1
|
Wang Q, Gao G, Fang F, Wang Q, Lundquist PK, Sun L. A simple and efficient approach for preparing cationic coating with tunable electroosmotic flow for capillary zone electrophoresis-mass spectrometry-based top-down proteomics. Anal Chim Acta 2024; 1328:343162. [PMID: 39266194 PMCID: PMC11404064 DOI: 10.1016/j.aca.2024.343162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) has become a valuable analytical technique in top-down proteomics (TDP). CZE-MS/MS-based TDP typically employs separation capillaries with neutral coatings (i.e., linear polyacrylamide, LPA). However, issues related to separation resolution and reproducibility remain with the LPA-coated capillaries due to the unavoidable non-specific protein adsorption onto the capillary wall. Cationic coatings can be critical alternatives to LPA coating for CZE-MS/MS-based TDP due to the electrostatic repulsion between the positively charged capillary inner wall and proteoform molecules in the acidic separation buffer. Unfortunately, there are only very few studies using cationic coating-based CZE-MS/MS for TDP studies. RESULTS In this work, we aimed to develop a simple and efficient approach for preparing separation capillaries with a cationic coating, i.e., poly (acrylamide-co-(3-acrylamidopropyl) trimethylammonium chloride [PAMAPTAC]) for CZE-MS/MS-based TDP. The PAMAPTAC coating-based CZE-MS produced significantly better separation resolution of proteoforms compared to the traditionally used LPA-coated approach. It achieved reproducible separation and measurement of a simple proteoform mixture and a complex proteome sample (i.e., a yeast cell lysate) regarding migration time, proteoform intensity, and the number of proteoform identifications. The PAMAPTAC coating-based CZE-MS enabled the detection of large proteoforms (≥30 kDa) from the yeast cell lysate reproducibly without any size-based prefractionation. Interestingly, the mobility of proteoforms using the PAMAPTAC coating can be predicted accurately using a simple semi-empirical model. SIGNIFICANCE The results render the PAMAPTAC coating as a valuable alternative to the LPA coating to advance CZE-MS-based TDP towards high-resolution separation and highly reproducible measurement of proteoforms in complex samples.
Collapse
Affiliation(s)
- Qianjie Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Guangyao Gao
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
| | - Fei Fang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
| | - Qianyi Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
| | - Peter K Lundquist
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA.
| |
Collapse
|
2
|
Dhellemmes L, Leclercq L, Höchsmann A, Neusüß C, Martin M, Cottet H. Getting the Best out of Capillary Electrophoresis and Capillary Electrophoresis-Mass Spectrometry by Quantifying Sources of Peak Broadening for Proteins Using Polyelectrolyte Multilayer Coated Fused Silica Capillaries. Anal Chem 2024. [PMID: 39255837 DOI: 10.1021/acs.analchem.4c02276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Capillary electrophoresis (CE) has emerged as a relevant technique for protein and biopharmaceutical analysis, as it combines high separation efficiency, sensitivity, and versatility. The use of capillary coatings, including successive multiple ionic-polymer layers (SMILs), reduces interactions between analytes and the capillary, further improving the CE performance. Nevertheless, separations done on SMIL coatings rarely surpass 500 × 103 plates/m. To obtain the best out of the CE, it is interesting to have a detailed look at the sources of peak dispersion. Separations of a mix of model proteins were performed on (poly(diallyldimethylammonium chloride)/poly(styrenesulfonate))2.5-coated capillaries at different electrical field strengths, leading to plate height H against migration velocity u plots that enabled a quantitative analysis of each contribution. Using this model, capillary lengths and injected volumes were systematically varied. For the first time, the contribution of sample electrophoretic heterogeneity to the total peak dispersion was deciphered for model proteins and a monoclonal antibody. Dispersion due to electromigration was seen to have an impact on plate heights in the case of triangular peaks of small molecules but not for proteins under the present conditions. UV and mass spectrometry detections were compared on the same capillary, providing valuable information on the impact of the detection type on separation efficiency. Close to 1 million plates/m were reached in the best conditions.
Collapse
Affiliation(s)
- Laura Dhellemmes
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Laurent Leclercq
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Alisa Höchsmann
- Faculty of Chemistry, Aalen University, Aalen 73430, Germany
- Faculty of Science, Eberhard Karls University Tübingen, Tübingen 72074, Germany
| | | | - Michel Martin
- PMMH, CNRS, ESPCI Paris-PSL, Sorbonne Université, Université de Paris, Paris 75005, France
| | - Hervé Cottet
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier 34095, France
| |
Collapse
|
3
|
Dhellemmes L, Leclercq L, Frick H, Höchsmann A, Schaschke N, Neusüß C, Cottet H. Investigating cationic and zwitterionic successive multiple ionic-polymer layer coatings for protein separation by capillary electrophoresis. J Chromatogr A 2024; 1720:464802. [PMID: 38507871 DOI: 10.1016/j.chroma.2024.464802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024]
Abstract
Successive multiple ionic-polymer layers (SMILs) have long since proved their worth in capillary electrophoresis as they ensure stable electroosmotic flow (EOF) and relatively high separation efficiency. Recently, we demonstrated that plotting the plate height (H) against the solute migration velocity (u) enabled a reliable quantitative evaluation of the coating performances in terms of separation efficiency. In this work, various physicochemical and chemical parameters of the SMIL coating were studied and optimized in order to decrease the slope of the ascending part of the H vs u curve, which is known to be controlled by the homogeneity in charge of the coating surface and by the possible residual solute adsorption onto the coating surface. SMILs based on poly(diallyldimethylammonium chloride) (PDADMAC) and poly(sodium styrene sulfonate) (PSS) were formed and the effect of each polyelectrolyte molar mass and of the number of polyelectrolyte layers (up to 21 layers) was studied. The use of polyethylene imine as an anchoring first layer was considered. More polyelectrolyte couples based on PDADMAC, polybrene, PSS, poly(vinyl sulfate), and poly(acrylic acid) were tested. Finally, zwitterionic polymers based on the poly(α-l-lysine) scaffold were synthesized and used as the last layer of SMILs, illustrating their ability to finetune the EOF, while maintaining good separation efficiency.
Collapse
Affiliation(s)
- Laura Dhellemmes
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Laurent Leclercq
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Henry Frick
- Faculty of Chemistry, Aalen University, Aalen, Germany
| | | | | | | | - Hervé Cottet
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
4
|
Roca S, Leclercq L, Cottet H. Size-based characterization of dendrigraft poly(L-lysine) by free solution capillary electrophoresis using polyelectrolyte multilayer coatings. J Chromatogr A 2024; 1718:464719. [PMID: 38340458 DOI: 10.1016/j.chroma.2024.464719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/28/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Dendrigraft poly(L-lysine) (DGL) constitutes a promising dendritic-like drug vehicle with high biocompatibility and straightforward access via ring-opening polymerization of N-carboxyanhydride in water. The characterization of the different generations of DGL is however challenging due to their heterogeneity in molar mass and branching ratio. In this work, free solution capillary electrophoresis was used to perform selective separation of the three first generations of DGL, and optimized conditions were developed to maximize inter-generation resolution. To reduce solute adsorption on the capillary wall, successive multiple ionic polymer layer coatings terminated with a polycation were deposited onto the inner wall surface. PEGylated polycation was also used as the last layer for the control of the electroosmotic flow (EOF), depending on the PEGylation degree and the methyl-polyethylene glycol (mPEG) chain length. 1 kDa mPEG chains and low grafting densities were found to be the best experimental conditions for a fine tuning of the EOF leading to high peak resolution. Molar mass polydispersity and polydispersity in effective electrophoretic mobility were successfully determined for the three first generations of DGL.
Collapse
Affiliation(s)
- Sébastien Roca
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Laurent Leclercq
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Hervé Cottet
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
5
|
Mohammadi N, Fayazi Hosseini N, Nemati H, Moradi-Sardareh H, Nabi-Afjadi M, Kardar GA. Revisiting of Properties and Modified Polyethylenimine-Based Cancer Gene Delivery Systems. Biochem Genet 2024; 62:18-39. [PMID: 37394575 DOI: 10.1007/s10528-023-10416-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
A new era of medical technology in cancer treatment is a directly specific modification of gene expression in tumor cells by nucleic acid delivery. Currently, the main challenge to achieving this goal is to find a non-toxic, safe, and effective strategy for gene transfer to cancer cells. Synthetic composites based on cationic polymers have historically been favored in bioengineering due to their ability to mimic bimolecular structures. Among them, polyethylenimines (PEIs) with superior properties such as a wide range of molecular weight and a flexible structure may propel the development of functional combinations in the biomedical and biomaterial fields. Here, in this review, we will focus on the recent progressions in the formulation optimization of PEI-based polyplex in gene delivery to treat cancer. Also, the effect of PEI's intrinsic characteristics such as structure, molecular weight, and positive charges which influence the gene delivery efficiency will be discussed.
Collapse
Affiliation(s)
- Nejad Mohammadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Immunology Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nashmin Fayazi Hosseini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Nemati
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Gholam Ali Kardar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Immunology Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2021-mid-2023). Electrophoresis 2024; 45:165-198. [PMID: 37670208 DOI: 10.1002/elps.202300152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023]
Abstract
This review article brings a comprehensive survey of developments and applications of high-performance capillary and microchip electromigration methods (zone electrophoresis in a free solution or in sieving media, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, micropreparation, and physicochemical characterization of peptides in the period from 2021 up to ca. the middle of 2023. Progress in the study of electromigration properties of peptides and various aspects of their analysis, such as sample preparation, adsorption suppression, electroosmotic flow regulation, and detection, are presented. New developments in the particular capillary electromigration methods are demonstrated, and several types of their applications are reported. They cover qualitative and quantitative analysis of synthetic or isolated peptides and determination of peptides in complex biomatrices, peptide profiling of biofluids and tissues, and monitoring of chemical and enzymatic reactions and physicochemical changes of peptides. They include also amino acid and sequence analysis of peptides, peptide mapping of proteins, separation of stereoisomers of peptides, and their chiral analyses. In addition, micropreparative separations and physicochemical characterization of peptides and their interactions with other (bio)molecules by the above CE methods are described.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
7
|
Szabó ZI, Benkő BM, Bartalis-Fábián Á, Iványi R, Varga E, Szőcs L, Tóth G. Chiral Separation of Apremilast by Capillary Electrophoresis Using Succinyl-β-Cyclodextrin-Reversal of Enantiomer Elution Order by Cationic Capillary Coating. Molecules 2023; 28:molecules28083310. [PMID: 37110544 PMCID: PMC10143784 DOI: 10.3390/molecules28083310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
A stereospecific capillary electrophoresis method was developed for the separation of the novel, antipsoriatic agent, apremilast (APR). Six anionic cyclodextrin (CD) derivatives were screened for their ability to discriminate between the uncharged enantiomers. Only succinyl-β-CD (Succ-β-CD) presented chiral interactions; however, the enantiomer migration order (EMO) was unfavorable, and the eutomer, S-APR, migrated faster. Despite the optimization of all possible parameters (pH, cyclodextrin concentration, temperature, and degree of substitution of CD), the method was unsuccessful for purity control due to the low resolution and the unfavorable enantiomer migration order. Changing the direction of electroosmotic flow (EOF) by the dynamic coating of the inner surface of the capillary with poly(diallyldimethylammonium) chloride or polybrene resulted in EMO reversal, and the developed method could be applied for the determination of R-APR as the enantiomeric purity. Thus, the application of the dynamic capillary coating offers a general opportunity for enantiomeric migration order reversal in particular cases when the chiral selector is a weak acid.
Collapse
Affiliation(s)
- Zoltán-István Szabó
- Faculy of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Gh. Marinescu 38, 540139 Târgu Mureș, Romania
- Sz-Imfidum Ltd., nr. 504, 525401 Lunga, Romania
| | - Beáta-Mária Benkő
- University Pharmacy Department of Pharmaceutical Administration, Semmelweis University, Hőgyes E. 9, H-1085 Budapest, Hungary
| | - Ágnes Bartalis-Fábián
- Faculy of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Gh. Marinescu 38, 540139 Târgu Mureș, Romania
| | - Róbert Iványi
- Cyclolab Ltd., Illatos út 7, H-1097 Budapest, Hungary
| | | | - Levente Szőcs
- Cyclolab Ltd., Illatos út 7, H-1097 Budapest, Hungary
| | - Gergő Tóth
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes E. 9, H-1085 Budapest, Hungary
| |
Collapse
|
8
|
Modifying last layer in polyelectrolyte multilayer coatings for capillary electrophoresis of proteins. J Chromatogr A 2023; 1692:463837. [PMID: 36804799 DOI: 10.1016/j.chroma.2023.463837] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Protein adsorption on the inner wall of the fused silica capillary wall is an important concern for capillary electrophoresis (CE) analysis since it is mainly responsible for separation efficiency reduction. Successive Multiple Ionic-polymer Layers (SMIL) are used as capillary coatings to limit protein adsorption, but even low residual adsorption strongly impacts the separation efficiency, especially at high separation voltages. In this work, the influence of the chemical nature and the PEGylation of the polyelectrolyte deposited in the last layer of the SMIL coating was investigated on the separation performances of a mixture of four model intact proteins (myoglobin (Myo), trypsin inhibitor (TI), ribonuclease a (RNAse A) and lysozyme (Lyz)). Poly(allylamine hydrochloride) (PAH), polyethyleneimine (PEI), ε-poly(L-lysine) (εPLL) and α-poly(L-lysine) (αPLL) were compared before and after chemical modification with polyethyleneglycol (PEG) of different chain lengths. The experimental results obtained by performing electrophoretic separations at different separation voltages allowed determining the residual retention factor of the proteins onto the capillary wall via the determination of the plate height at different solute velocities and demonstrated a strong impact of the polycationic last layer on the electroosmotic mobility, the separation efficiency and the overall resolution. Properties of SMIL coatings were also characterized by quartz microbalance and atomic force microscopy, demonstrating a glassy structure of the films.
Collapse
|
9
|
Dhellemmes L, Leclercq L, Höchsmann A, Neusüß C, Biron JP, Roca S, Cottet H. Critical parameters for highly efficient and reproducible polyelectrolyte multilayer coatings for protein separation by capillary electrophoresis. J Chromatogr A 2023; 1695:463912. [PMID: 36972664 DOI: 10.1016/j.chroma.2023.463912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Since the introduction of polyelectrolyte multilayers to protein separation in capillary electrophoresis (CE), some progress has been made to improve separation efficiency by varying different parameters, such as buffer ionic strength and pH, polyelectrolyte nature and number of deposited layers. However, CE is often overlooked as it lacks robustness compared to other separation techniques. In this work, critical parameters for the construction of efficient and reproducible Successive multiple ionic-polymer layers (SMIL) coatings were investigated, focusing on experimental conditions, such as vial preparation and sample conservation which were shown to have a significant impact on separation performances. In addition to repeatability, intra- and inter-capillary precision were assessed, demonstrating the improved capability of poly(diallyldimethylammonium chloride) / poly(sodium styrene sulfonate) (PDADMAC / PSS) coated capillaries to separate model proteins in a 2 M acetic acid background electrolyte when all the correct precautions are put in place (with run to run%RSD(tm) < 1.8%, day to day%RSD(tm) < 3.2% and cap to cap%RSD(tm) < 4.6%). The approach recently introduced to calculate retention factors was used to quantify residual protein adsorption onto the capillary wall and to assess capillary coating performances. 5-layer PDADAMAC / PSS coatings led to average retention factors for the five model proteins of ∼4×10-2. These values suggest a relatively low residual protein adsorption leading to reasonably flat plate height vs linear velocity curves, obtained by performing electrophoretic separations at different electrical voltages (-10 to -25 kV).
Collapse
|
10
|
Kašička V. Peptide mapping of proteins by capillary electromigration methods. J Sep Sci 2022; 45:4245-4279. [PMID: 36200755 DOI: 10.1002/jssc.202200664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022]
Abstract
This review article provides a wide overview of important developments and applications of capillary electromigration methods in the area of peptide mapping of proteins in the period 1997-mid-2022, including review articles on this topic. It deals with all major aspects of peptide mapping by capillary electromigration methods: i) precleavage sample preparation involving purification, preconcentration, denaturation, reduction and alkylation of protein(s) to be analyzed, ii) generation of peptide fragments by off-line or on-line enzymatic and/or chemical cleavage of protein(s), iii) postcleavage preparation of the generated peptide mixture for capillary electromigration separation, iv) separation of the complex peptide mixtures by one-, two- and multidimensional capillary electromigration methods coupled with mass spectrometry detection, and v) a large application of peptide mapping for variable purposes, such as qualitative analysis of monoclonal antibodies and other protein biopharmaceuticals, monitoring of posttranslational modifications, determination of primary structure and investigation of function of proteins in biochemical and clinical research, characterization of proteins of variable origin as well as for protein and peptide identification in proteomic and peptidomic studies.
Collapse
Affiliation(s)
- Václav Kašička
- Electromigration Methods, The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
11
|
Sharmeen S, Kyei I, Hatch A, Hage DS. Analysis of drug interactions with serum proteins and related binding agents by affinity capillary electrophoresis: A review. Electrophoresis 2022; 43:2302-2323. [PMID: 36250426 PMCID: PMC10098505 DOI: 10.1002/elps.202200191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/17/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Biomolecules such as serum proteins can interact with drugs in the body and influence their pharmaceutical effects. Specific and precise methods that analyze these interactions are critical for drug development or monitoring and for diagnostic purposes. Affinity capillary electrophoresis (ACE) is one technique that can be used to examine the binding between drugs and serum proteins, or other agents found in serum or blood. This article will review the basic principles of ACE, along with related affinity-based capillary electrophoresis (CE) methods, and examine recent developments that have occurred in this field as related to the characterization of drug-protein interactions. An overview will be given of the various formats that can be used in ACE and CE for such work, including the relative advantages or weaknesses of each approach. Various applications of ACE and affinity-based CE methods for the analysis of drug interactions with serum proteins and other binding agents will also be presented. Applications of ACE and related techniques that will be discussed include drug interaction studies with serum agents, chiral drug separations employing serum proteins, and the use of CE in hybrid methods to characterize drug binding with serum proteins.
Collapse
Affiliation(s)
- Sadia Sharmeen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Isaac Kyei
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Arden Hatch
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
12
|
Stutz H. Advances and applications of electromigration methods in the analysis of therapeutic and diagnostic recombinant proteins – A Review. J Pharm Biomed Anal 2022; 222:115089. [DOI: 10.1016/j.jpba.2022.115089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022]
|