1
|
Bennett BJ, Aung MT, Boonstra R, Delehanty B, Houde M, Muir DCG, Fair PA, Gribble MO. Investigation of the Link between Per- and Polyfluoroalkyl Substances and Stress Biomarkers in Bottlenose Dolphins ( Tursiops truncatus). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9061-9070. [PMID: 38743562 PMCID: PMC11137861 DOI: 10.1021/acs.est.3c06979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 05/16/2024]
Abstract
Bottlenose dolphins (Tursiops truncatus) are keystone and sentinel species in the world's oceans. We studied correlations between per- and polyfluoroalkyl substances (PFAS) and their stress axis. We investigated associations between plasma biomarkers of 12 different PFAS variants and three cortisol pools (total, bound, and free) in wild T. truncatus from estuarine waters of Charleston, South Carolina (n = 115) and Indian River Lagoon, Florida (n = 178) from 2003 to 2006, 2010-2013, and 2015. All PFAS and total cortisol levels for these dolphins were previously reported; bound cortisol levels and free cortisol calculations have not been previously reported. We tested null hypotheses that levels of each PFAS were not correlated with those of each cortisol pool. Free cortisol levels were lower when PFOS, PFOA, and PFHxS biomarker levels were higher, but free cortisol levels were higher when PFTriA was higher. Bound cortisol levels were higher when there were higher PFDA, PFDoDA, PFDS, PFTeA, and PFUnDA biomarkers. Total cortisol was higher when PFOA was lower, but total cortisol was higher when PFDA, PFDoDA, PFTeA, and PFTriA were higher. Additional analyses indicated sex and age trends, as well as heterogeneity of effects from the covariates carbon chain length and PFAS class. Although this is a cross-sectional observational study and, therefore, could reflect cortisol impacts on PFAS toxicokinetics, these correlations are suggestive that PFAS impacts the stress axis in T. truncatus. However, if PFAS do impact the stress axis of dolphins, it is specific to the chemical structure, and could affect the individual pools of cortisol differently. It is critical to conduct long-term studies on these dolphins and to compare them to populations that have no or little expose to PFAS.
Collapse
Affiliation(s)
- Baylin J. Bennett
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
- Department
of Medicine, Division of Occupational, Environmental and Climate Medicine, University of California San Francisco, San Francisco, California 94143, United States
| | - Max T. Aung
- Department
of Population and Public Health Sciences, University of Southern California, Los Angeles, California 90032, United States
| | - Rudy Boonstra
- Centre
for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Brendan Delehanty
- Centre
for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Magali Houde
- Aquatic
Contaminants Research Division, Environment
and Climate Change Canada, Montreal, Quebec G1J 0C3, Canada
| | - Derek C. G. Muir
- Aquatic
Contaminants Research Division, Environment
and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Patricia A. Fair
- Department
of Public Health Sciences, Medical University
of South Carolina, Charleston, South Carolina 29425, United States
| | - Matthew O. Gribble
- Department
of Medicine, Division of Occupational, Environmental and Climate Medicine, University of California San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
2
|
Majer AD, Paitz RT, Tricola GM, Geduldig JE, Litwa HP, Farmer JL, Prevelige BR, McMahon EK, McNeely T, Sisson ZR, Frenz BJ, Ziur AD, Clay EJ, Eames BD, McCollum SE, Haussmann MF. The response to stressors in adulthood depends on the interaction between prenatal exposure to glucocorticoids and environmental context. Sci Rep 2023; 13:6180. [PMID: 37061562 PMCID: PMC10105737 DOI: 10.1038/s41598-023-33447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023] Open
Abstract
Maternal stress during reproduction can influence how offspring respond to stress later in life. Greater lifetime exposure to glucocorticoid hormones released during stress is linked to greater risks of behavioral disorders, disease susceptibility, and mortality. The immense variation in individual's stress responses is explained, in part, by prenatal glucocorticoid exposure. To explore the long-term effects of embryonic glucocorticoid exposure, we injected Japanese quail (Coturnix japonica) eggs with corticosterone. We characterized the endocrine stress response in offspring and measured experienced aggression at three different ages. We found that prenatal glucocorticoid exposure affected (1) the speed at which the stress response was terminated suggesting dysregulated negative feedback, (2) baseline corticosterone levels in a manner dependent on current environmental conditions with higher levels of experienced aggression associated with higher levels of baseline corticosterone, (3) the magnitude of an acute stress response based on baseline concentrations. We finish by proposing a framework that can be used to test these findings in future work. Overall, our findings suggest that the potential adaptive nature of prenatal glucocorticoid exposure is likely dependent on environmental context and may also be tempered by the negative effects of longer exposure to glucocorticoids each time an animal faces a stressor.
Collapse
Affiliation(s)
- Ariana D Majer
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Ryan T Paitz
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Gianna M Tricola
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Jack E Geduldig
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Hannah P Litwa
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Jenna L Farmer
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | | | - Elyse K McMahon
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Taylor McNeely
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Zach R Sisson
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Brian J Frenz
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Alexis D Ziur
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Emily J Clay
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Brad D Eames
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | | | - Mark F Haussmann
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA.
| |
Collapse
|
3
|
EKMEKCİ HS, MUFTAREVİÇ S. Epigenetic Effects of Social Stress and Epigenetic Inheritance. PSIKIYATRIDE GUNCEL YAKLASIMLAR - CURRENT APPROACHES IN PSYCHIATRY 2023. [DOI: 10.18863/pgy.1059315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Social events that cause stress can cause epigenetic changes on living things. The study of the effects of social events experienced by an individual on epigenetic marks on the genome has created the field of social epigenetics. Social epigenetics examines the effects of psychosocial stress factors such as poverty, war trauma and childhood abuse on epigenetic mechanisms. Epigenetic mechanisms alter chemical markers in the genome structure without changing the DNA sequence. Among these mechanisms, DNA methylation in particular may have different phenotypic effects in response to stressors that may occur in the psychosocial environment. Post-traumatic stress disorder is one of the most significant proofs of the effects of epigenetic expressions altered due to traumatic events on the phenotype. The field of epigenetic inheritance has shown that epigenetic changes triggered by environmental influences can, in some cases, be transmitted through generations. This field provides a better understanding of the basis of many psychological disorders. This review provides an overview of social epigenetics, PTSD, and epigenetic inheritance.
Collapse
|
4
|
Evolution of an increased performance under acute challenge does not exacerbate vulnerability to chronic stress. Sci Rep 2022; 12:2126. [PMID: 35136150 PMCID: PMC8825808 DOI: 10.1038/s41598-022-06060-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/17/2022] [Indexed: 11/26/2022] Open
Abstract
An adequate stress response plays a vital role in coping with challenges. However, if selection for improved coping with an acute challenge affects the entire stress response system, susceptibility to adverse effects of chronic stressors can be deepened. Here, we used bank voles from lines selected for high swim-induced aerobic metabolism (A) and unselected control (C), and asked if the selection affected sensitivity to chronic mild stress (CMS). The voles were first habituated to daily weighing and feces collection for three weeks, and then for two weeks were exposed to CMS or remained undisturbed. The habituation itself resulted in an increased swim-induced oxygen consumption in both line types, and a decreased body mass. The CMS treatment caused reduction of food consumption in the second week of the experiment, and, in males, a decline in the metabolic rate. Paradoxically, fecal corticosterone metabolites decreased in the CMS-treated group. The response to CMS did not differ between the line types. Thus, the selection for increased performance was not traded off by increased vulnerability to chronic stress. The counter-intuitive results may even lead to a speculation that bank voles—and perhaps also other animals—prefer experiencing unpredictable, unpleasant stressors over the monotony of standard laboratory housing.
Collapse
|
5
|
Names GR, Schultz EM, Krause JS, Hahn TP, Wingfield JC, Heal M, Cornelius JM, Klasing KC, Hunt KE. Stress in paradise: effects of elevated corticosterone on immunity and avian malaria resilience in a Hawaiian passerine. J Exp Biol 2021; 224:272529. [PMID: 34553762 PMCID: PMC8546672 DOI: 10.1242/jeb.242951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/20/2021] [Indexed: 11/20/2022]
Abstract
Vertebrates confronted with challenging environments often experience an increase in circulating glucocorticoids, which result in morphological, physiological and behavioral changes that promote survival. However, chronically elevated glucocorticoids can suppress immunity, which may increase susceptibility to disease. Since the introduction of avian malaria to Hawaii a century ago, low-elevation populations of Hawaii Amakihi (Chlorodrepanis virens) have undergone strong selection by avian malaria and evolved increased resilience (the ability to recover from infection), while populations at high elevation with few vectors have not undergone selection and remain susceptible. We investigated how experimentally elevated corticosterone affects the ability of high- and low-elevation male Amakihi to cope with avian malaria by measuring innate immunity, hematocrit and malaria parasitemia. Corticosterone implants resulted in a decrease in hematocrit in high- and low-elevation birds but no changes to circulating natural antibodies or leukocytes. Overall, leukocyte count was higher in low- than in high-elevation birds. Malaria infections were detected in a subset of low-elevation birds. Infected individuals with corticosterone implants experienced a significant increase in circulating malaria parasites while untreated infected birds did not. Our results suggest that Amakihi innate immunity measured by natural antibodies and leukocytes is not sensitive to changes in corticosterone, and that high circulating corticosterone may reduce the ability of Amakihi to cope with infection via its effects on hematocrit and malaria parasite load. Understanding how glucocorticoids influence a host's ability to cope with introduced diseases provides new insight into the conservation of animals threatened by novel pathogens. Summary: Amakihi innate immunity, as measured by natural antibodies and leukocytes, is not sensitive to changes in corticosterone, but high circulating corticosterone may reduce the ability of Amakihi to cope with avian malaria infection via its effects on hematocrit and malaria parasite load.
Collapse
Affiliation(s)
- Gabrielle R Names
- Animal Behavior Graduate Group, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.,Department of Neurobiology, Physiology and Behavior, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Elizabeth M Schultz
- Department of Biology, Wittenberg University, 200 W Ward Street, Springfield, OH 45504, USA
| | - Jesse S Krause
- Department of Biology, University of Nevada Reno, 1664 North Virginia Street, Reno, NV 89557, USA
| | - Thomas P Hahn
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Molly Heal
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jamie M Cornelius
- Department of Integrative Biology, Oregon State University, 2701 SW Campus Way, Corvallis, OR 97331, USA
| | - Kirk C Klasing
- Department of Animal Science, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Kathleen E Hunt
- Smithsonian-Mason School of Conservation & Department of Biology, George Mason University, 1500 Remount Rd, Front Royal, VA 22630, USA
| |
Collapse
|
6
|
Shutt-Phillips K, Pafčo B, Heistermann M, Kasim A, Petrželková KJ, Profousová-Pšenková I, Modrý D, Todd A, Fuh T, Dicky JF, Bopalanzognako JB, Setchell JM. Fecal glucocorticoids and gastrointestinal parasite infections in wild western lowland gorillas (Gorilla gorilla gorilla) involved in ecotourism. Gen Comp Endocrinol 2021; 312:113859. [PMID: 34298054 DOI: 10.1016/j.ygcen.2021.113859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Wildlife ecotourism can offer a source of revenue which benefits local development and conservation simultaneously. However, habituation of wildlife for ecotourism can cause long-term elevation of glucocorticoid hormones, which may suppress immune function and increase an animal's vulnerability to disease. We have previously shown that western lowland gorillas (Gorilla gorilla gorilla) undergoing habituation in Dzanga-Sangha Protected Areas, Central African Republic, have higher fecal glucocorticoid metabolite (FGCM) levels than both habituated and unhabituated gorillas. Here, we tested the relationship between FGCM levels and strongylid infections in the same gorillas. If high FGCM levels suppress the immune system, we predicted that FGCM levels will be positively associated with strongylid egg counts and that gorillas undergoing habituation will have the highest strongylid egg counts, relative to both habituated and unhabituated gorillas. We collected fecal samples over 12 months in two habituated gorilla groups, one group undergoing habituation and completely unhabituated gorillas. We established FGCM levels and fecal egg counts of Necator/Oesophagostomum spp. and Mammomonogamus sp. Controlling for seasonal variation and age-sex category in strongylid infections we found no significant relationship between FGCMs and Nectator/Oesophagostomum spp. or Mammomonogamus sp. egg counts in a within group comparison in either a habituated group or a group undergoing habituation. However, across groups, egg counts of Nectator/Oesophagostomum spp. were lowest in unhabituated animals and highest in the group undergoing habituation, matching the differences in FGCM levels among these gorilla groups. Our findings partially support the hypothesis that elevated glucocorticoids reduce a host's ability to control the extent of parasitic infections, and show the importance of non-invasive monitoring of endocrine function and parasite infection in individuals exposed to human pressure including habituation process and ecotourism.
Collapse
Affiliation(s)
- Kathryn Shutt-Phillips
- Department of Anthropology, Durham University, Durham, UK; UN Environment Programme World Conservation Monitoring Center, Cambridge, UK
| | - Barbora Pafčo
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic; Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Czech Republic.
| | | | - Adetayo Kasim
- Wolfson Research Institute for Health and Wellbeing, Durham University Queen's Campus University Boulevard, Thornaby, UK
| | - Klára J Petrželková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic; Liberec Zoo, Liberec, Czech Republic.
| | | | - David Modrý
- Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic; Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources/CINeZ, Czech University of Life Sciences, Prague, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Terence Fuh
- WWF-CAR, BP 1053 Bangui, Central African Republic
| | | | | | | |
Collapse
|
7
|
Reproductive and Stress Response Hormones of the Critically Endangered Southern Muriqui (Brachyteles arachnoides: Atelidae) Under Captive Conditions. INT J PRIMATOL 2021. [DOI: 10.1007/s10764-021-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Kumari Patel S, Biswas S, Goswami S, Bhatt S, Pandav B, Mondol S. Effects of faecal inorganic content variability on quantifying glucocorticoid and thyroid hormone metabolites in large felines: Implications for physiological assessments in free-ranging animals. Gen Comp Endocrinol 2021; 310:113833. [PMID: 34089705 DOI: 10.1016/j.ygcen.2021.113833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/16/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022]
Abstract
Faecal glucocorticoid (GC) and triiodothyronine (T3) metabolites and their interactions are increasingly used to monitor perceived stress and nutritional challenges in free-ranging animals. However, a number of extrinsic and intrinsic factors including hormone-inert dietary materials, inorganic matters etc. are known to affect reliable hormone metabolite quantifications. In this study, the impacts of inorganic matter (IOM) on faecal GC (fGCMs) and T3 (fT3Ms) metabolite measure were addressed in wild tiger (n = 193 from Terai Arc landscape, India) and captive lion (n = 120 from Sakkarbaug Zoological Garden, Gujarat, India) and possible corrective measures were evaluated. The wild tiger samples contained highly variable IOM content (9-98%, mostly with > 40% IOM) compared to captive Asiatic lion (17-57%, majority with < 40% IOM). Significant correlations were observed between IOM content and tiger fGCM (r = -0.46, p = 0.000), fT3M (r = -0.58, p = 0.000) and lion fT3M measures (r = -0.43, p = 0.003). Two corrective measures viz. removing samples with ≥ 80% IOM and subsequently expressing concentrations as per gram of organic dry matter (instead of total dry matter) reduced IOM influence on tiger fGCM, fT3M and lion fT3M, without affecting lion fGCM measures. The corrective measures changed the interpretations of fT3M data of field-collected tiger samples with no significant changes in fGCM (both tiger and lion) and fT3M (lion) data. As faecal IOM content is common in many wild species, the results emphasize the need to reduce IOM-driven hormone data variation for ecologically relevant interpretations towards species conservation.
Collapse
Affiliation(s)
- Shiv Kumari Patel
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand 248001 India
| | - Suvankar Biswas
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand 248001 India
| | - Sitendu Goswami
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand 248001 India
| | - Supriya Bhatt
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand 248001 India
| | - Bivash Pandav
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand 248001 India
| | - Samrat Mondol
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand 248001 India.
| |
Collapse
|
9
|
Extrinsic factors, endocrine mechanisms, and behavioral indicators of migratory restlessness in wintering whooper swans (Cygnus cygnus). Sci Rep 2021; 11:12636. [PMID: 34135395 PMCID: PMC8209029 DOI: 10.1038/s41598-021-92031-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/21/2021] [Indexed: 11/24/2022] Open
Abstract
Extrinsic factors, endocrine mechanisms, and behavioral indicators of migratory restlessness were studied in wintering whooper swans (Cygnus cygnus) in the Sanmenxia Swan National Wetland Park in western Henan Province, central China. First, the fecal glucocorticoid metabolite (FGM) concentration was established and related to mean air temperature or photo period (day length) using simple linear or non-linear regression models. After a model selection procedure, the best fitted model revealed that an increase of FGM concentration was associated with an increase in the squared mean air temperature (R2 = 0.88). Other models showed an increasing FGM concentration to correspond with increasing values of day length, squared day length, and mean air temperature—however without statistical support. In a second step, behavioral frequencies of seven behaviors were condensed into three behavioral principal components (PCs) using principal components analysis. Behavioral PCs largely corresponded to three activity phases described for wintering whooper swans in central China and were correlated with the FGM concentration using Spearman's rank-order correlations. Results revealed a significant correlation between FGM and behavioral PC2 (positive factor loadings from vigilance and preening, negative loading from foraging). Finally, we tested for an effect of behavioral PCs on changes in winter home range size using a set of multiple linear regression models. Results of averaged model parameter estimates showed only the behavioral PC3 (positive factor loadings from fighting and calling, negative loading from locomotion) had a marginal significant effect on home range size. Results confirmed findings of previous studies on migratory restlessness in whooper swans. However, due to the small sample size (N = 15 weeks) the effect of PC3 on home range size was weak and should be viewed with caution.
Collapse
|
10
|
Injaian AS, Uehling JJ, Taff CC, Vitousek MN. Effects of artificial light at night on avian provisioning, corticosterone, and reproductive success. Integr Comp Biol 2021; 61:1147-1159. [PMID: 34021748 DOI: 10.1093/icb/icab055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Artificial light at night (hereafter 'ALAN') affects 88% of the land area in Europe and almost half of the land area in the US, with even rural areas exposed to lights from agricultural and industrial buildings. To date, there have been few studies that assess the impacts of ALAN on both wildlife behavior and physiology. However, ALAN may alter energy expenditure and/or stress physiology during the breeding period, potentially reducing reproductive success and resulting in conservation implications. Here, we experimentally exposed adult female and nestling tree swallows (Tachycineta bicolor) to ALAN. We then measured the effects of ALAN compared to control conditions on parental behavior (provisioning rate), nestling physiology (corticosterone levels), and reproductive success (likelihood of all eggs hatching and all nestlings fledging per nest). Our results showed that ALAN-exposed females provisioned their nestlings at lower rates than control females. Although relatively weak, our results also suggested that ALAN-exposed nestlings had reduced baseline and increased stress-induced corticosterone compared to control nestlings. ALAN-exposed nestlings also showed greater negative feedback of circulating corticosterone. We found no support for our prediction that ALAN would reduce nestling body condition. Finally, we found some support for a negative effect of ALAN on the likelihood that all eggs hatched in a given nest, but not the likelihood that all nestlings fledged. Therefore, while it is possible that the behavioral and physiological changes found here result in long-term consequences, our results also suggest that direct ALAN exposure alone may not have substantially large or negative effects on tree swallows. Exposure regimes for free-living birds, such as exposure to a combination of anthropogenic disturbances (i.e. ALAN and noise pollution) or direct and indirect effects of ALAN (i.e. effects on physiology due to direct light exposure and alterations in food availability), may produce different results than those found here.
Collapse
Affiliation(s)
- Allison S Injaian
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Ithaca, NY, USA
| | - Jennifer J Uehling
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Cornell Lab of Ornithology, Ithaca, NY, USA
| | - Conor C Taff
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Cornell Lab of Ornithology, Ithaca, NY, USA
| | - Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Cornell Lab of Ornithology, Ithaca, NY, USA
| |
Collapse
|
11
|
Le Luyer J, Schull Q, Auffret P, Lopez P, Crusot M, Belliard C, Basset C, Carradec Q, Poulain J, Planes S, Saulnier D. Dual RNAseq highlights the kinetics of skin microbiome and fish host responsiveness to bacterial infection. Anim Microbiome 2021; 3:35. [PMID: 33962693 PMCID: PMC8106148 DOI: 10.1186/s42523-021-00097-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background Tenacibaculum maritimum is a fish pathogen known for causing serious damage to a broad range of wild and farmed marine fish populations worldwide. The recently sequenced genome of T. maritimum strain NCIMB 2154T provided unprecedented information on the possible molecular mechanisms involved in the virulence of this species. However, little is known about the dynamic of infection in vivo, and information is lacking on both the intrinsic host response (gene expression) and its associated microbiota. Here, we applied complementary omic approaches, including dual RNAseq and 16S rRNA gene metabarcoding sequencing using Nanopore and short-read Illumina technologies to unravel the host–pathogen interplay in an experimental infection system using the tropical fish Platax orbicularis as model. Results We showed that the infection of the host is characterised by an enhancement of functions associated with antibiotic and glucans catabolism functions but a reduction of sulfate assimilation process in T. maritimum. The fish host concurrently displays a large panel of immune effectors, notably involving innate response and triggering acute inflammatory response. In addition, our results suggest that fish activate an adaptive immune response visible through the stimulation of T-helper cells, Th17, with congruent reduction of Th2 and T-regulatory cells. Fish were, however, largely sensitive to infection, and less than 25% survived after 96 hpi. These surviving fish showed no evidence of stress (cortisol levels) or significant difference in microbiome diversity compared with controls at the same sampling time. The presence of T. maritimum in resistant fish skin and the total absence of any skin lesions suggest that these fish did not escape contact with the pathogen, but rather that some mechanisms prevented pathogens entry. In resistant individuals, we detected up-regulation of specific immune-related genes differentiating resistant individuals from controls at 96 hpi, which suggests a possible genomic basis of resistance, although no genetic variation in coding regions was found. Conclusion Here we focus in detail on the interplay between common fish pathogens and host immune response during experimental infection. We further highlight key actors of defence response, pathogenicity and possible genomic bases of fish resistance to T. maritimum. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00097-1.
Collapse
Affiliation(s)
- J Le Luyer
- Ifremer, IRD, Institut Louis-Malardé, Univ Polynésie Française, EIO, F-98719 Taravao, Tahiti, Polynésie Française.
| | - Q Schull
- Ifremer, IRD, Institut Louis-Malardé, Univ Polynésie Française, EIO, F-98719 Taravao, Tahiti, Polynésie Française.,MARBEC, Univ. Montpellier, Ifremer, IRD, CNRS, F-34200, Sète, France
| | - P Auffret
- Ifremer, IRD, Institut Louis-Malardé, Univ Polynésie Française, EIO, F-98719 Taravao, Tahiti, Polynésie Française
| | - P Lopez
- Ifremer, IRD, Institut Louis-Malardé, Univ Polynésie Française, EIO, F-98719 Taravao, Tahiti, Polynésie Française.,Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - M Crusot
- Ifremer, IRD, Institut Louis-Malardé, Univ Polynésie Française, EIO, F-98719 Taravao, Tahiti, Polynésie Française.,Univ Polynésie française, Ifremer, IRD, Institut Louis-Malardé, EIO, F-98702 Fa, 'a, Tahiti, Polynésie Française
| | - C Belliard
- Ifremer, IRD, Institut Louis-Malardé, Univ Polynésie Française, EIO, F-98719 Taravao, Tahiti, Polynésie Française
| | - C Basset
- Ifremer, IRD, Institut Louis-Malardé, Univ Polynésie Française, EIO, F-98719 Taravao, Tahiti, Polynésie Française
| | - Q Carradec
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - J Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - S Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Moorea, Polynésie Française.,Laboratoire d'Excellence "CORAIL," USR 3278 CNRS-EPHE-UPVD CRIOBE, Perpignan, France
| | - D Saulnier
- Ifremer, IRD, Institut Louis-Malardé, Univ Polynésie Française, EIO, F-98719 Taravao, Tahiti, Polynésie Française
| |
Collapse
|
12
|
Cinque C, Williams NM, Bencini C, Cozzolino R. Adverse weather conditions reduce food availability and increase glucocorticoid metabolite levels in barn swallow nestlings. WILDLIFE BIOLOGY 2021. [DOI: 10.2981/wlb.00747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Carlo Cinque
- C. Cinque (https://orcid.org/0000-0001-5612-641X) ✉ , N. M. Williams, C. Bencini and R. Cozzolino, Fondazione Ethoikos, Convento dell'Osservanza, Radicondoli, Italy
| | - Nicholas Moray Williams
- C. Cinque (https://orcid.org/0000-0001-5612-641X) ✉ , N. M. Williams, C. Bencini and R. Cozzolino, Fondazione Ethoikos, Convento dell'Osservanza, Radicondoli, Italy
| | - Cristina Bencini
- C. Cinque (https://orcid.org/0000-0001-5612-641X) ✉ , N. M. Williams, C. Bencini and R. Cozzolino, Fondazione Ethoikos, Convento dell'Osservanza, Radicondoli, Italy
| | - Roberto Cozzolino
- C. Cinque (https://orcid.org/0000-0001-5612-641X) ✉ , N. M. Williams, C. Bencini and R. Cozzolino, Fondazione Ethoikos, Convento dell'Osservanza, Radicondoli, Italy
| |
Collapse
|
13
|
Siroski PA, María Soledad MB. Review of the Recent Knowledge on the Crocodilian Immune System. SOUTH AMERICAN JOURNAL OF HERPETOLOGY 2020. [DOI: 10.2994/sajh-d-19-00093.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Pablo A. Siroski
- Laboratorio de Zoología Aplicada: Anexo Vertebrados, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, Ministerio de Medio Ambiente y Cambio Climático, Santa Fe, Argentina
| | - Moleón Barsani María Soledad
- Laboratorio de Zoología Aplicada: Anexo Vertebrados, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, Ministerio de Medio Ambiente y Cambio Climático, Santa Fe, Argentina
| |
Collapse
|
14
|
Hopkins WA, DuRant SE, Beck ML, Ray WK, Helm RF, Romero LM. Cortisol is the predominant glucocorticoid in the giant paedomorphic hellbender salamander (Cryptobranchus alleganiensis). Gen Comp Endocrinol 2020; 285:113267. [PMID: 31491375 DOI: 10.1016/j.ygcen.2019.113267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/19/2019] [Accepted: 09/01/2019] [Indexed: 11/20/2022]
Abstract
Corticosterone is widely regarded to be the predominant glucocorticoid produced in amphibians. However, we recently described unusually low baseline and stress-induced corticosterone profiles in eastern hellbenders (Cryptobranchus alleganiensis alleganiensis), a giant, fully aquatic salamander. Here, we hypothesized that hellbenders might also produce cortisol, the predominant glucocorticoid used by fishes and non-rodent mammals. To test our hypothesis, we collected plasma samples in two field experiments and analyzed them using multiple analytical techniques to determine how plasma concentrations of cortisol and corticosterone co-varied after 1) physical restraint and 2) injection with adrenocorticotropic hormone (ACTH), the pituitary hormone responsible for triggering the release of glucocorticoids from amphibian interrenal glands. Using liquid chromatography-mass spectrometry, we found that baseline and restraint-induced plasma concentrations of cortisol were more than five times those of corticosterone. We then demonstrated that plasma concentrations of both glucocorticoids increased in response to ACTH in a dose-dependent manner, but cortisol concentrations were consistently higher (up to 10-fold) than corticosterone. Cortisol and corticosterone concentrations were not correlated with one another at basal or induced conditions. The extremely low plasma concentrations of corticosterone in hellbenders suggests that corticosterone could simply be a byproduct of cortisol production, and raises questions as to whether corticosterone has any distinct physiological function in hellbenders. Our results indicate that hellbenders produce cortisol as their predominant glucocorticoid, supporting a small and inconclusive body of literature indicating that some other amphibians may produce appreciable quantities of cortisol. We hypothesize that the use of cortisol by hellbenders could be an adaptation to their fully aquatic life history due to cortisol's ability to fulfill both mineralocorticoid and glucocorticoid functions, similar to its functions in fishes. Given the large number of amphibian species that are fully aquatic or have aquatic life stages, we suggest that the broadly held assumption that corticosterone is the predominant glucocorticoid in all amphibians requires further scrutiny. Ultimately, multi-species tests of this assumption will reveal the ecological factors that influenced the evolution of endocrine adaptations among amphibian lineages, and may provide insight into convergent evolution of endocrine traits in paedomorphic species.
Collapse
Affiliation(s)
- William A Hopkins
- Dept of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Sarah E DuRant
- Dept of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Michelle L Beck
- Dept of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, USA; Dept. of Biology, Rivier University, Nashua, NH 03060, USA
| | - W Keith Ray
- Dept of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Richard F Helm
- Dept of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | | |
Collapse
|
15
|
Turpen KK, Welle KR, Trail JL, Patel SD, Allender MC. Establishing Stress Behaviors in Response to Manual Restraint in Cockatiels ( Nymphicus hollandicus). J Avian Med Surg 2019; 33:38-45. [PMID: 31124610 DOI: 10.1647/2017-315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Avian patients are presented commonly to veterinarians for preventive and disease-induced care. Physical examinations commonly are used to assess the overall patient, but this requires manual restraint, which often leads to increased stress and subsequent deleterious effects. To develop a noninvasive evaluation of the stress response in cockatiels (Nymphicus hollandicus), we evaluated the behavior of 26 juvenile cockatiels during their normal daily routine and after an acute stressful event (manual restraint and physical examination). Nonstressed behavior budgets were established by performing quantitative ethograms using 10-minute focal animal sampling methods with point samples recorded every 5 seconds. The ethograms then were repeated after a >10-minute restraint period for physical examination and venipuncture. Plasma corticosterone levels at baseline (<3 minutes) and after stress (>10 minutes) were compared to accompanying behaviors. Plasma corticosterone levels significantly increased after restraint. Overall, reactionary behaviors and inactivity increased, while locomotion, feeding, interaction with the environment, and displays of aggression decreased in the stressed birds. Maintenance behaviors were not significantly different before and after restraint, but the subjective character changed, with stressed birds displaying an increase in behaviors that were short in duration with minimal decrease in vigilance. Our results will be helpful to develop a method of quantifying stress in companion avian patients by using behavioral indicators. However, further study into specific behaviors of significance is needed.
Collapse
Affiliation(s)
- Katherine K Turpen
- Department of Veterinary Clinical Medicine, University of Illinois College of Veterinary Medicine, Urbana, IL 61802, USA
| | - Kenneth R Welle
- Department of Veterinary Clinical Medicine, University of Illinois College of Veterinary Medicine, Urbana, IL 61802, USA
| | - Jennifer L Trail
- Department of Veterinary Clinical Medicine, University of Illinois College of Veterinary Medicine, Urbana, IL 61802, USA
| | - Seema D Patel
- Department of Veterinary Clinical Medicine, University of Illinois College of Veterinary Medicine, Urbana, IL 61802, USA
| | - Matthew C Allender
- Department of Veterinary Clinical Medicine, University of Illinois College of Veterinary Medicine, Urbana, IL 61802, USA.,Wildlife Epidemiology Lab, University of Illinois College of Veterinary Medicine, Urbana, IL 61802, USA
| |
Collapse
|
16
|
Carbillet J, Rey B, Lavabre T, Chaval Y, Merlet J, Débias F, Régis C, Pardonnet S, Duhayer J, Gaillard JM, Hewison AJM, Lemaître JF, Pellerin M, Rannou B, Verheyden H, Gilot-Fromont E. The neutrophil to lymphocyte ratio indexes individual variation in the behavioural stress response of wild roe deer across fluctuating environmental conditions. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2755-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Possenti CD, Bentz AB, Romano A, Parolini M, Caprioli M, Rubolini D, Navara K, Saino N. Predation risk affects egg mass but not egg steroid hormone concentrations in yellow-legged gulls. Curr Zool 2019; 65:401-408. [PMID: 31413713 PMCID: PMC6688572 DOI: 10.1093/cz/zoy064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/01/2018] [Indexed: 11/12/2022] Open
Abstract
Predators have both direct, consumptive effects on their prey and non-lethal effects on physiology and behavior, including reproductive decisions, with cascading effects on prey ecology and evolution. Here, we experimentally tested such non-lethal effects of exposure to increased predation risk on clutch size, egg mass, and the concentration of yolk steroid hormones in the yellow-legged gull Larus michahellis. We simulated increased predation risk by displaying stuffed predators (adult fox Vulpes vulpes, and adult buzzard Buteo buteo) to breeding adults before egg laying. The concentration of corticosterone, which has been shown to increase under exposure to maternal predation risk in other species, and of testosterone did not differ between eggs from mothers exposed to the predators and eggs from control mothers (i.e., eggs exposed to a novel object of similar size and position to the stuffed predators). The concentration of the two hormones negatively covaried. Clutch size did not vary according to experimental treatment, whereas egg mass was markedly larger in clutches from nests exposed to predators than in clutches from control nests. By increasing egg mass, mothers may reduce the risk of cooling of the eggs when incubation is impeded by predators, boost energy reserves, reduce post-natal detectability caused by food solicitation, and/or enhance development at hatching, thus increasing the chances of offspring survival. In general, our results are inconsistent with most of the few previous studies on similar non-lethal predator effects and suggest that such effects may vary among species according to ecological conditions, social behavior, and developmental mode.
Collapse
Affiliation(s)
- Cristina Daniela Possenti
- Department of Environmental Science and Policy, University of Milan, Via Giovanni Celoria 26, Milano 20133, Italy
| | - Alexandra Bea Bentz
- Department of Agricultural and Environmental Sciences, University of Georgia, 203 Poultry Science Building, Athens, GA 30602, USA
| | - Andrea Romano
- Department of Environmental Science and Policy, University of Milan, Via Giovanni Celoria 26, Milano 20133, Italy
| | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, Via Giovanni Celoria 26, Milano 20133, Italy
| | - Manuela Caprioli
- Department of Environmental Science and Policy, University of Milan, Via Giovanni Celoria 26, Milano 20133, Italy
| | - Diego Rubolini
- Department of Environmental Science and Policy, University of Milan, Via Giovanni Celoria 26, Milano 20133, Italy
| | - Kristen Navara
- Department of Agricultural and Environmental Sciences, University of Georgia, 203 Poultry Science Building, Athens, GA 30602, USA
| | - Nicola Saino
- Department of Environmental Science and Policy, University of Milan, Via Giovanni Celoria 26, Milano 20133, Italy
| |
Collapse
|
18
|
Stier A, Schull Q, Bize P, Lefol E, Haussmann M, Roussel D, Robin JP, Viblanc VA. Oxidative stress and mitochondrial responses to stress exposure suggest that king penguins are naturally equipped to resist stress. Sci Rep 2019; 9:8545. [PMID: 31189949 PMCID: PMC6561961 DOI: 10.1038/s41598-019-44990-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 05/23/2019] [Indexed: 12/26/2022] Open
Abstract
Exposure to unpredictable environmental stressors could influence animal health and fitness by inducing oxidative stress, potentially through downstream effects of glucocorticoid stress hormones (e.g. corticosterone) on mitochondrial function. Yet, it remains unclear whether species that have evolved in stochastic and challenging environments may present adaptations to alleviate the effects of stress exposure on oxidative stress. We tested this hypothesis in wild king penguins by investigating mitochondrial and oxidative stress responses to acute restraint-stress, and their relationships with baseline (potentially mirroring exposure to chronic stress) and stress-induced increase in corticosterone levels. Acute restraint-stress did not significantly influence mitochondrial function. However, acute restraint-stress led to a significant increase in endogenous antioxidant defences, while oxidative damage levels were mostly not affected or even decreased. High baseline corticosterone levels were associated with an up-regulation of the glutathione antioxidant system and a decrease in mitochondrial efficiency. Both processes might contribute to prevent oxidative damage, potentially explaining the negative relationship observed between baseline corticosterone and plasma oxidative damage to proteins. While stress exposure can represent an oxidative challenge for animals, protective mechanisms like up-regulating antioxidant defences and decreasing mitochondrial efficiency seem to occur in king penguins, allowing them to cope with their stochastic and challenging environment.
Collapse
Affiliation(s)
- Antoine Stier
- Department of Biology, University of Turku, Turku, Finland. .,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK. .,Université d'Angers, Angers, France.
| | - Quentin Schull
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
| | - Pierre Bize
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Emilie Lefol
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France.,Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Mark Haussmann
- Department of Biology, Bucknell University, Lewisburg, USA
| | - Damien Roussel
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, CNRS UMR 5023, Université de Lyon, Lyon, France
| | - Jean-Patrice Robin
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
| | - Vincent A Viblanc
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
| |
Collapse
|
19
|
Injaian AS, Taff CC, Pearson KL, Gin MMY, Patricelli GL, Vitousek MN. Effects of experimental chronic traffic noise exposure on adult and nestling corticosterone levels, and nestling body condition in a free-living bird. Horm Behav 2018; 106:19-27. [PMID: 30189211 DOI: 10.1016/j.yhbeh.2018.07.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/26/2018] [Accepted: 07/26/2018] [Indexed: 01/17/2023]
Abstract
Transportation noise affects urbanized, rural, and otherwise unaltered habitats. Given expanding transportation networks, alterations in the acoustic landscapes experienced by animals are likely to be pervasive and persistent (i.e. chronic). It is important to understand if chronic noise exposure alters behavior and physiology in free-living animals, as it may result in long-lasting impacts, such as reduced reproductive success. Here, we experimentally tested the effects of chronic traffic noise on baseline and stress-induced corticosterone (the primary avian glucocorticoid), parental feeding behavior, and fitness proxies in breeding tree swallows (Tachycineta bicolor). Our results show that chronic traffic noise is related to altered corticosterone in both adult female and nestling tree swallows, suggesting that noise may be a stressor in both groups. In adult females, our results suggest that traffic noise is related to a limited ability to respond to subsequent acute stressors (i.e. reduced stress-induced corticosterone levels after handling). Further, our results show no evidence of habituation to noise during the breeding season, as the negative relationship between traffic noise and adult female stress-induced corticosterone became stronger over time. In nestlings, we found a positive relationship between traffic noise exposure and baseline corticosterone. Finally, we found a negative relationship between traffic noise and nestling body condition, despite no detectable effects of noise on nestling provisioning (e.g. parental feeding rate, or insect bolus size/composition). These results highlight the potential long-term consequences of chronic noise exposure, as increased baseline corticosterone and reduced nestling body condition in noise-exposed areas may have negative, population-level consequences.
Collapse
Affiliation(s)
- Allison S Injaian
- Department of Ecology and Evolution, University of California, Davis, CA, USA.
| | - Conor C Taff
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Kira L Pearson
- Department of Ecology and Evolution, University of California, Davis, CA, USA
| | - Michelle M Y Gin
- Department of Ecology and Evolution, University of California, Davis, CA, USA
| | - Gail L Patricelli
- Department of Ecology and Evolution, University of California, Davis, CA, USA
| | - Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
20
|
Raulo A, Dantzer B. Associations between glucocorticoids and sociality across a continuum of vertebrate social behavior. Ecol Evol 2018; 8:7697-7716. [PMID: 30151183 PMCID: PMC6106170 DOI: 10.1002/ece3.4059] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 12/26/2022] Open
Abstract
The causes and consequences of individual differences in animal behavior and stress physiology are increasingly studied in wild animals, yet the possibility that stress physiology underlies individual variation in social behavior has received less attention. In this review, we bring together these study areas and focus on understanding how the activity of the vertebrate neuroendocrine stress axis (HPA-axis) may underlie individual differences in social behavior in wild animals. We first describe a continuum of vertebrate social behaviors spanning from initial social tendencies (proactive behavior) to social behavior occurring in reproductive contexts (parental care, sexual pair-bonding) and lastly to social behavior occurring in nonreproductive contexts (nonsexual bonding, group-level cooperation). We then perform a qualitative review of existing literature to address the correlative and causal association between measures of HPA-axis activity (glucocorticoid levels or GCs) and each of these types of social behavior. As expected, elevated HPA-axis activity can inhibit social behavior associated with initial social tendencies (approaching conspecifics) and reproduction. However, elevated HPA-axis activity may also enhance more elaborate social behavior outside of reproductive contexts, such as alloparental care behavior. In addition, the effect of GCs on social behavior can depend upon the sociality of the stressor (cause of increase in GCs) and the severity of stress (extent of increase in GCs). Our review shows that the while the associations between stress responses and sociality are diverse, the role of HPA-axis activity behind social behavior may shift toward more facilitating and less inhibiting in more social species, providing insight into how stress physiology and social systems may co-evolve.
Collapse
Affiliation(s)
- Aura Raulo
- Department of BiosciencesUniversity of HelsinkiHelsinkiFinland
- Zoology DepartmentUniversity of OxfordOxfordUK
| | - Ben Dantzer
- Department of PsychologyUniversity of MichiganAnn ArborMichigan
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichigan
| |
Collapse
|
21
|
Polikarpov I, Titova T, Kondratyuk E, Novikov E. Adrenocortical and bioenergetic responses to cold in laboratory-born northern red-backed voles (Myodes rutilus) from two populations in south Siberia, Russia. CAN J ZOOL 2018. [DOI: 10.1139/cjz-2016-0314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In animal populations inhabiting ecologically suboptimal environmental conditions, phenotypical shifts in physiological traits responsible for coping with environmental challenges can be expected. If such variations are of heritable origin, then they will manifest themselves even in individuals bred in captivity. In laboratory-born red-backed voles (Myodes rutilus (Pallas, 1779)) originating from a population with constantly low density, maximum cold-induced metabolic rates were higher than in voles from a high-density population, similar to the data obtained on wild-caught individuals from the same populations. However, unlike wild-caught voles, in laboratory-born individuals maintained under comfortable conditions, we revealed no interpopulation differences either in basal plasma corticosterone level or in corticosterone response to acute cooling. These data confirm the suggestion about the heritable origin of increased maximum cold-induced metabolic rate in a red-backed vole population with relatively low density.
Collapse
Affiliation(s)
- I.A. Polikarpov
- Institute of Systematics and Ecology of Animals SB RAS, 630091, Frunze Street, 11, Novosibirsk, Russia
| | - T.V. Titova
- Institute of Systematics and Ecology of Animals SB RAS, 630091, Frunze Street, 11, Novosibirsk, Russia
| | - E.Yu. Kondratyuk
- Institute of Systematics and Ecology of Animals SB RAS, 630091, Frunze Street, 11, Novosibirsk, Russia
| | - E.A. Novikov
- Institute of Systematics and Ecology of Animals SB RAS, 630091, Frunze Street, 11, Novosibirsk, Russia
- Novosibirsk State Agrarian University, 630039, Dobrolubova Street, 160, Novosibirsk, Russia
| |
Collapse
|
22
|
Jessop TS, Lane M, Wilson RS, Narayan EJ. Testing for Short- and Long-Term Thermal Plasticity in Corticosterone Responses of an Ectothermic Vertebrate. Physiol Biochem Zool 2018; 91:967-975. [PMID: 29863953 DOI: 10.1086/698664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Phenotypic plasticity, broadly defined as the capacity of one genotype to produce more than one phenotype, is a key mechanism for how animals adapt to environmental (including thermal) variation. Vertebrate glucocorticoid hormones exert broad-scale regulation of physiological, behavioral, and morphological traits that influence fitness under many life-history or environmental contexts. Yet the capacity for vertebrates to demonstrate different types of thermal plasticity, including rapid compensation or longer acclimation in glucocorticoid hormone function, when subject to different environmental temperature regimes remains poorly addressed. Here, we explore whether patterns of urinary corticosterone metabolites respond (i.e., evidence of acclimation) to repeated short-term and sustained long-term temperature exposures in an amphibian, the cane toad (Rhinella marina). In response to three repeated short (30-min) high-temperature (37°C) exposures (at 10-d intervals), toads produced urinary corticosterone metabolite responses of sequentially greater magnitude, relative to controls. However, toads subjected to 4 wk of acclimation to either cool (18°C)- or warm (30°C)-temperature environments did not differ significantly in their urinary corticosterone metabolite responses during exposure to a thermal ramp (18°-36°C). Together, these results indicate that adult toads had different, including limited, capacities for their glucocorticoid responses to demonstrate plasticity to different regimes of environmental temperature variation. We advocate further research as necessary to identify plasticity, or lack thereof, in glucocorticoid physiology, to better understand how vertebrates can regulate organismal responses to environmental variation.
Collapse
Affiliation(s)
- Tim S Jessop
- 1 Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Geelong, Victoria 3220, Australia
| | - Meagan Lane
- 2 School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robbie S Wilson
- 3 School of Biological Sciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Edward J Narayan
- 4 School of Science and Health, Hawkesbury campus, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
| |
Collapse
|
23
|
Madison FN, Kesner AJ, Alward BA, Ball GF. Sex differences in hippocampal mineralocorticoid and glucocorticoid receptor mRNA expression in response to acute mate pair separation in zebra finches (Taeniopygia guttata). Hippocampus 2018; 28:698-706. [PMID: 29663559 DOI: 10.1002/hipo.22952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 11/10/2022]
Abstract
Mate separation has been shown to mediate changes in physiological and behavioral processes via activation of the hypothalamo-pituitary-adrenal (HPA) axis in both mammalian and avian species. To elucidate the neural mechanisms associated with changes in the HPA axis in response to social stress, we investigated the effects of mate pair separation on circulating corticosterone concentrations as well as gene expression levels of mineralocorticoid receptor (MR), glucocorticoid receptor (GR), and corticotropin releasing hormone (CRH) in the hypothalamus and hippocampus of both male and female zebra finches, a species that forms strong pair bonds. Zebra finches (Taeniopygia guttata) were housed three to a cage (a mated pair plus a stimulus female), and were assigned to one of three new housing treatment groups: (1) male or female removed from their respective mate and placed in a cage with a new opposite sex conspecific and stimulus female (2) male or female that remained with their mate, but a new stimulus female was introduced, or (3) the subjects were handled but not separated from their mate or the stimulus female. After 48 hr in the new housing condition, we observed significant increases in plasma corticosterone concentrations in response to both mate pair and stimulus female separation. No significant differences in MR, GR, or CRH mRNA expression in the hypothalamus were observed in response to any treatment for both males and females. Females exhibited a significant up regulation in hippocampal MR, but not GR mRNA, whereas males exhibited a significant down regulation of both hippocampal MR and GR mRNA in response to mate pair separation. Thus, the hippocampus appears to play a key role in regulating sex specific responses to social stressors.
Collapse
Affiliation(s)
- Farrah N Madison
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218.,Department of Psychology, University of Maryland, College Park, Maryland 20742
| | - Andrew J Kesner
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218
| | - Beau A Alward
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218.,Department of Psychology, University of Maryland, College Park, Maryland 20742
| | - Gregory F Ball
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218.,Department of Psychology, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
24
|
Dayger CA, LeMaster MP, Lutterschmidt DI. Physiological correlates of reproductive decisions: Relationships among body condition, reproductive status, and the hypothalamus-pituitary-adrenal axis in a reptile. Horm Behav 2018; 100:1-11. [PMID: 29452075 DOI: 10.1016/j.yhbeh.2018.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 12/22/2022]
Abstract
When opportunities to feed and reproduce are limited, females are often unable to recover sufficient energy stores to reproduce in consecutive years. Body condition has been used as a proxy for recent reproductive history in such species. We previously found that glucocorticoid responses to capture stress vary with body condition in female red-sided garter snakes (Thamnophis sirtalis parietalis), a species with limited seasonal breeding opportunities. Because variation in glucocorticoid receptor (GR) protein in the brain could explain these differences, we first assessed GR protein content in females in different body conditions. To investigate if body condition during the spring mating season accurately reflects recent reproductive history, we measured glucocorticoid responses to stress in females with different body conditions, assessed their mating behavior and brought mated females to our lab to determine which females would give birth during the summer (i.e., were parturient). Female red-sided garter snakes reproduce biennially, and therefore mated females that did not give birth were deemed non-parturient. In this study, glucocorticoid stress responses and mating behavior did not vary with body condition, nor was body condition related to brain GR or reproductive condition (parturient vs non-parturient). Only unreceptive females showed a significant stress-induced increase in glucocorticoids, suggesting that reduced stress responsiveness is associated with receptivity. Parturient females mated faster (were more proceptive) than non-parturient females. These data suggest that HPA axis activity modulates receptivity, while proceptivity is related primarily to reproductive condition.
Collapse
Affiliation(s)
- Catherine A Dayger
- Dept. of Biology, Portland State University, 1719 SW 10(th) Ave, Portland, OR 97201, United States.
| | - Michael P LeMaster
- Dept. of Biology, Western Oregon University, 345 N. Monmouth Ave, Monmouth, OR 97361, United States.
| | - Deborah I Lutterschmidt
- Dept. of Biology, Portland State University, 1719 SW 10(th) Ave, Portland, OR 97201, United States.
| |
Collapse
|
25
|
Sánchez-González B, Barja I, Piñeiro A, Hernández-González MC, Silván G, Illera JC, Latorre R. Support vector machines for explaining physiological stress response in Wood mice (Apodemus sylvaticus). Sci Rep 2018; 8:2562. [PMID: 29416078 PMCID: PMC5803235 DOI: 10.1038/s41598-018-20646-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 01/23/2018] [Indexed: 11/08/2022] Open
Abstract
Physiological stress response is a crucial adaptive mechanism for prey species survival. This paper aims to identify the main environmental and/or individual factors better explaining the stress response in Wood mice, Apodemus sylvaticus. We analyzed alterations in fecal glucocorticoid metabolite (FCM) concentration - extensively used as an accurate measure of the physiological stress response - of wild mice fecal samples seasonally collected during three years. Then, support vector machines were built to predict said concentration according to different stressors. These statistical tools appear to be particularly suitable for small datasets with substantial number of dimensions, corroborating that the stress response is an extremely complex process in which multiple factors can simultaneously partake in a context-dependent manner, i.e., the role of each potential stressor varies in time depending on other stressors. However, air-humidity, temperature and body-weight allowed us to explain the FCM fluctuation in 98% of our samples. The relevance of air-humidity and temperature altering FCM level could be linked to the presence of an abundant vegetation cover and, therefore, to food availability and predation risk perception. Body-weight might be related to the stress produced by reproduction and other intraspecific relationships such as social dominance or territorial behavior.
Collapse
Affiliation(s)
- Beatriz Sánchez-González
- Departamento de Biología, Unidad de Zoología, Universidad Autónoma de Madrid, c/Darwin 2, Campus Universitario de Cantoblanco, 28049, Madrid, Spain
| | - Isabel Barja
- Departamento de Biología, Unidad de Zoología, Universidad Autónoma de Madrid, c/Darwin 2, Campus Universitario de Cantoblanco, 28049, Madrid, Spain
| | - Ana Piñeiro
- Departamento de Biología, Unidad de Zoología, Universidad Autónoma de Madrid, c/Darwin 2, Campus Universitario de Cantoblanco, 28049, Madrid, Spain
- Escuela de Medicina Veterinaria, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago de Chile, Chile
| | - M Carmen Hernández-González
- Departamento de Biología, Unidad de Zoología, Universidad Autónoma de Madrid, c/Darwin 2, Campus Universitario de Cantoblanco, 28049, Madrid, Spain
| | - Gema Silván
- Departamento de Fisiología (Fisiología Animal), Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan Carlos Illera
- Departamento de Fisiología (Fisiología Animal), Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Roberto Latorre
- Departamento de Ingeniería Informática, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
26
|
de Bruijn R, Reed JM, Romero LM. Chronic repeated exposure to weather-related stimuli elicits few symptoms of chronic stress in captive molting and non-molting European starlings (Sturnus vulgaris). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 327:493-503. [PMID: 29356445 DOI: 10.1002/jez.2134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/10/2017] [Accepted: 10/04/2017] [Indexed: 11/08/2022]
Abstract
Repeated exposure to acute stressors causes dramatic changes in an animal's stress physiology and the cumulative effects are often called chronic stress. Recently we showed that short-term exposure to weather-related stimuli, such as temperature change, artificial precipitation, and food restriction, cause acute responses in captive European starlings (Sturnus vulgaris). Here, we examined the effect of repeated exposure to weather-related stressors on heart rate and corticosterone (CORT) of captive non-molting and molting European starlings. Four times every day for 3 weeks, birds were exposed to either 30 min of a subtle (3°C) decrease in temperature, a short bout of simulated rain, or 2 hr of food removal. The order and time of presentation were randomly assigned on each day. We found no differences in heart rate or heart rate variability. Furthermore, there were no changes in baseline CORT levels, CORT negative feedback efficacy, or maximal adrenal capacity. Mass increased across the experimental period only in molting birds. CORT responses to restraint were decreased in both groups following treatment, suggesting the birds had downregulated their responses to acute stress. Molting birds showed evidence of suppression of the HPA axis compared with non-molting birds, which is consistent with previous research. Overall, our data show that repeated exposure to weather-related stressors does not elicit most of the symptoms normally associated with chronic stress.
Collapse
Affiliation(s)
- Robert de Bruijn
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - J Michael Reed
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - L Michael Romero
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
27
|
Possenti CD, Parolini M, Romano A, Caprioli M, Rubolini D, Saino N. Effect of yolk corticosterone on begging in the yellow-legged gull. Horm Behav 2018; 97:121-127. [PMID: 29127025 DOI: 10.1016/j.yhbeh.2017.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 01/31/2023]
Abstract
Behavioral lateralization is widespread across vertebrates. The development of lateralization is affected by both genetic and environmental factors. In birds, maternal substances in the egg can affect offspring lateralization via activational and/or organizational effects. Corticosterone affects the development of brain asymmetry, suggesting that variation in yolk corticosterone concentration may also influence post-natal behavioral lateralization, a hypothesis that has never been tested so far. In the yellow-legged gull (Larus michahellis), we increased yolk corticosterone concentration within physiological limits and analyzed the direction of lateralization of hatchlings in reverting from supine to prone position ('RTP' response) and in pecking at dummy parental bills to solicit food provisioning ('begging' response). We found that corticosterone treatment negatively affected the frequency of begging and it may cause a slight leftward lateralization. However, the direction of lateralization of the RTP response was not affected by corticosterone administration. Thus, our study shows a maternal effect mediated by corticosterone on a behavioral trait involved in parent-offspring communication during food provisioning events. The findings on lateralization are not conclusive due to the weak effect size but provide information for further ecological and evolutionary studies, investigating mechanisms underlying the development of lateralization.
Collapse
Affiliation(s)
- Cristina Daniela Possenti
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133 Milan, Italy.
| | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Andrea Romano
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Manuela Caprioli
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Diego Rubolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Nicola Saino
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
28
|
Cornelius JM, Perreau G, Bishop VR, Krause JS, Smith R, Hahn TP, Meddle SL. Social information changes stress hormone receptor expression in the songbird brain. Horm Behav 2018; 97:31-38. [PMID: 29030109 PMCID: PMC5780353 DOI: 10.1016/j.yhbeh.2017.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/22/2017] [Accepted: 10/03/2017] [Indexed: 11/06/2022]
Abstract
Social information is used by many vertebrate taxa to inform decision-making, including resource-mediated movements, yet the mechanisms whereby social information is integrated physiologically to affect such decisions remain unknown. Social information is known to influence the physiological response to food reduction in captive songbirds. Red crossbills (Loxia curvirostra) that were food reduced for several days showed significant elevations in circulating corticosterone (a "stress" hormone often responsive to food limitation) only if their neighbors were similarly food restricted. Physiological responses to glucocorticoid hormones are enacted through two receptors that may be expressed differentially in target tissues. Therefore, we investigated the influence of social information on the expression of the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) mRNA in captive red crossbill brains. Although the role of MR and GR in the response to social information may be highly complex, we specifically predicted social information from food-restricted individuals would reduce MR and GR expression in two brain regions known to regulate hypothalamic-pituitary-adrenal (HPA) activity - given that reduced receptor expression may lessen the efficacy of negative feedback and release inhibitory tone on the HPA. Our results support these predictions - offering one potential mechanism whereby social cues could increase or sustain HPA-activity during stress. The data further suggest different mechanisms by which metabolic stress versus social information influence HPA activity and behavioral outcomes.
Collapse
Affiliation(s)
- Jamie M Cornelius
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, USA.
| | - Gillian Perreau
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, UK
| | - Valerie R Bishop
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, UK.
| | - Jesse S Krause
- Animal Behavior Graduate Group, Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA.
| | - Rachael Smith
- Animal Behavior Graduate Group, Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA.
| | - Thomas P Hahn
- Animal Behavior Graduate Group, Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA.
| | - Simone L Meddle
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, UK.
| |
Collapse
|
29
|
Neuman-Lee LA, Brodie ED, Hansen T, Brodie ED, French SS. To stress or not to stress: Physiological responses to tetrodotoxin in resistant gartersnakes vary by sex. Comp Biochem Physiol A Mol Integr Physiol 2017; 209:34-40. [DOI: 10.1016/j.cbpa.2015.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/10/2015] [Accepted: 11/05/2015] [Indexed: 01/08/2023]
|
30
|
Aharon-Rotman Y, Buchanan KL, Klaassen M, Buttemer WA. An experimental examination of interindividual variation in feather corticosterone content in the house sparrow, Passer domesticus in southeast Australia. Gen Comp Endocrinol 2017; 244:93-100. [PMID: 26699204 DOI: 10.1016/j.ygcen.2015.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 12/08/2015] [Accepted: 12/13/2015] [Indexed: 10/22/2022]
Abstract
Non-invasive techniques for measuring glucocorticoids (GCs) have become more prevalent, due to the advantage of eliminating the effects of animal disturbance on GC levels and their potential to provide an integrated, historic estimate of circulating GC levels. In the case of birds, corticosterone (CORT) is deposited in feathers, and may reflect a bird's GC status over the period of feather synthesis. This technique thus permits a retrospective view of the average circulating GC levels during the moult period. While it is generally assumed that differences in feather CORT content (CORTf) between individuals reflects their different stress histories during either natural or induced moult, it is not clear how much of this variation is due to extrinsic versus intrinsic factors. We examined this question by determining CORTf in free-living house sparrows (Passer domesticus) from two populations, one urban and the other rural, that were plucked before and after exposure to different plasma CORT levels while held captive. We experimentally manipulated plasma CORT by implanting birds with either a corticosterone-filled, metyrapone-filled, or empty ('sham') silastic capsule as replacement feathers first emerged. The pattern of post-treatment CORTf was consistent with our expectations, based on plasma CORT levels of an experimentally implanted reference group. However, there was no statistically significant difference in CORTf between these treatment groups unless sex, population origin, and CORTf of original feathers for each individual were included in a model. Thus, birds with higher CORTf in feathers removed for this experiment tended to have higher CORTf in post-treatment replacement feathers, irrespective of treatment. In addition, we found that feather fault bar scores were significantly higher in CORT-treated birds than in the other two treatment groups, but did not vary directly with CORTf level. Our study therefore broadly confirms the use of feathers as a non-invasive tool to estimate plasma CORT during moult in birds, but importantly demonstrates the potential for intrinsic differences in stress characteristics between populations and individuals to obscure the effects extrinsic stressors might have on CORTf.
Collapse
Affiliation(s)
- Yaara Aharon-Rotman
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia; Department of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Israel.
| | - Katherine L Buchanan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia
| | - William A Buttemer
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia
| |
Collapse
|
31
|
Robertson JK, Muir C, Hurd CS, Hing JS, Quinn JS. The effect of social group size on feather corticosterone in the co-operatively breeding Smooth-billed Ani (Crotophaga ani): An assay validation and analysis of extreme social living. PLoS One 2017; 12:e0174650. [PMID: 28355280 PMCID: PMC5371372 DOI: 10.1371/journal.pone.0174650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/13/2017] [Indexed: 11/19/2022] Open
Abstract
Living closely with others can provide a myriad of fitness benefits, from shared territory defense to co-operative resource acquisition. Costs of social aggregation are not absent, however, and likely influence optimal and observed groups’ sizes in a social species. Here, we explored optimal group size in a joint-nesting cuckoo species (the Smooth-billed Ani, Crotophaga ani) using endocrine markers of stress physiology (corticosterone, or CORT). Smooth-billed Anis exhibit intense reproductive competition that is exacerbated in atypically large groups. We therefore hypothesized that intra-group competition (measured by social group size) mediates the desirability and physiological cost of social group membership in this species. To test this hypothesis, we captured 47 adult Smooth-billed Anis (31 males, 16 females) during the breeding seasons of 2012-2014 in south-western Puerto Rico, and documented social group sizes. Tail feathers were sampled and used to quantify CORT (pg/mg) in enzyme-linked immunosorbent assays (ELISAs) (n = 50). Our analyses show significant differences in feather-CORT of adults between categorical group sizes, with individuals from atypically large social groups (≥ x + 1SD) having highest mean concentrations (33.319 pg/mg), and individuals from atypically small social groups (≤ x − 1SD) having lowest mean concentrations (8.969 pg/mg). Whether reproductive competition or effort is responsible for elevated CORT in atypically large social groups, however, remains unclear. Our results suggest that living in atypically large groups is physiologically expensive and may represent an evolutionarily unstable strategy. To our knowledge, this is the first study to explore a correlation between stress physiology and group size in a joint-nesting species.
Collapse
Affiliation(s)
- Joshua K. Robertson
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| | - Cameron Muir
- Department of Psychology, Centre for Neuroscience, Brock University, Saint Catherines, Ontario, Canada
| | - Conner S. Hurd
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Jing S. Hing
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - James S. Quinn
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
32
|
Ranglack DH, Neuman-Lee LA, French SS, du Toit JT. Considerations of context and scale when using fecal glucocorticoids to indicate stress in large mammals: A study of wild american plains bison. SOUTHWEST NAT 2017. [DOI: 10.1894/0038-4909-62.1.62] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Dustin H. Ranglack
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT 84322 (DHR)
| | | | - Susannah S. French
- Department of Biology, Utah State University, Logan, UT 84322 (LAN, SSF)
| | | |
Collapse
|
33
|
Wosnick N, Bornatowski H, Ferraz C, Afonso A, Sousa Rangel B, Hazin FHV, Freire CA. Talking to the dead: using Post-mortem data in the assessment of stress in tiger sharks (Galeocerdo cuvier) (Péron and Lesueur, 1822). FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:165-178. [PMID: 27549099 DOI: 10.1007/s10695-016-0276-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
Sharks are very sensitive to stress and prone to a high mortality rate after capture. Since approximately 50 million of sharks are caught as bycatch every year, and current recommendations to reduce the impact of commercial fishing strongly support immediate release, it is imperative to better understand post-release mortality caused by the stress of capture and handling. Blood samples allow the assessment of stress levels which are valuable tools to reduce mortality in commercial, recreational and scientific fishing, being essential for the improvement in those conservation measures. Biochemical analyses are widely used for sharks as stress indicators, with secondary plasma parameters (lactate, glucose and ions) being the most often employed assays. However, it is virtually impossible to determine baseline plasma parameters in free-ranging sharks, since blood withdrawal involves animal capture and restrain, which are stressful procedures. This study aims at analyzing secondary parameters of five healthy tiger sharks captured with circular hooks and handlines in Fernando de Noronha (Northeastern Brazil) and comparing them with secondary parameters of three dead tiger sharks caught off Recife (also Northeastern Brazil). The results showed that the analysis of some plasma constituents in dead animals may be an efficient tool to assess stress and lethality. However, traditional parameters such as glucose and calcium, need to be used with caution. The results also demonstrated the extreme importance of urea and phosphorus for assessing stress response and mortality in tiger sharks, both parameters frequently neglected and of utmost importance for shark's homeostasis.
Collapse
Affiliation(s)
- Natascha Wosnick
- Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR) - Centro Politécnico, Curitiba, PR, CEP 81531-990, Brazil.
| | - Hugo Bornatowski
- Centro de Estudos do Mar, Universidade Federal do Paraná, Pontal do Paraná, PR, CEP 83255976, Brazil
| | - Carolina Ferraz
- Laboratório de Tecnologia Pesqueira, Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, Recife, CEP 52171900, Brazil
| | - André Afonso
- Laboratório de Tecnologia Pesqueira, Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, Recife, CEP 52171900, Brazil
| | - Bianca Sousa Rangel
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, travessa 14, 321, Cidade Universitária, São Paulo, SP, Brazil
| | - Fábio Hissa Vieira Hazin
- Laboratório de Tecnologia Pesqueira, Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, Recife, CEP 52171900, Brazil
| | - Carolina Arruda Freire
- Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR) - Centro Politécnico, Curitiba, PR, CEP 81531-990, Brazil
| |
Collapse
|
34
|
Hunt KE, Innis CJ, Kennedy AE, McNally KL, Davis DG, Burgess EA, Merigo C. Assessment of ground transportation stress in juvenile Kemp's ridley sea turtles (Lepidochelys kempii). CONSERVATION PHYSIOLOGY 2016; 4:cov071. [PMID: 27293750 PMCID: PMC4804726 DOI: 10.1093/conphys/cov071] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/04/2015] [Accepted: 12/12/2015] [Indexed: 05/08/2023]
Abstract
Sea turtle rehabilitation centres frequently transport sea turtles for long distances to move animals between centres or to release them at beaches, yet there is little information on the possible effects of transportation-related stress ('transport stress') on sea turtles. To assess whether transport stress is a clinically relevant concern for endangered Kemp's ridley sea turtles (Lepidochelys kempii), we obtained pre-transport and post-transport plasma samples from 26 juvenile Kemp's ridley sea turtles that were transported for 13 h (n = 15 turtles) or 26 h (n = 11 turtles) by truck for release at beaches. To control for effects of handling, food restriction and time of day, the same turtles were also studied on 'control days' 2 weeks prior to transport, i.e. with two samples taken to mimic pre-transport and post-transport timing, but without transportation. Blood samples were analysed for nine clinical health measures (pH, pCO2, pO2, HCO3, sodium, potassium, ionized calcium, lactate and haematocrit) and four 'stress-associated' parameters (corticosterone, glucose, white blood cell count and heterophil-to-lymphocyte ratio). Vital signs (heart rate, respiratory rate and cloacal temperature) were also monitored. Corticosterone and glucose showed pronounced elevations due specifically to transportation; for corticosterone, this elevation was significant only for the longer transport duration, whereas glucose increased significantly after both transport durations. However, clinical health measures and vital signs showed minimal or no changes in response to any sampling event (with or without transport), and all turtles appeared to be in good clinical health after both transport durations. Thus, transportation elicits a mild, but detectable, adrenal stress response that is more pronounced during longer durations of transport; nonetheless, Kemp's ridley sea turtles can tolerate ground transportation of up to 26 h in good health. These results are likely to depend on specific transportation and handling protocols.
Collapse
Affiliation(s)
- Kathleen E. Hunt
- John H. Prescott Marine Laboratory, Research Department, New England Aquarium, Boston, MA 02110, USA
| | - Charles J. Innis
- Animal Health Department, New England Aquarium, Boston, MA 02110, USA
| | - Adam E. Kennedy
- Rescue and Rehabilitation Department, New England Aquarium, Boston, MA 02110, USA
| | - Kerry L. McNally
- Animal Health Department, New England Aquarium, Boston, MA 02110, USA
| | - Deborah G. Davis
- Idexx Laboratories, 3 Centennial Drive, North Grafton, MA 01536, USA
| | - Elizabeth A. Burgess
- John H. Prescott Marine Laboratory, Research Department, New England Aquarium, Boston, MA 02110, USA
| | - Constance Merigo
- Rescue and Rehabilitation Department, New England Aquarium, Boston, MA 02110, USA
| |
Collapse
|
35
|
|
36
|
Neuman-Lee LA, Carr J, Vaughn K, French SS. Physiological effects of polybrominated diphenyl ether (PBDE-47) on pregnant gartersnakes and resulting offspring. Gen Comp Endocrinol 2015; 219:143-51. [PMID: 25845721 DOI: 10.1016/j.ygcen.2015.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/14/2015] [Accepted: 03/26/2015] [Indexed: 11/24/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are used as flame retardants and are persistent contaminants found in virtually every environment and organism sampled to date, including humans. There is growing evidence that PBDEs are the source of thyroid, neurodevelopmental, and reproductive toxicity. Yet little work has focused on how this pervasive contaminant may influence the reproduction and physiology of non-traditional model species. This is especially critical because in many cases non-model species, such as reptiles, are most likely to come into contact with PBDEs in nature. We tested how short-term, repeated exposure to the PBDE congener BDE-47 during pregnancy affected physiological processes in pregnant female gartersnakes (thyroid follicular height, bactericidal ability, stress responsiveness, reproductive output, and tendency to terminate pregnancy) and their resulting offspring (levels of corticosterone, bactericidal ability, and size differences). We found potential effects of BDE-47 on both the mother, such as increased size and higher thyroid follicular height, and her offspring (increased size), suggesting the effects on physiological function of PBDEs do indeed extend beyond the traditional rodent models.
Collapse
Affiliation(s)
- Lorin A Neuman-Lee
- Department of Biology, Utah State University, Logan, UT 84322, United States.
| | - James Carr
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States
| | - Katelynn Vaughn
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States
| | - Susannah S French
- Department of Biology, Utah State University, Logan, UT 84322, United States
| |
Collapse
|
37
|
Neuman‐Lee LA, Bobby Fokidis H, Spence AR, Van der Walt M, Smith GD, Durham S, French SS. Food restriction and chronic stress alter energy use and affect immunity in an infrequent feeder. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12457] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - H. Bobby Fokidis
- Department of Biology Rollins College Winter Park Florida 32789 USA
| | - Austin R. Spence
- Department of Biology Utah State University Logan Utah 84322 USA
| | | | - Geoffrey D. Smith
- Department of Biology Utah State University Logan Utah 84322 USA
- Ecology Center Utah State University Logan Utah 84322 USA
| | - Susan Durham
- Ecology Center Utah State University Logan Utah 84322 USA
| | - Susannah S. French
- Department of Biology Utah State University Logan Utah 84322 USA
- Ecology Center Utah State University Logan Utah 84322 USA
| |
Collapse
|
38
|
Narayan E, Hero JM, Evans N, Nicolson V, Muccib A. Non-invasive evaluation of physiological stress hormone responses in a captive population of the greater bilby Macrotis lagotis. ENDANGER SPECIES RES 2012. [DOI: 10.3354/esr00454] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
39
|
Romero LM. Physiological stress in ecology: lessons from biomedical research. Trends Ecol Evol 2007; 19:249-55. [PMID: 16701264 DOI: 10.1016/j.tree.2004.03.008] [Citation(s) in RCA: 897] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Increasingly, levels of the 'stress hormones' cortisol and corticosterone are being used by ecologists as indicators of physiological stress in wild vertebrates. The amplitude of hormonal response is assumed to correlate with the overall health of an animal and, by extension, the health of the population. However, much of what is known about the physiology of stress has been elucidated by the biomedical research community. I summarize five physiological mechanisms that regulate hormone release during stress that should be useful to ecologists and conservationists. Incorporating these physiological mechanisms into the design and interpretation of ecological studies will make these increasingly popular studies of stress in ecological settings more rigorous.
Collapse
Affiliation(s)
- L Michael Romero
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
40
|
Romero LM. Seasonal changes in hypothalamic-pituitary-adrenal axis sensitivity in free-living house sparrows (Passer domesticus). Gen Comp Endocrinol 2006; 149:66-71. [PMID: 16828761 DOI: 10.1016/j.ygcen.2006.05.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 05/16/2006] [Accepted: 05/24/2006] [Indexed: 11/20/2022]
Abstract
Recent evidence indicates that house sparrows (Passer domesticus) seasonally regulate corticosterone responses to capture, handling, and restraint. Responses during molt and in the fall are lower than responses in the winter and while breeding. This study tested whether changes in either adrenal tissue responsiveness to adrenocorticotropin (ACTH) or pituitary responsiveness to corticotropin releasing factor (CRF) or arginine vasotocin (AVT) could provide the mechanism regulating these seasonal changes. House sparrows were captured at two sites (Massachusetts and New Mexico, USA) and during the above four seasons and injected with exogenous ACTH, CRF, and AVT. ACTH stimulated further corticosterone release in all birds except Massachusetts birds in the winter, suggesting that reduced adrenal sensitivity to ACTH cannot explain reduced corticosterone release during fall and molt. However, exogenous ACTH was less effective during molt at both sites, implying that adrenal sensitivity does change. Pituitary sensitivity also changed seasonally, but these pituitary changes did not match the seasonal changes in corticosterone release. CRF and AVT only succeeded in elevating corticosterone in the spring in Massachusetts birds and in the winter in New Mexico birds, whereas CRF alone also stimulated corticosterone release in New Mexico birds in the fall. Taken together, these data indicate that house sparrows can alter the amount of corticosterone released from adrenal tissue, the amount of ACTH released from the pituitary, and the amount of CRF and AVT released from the hypothalamus, but that none of these changes correlate with seasonal changes in corticosterone release. Consequently, seasonal modulation of corticosterone release in house sparrows appear to result from a complicated mix of adrenal, pituitary, and hypothalamic changes that also vary seasonally.
Collapse
Affiliation(s)
- L Michael Romero
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
41
|
Landys MM, Ramenofsky M, Wingfield JC. Actions of glucocorticoids at a seasonal baseline as compared to stress-related levels in the regulation of periodic life processes. Gen Comp Endocrinol 2006; 148:132-49. [PMID: 16624311 DOI: 10.1016/j.ygcen.2006.02.013] [Citation(s) in RCA: 592] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 01/25/2006] [Accepted: 02/24/2006] [Indexed: 01/01/2023]
Abstract
For decades, demands associated with the predictable life-history cycle have been considered stressful and have not been distinguished from stress that occurs in association with unpredictable and life-threatening perturbations in the environment. The recent emergence of the concept of allostasis distinguishes behavioral and physiological responses to predictable routines as opposed to unpredictable perturbations, and allows for their comparison within one theoretical framework. Glucocorticosteroids (GCs) have been proposed as important mediators of allostasis, as they allow for rapid readjustment and support of behavior and physiology in response to predictable and unpredictable demands (allostatic load). Much work has already been done in defining GC action at the high concentrations that accompany life-threatening perturbations. However, less is known about the role of GCs in relation to daily and seasonal life processes. In this review, we summarize the known behavioral and physiological effects of GCs relating to the predictable life-history cycle, paying particular attention to feeding behavior, locomotor activity and energy metabolism. Although we utilize a comparative approach, emphasis is placed on birds. In addition, we briefly review effects of GCs at stress-related concentrations to test the hypothesis that different levels of GCs play specific and distinct roles in the regulation of life processes and, thus, participate in the promotion of different physiological states. We also examine the receptor types through which GC action may be mediated and suggest mechanisms whereby different GC concentrations may exert their actions. In conclusion, we argue that biological actions of GCs at "non-stress" seasonal concentrations play a critical role in the adjustment of responses that accompany predictable variability in the environment and demand more careful consideration in future studies.
Collapse
Affiliation(s)
- Meta M Landys
- Department of Biology, University of Oslo, P.O. Box 1066, Blindern, N-0316 Oslo, Norway.
| | | | | |
Collapse
|
42
|
Perfito N, Bentley G, Hau M. Tonic Activation of Brain GnRH Immunoreactivity despite Reduction of Peripheral Reproductive Parameters in Opportunistically Breeding Zebra Finches. BRAIN, BEHAVIOR AND EVOLUTION 2006; 67:123-34. [PMID: 16415568 DOI: 10.1159/000090977] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2005] [Accepted: 09/13/2005] [Indexed: 11/19/2022]
Abstract
Opportunistically breeding species offer the unique opportunity to understand mechanisms in reproductive physiology that allow for extreme flexibility in the regulation of reproduction. We studied a well-known opportunistic breeder, the zebra finch (Taeniopygia guttata) to test the hypothesis that the reproductive axis of opportunists is in a constant state of 'near-readiness'. In wild zebra finches, reproduction is highly correlated with rainfall, and in the laboratory, water availability and humidity are the strongest cues to affect reproductive activation. We therefore subjected individuals to water restriction for eleven weeks followed by a two week period of ad libitum access to water. The control group had water freely available for the entire experiment. We measured the state of activation of the hypothalamo-pituitary gonad (HPG) axis at three levels: in the hypothalamus by measuring immunoreactive (ir) cGnRH-I and cGnRH-II; in the anterior pituitary gland by measuring plasma luteinizing hormone (LH); and in the gonads by measuring gonadal volume and function. We found that water restriction caused a reduction in circulating LH concentrations and that testis volume was more likely to decrease in water restricted than in control birds. Subsequent short-term return to ad libitum water availability caused LH to return to baseline in water restricted birds. These changes occurred without significant changes in ir-cGnRH-I, ir-cGnRH-II, or in testis function. These data suggest that in these opportunistic breeders, an inhibition of parts of the reproductive axis is not necessarily correlated with full inactivation of reproductive potential. GnRH-ir cells in the hypothalamus appear to remain active and able to respond to subsequent stimulation.
Collapse
Affiliation(s)
- Nicole Perfito
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544-1003, USA.
| | | | | |
Collapse
|
43
|
|