7), we examined associations of plasma folate, serum vitamin B-12, and plasma homocysteine concentrations in early pregnancy and at birth with BMI, body fat distribution, heart rate, blood pressure, and insulin, glucose, and lipid concentrations, using linear regression models. Using logistic models, we examined the associations of these micronutrients with risks of overweight/obesity and clustering of cardiovascular risk factors. RESULTS One standard deviation score (SDS) higher maternal plasma folate concentration was associated with lower BMI (-0.04 SDS; 95% CI: -0.08, -0.01), android-to-gynoid fat ratio (-0.04 SDS; 95% CI: -0.07, -0.01), systolic blood pressure (-0.06 SDS; 95% CI: -0.10, -0.03), risk of overweight (OR: 0.87; 95% CI: 0.78, 0.96), and clustering of cardiovascular risk factors (OR: 0.79; 95% CI: 0.68, 0.91). One SDS higher maternal serum total B-12 concentration was associated with lower glucose (-0.06 SDS; 95% CI: -0.10, -0.02) and higher HDL cholesterol concentrations (0.04 SDS; 95% CI: 0.00, 0.08). Cord blood folate, vitamin B-12, and homocysteine concentrations were not consistently associated with cardiometabolic outcomes. CONCLUSIONS Subtle differences in circulating folate and vitamin B-12 concentrations in early pregnancy may be associated with child cardiometabolic health at age 10 y. The causality and mechanisms underlying these associations need further study.
Collapse
Affiliation(s)
- Giulietta S Monasso
- The Generation R Study Group, Erasmus MC, University Medical
Center Rotterdam, Rotterdam, The
Netherlands,Department of Pediatrics, Erasmus MC, University Medical
Center Rotterdam, Rotterdam, The
Netherlands
| | - Susana Santos
- The Generation R Study Group, Erasmus MC, University Medical
Center Rotterdam, Rotterdam, The
Netherlands,Department of Pediatrics, Erasmus MC, University Medical
Center Rotterdam, Rotterdam, The
Netherlands
| | - Madelon L Geurtsen
- The Generation R Study Group, Erasmus MC, University Medical
Center Rotterdam, Rotterdam, The
Netherlands,Department of Pediatrics, Erasmus MC, University Medical
Center Rotterdam, Rotterdam, The
Netherlands
| | - Sandra G Heil
- Department of Clinical Chemistry, Erasmus MC, University
Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical
Center Rotterdam, Rotterdam, The
Netherlands,Department of Pediatrics, Erasmus MC, University Medical
Center Rotterdam, Rotterdam, The
Netherlands
| | | |
Collapse
|
23
|
Chen LT, Xu TT, Qiu YQ, Liu NY, Ke XY, Fang L, Yan JP, Zhu DY. Homocysteine induced a calcium-mediated disruption of mitochondrial function and dynamics in endothelial cells. J Biochem Mol Toxicol 2021; 35:e22737. [PMID: 33751715 DOI: 10.1002/jbt.22737] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 12/03/2020] [Accepted: 01/20/2021] [Indexed: 12/24/2022]
Abstract
Homocysteine (Hcy) is a sulfur-containing amino acid that originated in methionine metabolism and the elevated level of Hcy in plasma is considered to be an independent risk factor for cardiovascular diseases (CVD). Endothelial dysfunction plays a major role in the development of CVD, while the potential mechanism of Hcy-induced endothelial dysfunction is still unclear. Here, in Hcy-treated endothelial cells, we observed the destruction of mitochondrial morphology and the decline of mitochondrial membrane potential. Meanwhile, the level of ATP was reduced and the reactive oxygen species was increased. The expressions of dynamin-related protein 1 (Drp1) and phosphate-Drp1 (Ser616) were upregulated, whereas the expression of mitofusin 2 was inhibited by Hcy treatment. These findings suggested that Hcy not only triggered mitochondrial dysfunction but also incurred an imbalance of mitochondrial dynamics in endothelial cells. The expression of mitochondrial calcium uniporter (MCU) was activated by Hcy, contributing to calcium transferring into mitochondria. Interestingly, the formation of mitochondria-associated membranes (MAMs) was increased in endothelial cells after Hcy administration. The inositol 1,4,5-triphosphate receptor (IP3R)-glucose-regulated protein 75 (Grp75)-voltage-dependent anion channel (VDAC) complex, which was enriched in MAMs, was also increased. The accumulation of mitochondrial calcium could be blocked by inhibiting with the IP3R inhibitor Xestospongin C (XeC) in Hcy-treated cells. Then, we confirmed that the mitochondrial dysfunction and the increased mitochondrial fission induced by Hcy could be attenuated after Hcy and XeC co-treatment. In conclusion, Hcy-induced mitochondrial dysfunction and dynamics disorder in endothelial cells were mainly related to the increase of calcium as a result of the upregulated expressions of the MCU and the IP3R-Grp75-VDAC complex in MAMs.
Collapse
Affiliation(s)
- Li-Ting Chen
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Ting-Ting Xu
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Ya-Qing Qiu
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Nuo-Ya Liu
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Xin-Yu Ke
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Lu Fang
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Jie-Ping Yan
- Department of Pharmacy, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Dan-Yan Zhu
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Meng Q, Li Y, Ji T, Chao Y, Li J, Fu Y, Wang S, Chen Q, Chen W, Huang F, Wang Y, Zhang Q, Wang X, Bian H. Estrogen prevent atherosclerosis by attenuating endothelial cell pyroptosis via activation of estrogen receptor α-mediated autophagy. J Adv Res 2021; 28:149-164. [PMID: 33364052 PMCID: PMC7753237 DOI: 10.1016/j.jare.2020.08.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/22/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
Excessive inflammation and the pyroptosis of vascular endothelial cells caused by estrogen deficiency is one cause of atherosclerosis in post-menopausal women. Because autophagy is highly regulated by estrogen, we hypothesized that estrogen can reduce vascular endothelial cell pyroptosis through estrogen receptor alpha (ERα)-mediated activation of autophagy to improve atherosclerosis in post-menopausal stage. Aortic samples from pro-menopausal and post-menopausal women with ascending aortic arteriosclerosis were analyzed, and bilateral ovariectomized (OVX) female ApoE-/- mice and homocysteine (Hcy)-treated HUVECs were used to analyze the effect of estrogen supplementation therapy. The aortic endothelium showed a decrease in ERα expression and autophagy, but presented an increase in inflammation and pyroptosis in female post-menopausal patients. Estrogen treatment accelerated autophagy and ameliorated cell pyroptosis in the cardiac aortas of OVX ApoE-/- mice and Hcy-treated HUVECs. Estrogen had therapeutic effect on atherosclerosis and improved the symptoms associated with lipid metabolism disorders in OVX ApoE-/- mice. Inhibition and silencing of ERα led to a reduction in the autophagy promoting ability of estrogen and aggravated pyroptosis. Moreover, the inhibition of autophagy promoted pyroptosis and abolished the protective effect of estrogen, but had no influence on ERα expression. Thus, the results of the present study demonstrated that post-menopausal women present decreased autophagy and ERα expression and excessive damage to the ascending aorta. In addition, in vitro and in vivo assay results demonstrated that estrogen prevents atherosclerosis by upregulating ERα expression and subsequently induces autophagy to reduce inflammation and pyroptosis.
Collapse
Affiliation(s)
- Qinghai Meng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingting Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Chao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jun Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Fu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Suyun Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210023, China
| | - Fuhua Huang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210023, China
| | - Youran Wang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210023, China
| | - Qichun Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoliang Wang
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210023, China
| | - Huimin Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
25
|
Hou H, Zhao H. Epigenetic factors in atherosclerosis: DNA methylation, folic acid metabolism, and intestinal microbiota. Clin Chim Acta 2020; 512:7-11. [PMID: 33232735 DOI: 10.1016/j.cca.2020.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
Atherosclerosis is a complex disease, influenced by both genetic and non-genetic factors. The most important epigenetic mechanism in the pathogenesis of atherosclerosis is DNA methylation, which involves modification of the gene without changes in the gene sequence. Nutrients involved in one-carbon metabolism interact to regulate DNA methylation, especially folic acid and B vitamins. Deficiencies in folic acid and other nutrients, such as vitamins B6 and B12, can increase homocysteine levels, induce endothelial dysfunction, and accelerate atherosclerotic pathological processes. Supplemented nutrients can improve DNA methylation status, reduce levels of inflammatory factors, and delay the process of atherosclerosis. In this review, the influence of intestinal flora on folate metabolism and epigenetics is also considered.
Collapse
Affiliation(s)
- Huimin Hou
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
| | - Huiying Zhao
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
26
|
Fan X, Zhang L, Li H, Chen G, Qi G, Ma X, Jin Y. Role of homocysteine in the development and progression of Parkinson's disease. Ann Clin Transl Neurol 2020; 7:2332-2338. [PMID: 33085841 PMCID: PMC7664283 DOI: 10.1002/acn3.51227] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 01/04/2023] Open
Abstract
Homocysteine is an essential intermediate product of biochemical reactions that is present in various tissues of the human body. Homocysteine may be associated with the development and progression of Parkinson's disease. Plasma homocysteine levels in patients with Parkinson's disease are elevated compared to those of healthy individuals. High homocysteine drives PD development and progression while aggregating the clinical symptoms of PD patients. The relationship between PD and homocysteine involves multiple pathways, including nerve cell apoptosis, oxidative stress, and DNA damage. This is crucial for explaining how high homocysteine drives the PD procession. Elevated homocysteine level during PD development and progression offers a new strategy for the diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Xiaoyan Fan
- Department of Basic Medical SciencesTaizhou UniversityTaizhouChina
- Department of NeurologyTaizhou Second People’s HospitalTaizhouChina
| | - Lixia Zhang
- Department of NeurologyTaizhou Second People’s HospitalTaizhouChina
| | - Haijun Li
- Department of NeurologyTaizhou Second People’s HospitalTaizhouChina
| | - Guang Chen
- Department of Basic Medical SciencesTaizhou UniversityTaizhouChina
| | - Gangqiao Qi
- Department of Sleep Medicine CenterTaizhou Second People’s HospitalTaizhouChina
| | - Xueqiang Ma
- Department of Respiratory MedicineMunicipal Hospital Affiliated to Medical School of Taizhou UniversityTaizhouChina
| | - Yuelei Jin
- Department of Basic Medical SciencesTaizhou UniversityTaizhouChina
| |
Collapse
|
27
|
Ji Y, Li X, Teng Z, Li X, Jin W, Lv PY. Homocysteine is Associated with the Development of Cerebral Small Vessel Disease: Retrospective Analyses from Neuroimaging and Cognitive Outcomes. J Stroke Cerebrovasc Dis 2020; 29:105393. [PMID: 33254368 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105393] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/04/2020] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE As the population ages, a growing burden of cerebral small vessel disease (cSVD) has sparked extensive concerns recently. Homocysteine (Hcy), as a traditional risk factor for atherosclerosis, may also participate in the development of cSVD. By comprehensively assessing Hcy's correlation with different MRI markers of cSVD and cognitive outcomes in a homogeneous population with cSVD, this study aims to explore the value of Hcy in the clinical management of cSVD. METHODS 231 inpatients with MRI-confirmed cSVD were enrolled in this retrospective study (mean age 66.4±10.0 years, male sex 47.6%). Along with brain MRI and plasma total Hcy (tHcy) examination, Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) were also performed to assess their global cognitive function. Burdens of cSVD neuroimaging features encompassing white matter hyperintensity (WMH), lacunes of presumed vascular origin, cerebral microbleeds (CMBs), and enlarged perivascular spaces (EPVS) were evaluated based on brain MRI demonstrations. RESULTS After adjusting for possible confounders, statistical analyses showed that plasma tHcy levels were not only correlated with burdens of deep/periventricular WMH (P < 0.001, P for trend < 0.001; P < 0.001, P for trend < 0.001), lacunes (P < 0.001, P for trend < 0.001), lobar CMBs (P = 0.002), and EPVS in the basal ganglia (P < 0.001, P for trend = 0.002) but also remained an independent predictor of cognitive impairment (B=-0.159, 95%CI -0.269--0.049, P = 0.005, P for trend < 0.001) in the patients with cSVD. CONCLUSIONS Plasma tHcy levels are associated with the development of cSVD in a dose-independent manner and may predict the cognitive outcomes in cSVD patients. These findings provide a potential clue to cSVD's physiopathology and future disease management.
Collapse
Affiliation(s)
- Yifan Ji
- Neurology Department, Hebei General Hospital, Shijiazhuang 050051, PR China; Graduate School of Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xiangyu Li
- Neurology Department, Hebei General Hospital, Shijiazhuang 050051, PR China; Graduate School of Hebei Medical University, Shijiazhuang 050017, PR China
| | - Zhenjie Teng
- Neurology Department, Hebei General Hospital, Shijiazhuang 050051, PR China
| | - Xiaosha Li
- Neurology Department, Hebei General Hospital, Shijiazhuang 050051, PR China; Graduate School of Hebei Medical University, Shijiazhuang 050017, PR China
| | - Wei Jin
- Neurology Department, Hebei General Hospital, Shijiazhuang 050051, PR China
| | - Pei Yuan Lv
- Neurology Department, Hebei General Hospital, Shijiazhuang 050051, PR China; Graduate School of Hebei Medical University, Shijiazhuang 050017, PR China.
| |
Collapse
|
28
|
Sobhani AR, Farshidi H, Azarkish F, Eslami M, Eftekhar E, Keshavarz M, Soltani N. Magnesium Sulfate Improves Some Risk Factors for Atherosclerosis in Patients Suffering from One or Two Coronary Artery Diseases: A Double-blind Clinical Trial Study. Clin Pharmacol 2020; 12:159-169. [PMID: 33061673 PMCID: PMC7524176 DOI: 10.2147/cpaa.s261264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/07/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose Given the beneficial effect of MgSO4 on the cardiovascular system, this study was designed to investigate the effect of MgSO4 administration on suppressing some atherosclerotic risk factors in moderate coronary artery disease patients with one or two atherosclerotic vessels. Patients and Methods In a randomized double-blind placebo-controlled clinical trial study, 64 patients with moderate coronary artery disease (55–69% stenosis) were selected according to angiography findings. Patients were divided into four groups including patients with one or two atherosclerotic vessels treated with MgSO4 (Mg-treated-VR1, Mg-treated-VR2, respectively), placebo treated patients with one or two atherosclerotic vessels (Control-VR1, Control-VR2, respectively). The patients received either placebo or MgSO4 supplement capsule containing 300 mg MgSO4 for six months on a daily basis. ESR, Ca/Mg ratio, urine Mg level, serum Mg, fibrinogen, homocysteine, uric acid, Na, K, Ca, CRP, T3, T4, TSH, BUN, and Cr concentrations were measured at baseline and every three months. Results Serum T3, Ca, K, homocysteine, CRP, and Mg concentrations were significantly improved in Mg-treated groups compared to placebo groups. Conclusion The results of this study showed that despite the slight change in serum magnesium level, oral administration of MgSO4for six months could slightly reduce the serum levels of some inflammatory and vascular factors in moderate coronary artery disease patients.
Collapse
Affiliation(s)
- Ali Reza Sobhani
- Clinical Pathology Department, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hossein Farshidi
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fariba Azarkish
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahdiya Eslami
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ebrahim Eftekhar
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mansoor Keshavarz
- Physiology Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nepton Soltani
- Physiology Department, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
29
|
Pi T, Liu B, Shi J. Abnormal Homocysteine Metabolism: An Insight of Alzheimer's Disease from DNA Methylation. Behav Neurol 2020; 2020:8438602. [PMID: 32963633 PMCID: PMC7495165 DOI: 10.1155/2020/8438602] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/30/2020] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease in the central nervous system that has complex pathogenesis in the elderly. The current review focuses on the epigenetic mechanisms of AD, according to the latest findings. One of the best-characterized chromatin modifications in epigenetic mechanisms is DNA methylation. Highly replicable data shows that AD occurrence is often accompanied by methylation level changes of the AD-related gene. Homocysteine (Hcy) is not only an intermediate product of one-carbon metabolism but also an important independent risk factor of AD; it can affect the cognitive function of the brain by changing the one-carbon metabolism and interfering with the DNA methylation process, resulting in cerebrovascular disease. In general, Hcy may be an environmental factor that affects AD via the DNA methylation pathway with a series of changes in AD-related substance. This review will concentrate on the relation between DNA methylation and Hcy and try to figure out their rule in the pathophysiology of AD.
Collapse
Affiliation(s)
- Tingting Pi
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Bo Liu
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Jingshan Shi
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
30
|
Juarez PD, Hood DB, Song MA, Ramesh A. Use of an Exposome Approach to Understand the Effects of Exposures From the Natural, Built, and Social Environments on Cardio-Vascular Disease Onset, Progression, and Outcomes. Front Public Health 2020; 8:379. [PMID: 32903514 PMCID: PMC7437454 DOI: 10.3389/fpubh.2020.00379] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Obesity, diabetes, and hypertension have increased by epidemic proportions in recent years among African Americans in comparison to Whites resulting in significant adverse cardiovascular disease (CVD) disparities. Today, African Americans are 30% more likely to die of heart disease than Whites and twice as likely to have a stroke. The causes of these disparities are not yet well-understood. Improved methods for identifying underlying risk factors is a critical first step toward reducing Black:White CVD disparities. This article will focus on environmental exposures in the external environment and how they can lead to changes at the cellular, molecular, and organ level to increase the personal risk for CVD and lead to population level CVD racial disparities. The external environment is defined in three broad domains: natural (air, water, land), built (places you live, work, and play) and social (social, demographic, economic, and political). We will describe how environmental exposures in the natural, built, and social environments "get under the skin" to affect gene expression though epigenetic, pan-omics, and related mechanisms that lead to increased risk for adverse CVD health outcomes and population level disparities. We also will examine the important role of metabolomics, proteomics, transcriptomics, genomics, and epigenomics in understanding how exposures in the natural, built, and social environments lead to CVD disparities with implications for clinical, public health, and policy interventions. In this review, we apply an exposome approach to Black:White CVD racial disparities. The exposome is a measure of all the exposures of an individual across the life course and the relationship of those exposures to health effects. The exposome represents the totality of exogenous (external) and endogenous (internal) exposures from conception onwards, simultaneously distinguishing, characterizing, and quantifying etiologic, mediating, moderating, and co-occurring risk and protective factors and their relationship to disease. Specifically, it assesses the biological mechanisms and underlying pathways through which chemical and non-chemical environmental exposures are associated with CVD onset, progression and outcomes. The exposome is a promising approach for understanding the complex relationships among environment, behavior, biology, genetics, and disease phenotypes that underlie population level, Black: White CVD disparities.
Collapse
Affiliation(s)
- Paul D Juarez
- Meharry Medical College, Nashville, TN, United States
| | - Darryl B Hood
- College of Public Health, The Ohio State University, Columbus, OH, United States
| | - Min-Ae Song
- College of Public Health, The Ohio State University, Columbus, OH, United States
| | | |
Collapse
|
31
|
Chang KH, Chen CM. The Role of Oxidative Stress in Parkinson's Disease. Antioxidants (Basel) 2020; 9:antiox9070597. [PMID: 32650609 PMCID: PMC7402083 DOI: 10.3390/antiox9070597] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022] Open
Abstract
Parkinson’s disease (PD) is caused by progressive neurodegeneration of dopaminergic (DAergic) neurons with abnormal accumulation of α-synuclein in substantia nigra (SN). Studies have suggested the potential involvement of dopamine, iron, calcium, mitochondria and neuroinflammation in contributing to overwhelmed oxidative stress and neurodegeneration in PD. Function studies on PD-causative mutations of SNCA, PRKN, PINK1, DJ-1, LRRK2, FBXO7 and ATP13A2 further indicate the role of oxidative stress in the pathogenesis of PD. Therefore, it is reasonable that molecules involved in oxidative stress, such as DJ-1, coenzyme Q10, uric acid, 8-hydroxy-2’-deoxyguanosin, homocysteine, retinoic acid/carotenes, vitamin E, glutathione peroxidase, superoxide dismutase, xanthine oxidase and products of lipid peroxidation, could be candidate biomarkers for PD. Applications of antioxidants to modulate oxidative stress could be a strategy in treating PD. Although a number of antioxidants, such as creatine, vitamin E, coenzyme Q10, pioglitazone, melatonin and desferrioxamine, have been tested in clinical trials, none of them have demonstrated conclusive evidence to ameliorate the neurodegeneration in PD patients. Difficulties in clinical studies may be caused by the long-standing progression of neurodegeneration, lack of biomarkers for premotor stage of PD and inadequate drug delivery across blood–brain barrier. Solutions for these challenges will be warranted for future studies with novel antioxidative treatment in PD patients.
Collapse
Affiliation(s)
| | - Chiung-Mei Chen
- Correspondence: ; Tel.: +886-3-3281200 (ext. 8347); Fax: +886-3-3288849
| |
Collapse
|
32
|
Yin S, Wei J, Wei Y, Jin L, Wang L, Zhang X, Jia X, Ren A. Organochlorine pesticides exposure may disturb homocysteine metabolism in pregnant women. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135146. [PMID: 31787282 DOI: 10.1016/j.scitotenv.2019.135146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Maternal exposure to organochlorine pesticides (OCPs) has an adverse impact on maternal and fetal health, and excessive homocysteine is related to a variety of adverse pregnancy outcomes. Biomimetic studies suggest that OCPs interfere with folate-dependent pathways, but little evidence is available from studies with human subjects. This study explored whether exposure to OCPs interferes with the metabolism of homocysteine, which is folate dependent. A total of 313 pregnant women at 12-20 weeks gestation were recruited in Shanxi province, China, from 2014 to 2015. Plasma concentrations of 20 OCPs, including dichlorodiphenyltrichloroethane and metabolites (DDTs), hexachlorobenzene (HCB), and hexachlorocyclohexanes (HCHs), were analyzed by gas chromatography-mass spectrometry. Blood folate concentrations were analyzed by microbiological assay, and plasma homocysteine concentrations were determined by enzyme-linked immunosorbent assay. Information on demographics, lifestyle behaviors, and folic acid supplementation was collected by in-person interview. Of the women, 99% reported having taken folic acid supplements. Results of a logistic regression analysis showed that higher plasma levels of OCPs were associated with increased odds of higher plasma homocysteine after adjustment for potential confounding factors. Positive correlations were observed between plasma OCPs and plasma homocysteine concentrations: HCB (r = 0.176, p = 0.002), β-HCH (r = 0.172, p = 0.002), ρ,ρ'-DDE (r = 0.132, p = 0.020), ρ,ρ'-DDD (r = 0.161, p = 0.004), and ο,ρ'-DDT (r = 0.144, p = 0.011). Plasma concentrations of OCPs were negatively correlated with red blood cell (RBC) folate in the low-RBC-folate subgroup, but the correlations were not statistically significant. A positive correlation was observed between OCPs and homocysteine in the low-RBC-folate subgroup. These findings suggest that OCPs may disturb the folate-dependent homocysteine metabolism pathway.
Collapse
Affiliation(s)
- Shengju Yin
- Institute of Reproductive and Child Health/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Jing Wei
- Institute of Reproductive and Child Health/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Yihui Wei
- Institute of Reproductive and Child Health/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Lei Jin
- Institute of Reproductive and Child Health/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Linlin Wang
- Institute of Reproductive and Child Health/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Xuejuan Zhang
- Health Education Division, Shanxi Children's Hospital/Shanxi Maternal and Child Health Care Hospital, Taiyuan 030002, China
| | - Xiaoqian Jia
- Institute of Reproductive and Child Health/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Aiguo Ren
- Institute of Reproductive and Child Health/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
33
|
Kang X, Li C, Xie X, Zhan KB, Yang SQ, Tang YY, Zou W, Zhang P, Tang XQ. Hydrogen Sulfide Inhibits Homocysteine-Induced Neuronal Senescence by Up-Regulation of SIRT1. Int J Med Sci 2020; 17:310-319. [PMID: 32132865 PMCID: PMC7053352 DOI: 10.7150/ijms.38602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 12/08/2019] [Indexed: 12/22/2022] Open
Abstract
Homocysteine (Hcy) accelerates neuronal senescence and induces age-related neurodegenerative diseases. Silence signal regulating factor 1 (SIRT1) prolongs lifespan and takes neuroprotective effects. We have previously demonstrated that hydrogen sulfide (H2S) prevents Hcy-induced apoptosis of neuronal cells and has neuroprotective effect. In the present work, we aimed to investigate whether H2S protects HT22 cells against Hcy-induced neuronal senescence and whether SIRT1 mediates this role of H2S. We found that Hcy induced cellular senescence in HT22 cells, as determined by β-galactosidase staining, expressions of P16INK4a, P21CIPL, and trypan blue Staining, which are the markers of cellular senescence. However, sodium hydrosulfide (NaHS, the donor of H2S) significantly reversed Hcy-induced cellular senescence. Interestingly, NaHS not only up-regulated the expression of SIRT1 in HT22 cells but also reversed Hcy-downregulated the expression of SIRT1 in HT22 cells. Furthermore, we found that pretreatment with Sirtinol (an inhibitor of SIRT1) markedly reversed the protection of NaHS against Hcy-induced HT22 cells senescence and apoptosis. Our findings illustrated that H2S protects HT22 cells against Hcy-induced senescence by up-regulating SIRT1.
Collapse
Affiliation(s)
- Xuan Kang
- Institute of Neurology, the First Affiliated Hospital, University of South China, Hengyang, 42100, Hunan, P.R. China.,Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 42100, Hunan, P.R. China
| | - Cheng Li
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 42100, Hunan, P.R. China.,Department of Emergency, Affiliated Nanhua Hospital, University of South China, Hengyang, 421001, Hunan, P. R. China
| | - Xi Xie
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 42100, Hunan, P.R. China.,Department of Neurology, the Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, P.R. China
| | - Ke-Bin Zhan
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 42100, Hunan, P.R. China.,Department of Neurology, the Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, P.R. China
| | - San-Qiao Yang
- Institute of Neurology, the First Affiliated Hospital, University of South China, Hengyang, 42100, Hunan, P.R. China.,Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 42100, Hunan, P.R. China
| | - Yi-Yun Tang
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 42100, Hunan, P.R. China
| | - Wei Zou
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 42100, Hunan, P.R. China.,Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, 421001, Hunan, P. R. China
| | - Ping Zhang
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 42100, Hunan, P.R. China.,Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, 421001, Hunan, P. R. China
| | - Xiao-Qing Tang
- Institute of Neurology, the First Affiliated Hospital, University of South China, Hengyang, 42100, Hunan, P.R. China.,Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 42100, Hunan, P.R. China
| |
Collapse
|
34
|
Liu M, Fan F, Liu B, Jia J, Jiang Y, Sun P, He D, Liu J, Li Y, Huo Y, Li J, Zhang Y. Joint Effects of Plasma Homocysteine Concentration and Traditional Cardiovascular Risk Factors on the Risk of New-Onset Peripheral Arterial Disease. Diabetes Metab Syndr Obes 2020; 13:3383-3393. [PMID: 33061499 PMCID: PMC7532045 DOI: 10.2147/dmso.s267122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/28/2020] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Hyperhomocysteinemia is an independent risk factor for cardio- and cerebrovascular diseases. However, the relationship between plasma homocysteine (Hcy) concentration and peripheral arterial disease (PAD) has not been completely characterized. The aim of the present study was to determine the relationship between plasma Hcy concentration and new-onset PAD and to assess the effects of combinations of Hcy and traditional cardiovascular risk factors. PATIENTS AND METHODS We conducted a prospective community-based cohort study of 3119 Chinese participants who did not have PAD at baseline, with a median follow-up period of 2.30 years. We used multivariate logistic regression models to evaluate the relationship between high Hcy (≥10µmol/L) and new-onset PAD. The effects of combinations of high Hcy and traditional cardiovascular risk factors were assessed using logistic regression analysis. RESULTS After adjustment for 14 covariates, high Hcy concentration was significantly associated with new-onset PAD (odds ratio [OR]=2.08, 95% confidence interval [CI]: 1.08-4.03, P=0.030). Smokers with high Hcy concentration were substantially more likely to have new-onset PAD than non-smokers with normal Hcy concentration (OR=4.44, 95% CI: 1.77-11.12, P=0.001). The effect of diabetes on PAD became significant when present in combination with high Hcy concentration (OR=3.67, 95% CI: 1.25-10.80, P=0.018). Participants with both elevated Hcy levels and older age had the highest risk of new-onset PAD (OR=4.28, 95% CI: 1.83-10.01, P<0.001). With regard to the joint effect of Hcy and hypertension, dyslipidemia or sex, there was also a trend towards increased risk across four different groups (P for trend=0.026, 0.035, 0.016, respectively). CONCLUSION High plasma Hcy concentration independently predicts the incidence of PAD. Furthermore, there is a joint effect of high Hcy concentration and traditional cardiovascular risk factors such as smoking, diabetes and aging on the incidence of PAD.
Collapse
Affiliation(s)
- Mengyuan Liu
- Department of Cardiology, Peking University First Hospital, Beijing, People’s Republic of China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, People’s Republic of China
| | - Fangfang Fan
- Department of Cardiology, Peking University First Hospital, Beijing, People’s Republic of China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, People’s Republic of China
| | - Bo Liu
- Department of Cardiology, Peking University First Hospital, Beijing, People’s Republic of China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, People’s Republic of China
| | - Jia Jia
- Department of Cardiology, Peking University First Hospital, Beijing, People’s Republic of China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, People’s Republic of China
| | - Yimeng Jiang
- Department of Cardiology, Peking University First Hospital, Beijing, People’s Republic of China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, People’s Republic of China
| | - Pengfei Sun
- Department of Cardiology, Peking University First Hospital, Beijing, People’s Republic of China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, People’s Republic of China
| | - Danmei He
- Department of Cardiology, Peking University First Hospital, Beijing, People’s Republic of China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, People’s Republic of China
| | - Jiahui Liu
- Department of Cardiology, Peking University First Hospital, Beijing, People’s Republic of China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, People’s Republic of China
| | - Yuxi Li
- Department of Cardiology, Peking University First Hospital, Beijing, People’s Republic of China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, People’s Republic of China
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing, People’s Republic of China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, People’s Republic of China
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Beijing, People’s Republic of China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, People’s Republic of China
| | - Yan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing, People’s Republic of China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, People’s Republic of China
- Correspondence: Yan Zhang; Jianping Li Tel +86 10 83575262; +86 10 83575728Fax +86 10 66551383 Email ;
| |
Collapse
|
35
|
Salissou MTM, Mahaman YAR, Zhu F, Huang F, Wang Y, Xu Z, Ke D, Wang Q, Liu R, Wang JZ, Zhang B, Wang X. Methanolic extract of Tamarix Gallica attenuates hyperhomocysteinemia induced AD-like pathology and cognitive impairments in rats. Aging (Albany NY) 2019; 10:3229-3248. [PMID: 30425189 PMCID: PMC6286848 DOI: 10.18632/aging.101627] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/27/2018] [Indexed: 12/20/2022]
Abstract
Although few drugs are available today for the management of Alzheimer’s disease (AD) and many plants and their extracts are extensively employed in animals’ studies and AD patients, yet no drug or plant extract is able to reverse AD symptoms adequately. In the present study, Tamarix gallica (TG), a naturally occurring plant known for its strong antioxidative, anti-inflammatory and anti-amyloidogenic properties, was evaluated on homocysteine (Hcy) induced AD-like pathology and cognitive impairments in rats. We found that TG attenuated Hcy-induced oxidative stress and memory deficits. TG also improved neurodegeneration and neuroinflammation by upregulating synaptic proteins such as PSD95 and synapsin 1 and downregulating inflammatory markers including CD68 and GFAP with concomitant decrease in proinflammatory mediators interlukin-1β (IL1β) and tumor necrosis factor α (TNFα). TG attenuated tau hyperphosphorylation at multiple AD-related sites through decreasing some kinases and increasing phosphatase activities. Moreover, TG rescued amyloid-β (Aβ) pathology through downregulating BACE1. Our data for the first time provide evidence that TG attenuates Hcy-induced AD-like pathological changes and cognitive impairments, making TG a promising candidate for the treatment of AD-associated pathological changes.
Collapse
Affiliation(s)
- Maibouge Tanko Mahamane Salissou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yacoubou Abdoul Razak Mahaman
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518001, Guangdong Province, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518001, Guangdong Province, China
| | - Fang Huang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuman Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhendong Xu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qun Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| |
Collapse
|
36
|
Di Meco A, Li JG, Barrero C, Merali S, Praticò D. Elevated levels of brain homocysteine directly modulate the pathological phenotype of a mouse model of tauopathy. Mol Psychiatry 2019; 24:1696-1706. [PMID: 29728702 PMCID: PMC6215750 DOI: 10.1038/s41380-018-0062-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/26/2018] [Accepted: 04/04/2018] [Indexed: 12/17/2022]
Abstract
A high circulating level of homocysteine (Hcy), also known as hyperhomocysteinemia, is a risk factor for Alzheimer's disease (AD). Previous studies show that elevated Hcy promotes brain amyloidosis and behavioral deficits in mouse models of AD. However, whether it directly modulates the development of tau neuropathology independently of amyloid beta in vivo is unknown. Herein, we investigate the effect of diet-induced elevated levels of brain Hcy on the phenotype of a relevant mouse model of human tauopathy. Compared with controls, tau mice fed with low folate and B vitamins diet had a significant increase in brain Hcy levels and worsening of behavioral deficits. The same mice had a significant elevation of tau phosphorylation, synaptic pathology, and astrocytes activation. In vitro studies demonstrated that Hcy effect on tau phosphorylation was mediated by an upregulation of 5-lipoxygenase via cdk5 kinase pathway activation. Our findings support the novel concept that high Hcy level in the central nervous system is a metabolic risk factor for neurodegenerative diseases, specifically characterized by the progressive accumulation of tau pathology, namely tauopathies.
Collapse
Affiliation(s)
- Antonio Di Meco
- Alzheimer’s Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia PA, 19140
| | - Jian-Guo Li
- Alzheimer’s Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia PA, 19140
| | - Carlos Barrero
- Department of Pharmaceutical Sciences, Temple University, Philadelphia PA, 19140
| | - Salim Merali
- Department of Pharmaceutical Sciences, Temple University, Philadelphia PA, 19140
| | - Domenico Praticò
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
37
|
Zhu L, Zhang N, Yan R, Yang W, Cong G, Yan N, Ma W, Hou J, Yang L, Jia S. Hyperhomocysteinemia induces vascular calcification by activating the transcription factor RUNX2 via Krüppel-like factor 4 up-regulation in mice. J Biol Chem 2019; 294:19465-19474. [PMID: 31628194 DOI: 10.1074/jbc.ra119.009758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/16/2019] [Indexed: 01/09/2023] Open
Abstract
One of the main characteristics of atherosclerosis is vascular calcification, which is linked to adverse cardiovascular events. Increased homocysteine (Hcy), a feature of hyperhomocysteinemia, is correlated with advanced vascular calcification and phenotypic switching of vascular smooth muscle cells (VSMCs). Oxidative stress and high phosphate levels also induce VSMC calcification, suggesting that the Krüppel-like factor 4 (KLF4) signaling pathway may also contribute to vascular calcification. In this study, we investigated this possibility and the role and mechanisms of Hcy in vascular calcification. We found that in atherosclerotic apolipoprotein E-deficient (ApoE-/-) mice, Hcy significantly increases vascular calcification in vivo, as well as VSMC calcification in vitro Of note, the Hcy-induced VSMC calcification was correlated with elevated KLF4 levels. Hcy promoted KLF4 expression in calcified atherosclerotic lesions in vivo and in calcified VSMCs in vitro shRNA-mediated KLF4 knockdown blocked the Hcy-induced up-regulation of runt-related transcription factor 2 (RUNX2) and VSMC calcification. RUNX2 inhibition abolished Hcy-induced VSMC calcification. Using ChIP analysis, we demonstrate that KLF4 interacts with RUNX2, an interaction promoted by Hcy stimulation. Our experiments also revealed that the KLF4 knockdown attenuates Hcy-induced RUNX2 transactivity, indicating that KLF4 is important in modulating RUNX2 transactivity. These findings support a role for Hcy in regulating vascular calcification through a KLF4-RUNX2 interaction and indicate that Hcy-induced, enhanced RUNX2 transactivity increases VSMC calcification. These insights reveal possible opportunities for developing interventions that prevent or manage vascular calcification.
Collapse
Affiliation(s)
- Lili Zhu
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750001, China.,Institute of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Na Zhang
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Ru Yan
- Institute of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Wenjuan Yang
- Heart Centre, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Guangzhi Cong
- Heart Centre, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Ning Yan
- Heart Centre, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Wanrui Ma
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Jianjun Hou
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Libo Yang
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Shaobin Jia
- Institute of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China .,Heart Centre, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China
| |
Collapse
|
38
|
Alhamdow A, Lindh C, Albin M, Gustavsson P, Tinnerberg H, Broberg K. Cardiovascular Disease-Related Serum Proteins in Workers Occupationally Exposed to Polycyclic Aromatic Hydrocarbons. Toxicol Sci 2019; 171:235-246. [PMID: 31228248 PMCID: PMC6735884 DOI: 10.1093/toxsci/kfz142] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/28/2019] [Accepted: 06/09/2019] [Indexed: 01/06/2023] Open
Abstract
Chimney sweeps have higher incidence and mortality of cardiovascular disease (CVD), likely related to their exposure to polycyclic aromatic hydrocarbons (PAH). In order to identify underlying mechanisms of PAH-related CVD, we here investigated whether PAH exposure was associated with levels of putative CVD-related proteins in serum among currently working chimney sweeps. We enrolled 116 chimney sweeps and 125 unexposed controls, all nonsmoking male workers from Sweden. We measured monohydroxylated PAH metabolites in urine by liquid chromatography coupled to tandem mass spectrometry and a panel of 85 proteins in serum using proximity extension assay. Linear regression analysis adjusted for age and body mass index showed that 25 proteins were differentially expressed between chimney sweeps and the controls (p < .05, adjusted for false discovery rate). Of the 25 proteins, follistatin (FS), prointerleukin-16 (IL-16), and heat shock protein beta-1 (HSP 27) showed positive associations with the monohydroxylated metabolites of PAH in a dose-response manner (p < .05). Pathway and gene ontology analyses demonstrated that the differentially expressed proteins were mainly involved in inflammatory response and immunological functions, such as leukocyte migration, cell movement of leukocytes, and adhesion of immune cells. In conclusion, we found a number of putative CVD-related proteins differentially expressed, between PAH-exposed and unexposed individuals, and mainly involved in inflammation and immune function. Our data warrant protective measures to reduce PAH exposure and longitudinal investigations of the protein profile in chimney sweeps and other occupational groups exposed to PAH.
Collapse
Affiliation(s)
- Ayman Alhamdow
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund 223 63, Sweden
| | - Maria Albin
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund 223 63, Sweden
- Centre for Occupational and Environmental Medicine (CAMM), Stockholm County Council, Stockholm 113 65, Sweden
| | - Per Gustavsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
- Centre for Occupational and Environmental Medicine (CAMM), Stockholm County Council, Stockholm 113 65, Sweden
| | - Håkan Tinnerberg
- Section of Occupational and Environmental Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg 405 30, Sweden
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund 223 63, Sweden
| |
Collapse
|
39
|
Dai W, Li D, Cai Y, Qiu E, Xu J, Li J, Wang Y, Guo Y, Li Y, Jiang B, Zhang Y, Ge J, Yao C, Zhang R, Liu G, Yao G, Cai J, Zhao X. Association between homocysteine and multivascular atherosclerosis in stroke-related vascular beds determined by three-dimensional magnetic resonance vessel wall imaging. J Clin Neurosci 2019; 70:72-78. [PMID: 31447358 DOI: 10.1016/j.jocn.2019.08.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/08/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Atherosclerosis in stroke-related vascular beds is the major cause of stroke. Studies demonstrated that multivascular atherosclerosis is prevalent in stroke patients and those with multivascular plaques had higher risk of recurrent stroke. OBJECTIVES This study investigated the relationship between homocysteine and multivascular atherosclerosis in stroke-related vascular beds using magnetic resonance imaging. METHODS Patients with recent ischemic cerebrovascular symptoms were enrolled and underwent three-dimensional magnetic resonance vessel wall imaging for intracranial arteries, extracranial carotid arteries and aortic arch. Traditional risk factors and homocysteine were measured. Presence of multivascular plaques defined as plaques in at least two stroke-related vascular beds on magnetic resonance imaging was determined. The relationship between homocysteine and characteristics of multivascular plaques was determined. RESULTS Of 49 enrolled patients (mean age: 56.3 ± 13.8 years; 35 males), 23 had multivascular plaques. Homocysteine (odds ratio, 1.17; 95% confidence interval, 1.02-1.34; p = 0.022) and age (odds ratio, 1.71; 95% confidence interval, 1.22-2.41; p = 0.002) were significantly associated with presence of multivascular plaques. The adjusted associations remained significant (both p < 0.05). In discriminating presence of multivascular plaques, the area-under-the-curve of age, homocysteine and combination of them was 0.79, 0.70 and 0.87 respectively. CONCLUSIONS Homocysteine is independently associated with stroke-related multivascular plaques and combination of age and homocysteine has stronger predictive value.
Collapse
Affiliation(s)
- Wei Dai
- Department of Neurology, Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China; Department of Neurology, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing 100853, China
| | - Dongye Li
- Center for Brain Disorders Research, Capital Medical University and Beijing Institute for Brain Disorders, Beijing 100069, China
| | - Ying Cai
- Department of Radiology, Taizhou People's Hospital, Taizhou 225300, China
| | - Enchao Qiu
- Department of Neurology, Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Jingwei Xu
- Department of Neurology, Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Jing Li
- Department of Neurology, Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Yunxia Wang
- Department of Neurology, Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Yueqi Guo
- Department of Neurology, Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Yifan Li
- Department of Neurology, Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Bo Jiang
- Department of Neurology, Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Yunyan Zhang
- Department of Neurology, Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Junling Ge
- Department of Neurology, Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Cunshan Yao
- Department of Neurology, Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Runhua Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Gaifen Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Guoen Yao
- Department of Neurology, Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China.
| | - Jianming Cai
- Department of Radiology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing 100084, China; Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100069, China.
| |
Collapse
|
40
|
George AK, Majumder A, Ice H, Homme RP, Eyob W, Tyagi SC, Singh M. Genes and genetics in hyperhomocysteinemia and the "1-carbon metabolism": implications for retinal structure and eye functions. Can J Physiol Pharmacol 2019; 98:51-60. [PMID: 31369712 DOI: 10.1139/cjpp-2019-0236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Homocysteine (Hcy), a sulfur-containing nonproteinogenic amino acid, is generated as a metabolic intermediate. Hcy constitutes an important part of the "1-carbon metabolism" during methionine turnover. Elevated levels of Hcy known as hyperhomocysteinemia (HHcy) results from vitamin B deficiency, lack of exercise, smoking, excessive alcohol intake, high-fat and methionine-rich diet, and the underlying genetic defects. These factors directly affect the "1-carbon metabolism (methionine-Hcy-folate)" of a given cell. In fact, the Hcy levels are determined primarily by dietary intake, vitamin status, and the genetic blueprint of the susceptible individual. Although Hcy performs an important role in cellular functions, genetic alterations in any of the key enzymes responsible for the "1-carbon metabolism" could potentially upset the metabolic cycle, thus causing HHcy environment in susceptible people. As such, HHcy relates to several clinical conditions like atherosclerosis, myocardial infarction, stroke, cognitive impairment, dementia, Parkinson's disease, multiple sclerosis, epilepsy, and ocular disorders, among others. This article summarizes the findings from our laboratory and public database regarding genetics of HHcy and its effects on ocular disorders, their respective management during dysregulation of the 1-carbon metabolism.
Collapse
Affiliation(s)
- Akash K George
- Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Avisek Majumder
- Department of Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA
| | - Hayley Ice
- Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Rubens P Homme
- Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Wintana Eyob
- College of Arts and Sciences, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Mahavir Singh
- Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| |
Collapse
|
41
|
Central But Not General Obesity Is Positively Associated with the Risk of Hyperhomocysteinemia in Middle-Aged Women. Nutrients 2019; 11:nu11071614. [PMID: 31315230 PMCID: PMC6683268 DOI: 10.3390/nu11071614] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 11/16/2022] Open
Abstract
Objective: Obesity and homocysteine (Hcy) are two important risk factors for cardiovascular disease (CVD). However, evidence on the association between obesity and Hcy concentration was conflicting. The aim of our study is to explore the associations of general and central obesity with hyperhomocysteinemia (HHcy) in middle-aged women. Methods: The current analysis was based on data from 11,007 women aged 40–60 years. Height, weight, and waist circumference (WC) were measured and serum homocysteine was determined. Multiple logistic regression models were used to assess the associations of the risk of hyperhomocysteinemia (HHcy, Hcy > 15 μmol/L) with BMI and WC. Results: 13.71% women had HHcy. The prevalences of BMI-based general obesity and WC-based central obesity were 11.17% and 22.88%, respectively. Compared with non-obese women, the mean serum Hcy concentration was significantly higher in WC-based central obese women (p = 0.002), but not in BMI-based general obese women (p > 0.05). In the multiple logistic regression models, central obesity was positively related to the risk of HHcy (OR = 1.30, 95% CI = 1.10 to 1.52), while general obesity was inversely related to the risk of HHcy (OR = 0.82, 95% CI = 0.72 to 0.93 and OR = 0.71, 95% CI = 0.57 to 0.89). Conclusions: Central obesity was positively related to the risk of HHcy, while general obesity was negatively related. Menopause showed no effect modification on these associations.
Collapse
|
42
|
Dos Santos TM, Siebert C, de Oliveira MF, Manfredini V, Wyse ATS. Chronic mild Hyperhomocysteinemia impairs energy metabolism, promotes DNA damage and induces a Nrf2 response to oxidative stress in rats brain. Cell Mol Neurobiol 2019; 39:687-700. [PMID: 30949917 DOI: 10.1007/s10571-019-00674-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/28/2019] [Indexed: 12/13/2022]
Abstract
Homocysteine (HCY) has been linked to oxidative stress and varied metabolic changes that are dependent on its concentration and affected tissues. In the present study we evaluate parameters of energy metabolism [succinate dehydrogenase (SDH), complex II and IV (cytochrome c oxidase), and ATP levels] and oxidative stress [DCFH oxidation, nitrite levels, antioxidant enzymes and lipid, protein and DNA damages, as well as nuclear factor erythroid 2-related (Nrf2) protein abundance] in amygdala and prefrontal cortex of HCY-treated rats. Wistar male rats were treated with a subcutaneous injection of HCY (0.03 µmol/g of body weight) from the 30th to 60th post-natal day, twice a day, to induce mild hyperhomocysteinemia (HHCY). The rats were euthanatized without anesthesia at 12 h after the last injection, and amygdala and prefrontal cortex were dissected for biochemical analyses. In the amygdala, mild HHCY increased activities of SDH and complex II and decreased complex IV and ATP level, as well as increased antioxidant enzymes activities (glutathione peroxidase and superoxide dismutase), nitrite levels, DNA damage, and Nrf 2 protein abundance. In the prefrontal cortex, mild HHCY did not alter energy metabolism, but increased glutathione peroxidase, catalase and DNA damage. Other analyzed parameters were not altered by HCY-treatment. Our findings suggested that chronic mild HHCY changes each brain structure, particularly and specifically. These changes may be associated with the mechanisms by which chronic mild HHCY has been linked to the risk factor of fear, mood disorders and depression, as well as in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tiago Marcon Dos Santos
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Cassiana Siebert
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Micaela Federizzi de Oliveira
- Laboratório de Hematologia e Citologia Clínica, Universidade Federal do Pampa, BR 472, Km 592, Caixa Postal 118, Uruguaiana, RS, 97508-000, Brazil
| | - Vanusa Manfredini
- Laboratório de Hematologia e Citologia Clínica, Universidade Federal do Pampa, BR 472, Km 592, Caixa Postal 118, Uruguaiana, RS, 97508-000, Brazil
| | - Angela T S Wyse
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, CEP 90035-003, Brazil.
| |
Collapse
|
43
|
A New Quinone Based Fluorescent Probe for High Sensitive and Selective Detection of Biothiols and Its Application in Living Cell Imaging. Int J Anal Chem 2019; 2019:7536431. [PMID: 31093288 PMCID: PMC6481154 DOI: 10.1155/2019/7536431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/28/2018] [Accepted: 02/12/2019] [Indexed: 11/20/2022] Open
Abstract
In view of the vital role of biothiols in many physiological processes, the development of simple and efficient probe for the detection of biothiols is of great medical significance. In this work, we demonstrate the use of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), which respond rapidly to biothiols especially to glutathione, as a new fluorescent probe for the selective detection and bioimaging of biothiols. This new fluorescent probe can distinguish glutathione from cysteine and homocysteine easily under physiological concentration and detect glutathione quickly within three minutes. This probe exhibits high selectivity to biothiols and the detection limit was determined to be 3.08 × 10−9 M for glutathione, 8.55 × 10−8 M for cysteine, and 2.17 × 10−9 M for homocysteine, respectively. The sensing mechanism was further explored by density functional theory (DFT) and nuclear magnetic resonance (NMR) experiment; results showed that the interaction forces between the probe and biothiols were electrostatic interaction. In addition, the probe has been successfully applied to the detection of biothiols in Eca9706 cells by fluorescence confocal imaging technology.
Collapse
|
44
|
Korkmaz HI, Hahn NE, Jansen KM, Musters R, van Bezu J, van Wieringen WN, van Zuijlen P, Ulrich M, Niessen H, Krijnen P. Homocysteine-induced inverse expression of tissue factor and DPP4 in endothelial cells is related to NADPH oxidase activity. Physiol Int 2019; 106:29-38. [PMID: 30888218 DOI: 10.1556/2060.106.2019.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE We previously found that homocysteine (Hcy)-induced apoptosis in endothelial cells coincided with increased NADPH oxidase (NOX) activity. In addition, in ischemic endothelial cells present in the heart, we showed that loss of serine protease dipeptidyl peptidase IV (DPP4) expression was correlated with induction of tissue factor (TF) expression. Since Hcy can initiate thrombosis through the induction of TF expression, in this study, we evaluated whether the inverse relation of TF and DPP4 is also Hcy-dependent and whether NOX-mediated reactive oxygen species (ROS) is playing a role herein. METHODS Human umbilical vein endothelial cells (HUVECs) were incubated with 2.5 mM Hcy for 3 and 6 h. The effects of Hcy on DPP4 and TF expression and NOX2/p47phox-mediated nitrotyrosine (ROS) production were studied using digital-imaging microscopy. RESULTS In HUVECs, high levels of Hcy showed a significant increase of TF expression and a concomitant loss of DPP4 expression after 6 h. In addition, NOX subunits NOX2 and p47phox were also significantly increased after 6 h of Hcy incubation and coincided with nitrotyrosine (ROS) expression. Interestingly, inhibition of NOX-mediated nitrotyrosine (ROS) with the use of apocynin not only reduced these effects, but also counteracted the effects of Hcy on TF and DPP4 expression. CONCLUSION These results indicate that the inverse relation of TF and DPP4 in endothelial cells is also Hcy-dependent and related to NOX activity.
Collapse
Affiliation(s)
- H I Korkmaz
- 1 Department of Pathology, Amsterdam UMC, VUmc , Amsterdam, The Netherlands.,2 Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VUmc , Amsterdam, The Netherlands
| | - N E Hahn
- 1 Department of Pathology, Amsterdam UMC, VUmc , Amsterdam, The Netherlands.,2 Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VUmc , Amsterdam, The Netherlands
| | - K M Jansen
- 1 Department of Pathology, Amsterdam UMC, VUmc , Amsterdam, The Netherlands
| | - Rjp Musters
- 3 Department of Physiology, Amsterdam UMC, VUmc , Amsterdam, The Netherlands
| | - J van Bezu
- 3 Department of Physiology, Amsterdam UMC, VUmc , Amsterdam, The Netherlands
| | - W N van Wieringen
- 4 Department of Epidemiology and Biostatistics, Amsterdam UMC, VUmc , Amsterdam, The Netherlands.,5 Department of Mathematics, Amsterdam UMC, VUmc , Amsterdam, The Netherlands
| | - Ppm van Zuijlen
- 6 Department of Plastic, Reconstructive and Hand Surgery, MOVE Research Institute, Amsterdam UMC, VUmc , Amsterdam, The Netherlands.,7 Department of Plastic and Reconstructive Surgery, Burn Center, Red Cross Hospital , Beverwijk, The Netherlands.,8 Preclinical Research, Association of Dutch Burn Centres (ADBC) , Beverwijk, The Netherlands
| | - Mmw Ulrich
- 1 Department of Pathology, Amsterdam UMC, VUmc , Amsterdam, The Netherlands.,8 Preclinical Research, Association of Dutch Burn Centres (ADBC) , Beverwijk, The Netherlands.,9 Department of Molecular Cell Biology and Immunology, Amsterdam UMC, VUmc , Amsterdam, The Netherlands
| | - Hwm Niessen
- 1 Department of Pathology, Amsterdam UMC, VUmc , Amsterdam, The Netherlands.,2 Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VUmc , Amsterdam, The Netherlands.,10 Department of Cardiac Surgery, Amsterdam UMC, VUmc , Amsterdam, The Netherlands
| | - Paj Krijnen
- 1 Department of Pathology, Amsterdam UMC, VUmc , Amsterdam, The Netherlands.,2 Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VUmc , Amsterdam, The Netherlands
| |
Collapse
|
45
|
Carral-Santander IE, Santos-Palacios A, Martínez-Baez BE, Cernichiaro-Espinosa L, Elizondo-Camacho JM, Valdés-Lara CA, Morales-Cantón V, Velez-Montoya R. Secondary hyperhomocysteinemia-related occlusive retinal vasculopathy: A case report. Am J Ophthalmol Case Rep 2019; 13:41-45. [PMID: 30511034 PMCID: PMC6258140 DOI: 10.1016/j.ajoc.2018.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 07/15/2018] [Accepted: 11/07/2018] [Indexed: 02/01/2023] Open
Abstract
PURPOSE To report a case of occlusive retinal vasculopathy, secondary to hyperhomocysteinemia. OBSERVATIONS A 43-year-old male was examined at the retina outpatient clinic due to complaints of bilateral decrease in visual acuity. The patient underwent a comprehensive ophthalmological examination, wide-field fundus photographs and fluorescein angiography, as well as spectral domain optical coherence tomography with enhanced-deep imaging. The patient had a significant medical history of chronic kidney disease and progressive bilateral vision loss over the last two years, which worsened in the left eye during the past 3 months. Fundus examination revealed a vitreous hemorrhage in the left eye and bilateral proliferative retinopathy. Blood glucose and systemic blood pressure were unremarkable. Plasma homocysteine was reported at >500 μmol/L, which is higher than the corrected reference range by age. CONCLUSION AND IMPORTANCE Hyperhomocysteinemia is a rare but well-known disease, capable of accelerating atherosclerotic disease and generating a prothrombotic state that can lead to multiple systemic complications. Despite its low incidence, the disease should be part of the differential diagnosis in patients with bilateral proliferative retinopathy, in the absence of diabetes mellitus and systemic hypertension.
Collapse
Affiliation(s)
| | | | | | - Linda Cernichiaro-Espinosa
- Retina Department, Asociación para Evitar la Ceguera en México, Hospital “Dr. Luis Sánchez Bulnes” IAP, Mexico City, Mexico
| | - Juan Manuel Elizondo-Camacho
- Retina Department, Asociación para Evitar la Ceguera en México, Hospital “Dr. Luis Sánchez Bulnes” IAP, Mexico City, Mexico
| | - Carlos Andrés Valdés-Lara
- Retina Department, Asociación para Evitar la Ceguera en México, Hospital “Dr. Luis Sánchez Bulnes” IAP, Mexico City, Mexico
| | - Virgilio Morales-Cantón
- Retina Department, Asociación para Evitar la Ceguera en México, Hospital “Dr. Luis Sánchez Bulnes” IAP, Mexico City, Mexico
| | - Raul Velez-Montoya
- Retina Department, Asociación para Evitar la Ceguera en México, Hospital “Dr. Luis Sánchez Bulnes” IAP, Mexico City, Mexico
| |
Collapse
|
46
|
Aavik E, Babu M, Ylä-Herttuala S. DNA methylation processes in atherosclerotic plaque. Atherosclerosis 2019; 281:168-179. [DOI: 10.1016/j.atherosclerosis.2018.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/09/2018] [Accepted: 12/14/2018] [Indexed: 12/18/2022]
|
47
|
Hogervorst JGF, Madhloum N, Saenen ND, Janssen BG, Penders J, Vanpoucke C, De Vivo I, Vrijens K, Nawrot TS. Prenatal particulate air pollution exposure and cord blood homocysteine in newborns: Results from the ENVIRONAGE birth cohort. ENVIRONMENTAL RESEARCH 2019; 168:507-513. [PMID: 30477822 DOI: 10.1016/j.envres.2018.08.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 05/25/2023]
Abstract
INTRODUCTION Particulate air pollution is probably causally related to increased risk of cardiovascular disease. Plasma homocysteine is an established cardiovascular disease risk factor. Recent studies show that exposure to particulate air pollution is associated with plasma homocysteine levels in adults but no studies on the association between prenatal air pollution and neonatal homocysteine levels exist. METHODS In 609 newborns of the ENVIRONAGE (ENVIRonmental influence ON early AGEing) birth cohort, we investigated the association between prenatal particulate matter exposure with a diameter ≤ 2.5 µm (PM2.5) and cord plasma homocysteine levels, and in a subset (n = 490) we studied the interaction with 11 single nucleotide polymorphism (SNPs) in oxidative stress-related genes (CAT, COMT, GSTP1, SOD2, NQO1 and HFE), through multiple linear regression. PM2.5 levels were obtained using a high resolution spatial temporal interpolation method. Homocysteine levels were measured by the homocysteine enzymatic assay on a Roche/Hitachi cobas c system. SNPs were assessed on the Biotrove OpenArray SNP genotyping platform. RESULTS In multivariable-adjusted models, cord plasma homocysteine levels were 8.1% higher (95% CI: 1.9 to 14.3%; p = 0.01) for each 5 µg/m³ increment in average PM2.5 exposure during the entire pregnancy. With regard to pregnancy trimesters, there was only an association in the 2nd trimester: 3.6% (95% CI: 0.9% to 6.4%; p = 0.01). The positive association between PM2.5 in and homocysteine was (borderline) statistically significantly modified by genetic variants in MnSOD (p interaction = 0.02), GSTP1 (p interaction = 0.07) and the sum score of the 3 studied SNPs in the CAT gene (p interaction=0.09), suggesting oxidative stress as an underlying mechanism of action. CONCLUSIONS Exposure to particulate air pollution in utero is associated with higher cord blood homocysteine levels, possibly through generating oxidative stress. Increased air pollution-induced homocysteine levels in early life might predispose for cardiovascular and other diseases later in life.
Collapse
Affiliation(s)
| | - Narjes Madhloum
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Nelly D Saenen
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Bram G Janssen
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Joris Penders
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium; Laboratory of Clinical Biology, East-Limburg Hospital, Genk, Belgium
| | | | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States; Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, United States
| | - Karen Vrijens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health & Primary Care, Leuven University, Leuven, Belgium
| |
Collapse
|
48
|
Gupta MD, Girish MP, Sarkar PG, Gupta A, Kategari A, Bansal A, Saijpaul R, Batra V, Rain M, Tyagi S, Pasha Q. Role of ApoE gene polymorphism and nonconventional biochemical risk factors among very young individuals (aged less than 35 years) presenting with acute myocardial infarction. Indian Heart J 2018; 70 Suppl 3:S146-S156. [PMID: 30595248 PMCID: PMC6310748 DOI: 10.1016/j.ihj.2018.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/09/2018] [Accepted: 08/12/2018] [Indexed: 12/11/2022] Open
Abstract
Background Incidence rate of acute myocardial infarction (MI) has increased in younger population over the years. The young patients have a different risk profile, presentation, and prognosis than the elderly. Hence, it is essential to understand the risk factors in young patients for proper treatment. Methods Apolipoprotein E (ApoE) polymorphism and biochemicals such as total cholesterol, serum triglycerides, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), apolipoprotein A1 (ApoA1), apolipoprotein B (ApoB), lipoprotein(a), insulin, interleukin-6, homocysteine, fibrinogen, and highly sensitive C-reactive protein were investigated in very young MI (yMI patients; age ≤ 35 years; n = 125), in old MI (oMI patients; age >35 and < 80 years; n = 111), and healthy controls (age ≤35 years; n = 103). Results HDL-C was significantly lower in yMI patients than in controls (p = 2.63E-04) and oMI patients (p = 1.29E-05). ApoA1 was also lowest in yMI patients, but significant only in comparison to controls (p = 2.62E.04). The yMI group had the highest ratios of total cholesterol:HDL-C (p = 0.027 in yMI patients versus controls and p = 0.018 in yMI patients versus oMI patients), LDL-C:HDL-C (p = 0.002 in yMI patients versus controls and p = 0.005 in yMI patients versus oMI patients), and ApoB:ApoA1 (p = 8.75E-05 in yMI patients versus controls and p > 0.05 in yMI patients versus oMI patients). No significant pattern of ApoE polymorphisms was observed. Conclusion The lower level of HDL-C and ApoA1 and higher ratios of total cholesterol:HDL-C, LDL-C:HDL-C, and ApoB:ApoA1 are risk factors for MI in young patients.
Collapse
Affiliation(s)
- Mohit D Gupta
- GB Pant Institute of Post Graduate Medical Education and Research, New Delhi, India; Safdarjung Hospital and Vardhman Institute of Medical Sciences, New Delhi, India.
| | - M P Girish
- GB Pant Institute of Post Graduate Medical Education and Research, New Delhi, India; Safdarjung Hospital and Vardhman Institute of Medical Sciences, New Delhi, India
| | - Prattay G Sarkar
- GB Pant Institute of Post Graduate Medical Education and Research, New Delhi, India; Safdarjung Hospital and Vardhman Institute of Medical Sciences, New Delhi, India
| | - Amit Gupta
- GB Pant Institute of Post Graduate Medical Education and Research, New Delhi, India; Safdarjung Hospital and Vardhman Institute of Medical Sciences, New Delhi, India
| | - Anand Kategari
- GB Pant Institute of Post Graduate Medical Education and Research, New Delhi, India; Safdarjung Hospital and Vardhman Institute of Medical Sciences, New Delhi, India
| | - Ankit Bansal
- GB Pant Institute of Post Graduate Medical Education and Research, New Delhi, India; Safdarjung Hospital and Vardhman Institute of Medical Sciences, New Delhi, India
| | - Rajni Saijpaul
- Safdarjung Hospital and Vardhman Institute of Medical Sciences, New Delhi, India
| | - Vishal Batra
- GB Pant Institute of Post Graduate Medical Education and Research, New Delhi, India; Safdarjung Hospital and Vardhman Institute of Medical Sciences, New Delhi, India
| | - Manjari Rain
- Institute of Genomics and Integrative Biology, New Delhi, India
| | - Sanjay Tyagi
- GB Pant Institute of Post Graduate Medical Education and Research, New Delhi, India; Safdarjung Hospital and Vardhman Institute of Medical Sciences, New Delhi, India
| | - Qadar Pasha
- Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
49
|
Djuric D, Jakovljevic V, Zivkovic V, Srejovic I. Homocysteine and homocysteine-related compounds: an overview of the roles in the pathology of the cardiovascular and nervous systems. Can J Physiol Pharmacol 2018; 96:991-1003. [PMID: 30130426 DOI: 10.1139/cjpp-2018-0112] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Homocysteine, an amino acid containing a sulfhydryl group, is an intermediate product during metabolism of the amino acids methionine and cysteine. Hyperhomocysteinemia is used as a predictive risk factor for cardiovascular disorders, the stroke progression, screening for inborn errors of methionine metabolism, and as a supplementary test for vitamin B12 deficiency. Two organic systems in which homocysteine has the most harmful effects are the cardiovascular and nervous system. The adverse effects of homocysteine are achieved by the action of several different mechanisms, such as overactivation of N-methyl-d-aspartate receptors, activation of Toll-like receptor 4, disturbance in Ca2+ handling, increased activity of nicotinamide adenine dinucleotide phosphate-oxidase and subsequent increase of production of reactive oxygen species, increased activity of nitric oxide synthase and nitric oxide synthase uncoupling and consequent impairment in nitric oxide and reactive oxygen species synthesis. Increased production of reactive species during hyperhomocysteinemia is related with increased expression of several proinflammatory cytokines, including IL-1β, IL-6, TNF-α, MCP-1, and intracellular adhesion molecule-1. All these mechanisms contribute to the emergence of diseases like atherosclerosis and related complications such as myocardial infarction, stroke, aortic aneurysm, as well as Alzheimer disease and epilepsy. This review provides evidence that supports the causal role for hyperhomocysteinemia in the development of cardiovascular disease and nervous system disorders.
Collapse
Affiliation(s)
- Dragan Djuric
- a Institute of Medical Physiology "Richard Burian" Faculty of Medicine, University of Belgrade, Visegradska 26, Belgrade 11000, Serbia
| | - Vladimir Jakovljevic
- b Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac 34000, Serbia.,c Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st. 8, Moscow 119991, Russia
| | - Vladimir Zivkovic
- b Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac 34000, Serbia
| | - Ivan Srejovic
- b Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac 34000, Serbia
| |
Collapse
|
50
|
Kumar M, Sandhir R. Neuroprotective Effect of Hydrogen Sulfide in Hyperhomocysteinemia Is Mediated Through Antioxidant Action Involving Nrf2. Neuromolecular Med 2018; 20:475-490. [PMID: 30105650 DOI: 10.1007/s12017-018-8505-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/06/2018] [Indexed: 12/23/2022]
Abstract
Homocysteine (Hcy) is a sulfur-containing amino acid derived from methionine metabolism. Elevated plasma Hcy levels (> 15 µM) result in a condition called hyperhomocysteinemia (HHcy), which is an independent risk factor in the development of various neurodegenerative disorders. Reactive oxygen species (ROS) produced by auto-oxidation of Hcy have been implicated in HHcy-associated neurological conditions. Hydrogen sulfide (H2S) is emerging as a potent neuroprotective and neuromodulator molecule. The present study was aimed to evaluate the ability of NaHS (a source of H2S) to attenuate Hcy-induced oxidative stress and altered antioxidant status in animals subjected to HHcy. Impaired cognitive functions assessed by Y-maze and elevated plus maze in Hcy-treated animals were reversed on NaHS administration. Increased levels of ROS, lipid peroxidation, protein carbonyls, and 4-hydroxynonenal (4-HNE)-modified proteins were observed in the cortex and hippocampus of Hcy-treated animals suggesting accentuated oxidative stress. This increase in Hcy-induced oxidative stress was reversed following NaHS supplementation. GSH/GSSG ratio, activity of antioxidant enzymes viz; superoxide dismutase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase were decreased in Hcy-treated animals. NaHS supplementation, on the otherhand, restored redox ratio and activity of antioxidant enzymes in the brains of animals with HHcy. Further, NaHS administration normalized nuclear factor erythroid 2-related factor 2 expression and acetylcholinesterase (AChE) activity in the brain of Hcy-treated animals. Histopathological studies using cresyl violet indicated higher number of pyknotic neurons in the cortex and hippocampus of HHcy animals, which were reversed by NaHS administration. The results clearly demonstrate that NaHS treatment significantly ameliorates Hcy-induced cognitive impairment by attenuating oxidative stress, improving antioxidant status, and modulating AChE activity thereby suggesting potential of H2S as a therapeutic molecule.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Biochemistry, Basic Medical Science Block-II, Sector-25, Panjab University, Chandigarh, 160014, India
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Block-II, Sector-25, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|