1
|
Promsuwan K, Soleh A, Samoson K, Saisahas K, Wangchuk S, Saichanapan J, Kanatharana P, Thavarungkul P, Limbut W. Novel biosensor platform for glucose monitoring via smartphone based on battery-less NFC potentiostat. Talanta 2023; 256:124266. [PMID: 36693284 DOI: 10.1016/j.talanta.2023.124266] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Near-field communication (NFC) was used to control a portable glucose biosensor for diabetes diagnosis. The system comprised a smartphone and an NFC potentiostat connected to a screen-printed carbon electrode (SPCE) modified with Prussian blue-graphene ink and functionalized with gold nanoparticles-embedded poly (3,4ethylene dioxythiophene):polysulfonic acid coated with glucose oxidase (GOx-AuNPs-PEDOT:PSS/PB-G). GOx catalyzed the glucose redox reaction while the conductivity and sensitivity of the AuNPs-PEDOT:PSS composite enhanced electron transfer to the PB-G, which was used as a mediator. The fabrication process was characterized by scanning electron microscopy (SEM) with energy dispersibe x-ray analysis (EDX). The platform was electrochemically characterized by electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The NFC biosensing device was then applied to quantify glucose in human blood serum by amperometry. The linear concentration range and detection limit for glucose were 0.5-500 μM and 0.15 μM, respectively. The accuracy of the device was good and results were in agreement with the results obtained from the standard hospital method. This NFC glucose sensing device can be a simple, sensitive, selective and portable platform for medical diagnosis.
Collapse
Affiliation(s)
- Kiattisak Promsuwan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Asamee Soleh
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kritsada Samoson
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kasrin Saisahas
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Sangay Wangchuk
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Jenjira Saichanapan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Warakorn Limbut
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
2
|
Liu Y, Liu J. Salt-Toggled Capture Selection of Uric Acid Binding Aptamers. Chembiochem 2023; 24:e202200564. [PMID: 36394510 DOI: 10.1002/cbic.202200564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Uric acid is the end-product of purine metabolism in humans and an important biomarker for many diseases. To achieve the detection of uric acid without using enzymes, we previously selected a DNA aptamer for uric acid with a Kd of 1 μM but the aptamer required multiple Na+ ions for binding. Saturated binding was achieved with around 700 mM Na+ and the binding at the physiological condition was much weaker. In this work, a new selection was performed by alternating Mg2+ -containing buffers with Na+ and Li+ . After 13 rounds of selection, a new aptamer sequence named UA-Mg-1 was obtained. Isothermal titration calorimetry confirmed aptamer binding in both selection buffers, and the Kd was around 8 μM. The binding of UA-Mg-1 to UA required only Mg2+ . This is an indicator of successful switching of metal dependency via the salt-toggled selection method. The UA-Mg-1 aptamer was engineered into a fluorescent biosensor based on the strand-displacement assay with a limit of detection of 0.5 μM uric acid in the selection buffer. Finally, comparison with the previously reported Na+ -dependent aptamer and a xanthine/uric acid riboswitch was also made.
Collapse
Affiliation(s)
- Yibo Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, N2L3G1, Waterloo, ON, Canada.,Centre for Eye and Vision Research (CEVR), 17 W Hong Kong Science Park, Hong Kong, 999077, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, N2L3G1, Waterloo, ON, Canada.,Centre for Eye and Vision Research (CEVR), 17 W Hong Kong Science Park, Hong Kong, 999077, China
| |
Collapse
|
3
|
Baldina AA, Pershina LV, Noskova UV, Nikitina AA, Muravev AA, Skorb EV, Nikolaev KG. Uricase Crowding via Polyelectrolyte Layers Coacervation for Carbon Fiber-Based Electrochemical Detection of Uric Acid. Polymers (Basel) 2022; 14:5145. [PMID: 36501541 PMCID: PMC9739113 DOI: 10.3390/polym14235145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Urate oxidase (UOx) surrounded by synthetic macromolecules, such as polyethyleneimine (PEI), poly(allylamine hydrochloride) (PAH), and poly(sodium 4-styrenesulfonate) (PSS) is a convenient model of redox-active biomacromolecules in a crowded environment and could display high enzymatic activity towards uric acid, an important marker of COVID-19 patients. In this work, the carbon fiber electrode was modified with Prussian blue (PB) redox mediator, UOx layer, and a layer-by-layer assembled polyelectrolyte film, which forms a complex coacervate consisting of a weakly charged polyelectrolyte (PEI or PAH) and a highly charged one (PSS). The film deposition process was controlled by cyclic voltammetry and scanning electron microscopy coupled with energy-dispersive X-ray analysis (at the stage of PB deposition) and through quartz crystal microbalance technique (at latter stages) revealed uniform distribution of the polyelectrolyte layers. Variation of the polyelectrolyte film composition derived the following statements. (1) There is a linear correlation between electrochemical signal and concentration of uric acid in the range of 10-4-10-6 M. (2) An increase in the number of polyelectrolyte layers provides more reproducible values for uric acid concentration in real urine samples of SARS-CoV-2 patients measured by electrochemical enzyme assay, which are comparable to those of spectrophotometric assay. (3) The PAH/UOx/PSS/(PAH/PSS)2-coated carbon fiber electrode displays the highest sensitivity towards uric acid. (4) There is a high enzyme activity of UOx immobilized into the hydrogel nanolayer (values of the Michaelis-Menten constant are up to 2 μM) and, consequently, high affinity to uric acid.
Collapse
Affiliation(s)
| | | | | | | | | | - Ekaterina V. Skorb
- Infochemistry Scientific Center, ITMO University, 191002 Saint Petersburg, Russia
| | | |
Collapse
|
4
|
Advancements of Prussian blue-based nanoplatforms in biomedical fields: Progress and perspectives. J Control Release 2022; 351:752-778. [DOI: 10.1016/j.jconrel.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 12/07/2022]
|
5
|
Ying S, Chen C, Wang J, Lu C, Liu T, Kong Y, Yi FY. Synthesis and Applications of Prussian Blue and Its Analogues as Electrochemical Sensors. Chempluschem 2021; 86:1608-1622. [PMID: 34907675 DOI: 10.1002/cplu.202100423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/15/2021] [Indexed: 12/23/2022]
Abstract
Prussian blue (PB) and its analogue (PBA) are a kind of representative cyanide-based coordination polymer. They have received enormous research interest and have shown promising applications in the electrochemical sensing field due to their excellent electrochemical activity and unique structural characteristics including open framework structure, high specific surface area, and adjustable metal active sites. In this review, we summarize the latest research progress of PB/PBA as an electrochemical sensor in detail from three aspects: fabrication strategy, synthesis method and electrochemical sensor application. For the fabrication strategy, we discussed different fabrication methods containing the combination of PBA and carbon materials, metal nanoparticles, polymers, etc., respectively, as well as their corresponding sensing mechanism for improving performance. We also presented the synthesis methods of PB/PBA materials in detail, such as: coprecipitation, hydrothermal and electrodeposition. In addition, the effects of different methods on the morphology, particle size and productivity of PB/PBA materials are also concluded. For the application of electrochemical sensors, the latest progress of such materials as electrochemical sensors for glucose, H2O2, toxic compounds, and biomolecules have been summarized. Finally, we conclude remaining challenges of PB/PBA-based materials as electrochemical sensors, and provide personal perspectives for future research in this field.
Collapse
Affiliation(s)
- Shuanglu Ying
- The School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Chen Chen
- The School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Jiang Wang
- The School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Chunxiao Lu
- The School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Tian Liu
- The School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Yuxuan Kong
- The School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Fei-Yan Yi
- The School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| |
Collapse
|
6
|
Chellachamy Anbalagan A, Sawant SN. Carboxylic acid-tethered polyaniline as a generic immobilization matrix for electrochemical bioassays. Mikrochim Acta 2021; 188:403. [PMID: 34731317 DOI: 10.1007/s00604-021-05059-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/11/2021] [Indexed: 10/19/2022]
Abstract
Polyaniline (PANI) was functionalized by thiol-ene click chemistry to obtain carboxylic acid-tethered polyaniline (PCOOH). The versatility of PCOOH as an immobilization matrix was demonstrated by constructing four different biosensors for detection of metabolites and cancer biomarker. Immobilization efficiency of PCOOH was investigated by surface plasmon resonance and fluorescence microscopic analysis which revealed dense immobilization of biomolecules on PCOOH as compared to conventional PANI. A sandwich electrochemical biosensor was constructed using PCOOH for detection of liver cancer biomarker, α-fetoprotein (AFP). The sensor displayed sensitivity of 15.24 µA (ng mL-1)-1 cm-2, with good specificity, reproducibility (RSD 3.4%), wide linear range (0.25-40 ng mL-1) at - 0.1 V (vs. Ag/AgCl), and a low detection limit of 2 pg mL-1. The sensor was validated by estimating AFP in human blood serum samples where the AFP concentrations obtained are consistent with the values estimated using ELISA. Furthermore, utilization of PCOOH for construction of enzymatic biosensor was demonstrated by covalent immobilization of glucose oxidase, uricase, and horseradish peroxidase (HRP) for detection of glucose, uric acid, and H2O2, respectively. The biosensors displayed reasonable sensitivity (50, 148, 127 µA mM-1 cm-2), and linear ranges (0.1-5, 0.1-6, 0.1-7 mM) with a detection limit of 10, 1, and 8 µM for glucose, uric acid, and H2O2, respectively. The present study demonstrates the capability of PCOOH to support and enable oxidation of H2O2 generated by oxidase enzymes as well as HRP enzyme catalyzed reduction of H2O2. Thus, PCOOH offers a great promise as an immobilization matrix for development of high-performance biosensors to quantify a variety of other disease biomarkers. Carboxylic acid-tethered polyaniline synthesized by thiol-ene click chemistry was used as matrix to construct four different electrochemical biosensors for detection of cancer biomarker α-fetoprotein, glucose, uric acid, and H2O2.
Collapse
Affiliation(s)
| | - Shilpa N Sawant
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
7
|
McBeth C, Paterson A, Sharp D. Pad-printed Prussian blue doped carbon ink for real-time peroxide sensing in cell culture. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Amarnath CA, Sawant SN. Polyaniline Based Electrochemical Biosensor for α‐Fetoprotein Detection Using Bio‐functionalized Nanoparticles as Detection Probe. ELECTROANAL 2020. [DOI: 10.1002/elan.202060219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Shilpa N. Sawant
- Chemistry Division Bhabha Atomic Research Centre, Trombay Mumbai 400085 India
- Homi Bhabha National Institute, Anushaktinagar Mumbai 400094 India
| |
Collapse
|
9
|
Akdag A, Işık M, Göktaş H. Conducting polymer-based electrochemical biosensor for the detection of acetylthiocholine and pesticide via acetylcholinesterase. Biotechnol Appl Biochem 2020; 68:1113-1119. [PMID: 32941665 DOI: 10.1002/bab.2030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A voltammetric biosensor for acetylthiocholine (ATCh) and paraoxon detection was successfully developed. To achieve this goal, polypyrrole (PPy) was synthesized onto the platinum (Pt) electrode surface in 0.30 M oxalic acid solution containing 25 mM pyrrole. PPy-coated Pt (Pt/PPy) electrode surface was covered with chitosan (Chi) (Pt/PPy/Chi). The acetylcholinesterase (AChE) enzyme was immobilized on the Pt/PPy/Chi electrode surface to build a voltammetric biosensor (Pt/PPy/Chi/AChE). The storage stability of the biosensor was determined to be 72% even after 60 days. The operational stability was determined to be 94% after 20 consecutive measurements. For the biosensor, the linear range was determined to be 30-50 µM for ATCh and 0.46-1.84 nM for paraoxon. The limit of detection (LOD) was determined to be 0.45 µM for ATCh and 0.17 nM for paraoxon.
Collapse
Affiliation(s)
- Abdurrahman Akdag
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Harran University, Sanliurfa, Turkey
| | - Mesut Işık
- Department of Pharmacy Services, Vocational School of Health Services, Harran University, Sanliurfa, Turkey.,Department of Bioengineering, Faculty of Engineering, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Hasan Göktaş
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Harran University, Sanliurfa, Turkey
| |
Collapse
|
10
|
Patel BR, Noroozifar M, Kerman K. Prussian blue-doped nanosized polyaniline for electrochemical detection of benzenediol isomers. Anal Bioanal Chem 2020; 412:1769-1784. [PMID: 32043201 DOI: 10.1007/s00216-020-02400-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/17/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022]
Abstract
Simultaneous speciation of benzenediol isomers (BDIs), 1,2-benzenediol (catechol, CC), 1,3-benzenediol (resorcinol, RS), and 1,4-benzenediol (hydroquinone, HQ), was investigated by differential pulse voltammetry (DPV) using a graphite paste electrode (GPE) modified with Prussian blue-polyaniline nanocomposite. The modified GPE showed good stability, sensitivity, and selectivity properties for all the three BDIs. Prussian blue-doped nanosized polyaniline (PBNS-PANI) was synthesized first by using mechanochemical reactions between aniline and ferric chloride hexahydrate as the oxidants and then followed by the addition of potassium hexacyanoferrate(II) in a solid-state and template-free technique. The material was characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The DPV measurements are performed in phosphate electrolyte solution with pH 4.0 at a potential range of - 0.1 to 1.0 V. The proposed modified electrode displayed a strong, stable, and continuous three well-separated oxidation peaks towards electrooxidation at potentials 0.20, 0.31, and 0.76 V for HQ, CC, and RS, respectively. The calibration curves were linear from 1 to 350.5 μM for both HQ and CC, while for RS, it was from 2 to 350.5 μM. The limit of detection was determined to be 0.18, 0.01, and 0.02 μM for HQ, CC, and RS, respectively. The analytical performance of the PBNS-PANI/GPE has been evaluated for simultaneous determination of HQ, CC, and RS in creek water, commercial hair dye, and skin whitening cream samples with satisfactory recoveries between 90 and 106%. Overall, we demonstrated that the presence of NS-PANI and PB resulted in a large redox-active surface area that enabled a promising analytical platform for simultaneous detection of BDIs. Graphical abstract.
Collapse
Affiliation(s)
- Bhargav R Patel
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Meissam Noroozifar
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.
| |
Collapse
|
11
|
Affiliation(s)
- Qiangwei Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Xu Wen
- School of Chemistry and Chemical Engineering, Huangshan University, Huangshan, China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
12
|
Amarnath CA, Sawant SN. Tailoring synthesis strategies for polyaniline-prussian blue composite in view of energy storage and H2O2 sensing application. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Madhurantakam S, Babu KJ, Rayappan JBB, Krishnan UM. Nanotechnology-based electrochemical detection strategies for hypertension markers. Biosens Bioelectron 2018; 116:67-80. [DOI: 10.1016/j.bios.2018.05.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 12/15/2022]
|
14
|
Porous carbon and Prussian blue composite: A highly sensitive electrochemical platform for glucose biosensing. SENSING AND BIO-SENSING RESEARCH 2017. [DOI: 10.1016/j.sbsr.2017.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
15
|
Chao L, Wang W, Dai M, Ma Y, Sun L, Qin X, Xie Q. Step-by-step electrodeposition of a high-performance Prussian blue-gold nanocomposite for H2O2 sensing and glucose biosensing. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.08.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Kim J, Imani S, de Araujo WR, Warchall J, Valdés-Ramírez G, Paixão TRLC, Mercier PP, Wang J. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens Bioelectron 2015; 74:1061-8. [PMID: 26276541 PMCID: PMC4718709 DOI: 10.1016/j.bios.2015.07.039] [Citation(s) in RCA: 306] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/16/2015] [Accepted: 07/17/2015] [Indexed: 01/13/2023]
Abstract
This article demonstrates an instrumented mouthguard capable of non-invasively monitoring salivary uric acid (SUA) levels. The enzyme (uricase)-modified screen printed electrode system has been integrated onto a mouthguard platform along with anatomically-miniaturized instrumentation electronics featuring a potentiostat, microcontroller, and a Bluetooth Low Energy (BLE) transceiver. Unlike RFID-based biosensing systems, which require large proximal power sources, the developed platform enables real-time wireless transmission of the sensed information to standard smartphones, laptops, and other consumer electronics for on-demand processing, diagnostics, or storage. The mouthguard biosensor system offers high sensitivity, selectivity, and stability towards uric acid detection in human saliva, covering the concentration ranges for both healthy people and hyperuricemia patients. The new wireless mouthguard biosensor system is able to monitor SUA level in real-time and continuous fashion, and can be readily expanded to an array of sensors for different analytes to enable an attractive wearable monitoring system for diverse health and fitness applications.
Collapse
Affiliation(s)
- Jayoung Kim
- Department of Nanoengineering, University of California, La Jolla, CA 92093, USA
| | - Somayeh Imani
- Department of Electrical & Computer Engineering, University of California, La Jolla, CA 92093, USA
| | - William R de Araujo
- Department of Nanoengineering, University of California, La Jolla, CA 92093, USA; Instituto de Química -Universidade de São Paulo, Av Prof Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Julian Warchall
- Department of Electrical & Computer Engineering, University of California, La Jolla, CA 92093, USA
| | | | - Thiago R L C Paixão
- Instituto de Química -Universidade de São Paulo, Av Prof Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Patrick P Mercier
- Department of Electrical & Computer Engineering, University of California, La Jolla, CA 92093, USA.
| | - Joseph Wang
- Department of Nanoengineering, University of California, La Jolla, CA 92093, USA.
| |
Collapse
|
17
|
Kong B, Selomulya C, Zheng G, Zhao D. New faces of porous Prussian blue: interfacial assembly of integrated hetero-structures for sensing applications. Chem Soc Rev 2015. [PMID: 26214277 DOI: 10.1039/c5cs00397k] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Prussian blue (PB), the oldest synthetic coordination compound, is a classic and fascinating transition metal coordination material. Prussian blue is based on a three-dimensional (3-D) cubic polymeric porous network consisting of alternating ferric and ferrous ions, which provides facile assembly as well as precise interaction with active sites at functional interfaces. A fundamental understanding of the assembly mechanism of PB hetero-interfaces is essential to enable the full potential applications of PB crystals, including chemical sensing, catalysis, gas storage, drug delivery and electronic displays. Developing controlled assembly methods towards functionally integrated hetero-interfaces with adjustable sizes and morphology of PB crystals is necessary. A key point in the functional interface and device integration of PB nanocrystals is the fabrication of hetero-interfaces in a well-defined and oriented fashion on given substrates. This review will bring together these key aspects of the hetero-interfaces of PB nanocrystals, ranging from structure and properties, interfacial assembly strategies, to integrated hetero-structures for diverse sensing.
Collapse
Affiliation(s)
- Biao Kong
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | | | | | | |
Collapse
|
18
|
Li L, Wang Y, Pan L, Shi Y, Cheng W, Shi Y, Yu G. A nanostructured conductive hydrogels-based biosensor platform for human metabolite detection. NANO LETTERS 2015; 15:1146-51. [PMID: 25569673 DOI: 10.1021/nl504217p] [Citation(s) in RCA: 244] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The development of a scalable, low-cost, and versatile biosensor platform for the sensitive and rapid detection of human metabolites is of great interest for healthcare, pharmaceuticals, and medical science. On the basis of hierarchically nanostructured conducting polymer hydrogels, we designed a flexible biosensor platform that can detect various human metabolites, such as uric acid, cholesterol, and triglycerides. Owing to the unique features of conducting polymer hydrogels, such as high permeability to biosubstrates and rapid electron transfer, our biosensors demonstrate excellent sensing performance with a wide linear range (uric acid, 0.07-1 mM; cholesterol, 0.3-9 mM, and triglycerides, 0.2-5 mM), high sensitivity, low sensing limit, and rapid response time (∼3 s). Given the facile and scalable processability of hydrogels, the proposed conductive hydrogels-based biosensor platform shows great promise as a low-cost sensor kit for healthcare monitoring, clinical diagnostics, and biomedical devices.
Collapse
Affiliation(s)
- Lanlan Li
- Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University , Nanjing 210093, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Chen R, Zhang Q, Gu Y, Tang L, Li C, Zhang Z. One-pot green synthesis of Prussian blue nanocubes decorated reduced graphene oxide using mushroom extract for efficient 4-nitrophenol reduction. Anal Chim Acta 2015; 853:579-587. [DOI: 10.1016/j.aca.2014.10.049] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 10/25/2014] [Accepted: 10/29/2014] [Indexed: 11/29/2022]
|
20
|
Wang W, Qin C, Xie Q, Qin X, Chao L, Huang Y, Dai M, Chen C, Huang J, Hu J. Rapid electrodeposition of a gold–Prussian blue nanocomposite with ultrahigh electroactivity for dual-potential amperometric biosensing of uric acid. Analyst 2014; 139:2904-11. [DOI: 10.1039/c3an02390g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
21
|
Thakur B, Amarnath CA, Sawant SN. Pectin coated polyaniline nanoparticles for an amperometric glucose biosensor. RSC Adv 2014. [DOI: 10.1039/c4ra05264a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A facile strategy for synthesis of polyaniline nanoparticles and their application for development of highly sensitive amperometric glucose biosensor is demonstrated herein.
Collapse
Affiliation(s)
- Bhawana Thakur
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400085, India
| | | | - Shilpa N. Sawant
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400085, India
| |
Collapse
|
22
|
Wang J, Tan X, Song Z. Comparison of uric Acid quantity with different food in human urine by flow injection chemiluminescence analysis. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2013; 2013:854041. [PMID: 24251067 PMCID: PMC3819757 DOI: 10.1155/2013/854041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 09/05/2013] [Indexed: 06/02/2023]
Abstract
Based on the inhibitory effect of uric acid (UA) on luminol-Co(2+) chemiluminescence (CL) system, a sensitive method for the determination of UA at nanomolar level by flow injection (FI) CL was proposed. The proposed method was successfully applied to real-time monitoring of UA excretion in human 24 h urine with different food intake, showing that meats, vegetables, and porridge intake caused differential UA excretions of 879, 798, and 742 mg, respectively. It was also found that UA concentrations in urine under the three kinds of food intake simultaneously reached maximum at 2 h after meals with the values of 417, 318, and 288 μg mL(-1), respectively. The UA concentration in human serum was also determined by this approach, and the possible mechanism of luminol-Co(2+)-UA CL reaction was discussed in detail.
Collapse
Affiliation(s)
- Jiajia Wang
- Key Laboratory of Synthetic and Natural Functional Molecule, Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Xijuan Tan
- Key Laboratory of Synthetic and Natural Functional Molecule, Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Zhenghua Song
- Key Laboratory of Synthetic and Natural Functional Molecule, Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| |
Collapse
|
23
|
Jindal K, Tomar M, Gupta V. Nitrogen-doped zinc oxide thin films biosensor for determination of uric acid. Analyst 2013; 138:4353-62. [DOI: 10.1039/c3an36695b] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|