1
|
Santos-López J, Gómez S, Fernández FJ, Vega MC. Protein-Protein Binding Kinetics by Biolayer Interferometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:73-88. [PMID: 38507201 DOI: 10.1007/978-3-031-52193-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The specific kinetics and thermodynamics of protein-protein interactions underlie the molecular mechanisms of cellular functions; hence the characterization of these interaction parameters is central to the quantitative understanding of physiological and pathological processes. Many methods have been developed to study protein-protein interactions, which differ in various features including the interaction detection principle, the sensitivity, whether the method operates in vivo, in vitro, or in silico, the temperature control, the use of labels, immobilization, the amount of sample required, the number of measurements that can be accomplished simultaneously, or the cost. Bio-Layer Interferometry (BLI) is a label-free biophysical method to measure the kinetics of protein-protein interactions. Label-free interaction assays are a broad family of methods that do not require protein modifications (other than immobilization) or labels such as fusions with fluorescent proteins or transactivating domains or chemical modifications like biotinylation or reaction with radionuclides. Besides BLI, other label-free techniques that are widely used for determining protein-protein interactions include surface plasmon resonance (SPR), thermophoresis, and isothermal titration calorimetry (ITC), among others.
Collapse
Affiliation(s)
- Jorge Santos-López
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Sara Gómez
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
- Universidad Europea de Madrid, Madrid, Spain
| | | | - M Cristina Vega
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain.
| |
Collapse
|
2
|
Gradient method for accurate affinity determinations. Anal Biochem 2023; 667:115085. [PMID: 36809845 DOI: 10.1016/j.ab.2023.115085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
The value of the affinity constants (kd, ka, and KD) that are determined by label free interaction analysis methods are strongly affected by the ligand density at the sensor surface [1]. This paper outlines a new SPR-imaging method that applies a ligand density gradient enabling the analyte response to be extrapolated to Rmax = 0 μRIU. The mass transport limited region is used to determine the analyte concentration. Cumbersome optimization procedures for tuning the ligand density is prevented and surface dependent effects as rebinding, strong biphasic behavior etcetera are minimized. The method can be fully automated for e.g. accurate determination of the quality of antibodies from commercial sources.
Collapse
|
3
|
Han C, Dong T, Wang P, Zhou F. Microfluidically Partitioned Dual Channels for Accurate Background Subtraction in Cellular Binding Studies by Surface Plasmon Resonance Microscopy. Anal Chem 2022; 94:17303-17311. [PMID: 36454605 DOI: 10.1021/acs.analchem.2c04324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Unlike conventional surface plasmon resonance (SPR) using an antifouling film to anchor biomolecules and a reference channel for background subtraction, SPR microscopy for single-cell analysis uses a protein- or polypeptide-modified gold substrate to immobilize cells and a cell-free area as the reference. In this work, we show that such a substrate is prone to nonspecific adsorption (NSA) of species from the cell culture media, resulting in false background signals that cannot be correctly subtracted. To obtain accurate kinetic results, we patterned a dual-channel substrate using a microfluidic device, with one channel having poly-l-lysine deposited in situ onto a preformed polyethylene glycol (PEG) self-assembled monolayer for cell immobilization and the other channel remaining as PEG-covered for reference. The two 2.0 mm-wide channels are separated by a 75 μm barrier, and parts of the channels can be readily positioned into the field of view of an SPR microscope. The use of this dual-channel substrate for background subtraction is contrasted with the conventional approach through the following binding studies: (1) wheat germ agglutinin (WGA) attachment to the N-acetyl glucosamine and N-acetyl-neuraminic acid sites of glycans on HFF cells, and (2) the S1 protein of the COVID-19 virus conjugation with angiotensin-converting enzyme 2 (ACE2) on the HEK293 cells. Both studies revealed that interferences by NSA and the surface plasmon polariton wave diffracted by cells can be excluded with the dual-channel substrate, and the much smaller refractive index changes caused by the injected solutions can be correctly subtracted. Consequently, sensorgrams with higher signal-to-noise ratios and shapes predicted by the correct binding model can be obtained with accurate kinetic and affinity parameters that are more biologically relevant. The affinity between S1 protein and ACE2 is comparable to that measured with recombinant ACE2, yet the binding kinetics is different, suggesting that the cell membrane does impose a kinetic barrier to their interaction.
Collapse
Affiliation(s)
- Chaowei Han
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan 250022, Shandong, P. R. China
| | - Tianbao Dong
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan 250022, Shandong, P. R. China
| | - Pengcheng Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan 250022, Shandong, P. R. China
| | - Feimeng Zhou
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan 250022, Shandong, P. R. China
| |
Collapse
|
4
|
Dong T, Han C, Jiang M, Zhang T, Kang Q, Wang P, Zhou F. A Four-Channel Surface Plasmon Resonance Sensor Functionalized Online for Simultaneous Detections of Anti-SARS-CoV-2 Antibody, Free Viral Particles, and Neutralized Viral Particles. ACS Sens 2022; 7:3560-3570. [PMID: 36382569 DOI: 10.1021/acssensors.2c02067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Current tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detect either the constituent nucleic acids/proteins of the viral particles or antibodies specific to the virus, but cannot provide information about viral neutralization by an antibody and the efficacy of an antibody. Such information is important about individuals' vulnerability to severe symptoms or their likelihood of showing no symptoms. We immobilized online SARS-CoV-2 spike (S1) protein and angiotensin-converting enzyme 2 (ACE2) into separate surface plasmon resonance (SPR) channels of a tris-nitrilotriacetic acid (tris-NTA) chip to simultaneously detect the anti-S1 antibody and viral particles in serum samples. In addition, with a high-molecular-weight-cutoff filter, we separated the neutralized viral particles from the free antibody molecules and used a sensing channel immobilized with Protein G to determine antibody-neutralized viral particles. The optimal density of probe molecules in each fluidic channel can be precisely controlled through the closure and opening of the specific ports. By utilizing the high surface density of ACE2, multiple assays can be carried out without regenerations. These three species can be determined with a short analysis time (<12 min per assay) and excellent sensor-to-sensor/cycle-to-cycle reproducibility (RSD < 5%). When coupled with an autosampler, continuous assays can be performed in an unattended manner at a single chip for up to 6 days. Such a sensor capable of assaying serum samples containing the three species at different levels provides additional insights into the disease status and immunity of persons being tested, which should be helpful for containing the SARS-CoV-2 spread during the era of incessant viral mutations.
Collapse
Affiliation(s)
- Tianbao Dong
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong, P. R. China, 250022
| | - Chaowei Han
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong, P. R. China, 250022
| | - Meng Jiang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong, P. R. China, 250022
| | - Tiantian Zhang
- University Hospital, University of Jinan, Jinan, Shandong, P. R. China, 250022
| | - Qing Kang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong, P. R. China, 250022
| | - Pengcheng Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong, P. R. China, 250022
| | - Feimeng Zhou
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong, P. R. China, 250022
| |
Collapse
|
5
|
Chen Z, Zhang P, Matsuoka Y, Tsybovsky Y, West K, Santos C, Boyd LF, Nguyen H, Pomerenke A, Stephens T, Olia AS, Zhang B, De Giorgi V, Holbrook MR, Gross R, Postnikova E, Garza NL, Johnson RF, Margulies DH, Kwong PD, Alter HJ, Buchholz UJ, Lusso P, Farci P. Potent monoclonal antibodies neutralize Omicron sublineages and other SARS-CoV-2 variants. Cell Rep 2022; 41:111528. [PMID: 36302375 PMCID: PMC9554601 DOI: 10.1016/j.celrep.2022.111528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/29/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
The emergence and global spread of the SARS-CoV-2 Omicron variants, which carry an unprecedented number of mutations, raise serious concerns due to the reduced efficacy of current vaccines and resistance to therapeutic antibodies. Here, we report the generation and characterization of two potent human monoclonal antibodies, NA8 and NE12, against the receptor-binding domain of the SARS-CoV-2 spike protein. NA8 interacts with a highly conserved region and has a breadth of neutralization with picomolar potency against the Beta variant and the Omicron BA.1 and BA.2 sublineages and nanomolar potency against BA.2.12.1 and BA.4. Combination of NA8 and NE12 retains potent neutralizing activity against the major SARS-CoV-2 variants of concern. Cryo-EM analysis provides the structural basis for the broad and complementary neutralizing activity of these two antibodies. We confirm the in vivo protective and therapeutic efficacies of NA8 and NE12 in the hamster model. These results show that broad and potent human antibodies can overcome the continuous immune escape of evolving SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Zhaochun Chen
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Peng Zhang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yumiko Matsuoka
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yaroslav Tsybovsky
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kamille West
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Celia Santos
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lisa F Boyd
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hanh Nguyen
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anna Pomerenke
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tyler Stephens
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Valeria De Giorgi
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Michael R Holbrook
- National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility, National Institutes of Health, Frederick, MD, USA
| | - Robin Gross
- National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility, National Institutes of Health, Frederick, MD, USA
| | - Elena Postnikova
- National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility, National Institutes of Health, Frederick, MD, USA
| | - Nicole L Garza
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Reed F Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Harvey J Alter
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Ursula J Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Paolo Lusso
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patrizia Farci
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Aptamer versus antibody as probes for the impedimetric biosensor for human epidermal growth factor receptor. J Inorg Biochem 2022; 230:111764. [DOI: 10.1016/j.jinorgbio.2022.111764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/24/2022]
|
7
|
Jiang M, Dong T, Han C, Liu L, Zhang T, Kang Q, Wang P, Zhou F. Regenerable and high-throughput surface plasmon resonance assay for rapid screening of anti-SARS-CoV-2 antibody in serum samples. Anal Chim Acta 2022; 1208:339830. [PMID: 35525598 PMCID: PMC9006689 DOI: 10.1016/j.aca.2022.339830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
|
8
|
Chen Z, Zhang P, Matsuoka Y, Tsybovsky Y, West K, Santos C, Boyd LF, Nguyen H, Pomerenke A, Stephens T, Olia AS, De Giorgi V, Holbrook MR, Gross R, Postnikova E, Garza NL, Johnson RF, Margulies DH, Kwong PD, Alter HJ, Buchholz UJ, Lusso P, Farci P. Extremely potent monoclonal antibodies neutralize Omicron and other SARS-CoV-2 variants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022. [PMID: 35043120 DOI: 10.1101/2022.01.12.22269023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has triggered a devastating global health, social and economic crisis. The RNA nature and broad circulation of this virus facilitate the accumulation of mutations, leading to the continuous emergence of variants of concern with increased transmissibility or pathogenicity 1 . This poses a major challenge to the effectiveness of current vaccines and therapeutic antibodies 1, 2 . Thus, there is an urgent need for effective therapeutic and preventive measures with a broad spectrum of action, especially against variants with an unparalleled number of mutations such as the recently emerged Omicron variant, which is rapidly spreading across the globe 3 . Here, we used combinatorial antibody phage-display libraries from convalescent COVID-19 patients to generate monoclonal antibodies against the receptor-binding domain of the SARS-CoV-2 spike protein with ultrapotent neutralizing activity. One such antibody, NE12, neutralizes an early isolate, the WA-1 strain, as well as the Alpha and Delta variants with half-maximal inhibitory concentrations at picomolar level. A second antibody, NA8, has an unusual breadth of neutralization, with picomolar activity against both the Beta and Omicron variants. The prophylactic and therapeutic efficacy of NE12 and NA8 was confirmed in preclinical studies in the golden Syrian hamster model. Analysis by cryo-EM illustrated the structural basis for the neutralization properties of NE12 and NA8. Potent and broadly neutralizing antibodies against conserved regions of the SARS-CoV-2 spike protein may play a key role against future variants of concern that evade immune control.
Collapse
|
9
|
Ahmad J, Jiang J, Boyd LF, Zeher A, Huang R, Xia D, Natarajan K, Margulies DH. Structures of synthetic nanobody-SARS-CoV-2 receptor-binding domain complexes reveal distinct sites of interaction. J Biol Chem 2021; 297:101202. [PMID: 34537245 PMCID: PMC8444450 DOI: 10.1016/j.jbc.2021.101202] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/15/2022] Open
Abstract
Combating the worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the emergence of new variants demands understanding of the structural basis of the interaction of antibodies with the SARS-CoV-2 receptor-binding domain (RBD). Here, we report five X-ray crystal structures of sybodies (synthetic nanobodies) including those of binary and ternary complexes of Sb16-RBD, Sb45-RBD, Sb14-RBD-Sb68, and Sb45-RBD-Sb68, as well as unliganded Sb16. These structures reveal that Sb14, Sb16, and Sb45 bind the RBD at the angiotensin-converting enzyme 2 interface and that the Sb16 interaction is accompanied by a large conformational adjustment of complementarity-determining region 2. In contrast, Sb68 interacts at the periphery of the SARS-CoV-2 RBD-angiotensin-converting enzyme 2 interface. We also determined cryo-EM structures of Sb45 bound to the SARS-CoV-2 spike protein. Superposition of the X-ray structures of sybodies onto the trimeric spike protein cryo-EM map indicates that some sybodies may bind in both "up" and "down" configurations, but others may not. Differences in sybody recognition of several recently identified RBD variants are explained by these structures.
Collapse
Affiliation(s)
- Javeed Ahmad
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa F Boyd
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Allison Zeher
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rick Huang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
10
|
On the Use of Surface Plasmon Resonance Biosensing to Understand IgG-FcγR Interactions. Int J Mol Sci 2021; 22:ijms22126616. [PMID: 34205578 PMCID: PMC8235063 DOI: 10.3390/ijms22126616] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 01/01/2023] Open
Abstract
Surface plasmon resonance (SPR)-based optical biosensors offer real-time and label-free analysis of protein interactions, which has extensively contributed to the discovery and development of therapeutic monoclonal antibodies (mAbs). As the biopharmaceutical market for these biologics and their biosimilars is rapidly growing, the role of SPR biosensors in drug discovery and quality assessment is becoming increasingly prominent. One of the critical quality attributes of mAbs is the N-glycosylation of their Fc region. Other than providing stability to the antibody, the Fc N-glycosylation influences immunoglobulin G (IgG) interactions with the Fcγ receptors (FcγRs), modulating the immune response. Over the past two decades, several studies have relied on SPR-based assays to characterize the influence of N-glycosylation upon the IgG-FcγR interactions. While these studies have unveiled key information, many conclusions are still debated in the literature. These discrepancies can be, in part, attributed to the design of the reported SPR-based assays as well as the methodology applied to SPR data analysis. In fact, the SPR biosensor best practices have evolved over the years, and several biases have been pointed out in the development of experimental SPR protocols. In parallel, newly developed algorithms and data analysis methods now allow taking into consideration complex biomolecular kinetics. In this review, we detail the use of different SPR biosensing approaches for characterizing the IgG-FcγR interactions, highlighting their merit and inherent experimental complexity. Furthermore, we review the latest SPR-derived conclusions on the influence of the N-glycosylation upon the IgG-FcγR interactions and underline the differences and similarities across the literature. Finally, we explore new avenues taking advantage of novel computational analysis of SPR results as well as the latest strategies to control the glycoprofile of mAbs during production, which could lead to a better understanding and modelling of the IgG-FcγRs interactions.
Collapse
|
11
|
Mesrouze Y, Meyerhofer M, Zimmermann C, Fontana P, Erdmann D, Chène P. Biochemical properties of VGLL4 from Homo sapiens and Tgi from Drosophila melanogaster and possible biological implications. Protein Sci 2021; 30:1871-1881. [PMID: 34075638 DOI: 10.1002/pro.4138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022]
Abstract
The TEAD (Sd in drosophila) transcription factors are essential for the Hippo pathway. Human VGLL4 and drosophila Tgi bind to TEAD/Sd via two distinct binding sites. These two regions are separated by few amino acids in VGLL4 but they are very distant from each other in Tgi. This difference prompted us to study whether it influences the interaction with TEAD4/Sd. We show that the full-length VGLL4/Tgi proteins behave as intrinsically disordered proteins. They have a similar affinity for TEAD4/Sd revealing that the length of the region between the two binding sites has little effect on the interaction. One of their two binding sites (high-affinity site) binds to TEAD4/Sd 100 times more tightly than to the other site, and size exclusion chromatography experiments reveal that VGLL4/Tgi only form trimeric complexes with TEAD4/Sd at high protein concentrations. In solution, therefore, VGLL4/Tgi may predominantly interact with TEAD4/Sd via their high-affinity site to create dimeric complexes. In contrast, when TEAD4/Sd molecules are immobilized on sensor chips used in Surface Plasmon Resonance experiments, one VGLL4/Tgi molecule can bind simultaneously with an enhanced affinity to two immobilized molecules. This effect, due to a local increase in protein concentration triggered by the proximity of the immobilized TEAD4/Sd molecules, suggests that in vivo VGLL4/Tgi could bind with an enhanced affinity to two nearby TEAD/Sd molecules bound to DNA. The presence of two binding sites in VGLL4/Tgi might only be required for the function of these proteins when they interact with TEAD/Sd bound to DNA.
Collapse
Affiliation(s)
- Yannick Mesrouze
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Marco Meyerhofer
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Catherine Zimmermann
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Patrizia Fontana
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Dirk Erdmann
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Patrick Chène
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
12
|
Sadighbayan D, Ghafar-Zadeh E. Portable Sensing Devices for Detection of COVID-19: A Review. IEEE SENSORS JOURNAL 2021; 21:10219-10230. [PMID: 36790948 PMCID: PMC8769007 DOI: 10.1109/jsen.2021.3059970] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 05/05/2023]
Abstract
The coronavirus pandemic is the most challenging incident that people have faced in recent years. Despite the time-consuming and expensive conventional methods, point-of-care diagnostics have a crucial role in deterrence, timely detection, and intensive care of the disease's progress. Hence, this detrimental health emergency persuaded researchers to accelerate the development of highly-scalable diagnostic devices to control the propagation of the virus even in the least developed countries. The strategies exploited for detecting COVID-19 stem from the already designed systems for studying other maladies, particularly viral infections. The present report reviews not only the novel advances in portable diagnostic devices for recognizing COVID-19, but also the previously existing biosensors for detecting other viruses. It discusses their adaptability for identifying surface proteins, whole viruses, viral genomes, host antibodies, and other biomarkers in biological samples. The prominence of different types of biosensors such as electrochemical, optical, and electrical for detecting low viral loads have been underlined. Thus, it is anticipated that this review will assist scientists who have embarked on a competition to come up with more efficient and marketable in-situ test kits for identifying the infection even in its incubation time without sample pretreatment. Finally, a conclusion is provided to highlight the importance of such an approach for monitoring people to combat the spread of such contagious diseases.
Collapse
Affiliation(s)
- Deniz Sadighbayan
- Biologically Inspired Sensors and Actuators Laboratory (BioSA), Faculty of ScienceDepartment of BiologyYork UniversityTorontoONM3J 1P3Canada
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators Laboratory (BioSA), Lassonde School of Engineering, Department of Electrical Engineering and Computer Science, Faculty of ScienceDepartment of BiologyYork UniversityTorontoONM3J 1P3Canada
| |
Collapse
|
13
|
Witkowska D. Mass Spectrometry and Structural Biology Techniques in the Studies on the Coronavirus-Receptor Interaction. Molecules 2020; 25:E4133. [PMID: 32927621 PMCID: PMC7571139 DOI: 10.3390/molecules25184133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Mass spectrometry and some other biophysical methods, have made substantial contributions to the studies on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human proteins interactions. The most interesting feature of SARS-CoV-2 seems to be the structure of its spike (S) protein and its interaction with the human cell receptor. Mass spectrometry of spike S protein revealed how the glycoforms are distributed across the S protein surface. X-ray crystallography and cryo-electron microscopy made huge impact on the studies on the S protein and ACE2 receptor protein interaction, by elucidating the three-dimensional structures of these proteins and their conformational changes. The findings of the most recent studies in the scope of SARS-CoV-2-Human protein-protein interactions are described here.
Collapse
MESH Headings
- Amino Acid Sequence
- Angiotensin-Converting Enzyme 2
- Betacoronavirus/chemistry
- Betacoronavirus/pathogenicity
- Binding Sites
- COVID-19
- Coronavirus Infections/epidemiology
- Coronavirus Infections/virology
- Gene Expression
- Host-Pathogen Interactions
- Humans
- Models, Molecular
- Pandemics
- Peptidyl-Dipeptidase A/chemistry
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/metabolism
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/virology
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Severe acute respiratory syndrome-related coronavirus/chemistry
- Severe acute respiratory syndrome-related coronavirus/pathogenicity
- SARS-CoV-2
- Sequence Alignment
- Severe Acute Respiratory Syndrome/epidemiology
- Severe Acute Respiratory Syndrome/virology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/metabolism
Collapse
Affiliation(s)
- Danuta Witkowska
- Institute of Health Sciences, Opole University, Katowicka 68, 45-060 Opole, Poland
| |
Collapse
|
14
|
Forssén P, Samuelsson J, Lacki K, Fornstedt T. Advanced Analysis of Biosensor Data for SARS-CoV-2 RBD and ACE2 Interactions. Anal Chem 2020; 92:11520-11524. [PMID: 32786452 PMCID: PMC7440141 DOI: 10.1021/acs.analchem.0c02475] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
The traditional approach for analyzing
interaction data from biosensors
instruments is based on the simplified assumption that also larger
biomolecules interactions are homogeneous. It was recently reported
that the human receptor angiotensin-converting enzyme 2 (ACE2) plays
a key role for capturing SARS-CoV-2 into the human target body, and
binding studies were performed using biosensors techniques based on
surface plasmon resonance and bio-layer interferometry. The published
affinity constants for the interactions, derived using the traditional
approach, described a single interaction between ACE2 and the SARS-CoV-2
receptor binding domain (RBD). We reanalyzed these data sets using
our advanced four-step approach based on an adaptive interaction distribution
algorithm (AIDA) that accounts for the great complexity of larger
biomolecules and gives a two-dimensional distribution of association
and dissociation rate constants. Our results showed that in both cases
the standard assumption about a single interaction was erroneous,
and in one of the cases, the value of the affinity constant KD differed more than 300% between the reported
value and our calculation. This information can prove very useful
in providing mechanistic information and insights about the mechanism
of interactions between ACE2 and SARS-CoV-2 RBD or similar systems.
Collapse
Affiliation(s)
- Patrik Forssén
- Department of Engineering and Chemical Sciences, Karlstad University, SE-651 88 Karlstad, Sweden
| | - Jörgen Samuelsson
- Department of Engineering and Chemical Sciences, Karlstad University, SE-651 88 Karlstad, Sweden
| | - Karol Lacki
- Department of Engineering and Chemical Sciences, Karlstad University, SE-651 88 Karlstad, Sweden
| | - Torgny Fornstedt
- Department of Engineering and Chemical Sciences, Karlstad University, SE-651 88 Karlstad, Sweden
| |
Collapse
|
15
|
Alizadeh N, Salimi A. Ultrasensitive Bioaffinity Electrochemical Sensors: Advances and New Perspectives. ELECTROANAL 2018. [DOI: 10.1002/elan.201800598] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Negar Alizadeh
- Department of ChemistryUniversity of Kurdistan 66177-15175 Sanandaj Iran
| | - Abdollah Salimi
- Department of ChemistryUniversity of Kurdistan 66177-15175 Sanandaj Iran
- Research Center for NanotechnologyUniversity of Kurdistan 66177-15175 Sanandaj Iran
| |
Collapse
|