1
|
Nguyen HPQ, Mukherjee A, Usuba J, Wan J, Han GGD. Large and long-term photon energy storage in diazetidines via [2+2] photocycloaddition. Chem Sci 2024:d4sc05374e. [PMID: 39483249 PMCID: PMC11520292 DOI: 10.1039/d4sc05374e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
We report a series of p-functionalized phenylbenzoxazoles that offer remarkable energy storage, exceeding 300 J g-1, for the first time among intermolecular cycloaddition-based molecular solar thermal energy storage systems. The [2 + 2] photocycloaddition of phenylbenzoxazoles generates diazetidine cycloadducts that store energy for up to 23 years in the solid state and release energy upon triggered cycloreversion. The solid-state phase transition contributes to increasing overall energy storage densities, and the dearomative cycloaddition process is revealed to be critical for maximizing the intrinsic energy storage capacities. The solvent-assisted cycloreversion is also used to accelerate the energy release from the emerging molecular scaffold.
Collapse
Affiliation(s)
- Han P Q Nguyen
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Anurag Mukherjee
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Junichi Usuba
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Joshua Wan
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Grace G D Han
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| |
Collapse
|
2
|
Raju C, Nguyen HPQ, Han GGD. Emerging solid-state cycloaddition chemistry for molecular solar thermal energy storage. Chem Sci 2024; 15:d4sc05723f. [PMID: 39397823 PMCID: PMC11465107 DOI: 10.1039/d4sc05723f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
Recently discovered designs of solid-state molecular solar thermal energy storage systems are illustrated, including alkenes, imines, and anthracenes that undergo reversible [2 + 2] and [4 + 4] photocycloadditions for photon energy storage and release. The energy storage densities of various molecular designs, from 6 kJ mol-1 to 146 kJ mol-1 (or up to 318 J g-1), are compared and summarized, along with effective strategies for engineering their crystal packing structures that facilitate solid-state reactions. Many promising molecular scaffolds introduced here highlight the potential for achieving successful solid-state solar energy storage, guiding further discoveries and the development of new molecular systems for applications in solid-state solar thermal batteries.
Collapse
Affiliation(s)
- Cijil Raju
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Han P Q Nguyen
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Grace G D Han
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| |
Collapse
|
3
|
Wang Y, Sheng L, Xu B, Shi J, Chen Z. Study on Thermophysical Properties and Phase Change Regulation Mechanism of Optically-Controlled Phase Change Materials: Synthesis, Crystal Structure and Molecular Dynamics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404184. [PMID: 39128134 DOI: 10.1002/smll.202404184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/11/2024] [Indexed: 08/13/2024]
Abstract
Optically-controlled phase change materials, which are prepared by introducing molecular photoswitches into traditional phase change materials (PCMs), can convert and store solar energy into photochemical enthalpy and phase change enthalpy. However, the thermophysical properties of optically controlled PCMs, which are crucial in the practical, are rarely paid attention to. 4-(phenyldiazenyl)phenyl decanoate (Azo-A-10) is experimentally prepared as an optically-controlled PCMs, whose energy storage density is 210.0 kJ·kg-1, and the trans single crystal structure is obtained. The density, phase transition temperature, thermal conductivity, and other parameters in trans state are measured experimentally. Furthermore, a microscopic model of Azo-A-10 is established, and the thermophysical properties are analyzed based on molecular dynamics. The results show that the microstructure parameter (order parameters) and thermophysical properties (density, radial distribution function, self-diffusion coefficient, phase change temperature, and thermal conductivity) of partially or completely isomerized Azo-A-10, which are challenging to observe in experiments, can be predicted by molecular dynamics simulation. The optically-controlled phase change mechanism can be clarified according to the differences in microstructure. The optically-controlled switchability of thermophysical properties of an optically-controlled PCM is analyzed. This study provides ideas for the improvement, development, and application of optically-controlled PCMs in the future.
Collapse
Affiliation(s)
- Yi Wang
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Lisha Sheng
- College of Energy and Electrical Engineering, Hohai University, Nanjing, 210098, P. R. China
| | - Bo Xu
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Juan Shi
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Zhenqian Chen
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
- Jiangsu Province Key Laboratory of Solar Energy Science and Technology, Nanjing, Jiangsu, 210096, China
| |
Collapse
|
4
|
Dolai A, Bhunia S, Manna K, Bera S, Box SM, Bhattacharya K, Saha R, Sarkar S, Samanta S. Visible-Light-Sensitive Photoliquefiable Arylazoisoxazoles for the Solar Energy Conversion, Storage and Controlled-Release of Heat at Room Temperature or Lower Temperatures. CHEMSUSCHEM 2024; 17:e202301700. [PMID: 38329884 DOI: 10.1002/cssc.202301700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/11/2024] [Accepted: 02/08/2024] [Indexed: 02/10/2024]
Abstract
The photoswitchable MOlecular Solar Thermal (MOST) energy storage systems that are capable of exhibiting high energy storage densities are found to suffer from the poor cyclability, the use of less abundant UV light of the solar spectrum, or reduced charging/discharging rates and poor photoconversions in solid states. Herein, we have designed and readily synthesized a novel set of para-thioalkyl substituted arylazoisoxazoles, that undergo high trans-cis and cis-trans photoconversions under visible light, and show fast charging/discharging and impressive cyclability. Remarkably, the presence of C6-or C10-thioalkyl chainin photochromes permitted reversible solid-liquid phase transition with the formation of cis-enriched charged states by 400 nm light irradiation and trans-enriched discharged states by 530 nm light at various temperatures (10-35 °C). The solid-to-liquid phase transition enabled storage of the latent heat in addition to the isomerization energy, resulting in a high net energy storage density of 189-196 J/g, which are substantially higher than that of many recently reported azobenzene-based MOST compounds (100-161 J/g). Using a high-resolution infrared camera, we further demonstrated that a brief irradiation of green light can be employed to readily release the trapped photon energy as heat. Our results suggest that the arylazoisoxazole with C6-thioalkyl chain at para-position can serve as an effective and eco-friendly photoliquefiable MOST material.
Collapse
Affiliation(s)
- Anirban Dolai
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Supriya Bhunia
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Kalipada Manna
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, India
| | - Satyajit Bera
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Sk Majid Box
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Kallol Bhattacharya
- Department of Applied Optics & Photonics, University of Calcutta, Sector-III, Salt Lake, Kolkata, 700 106, India
| | - Ritabrata Saha
- College of Medicine & Sagore Dutta Hospital, Kamarhati, Kolkata, 700058
| | - Subhasish Sarkar
- College of Medicine & Sagore Dutta Hospital, Kamarhati, Kolkata, 700058
| | - Subhas Samanta
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| |
Collapse
|
5
|
Kumar H, Parthiban G, Velloth A, Saini J, De R, Pal SK, Hazra KS, Venkataramani S. Arylazo-3,5-diphenylpyrazole Derivatives: Molecular Probes Exhibiting Reversible Light-induced Phase Transitions for Energy Storage and Direct Photolithographic Patterning. Chemistry 2024:e202401836. [PMID: 38818932 DOI: 10.1002/chem.202401836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/01/2024]
Abstract
We report azopyrazole photoswitches decorated with variable N-alkyl and alkoxy chains (for hydrophobic interactions) and phenyl substituents on the pyrazoles (enabling π-π stacking), showing efficient bidirectional photoswitching and reversible light-induced phase transition (LIPT). Extensive spectroscopic, microscopic, and diffraction studies and computations confirmed the manifestation of molecular-level interactions and photoisomerization into macroscopic changes leading to the LIPT phenomena. Using differential scanning calorimetric (DSC) studies, the energetics associated with those accompanying processes were estimated. The long half-lives of Z isomers, high energy contents for isomerization and phase transitions, and the stability of phases over an extended temperature range (-60 to 80 °C) make them excellent candidates for energy storage and release applications. Remarkably, the difference in the solubility of the distinct phases in one of the derivatives allowed us to utilize it as a photoresist in photolithography applications on diverse substrates.
Collapse
Affiliation(s)
- Himanshu Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Gayathri Parthiban
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Archana Velloth
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Jyoti Saini
- Institute of Nano Science and Technology, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Ritobrata De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Kiran Shankar Hazra
- Institute of Nano Science and Technology, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| |
Collapse
|
6
|
Petrikat RI, Hornbogen J, Schmitt MJP, Resmann E, Wiedemann C, Dilmen NI, Schneider H, Pick AM, Riehn C, Diller R, Becker S. A Photoswitchable Metallocycle Based on Azobenzene: Synthesis, Characterization, and Ultrafast Dynamics. Chemistry 2024; 30:e202400205. [PMID: 38526989 DOI: 10.1002/chem.202400205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
The novel photoswitchable ligand 3,3'-Azobenz(metPA)2 (1) is used to prepare a [Cu2(1)2](BF4)2 metallocycle (2), whose photoisomerization was characterized using static and time-resolved spectroscopic methods. Optical studies demonstrate the highly quantitative and reproducible photoinduced cyclic E/Z switching without decay of the complex. Accordingly and best to our knowledge, [Cu2(1)2](BF4)2 constitutes the first reversibly photoswitchable (3d)-metallocycle based on azobenzene. The photoinduced multiexponential dynamics in the sub-picosecond to few picosecond time domain of 1 and 2 have been assessed. These ultrafast dynamics as well as the yield of the respective photostationary state (PSSZ = 65 %) resemble the behavior of archetypical azobenzene. Also, the innovative pump-probe laser technique of gas phase transient photodissociation (τ-PD) in a mass spectrometric ion trap was used to determine the intrinsic relaxation dynamics for the isolated complex. These results are consistent with the results from femtosecond UV/Vis transient absorption (fs-TA) in solution, emphasizing the azobenzene-like dynamics of 2. This unique combination of fs-TA and τ-PD enables valuable insights into the prevailing interplay of dynamics and solvation. Both analyses (in solution and gas phase) and quantum chemical calculations reveal a negligible effect of the metal coordination on the switching mechanism and electronic pathway, which suggests a non-cooperative isomerization process.
Collapse
Affiliation(s)
- Raphael I Petrikat
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
| | - Justin Hornbogen
- Fachbereich Physik, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 46, 67663, Kaiserslautern, Germany
| | - Marcel J P Schmitt
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
| | - Emma Resmann
- Fachbereich Physik, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 46, 67663, Kaiserslautern, Germany
| | - Christina Wiedemann
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
| | - Nesrin I Dilmen
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
| | - Heinrich Schneider
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
| | - Annika M Pick
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
| | - Christoph Riehn
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
- Research Center OPTIMAS, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 46, 67663, Kaiserslautern, Germany
| | - Rolf Diller
- Fachbereich Physik, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 46, 67663, Kaiserslautern, Germany
| | - Sabine Becker
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
| |
Collapse
|
7
|
Salthouse RJ, Moth-Poulsen K. Multichromophoric photoswitches for solar energy storage: from azobenzene to norbornadiene, and MOST things in between. JOURNAL OF MATERIALS CHEMISTRY. A 2024; 12:3180-3208. [PMID: 38327567 PMCID: PMC10846599 DOI: 10.1039/d3ta05972c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
The ever-increasing global demands for energy supply and storage have led to numerous research efforts into finding and developing renewable energy technologies. Molecular solar thermal energy storage (MOST) systems utilise molecular photoswitches that can be isomerized to a metastable high-energy state upon solar irradiation. These high-energy isomers can then be thermally or catalytically converted back to their original state, releasing the stored energy as heat on-demand, offering a means of emission-free energy storage from a closed system, often from only organic materials. In this context, multichromophoric systems which incorporate two or more photochromic units may offer additional functionality over monosubstituted analogues, due to their potential to access multiple states as well as having more attractive physical properties. The extended conjugation offered by these systems can lead to a red shift in the absorption profile and hence a better overlap with the solar spectrum. Additionally, the multichromophoric design may lead to increased energy storage densities due to some of the molecular weight being 'shared' across several energy storage units. This review provides an overview and analysis of multichromophoric photoswitches incorporating the norbornadiene/quadricyclane (NBD/QC) couple, azobenzene (AZB), dihydroazulene (DHA) and diarylethene (DAE) systems, in the context of energy storage applications. Mixed systems, where two or more different chromophores are linked together in one molecule, are also discussed, as well as limitations such as the loss of photochromism due to inner filter effects or self-quenching, and how these challenges may be overcome in future designs of multichromophoric systems.
Collapse
Affiliation(s)
- Rebecca J Salthouse
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, EEBE Eduard Maristany 16 08019 Barcelona Spain
| | - Kasper Moth-Poulsen
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, EEBE Eduard Maristany 16 08019 Barcelona Spain
- Catalan Institution for Research & Advanced Studies, ICREA Pg. Llu'ıs Companys 23 Barcelona Spain
- Institute of Materials Science of Barcelona, ICMAB-CSIC Bellaterra Barcelona 08193 Spain
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology Kemivagen 4 Gothenburg 412 96 Sweden
| |
Collapse
|
8
|
Averdunk C, Hanke K, Schatz D, Wegner HA. Molecular Wind-Up Meter for the Quantification of London Dispersion Interactions. Acc Chem Res 2024; 57:257-266. [PMID: 38131644 DOI: 10.1021/acs.accounts.3c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
ConspectusThe experimental quantification of interactions on the molecular level provides the necessary basis for the design of functional materials and chemical processes. The interplay of multiple parameters and the small quantity of individual interactions pose a special challenge for such endeavors. The common method is the use of molecular balances, which can exist in two different states. Thereby, a stabilizing interaction can occur in one of the states, favoring its formation and thus affecting the thermodynamic equilibrium of the system. One challenge is determining the change in this equilibrium since various analytical methods could not be applied to fast-changing equilibria. A new and promising method for quantifying molecular interactions is the use of Molecular Wind-up Meters (MWM) in which the change in kinetics, rather than the effect on thermodynamics, is investigated. An MWM is transformed with an energy input (e.g. irradiation) into a metastable state. Then, the rate of thermal transformation back to the ground state is measured. The strength of interactions present in the metastable state controls the kinetics of the back reactions, allowing direct correlation. The advantage of this approach lies in the high sensitivity (energy differences can be larger by 1 order of magnitude) and, in general, allows the use of a broader range of solvents and analytical methods. An Azobenzene-based MWM has been established as a powerful tool to quantify London dispersion interactions. London dispersion (LD) represents the attractive part of the van der Waals potential. Although neglected in the past due to its weak character, it has been shown that the influence of LD on the structure, stability, and reactivity of matter can be decisive. Especially in larger molecules, its energy contribution increases overproportionately with the number of atoms, which has sparked increasing interest in the use of so-called dispersion energy donors (DED) as a new structural element. Application of the azobenzene-based MWM not only allowed the differentiation of bulkiness, but also systematically addressed the influence of the length of n-alkyl chains. Additionally, the solvent influence on LD was studied. Based on the azobenzene MWM, an increment system has been proposed, allowing a rough estimate of the effect of a specific DED.
Collapse
Affiliation(s)
- Conrad Averdunk
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Center of Materials Research (LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Kai Hanke
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Center of Materials Research (LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Dominic Schatz
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Center of Materials Research (LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Hermann A Wegner
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Center of Materials Research (LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| |
Collapse
|
9
|
Gonzalez A, Qiu Q, Usuba J, Wan J, Han GGD. Photoinduced Solid-Liquid Phase Transition and Energy Storage Enabled by the Design of Linked Double Photoswitches. ACS MATERIALS AU 2024; 4:30-34. [PMID: 38221920 PMCID: PMC10786127 DOI: 10.1021/acsmaterialsau.3c00069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 01/16/2024]
Abstract
We demonstrate an effective design strategy of photoswitchable phase change materials based on the bis-azobenzene scaffold. These compounds display a solid phase in the E,E state and a liquid phase in the Z,Z state, in contrast to their monoazobenzene counterparts that exhibit less controlled phase transition behaviors that are largely influenced by their functional groups.
Collapse
Affiliation(s)
- Alejandra Gonzalez
- Department of Chemistry, Brandeis
University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Qianfeng Qiu
- Department of Chemistry, Brandeis
University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Junichi Usuba
- Department of Chemistry, Brandeis
University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Joshua Wan
- Department of Chemistry, Brandeis
University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Grace G. D. Han
- Department of Chemistry, Brandeis
University, 415 South Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
10
|
Qiu Q, Qi Q, Usuba J, Lee K, Aprahamian I, Han GGD. Visible light activated energy storage in solid-state Azo-BF 2 switches. Chem Sci 2023; 14:11359-11364. [PMID: 37886079 PMCID: PMC10599475 DOI: 10.1039/d3sc03465h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/17/2023] [Indexed: 10/28/2023] Open
Abstract
We present here a group of Azo-BF2 photoswitches that store and release energy in response to visible light irradiation. Unmodified Azo-BF2 switches have a planar structure with a large π-conjugation system, which hinders E-Z isomerization when in a compacted state. To address this challenge, we modified the switches with one or two aliphatic groups, which altered the intermolecular interactions and arrangement of the photochromes in the solid state. The derivative with two substituents exhibited a non-planar configuration that provided particularly large conformational freedom, allowing for efficient isomerization in the solid phase. Our discovery highlights the potential of using double aliphatic functionalization as a promising approach to facilitate solid-state switching of large aromatic photoswitches. This finding opens up new possibilities for exploring various photoswitch candidates for molecular solar thermal energy storage applications.
Collapse
Affiliation(s)
- Qianfeng Qiu
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Qingkai Qi
- Department of Chemistry, Dartmouth College Hanover NH 03755 USA
| | - Junichi Usuba
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Karina Lee
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College Hanover NH 03755 USA
| | - Grace G D Han
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| |
Collapse
|
11
|
Morikawa MA, Yamanaka Y, Ho Hui JK, Kimizuka N. Photoliquefaction and phase transition of m-bisazobenzenes give molecular solar thermal fuels with a high energy density. RSC Adv 2023; 13:24031-24037. [PMID: 37577092 PMCID: PMC10414017 DOI: 10.1039/d3ra04595a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023] Open
Abstract
A series of m-bisazobenzene chromophores modified with various alkoxy substituents (1; methoxy, 2; ethoxy, 3; butoxy, 4; neopentyloxy) were developed for solvent-free molecular solar thermal fuels (STFs). Compounds (E,E)-1-3 in the crystalline thin film state exhibited photoliquefaction, the first example of photo-liquefiable m-bisazobenzenes. Meanwhile, (E,E)-4 did not show photoliquefaction due to the pronounced rigidity of the interdigitated molecular packing indicated by X-ray crystallography. The m-bisazobenzenes 1-4 exhibited twice the Z-to-E isomerization enthalpy compared to monoazobenzene derivatives, and the latent heat associated with the liquid-solid phase change further enhanced their heat storage capacity. To observe both exothermic Z-to-E isomerization and crystallization in a single heat-up process, the temperature increase of differential scanning calorimetry (DSC) must occur at a rate that does not deviate from thermodynamic equilibrium. Bisazobenzene 1 showed an unprecedented gravimetric heat storage capacity of 392 J g-1 that exceeds previous records for well-defined molecular STFs.
Collapse
Affiliation(s)
- Masa-Aki Morikawa
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
- Center for Molecular Systems (CMS), Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Yuta Yamanaka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
| | - Joseph Ka Ho Hui
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
| | - Nobuo Kimizuka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
- Center for Molecular Systems (CMS), Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
- Research Center for Negative Emissions Technologies, Kyushu University (K-NETs) 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
12
|
Sun S, Liang S, Xu WC, Wang M, Gao J, Zhang Q, Wu S. Photoswitches with different numbers of azo chromophores for molecular solar thermal storage. SOFT MATTER 2022; 18:8840-8849. [PMID: 36373235 DOI: 10.1039/d2sm01073a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We investigate three azo-chromophore-containing photoswitches (1, 2 and 3) for molecular solar thermal storage (MOST) based on reversible Z-E isomerization. 1, 2 and 3 are photoswitchable compounds that contain one, two and three azo chromophores, respectively. In solution, 1, 2 and 3 were charged via UV-light-induced E-to-Z isomerization. Among these three compounds, 2 exhibited an energy density as high as 272 ± 1.8 J g-1, which showed the best energy storage performance. This result originated from the low molecular weight, a high degree of photoisomerization, and moderate steric hindrance of 2, which demonstrated the advantages of the meta-bisazobenzene structure for MOST. In addition, we studied the performances of these photoswitches in the solvent-free state. Only 1 showed photoinduced reversible solid-to-liquid transitions, which enabled the charging of 1 in a solvent-free state. The stored energy density for 1 in a solvent-free state was 237 ± 1.5 J g-1. By contrast, 2 and 3 could not be charged in the solvent-free state due to the lack of solid-state photoisomerization. Our findings provide a better understanding of the structure-performance relationship for azobenzenebased MOST and pave the way for the development of high-density solar thermal fuels.
Collapse
Affiliation(s)
- Shaodong Sun
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Shuofeng Liang
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Wen-Cong Xu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Minghao Wang
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Jiangang Gao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Qijin Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
13
|
Gonzalez A, Odaybat M, Le M, Greenfield JL, White AJP, Li X, Fuchter MJ, Han GGD. Photocontrolled Energy Storage in Azobispyrazoles with Exceptionally Large Light Penetration Depths. J Am Chem Soc 2022; 144:19430-19436. [PMID: 36222796 DOI: 10.1021/jacs.2c07537] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Azobispyrazole, 4pzMe-5pzH, derivatives with small terminal substituents (Me, Et, i-Pr, and n-Pr) are reported to undergo facile reversible photoswitching in condensed phases at room temperature, exhibiting unprecedentedly large effective light penetration depths (1400 μm of UV at 365 nm and 1400 μm of visible light at 530 nm). These small photoswitches exhibit crystal-to-liquid phase transitions upon UV irradiation, which increases the overall energy storage density of this material beyond 300 J/g that is similar to the specific energy of commercial Na-ion batteries. The impact of heteroarene design, the presence of ortho methyl substituents, and the terminal functional groups is explored for both condensed-phase switching and energy storage. The design principles elucidated in this work will help to develop a wide variety of molecular solar thermal energy storage materials that operate in condensed phases.
Collapse
Affiliation(s)
- Alejandra Gonzalez
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Magdalena Odaybat
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, U.K
| | - My Le
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Jake L Greenfield
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, U.K
| | - Andrew J P White
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, U.K
| | - Xiang Li
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Matthew J Fuchter
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, U.K
| | - Grace G D Han
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
14
|
Li X, Cho S, Han GGD. Light-Responsive Solid-Solid Phase Change Materials for Photon and Thermal Energy Storage. ACS MATERIALS AU 2022; 3:37-42. [PMID: 36647455 PMCID: PMC9838185 DOI: 10.1021/acsmaterialsau.2c00055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 01/19/2023]
Abstract
We report a series of adamantane-functionalized azobenzenes that store photon and thermal energy via reversible photoisomerization in the solid state for molecular solar thermal (MOST) energy storage. The adamantane unit serves as a 3D molecular separator that enables the spatial separation of azobenzene groups and results in their facile switching even in the crystalline phase. Upon isomerization, the phase transition from crystalline to amorphous solid occurs and contributes to additional energy storage. The exclusively solid-state MOST compounds with solid-solid phase transition overcome a major challenge of solid-liquid phase transition materials that require encapsulation for practical applications.
Collapse
|
15
|
Yang Y, Huang S, Ma Y, Yi J, Jiang Y, Chang X, Li Q. Liquid and Photoliquefiable Azobenzene Derivatives for Solvent-free Molecular Solar Thermal Fuels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35623-35634. [PMID: 35916069 DOI: 10.1021/acsami.2c07870] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A series of liquid and photoliquefiable azobenzene (Azo) derivatives (Azo-Cn-Br) have been synthesized for molecular solar thermal fuels. Each of the liquid and photoliquefiable azo derivatives shows a high degree of isomerization, a fast isomerization rate, a long half-life, an appropriate energy storage density, and a solvent-free "charging" and "discharging" process. The photoliquefied azo derivatives can isomerize upon UV light irradiation at low temperatures to give the "UV-charged" azo ones. Therefore, the phase transition enthalpy is stored simultaneously along with the isomerization enthalpy. The "UV-charged" azo derivatives are capable of releasing heat under the manipulation of blue light.
Collapse
Affiliation(s)
- Yajing Yang
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Shuai Huang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yanduo Ma
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Jie Yi
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Yuchun Jiang
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xiaohong Chang
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
16
|
Kumar P, Gupta D, Grewal S, Srivastava A, Kumar Gaur A, Venkataramani S. Multiple Azoarenes Based Systems - Photoswitching, Supramolecular Chemistry and Application Prospects. CHEM REC 2022; 22:e202200074. [PMID: 35860915 DOI: 10.1002/tcr.202200074] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/16/2022] [Indexed: 11/05/2022]
Abstract
In the recent decades, the investigations on photoresponsive molecular systems with multiple azoarenes are quite popular in diverse perspectives ranging from fundamental understanding of multiple photoswitches, supramolecular chemistry, and various application prospects. In fact, several insightful and conceptual designs of such systems were investigated with architectural distinctions. In particular, the demonstration of applications such as data storage with the help of multistate or orthogonal photoswitches, light modulation of catalysis via cooperative switching, sensors using supramolecular host-guest interactions, and materials such as liquid crystals, grating, actuators, etc. are some of the milestones in this area. Herein, we cover the recent advancements in the research areas of multiazoarenes containing systems that have been classified into Type-1 {linear, non-linear, and core-based (A)}, Type-2 {tripodal C3 -symmetric (C3)} and Type-3 {macrocyclic (M)} structural motifs.
Collapse
Affiliation(s)
- Pravesh Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Debapriya Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Surbhi Grewal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Anjali Srivastava
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Ankit Kumar Gaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| |
Collapse
|
17
|
Qiu Q, Yang S, Gerkman MA, Fu H, Aprahamian I, Han GGD. Photon Energy Storage in Strained Cyclic Hydrazones: Emerging Molecular Solar Thermal Energy Storage Compounds. J Am Chem Soc 2022; 144:12627-12631. [PMID: 35801820 DOI: 10.1021/jacs.2c05384] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The generally small Gibbs free energy difference between the Z and E isomers of hydrazone photoswitches has so far precluded their use in photon energy storing applications. Here, we report on a series of cyclic and acyclic hydrazones, which possess varied degrees of ring strain and, hence, stability of E isomers. The photoinduced isomerization and concurrent phase transition of the cyclic hydrazones from a crystalline to a liquid phase result in the storage of a large quantity of energy, comparable to that of azobenzene derivatives. We demonstrate that the macrocyclic photochrome design in combination with phase transition is a promising strategy for molecular solar thermal energy storage applications.
Collapse
Affiliation(s)
- Qianfeng Qiu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Sirun Yang
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Mihael A Gerkman
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Heyifei Fu
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Grace G D Han
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
18
|
Kunz A, Oberhof N, Scherz F, Martins L, Dreuw A, Wegner HA. Azobenzene‐Substituted Triptycenes: Understanding the Exciton Coupling of Molecular Switches in Close Proximity. Chemistry 2022; 28:e202200972. [PMID: 35499252 PMCID: PMC9401047 DOI: 10.1002/chem.202200972] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 11/09/2022]
Abstract
Herein, we report a series of azobenzene‐substituted triptycenes. In their design, these switching units were placed in close proximity, but electronically separated by a sp3 center. The azobenzene switches were prepared by Baeyer–Mills coupling as key step. The isomerization behavior was investigated by 1H NMR spectroscopy, UV/Vis spectroscopy, and HPLC. It was shown that all azobenzene moieties are efficiently switchable. Despite the geometric decoupling of the chromophores, computational studies revealed excitonic coupling effects between the individual azobenzene units depending on the connectivity pattern due to the different transition dipole moments of the π→π* excitations. Transition probabilities for those excitations are slightly altered, which is also revealed in their absorption spectra. These insights provide new design parameters for combining multiple photoswitches in one molecule, which have high potential as energy or information storage systems, or, among others, in molecular machines and supramolecular chemistry.
Collapse
Affiliation(s)
- Anne Kunz
- Institute of Organic Chemistry Justus Liebig University Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center of Material Research (LaMa/ZfM) Justus Liebig University Heinrich-Buff-Ring 16 35392 Giessen Germany
| | - Nils Oberhof
- Interdisciplinary Center for Scientific Computing Heidelberg University Im Neuenheimer Feld 205 69120 Heidelberg Germany
| | - Frederik Scherz
- Interdisciplinary Center for Scientific Computing Heidelberg University Im Neuenheimer Feld 205 69120 Heidelberg Germany
| | - Leon Martins
- Interdisciplinary Center for Scientific Computing Heidelberg University Im Neuenheimer Feld 205 69120 Heidelberg Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing Heidelberg University Im Neuenheimer Feld 205 69120 Heidelberg Germany
| | - Hermann A. Wegner
- Institute of Organic Chemistry Justus Liebig University Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center of Material Research (LaMa/ZfM) Justus Liebig University Heinrich-Buff-Ring 16 35392 Giessen Germany
| |
Collapse
|
19
|
Zhang B, Feng Y, Feng W. Azobenzene-Based Solar Thermal Fuels: A Review. NANO-MICRO LETTERS 2022; 14:138. [PMID: 35767090 PMCID: PMC9243213 DOI: 10.1007/s40820-022-00876-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The energy storage mechanism of azobenzene is based on the transformation of molecular cis and trans isomerization, while NBD/QC, DHA/VHF, and fulvalene dimetal complexes realize the energy storage function by changing the molecular structure. Acting as "molecular batteries," they can exhibit excellent charging and discharging behavior by converting between trans and cis isomers or changing molecular structure upon absorption of ultraviolet light. Key properties determining the performance of STFs are stored energy, energy density, half-life, and solar energy conversion efficiency. This review is aiming to provide a comprehensive and authoritative overview on the recent advancements of azobenzene molecular photoswitch system in STFs fields, including derivatives and carbon nano-templates, which is emphasized for its attractive performance. Although the energy storage performance of Azo-STFs has already reached the level of commercial lithium batteries, the cycling capability and controllable release of energy still need to be further explored. For this, some potential solutions to the cycle performance are proposed, and the methods of azobenzene controllable energy release are summarized. Moreover, energy stored by STFs can be released in the form of mechanical energy, which in turn can also promote the release of thermal energy from STFs, implying that there could be a relationship between mechanical and thermal energy in Azo-STFs, providing a potential direction for further research on Azo-STFs.
Collapse
Affiliation(s)
- Bo Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Yiyu Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, People's Republic of China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300350, People's Republic of China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, People's Republic of China.
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300350, People's Republic of China.
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
20
|
Wu P, Ren H, Han D, Yu S. The Colorimetric Sensor Based on Azobenzenes with Sulfonamide Group for Fluorine Ion and Moisture Detection in Organic Solvents. ChemistrySelect 2022. [DOI: 10.1002/slct.202200992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ping Wu
- School of Chemistry and Pharmaceutical Engineering Jilin Institute of Chemical Technology Jilin People's Republic of China
| | - Hong Ren
- School of Chemistry and Pharmaceutical Engineering Jilin Institute of Chemical Technology Jilin People's Republic of China
| | - Dandan Han
- School of Chemistry and Pharmaceutical Engineering Jilin Institute of Chemical Technology Jilin People's Republic of China
| | - Shihua Yu
- School of Chemistry and Pharmaceutical Engineering Jilin Institute of Chemical Technology Jilin People's Republic of China
| |
Collapse
|
21
|
Al-Bataineh QM, Ahmad AA, Alsaad AM, Qattan IA, Aljarrah IA, Telfah AD. Effect of Iodine Filler on Photoisomerization Kinetics of Photo-Switchable Thin Films Based on PEO-BDK-MR. Polymers (Basel) 2021; 13:polym13050841. [PMID: 33803395 PMCID: PMC7967190 DOI: 10.3390/polym13050841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/12/2022] Open
Abstract
We report the effect of an iodine filler on photoisomerization kinetics of photo-switchable PEO-BDK-MR thin films. The kinetics of photoisomerization and time progression of PEO-BDK-MR/I2 nanocomposite thin films are investigated using UV-Vis, FTIR spectroscopies, and modified mathematical models developed using new analytical methods. Incorporating iodine filler into the PEO-BDK-MR polymeric matrix enhances the isomerization energy barrier and considerably increases the processing time. Our outcomes propose that enhanced photoisomerized and time processed (PEO-BDK-MR)/I2 thin films could be potential candidates for a variety of applications involving molecular solar thermal energy storage media.
Collapse
Affiliation(s)
- Qais M. Al-Bataineh
- Department of Physics, Jordan University of Science & Technology, P.O. Box 3030, Irbid 22110, Jordan; (Q.M.A.-B.); (A.A.A.); (I.A.A.)
| | - A. A. Ahmad
- Department of Physics, Jordan University of Science & Technology, P.O. Box 3030, Irbid 22110, Jordan; (Q.M.A.-B.); (A.A.A.); (I.A.A.)
| | - A. M. Alsaad
- Department of Physics, Jordan University of Science & Technology, P.O. Box 3030, Irbid 22110, Jordan; (Q.M.A.-B.); (A.A.A.); (I.A.A.)
- Correspondence:
| | - I. A. Qattan
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| | - Ihsan A. Aljarrah
- Department of Physics, Jordan University of Science & Technology, P.O. Box 3030, Irbid 22110, Jordan; (Q.M.A.-B.); (A.A.A.); (I.A.A.)
| | - Ahmad D. Telfah
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany;
- Hamdi Mango Center for Scientific Research (HMCSR), The Jordan University, Amman 11942, Jordan
| |
Collapse
|
22
|
Kunz A, Wegner HA. 1+1≥2? Norbornadiene‐Azobenzene Molecules as Multistate Photoswitches. CHEMSYSTEMSCHEM 2020. [DOI: 10.1002/syst.202000035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Anne Kunz
- Institute of Organic Chemistry Justus Liebig University Heinrich-Buff-Ring 17 35392 Giessen
- Germany and Center for Materials Research (LaMa) Justus Liebig University Heinrich-Buff-Ring 16 35392 Giessen Germany
| | - Hermann A. Wegner
- Institute of Organic Chemistry Justus Liebig University Heinrich-Buff-Ring 17 35392 Giessen
- Germany and Center for Materials Research (LaMa) Justus Liebig University Heinrich-Buff-Ring 16 35392 Giessen Germany
| |
Collapse
|
23
|
Orrego-Hernández J, Dreos A, Moth-Poulsen K. Engineering of Norbornadiene/Quadricyclane Photoswitches for Molecular Solar Thermal Energy Storage Applications. Acc Chem Res 2020; 53:1478-1487. [PMID: 32662627 PMCID: PMC7467572 DOI: 10.1021/acs.accounts.0c00235] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ConspectusRenewable energy resources are mostly intermittent and not evenly distributed geographically; for this reason, the development of new technologies for energy storage is in high demand.Molecules that undergo photoinduced isomerization reactions that are capable of absorbing light, storing it as chemical energy, and releasing it as thermal energy on demand are referred to as molecular solar thermal energy storage (MOST) or solar thermal fuels (STF). Such molecules offer a promising solution for solar energy storage applications. Different molecular systems have been investigated for MOST applications, such as norbornadienes, azobenzenes, stilbenes, ruthenium derivatives, anthracenes, and dihydroazulenes. The polycyclic strained molecule norbornadiene (NBD), which photoconverts to quadricyclane (QC), is of great interest because it has a high energy storage density and the potential to store energy for a very long time. Unsubstituted norbornadiene has some limitations in this regard, such as poor solar spectrum match and low quantum yield. In the past decade, our group has developed and tested new NBD systems with improved characteristics. Moreover, we have demonstrated their function in laboratory-scale test devices for solar energy harnessing, storage, and release.This Account describes the most impactful recent findings on how to engineer key properties of the NBD/QC system (photochemistry, energy storage, heat release, stability, and synthesis) as well as examples of test devices for solar energy capture and heat release. While it was known that introducing donor-acceptor groups allows for a red-shifted absorption that better matches the solar spectrum, we managed to introduce donor and acceptor groups with very low molecular weight, which allowed for an unprecedented solar spectrum match combined with high energy density. Strategic steric hindrance in some of these systems dramatically increases the storage time of the photoisomer QC, and dimeric systems have independent energies barriers that lead to an improved solar spectrum match, prolonged storage times, and higher energy densities. These discoveries offer a toolbox of possible chemical modifications that can be used to tune the properties of NBD/QC systems and make them suitable for the desired applications, which can be useful for anyone wanting to take on the challenge of designing efficient MOST systems.Several test devices have been built, for example, a hybrid MOST device that stores sunlight energy and heat water at the same time. Moreover, we developed a device for monitoring catalyzed QC to NBD conversion resulting in the possibility to quantify a significant macroscopic heat generation. Finally, we tested different formulations of polymeric composites that can absorb light during the day and release the energy as heat during the night for possible use in future window coating applications. These lab-scale realizations are formative and contribute to pushing the field forward toward the real-life application of MOST systems.
Collapse
Affiliation(s)
- Jessica Orrego-Hernández
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41286 Gothenburg, Sweden
| | - Ambra Dreos
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41286 Gothenburg, Sweden
| | - Kasper Moth-Poulsen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41286 Gothenburg, Sweden
| |
Collapse
|
24
|
Gerkman MA, Gibson RSL, Calbo J, Shi Y, Fuchter MJ, Han GGD. Arylazopyrazoles for Long-Term Thermal Energy Storage and Optically Triggered Heat Release below 0 °C. J Am Chem Soc 2020; 142:8688-8695. [DOI: 10.1021/jacs.0c00374] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mihael A. Gerkman
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Rosina S. L. Gibson
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, Wood Lane, London W12 0BZ, United Kingdom
| | - Joaquín Calbo
- Instituto de Ciencia Molecular, Universidad de Valencia, 46890 Paterna, Spain
| | - Yuran Shi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Matthew J. Fuchter
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, Wood Lane, London W12 0BZ, United Kingdom
| | - Grace G. D. Han
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
25
|
Wu S, Butt HJ. Solar-Thermal Energy Conversion and Storage Using Photoresponsive Azobenzene-Containing Polymers. Macromol Rapid Commun 2019; 41:e1900413. [PMID: 31737964 DOI: 10.1002/marc.201900413] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/28/2019] [Indexed: 12/31/2022]
Abstract
Photoswitchable compounds are promising materials for solar-thermal energy conversion and storage. In particular, photoresponsive azobenzene-containing compounds are proposed as materials for solar-thermal fuels. In this feature article, solar-thermal fuels based on azobenzene-containing polymers (azopolymers) are reviewed. The mechanism of azopolymer-based solar-thermal fuels is introduced, and computer simulations and experimental results on azopolymer-based solar-thermal fuels are highlighted. Different types of azopolymers such as linear azopolymers, 2D azopolymers, and conjugated azopolymers are addressed. The advantages and limitations of these azopolymers for solar-thermal energy conversion and storage, along with the remaining challenges of azopolymer-based solar-thermal fuels, are discussed.
Collapse
Affiliation(s)
- Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei, 230026, Anhui, China.,Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 , Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 , Mainz, Germany
| |
Collapse
|