1
|
Denti V, Monza N, Bindi G, Porto NS, L’Imperio V, Pagni F, Piga I, Smith A. 6-Aza-2-Thiothymine as an Alternative Matrix for Spatial Proteomics with MALDI-MSI. Int J Mol Sci 2024; 25:13678. [PMID: 39769439 PMCID: PMC11678892 DOI: 10.3390/ijms252413678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Matrix Assisted Laser Desorption/Ionisation-Mass Spectrometry Imaging (MALDI-MSI) is a well-established spatial omic technique which enables the untargeted mapping of various classes of biomolecules, including tryptic peptides, directly on tissue. This method relies on the use of matrices for the ionisation and volatilisation of analytes, and α-Cyano-4-hydroxycinnamic acid (CHCA) represents the most widespread matrix for tryptic peptides analysis. However, CHCA also presents certain limitations that foster the quest for novel matrix compounds. 6-aza-2-thiothymine (ATT), traditionally used in MALDI mass spectrometry (MS) for oligonucleotides, small molecules and oxidised phospholipids, has not been thoroughly investigated as a potential matrix for tryptic peptide analysis in MALDI-MS or MALDI-MSI. Therefore, this study addresses this gap by evaluating the capability of ATT to ionise tryptic peptides from Bovine Serum Albumin (BSA) and map in situ-digested peptides from formalin-fixed paraffin-embedded (FFPE) tissue sections in these respective applications. Comparative analysis with CHCA demonstrated the complementary strengths of these matrices for detecting tryptic peptides, establishing ATT as a feasible alternative to CHCA in the MALDI-MSI field and paving the way for future advancements in spatial proteomics.
Collapse
Affiliation(s)
- Vanna Denti
- Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (V.D.); (N.M.); (G.B.); (N.S.P.)
| | - Nicole Monza
- Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (V.D.); (N.M.); (G.B.); (N.S.P.)
| | - Greta Bindi
- Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (V.D.); (N.M.); (G.B.); (N.S.P.)
| | - Natalia Shelly Porto
- Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (V.D.); (N.M.); (G.B.); (N.S.P.)
| | - Vincenzo L’Imperio
- Pathology Unit, Department of Medicine and Surgery, Fondazione IRCCS San Gerardo dei Tintori, University of Milano-Bicocca, 20900 Monza, Italy; (V.L.); (F.P.)
| | - Fabio Pagni
- Pathology Unit, Department of Medicine and Surgery, Fondazione IRCCS San Gerardo dei Tintori, University of Milano-Bicocca, 20900 Monza, Italy; (V.L.); (F.P.)
| | - Isabella Piga
- Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (V.D.); (N.M.); (G.B.); (N.S.P.)
| | - Andrew Smith
- Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (V.D.); (N.M.); (G.B.); (N.S.P.)
| |
Collapse
|
2
|
Grgic A, Cuypers E, Dubois LJ, Ellis SR, Heeren RMA. MALDI MSI Protocol for Spatial Bottom-Up Proteomics at Single-Cell Resolution. J Proteome Res 2024; 23:5372-5379. [PMID: 39447324 PMCID: PMC11629377 DOI: 10.1021/acs.jproteome.4c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) started with spatial mapping of peptides and proteins. Since then, numerous bottom-up protocols have been developed. However, achievable spatial resolution and sample preparation with many wet steps hindered the development of single cell-level workflows for bottom-up spatial proteomics. This study presents a protocol optimized for MALDI-MSI measurements of single cells within the context of their 2D culture. Sublimation of CHCA, followed by a dip in ice-cold ammonium phosphate monobasic (AmP), produced peptide-rich mass spectra while maintaining matrix crystal sizes around 400 nm. This enables MALDI-MSI imaging of proteins in single cells grown on an ITO slide with a throughput of approximately 7800 cells per day. 89 peptide-like features corresponding to a single MDA-MB-231 breast cancer cell were detected. Furthermore, by combining the MALDI-MSI data with LC-MS/MS data obtained on cell pellets, we have successfully identified 24 peptides corresponding to 17 proteins, including actin, vimentin, and transgelin-2.
Collapse
Affiliation(s)
- Andrej Grgic
- The
Maastricht MultiModal Molecular Imaging (M4I) Institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Eva Cuypers
- The
Maastricht MultiModal Molecular Imaging (M4I) Institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Ludwig J. Dubois
- The
M-Lab, Department of Precision Medicine, GROW − Research Institute
for Oncology and Reproduction, Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Shane R. Ellis
- The
Maastricht MultiModal Molecular Imaging (M4I) Institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Ron M. A. Heeren
- The
Maastricht MultiModal Molecular Imaging (M4I) Institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
3
|
Devlin A, Green F, Takats Z. Mass Spectrometry Imaging with Trapped Ion Mobility Spectrometry Enables Spatially Resolved Chondroitin, Dermatan, and Hyaluronan Glycosaminoglycan Oligosaccharide Analysis In Situ. Anal Chem 2024; 96:17969-17977. [PMID: 39476845 PMCID: PMC11561879 DOI: 10.1021/acs.analchem.4c02706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 11/13/2024]
Abstract
Previously, spatially resolved analysis of glycosaminoglycans (GAGs), by type and sulfation state, was unobtainable. Here, we describe a mass spectrometry imaging (MSI) approach which enables the detection, identification, localization, and profiling of GAG oligosaccharides directly from retinal tissue. Through in situ treatment of tissues with relevant chondroitinase enzymes, we liberate and spatially resolve chondroitin, dermatan, and hyaluronan from disaccharides through to hexasaccharides, directly from tissue sections. We demonstrate the separation of isomeric GAG oligosaccharide ions at different histologically relevant regions using trapped ion mobility spectrometry (TIMS). This paper describes the first spatially resolved analysis of multiple GAGs and their oligosaccharide sulfation state(s) directly from tissues.
Collapse
Affiliation(s)
- Anthony Devlin
- The
Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, U.K.
| | - Felicia Green
- The
Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, U.K.
| | - Zoltan Takats
- The
Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, U.K.
- Faculty
of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| |
Collapse
|
4
|
Kruse A, Judd AM, Gutierrez DB, Allen JL, Dufresne M, Farrow MA, Powers AC, Norris JL, Caprioli RM, Spraggins JM. Thermal Denaturation of Fresh Frozen Tissue Enhances Mass Spectrometry Detection of Peptides. Anal Chem 2024; 96:16861-16870. [PMID: 39392310 PMCID: PMC11503521 DOI: 10.1021/acs.analchem.4c03625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Thermal denaturation (TD), known as antigen retrieval, heats tissue samples in a buffered solution to expose protein epitopes. Thermal denaturation of formalin-fixed paraffin-embedded samples enhances on-tissue tryptic digestion, increasing peptide detection using matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI IMS). We investigated the tissue-dependent effects of TD on peptide MALDI IMS and liquid chromatography-tandem mass spectrometry signal in unfixed, frozen human colon, ovary, and pancreas tissue. In a triplicate experiment using time-of-flight, orbitrap, and Fourier-transform ion cyclotron resonance mass spectrometry platforms, we found that TD had a tissue-dependent effect on peptide signal, resulting in a (22.5%) improvement in peptide detection from the colon, a (73.3%) improvement in ovary tissue, and a (96.6%) improvement in pancreas tissue. Biochemical analysis of identified peptides shows that TD facilitates identification of hydrophobic peptides.
Collapse
Affiliation(s)
- Angela
R.S. Kruse
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37212, United States
- Department
of Cell and Developmental Biology, Vanderbilt
University, Nashville, Tennessee 37212, United States
| | - Audra M. Judd
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37212, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Danielle B. Gutierrez
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37212, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Jamie L. Allen
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37212, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Martin Dufresne
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37212, United States
- Department
of Cell and Developmental Biology, Vanderbilt
University, Nashville, Tennessee 37212, United States
| | - Melissa A. Farrow
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37212, United States
- Department
of Cell and Developmental Biology, Vanderbilt
University, Nashville, Tennessee 37212, United States
| | - Alvin C. Powers
- Department
of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, United States
- VA
Tennessee
Valley Healthcare System, Nashville, Tennessee 37212, United States
| | - Jeremy L. Norris
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37212, United States
- Bruker
Daltonics, Billerica 01821, Massachusetts United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Richard M. Caprioli
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37212, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Department
of Medicine, Vanderbilt University, Nashville, Tennessee 37212, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Jeffrey M. Spraggins
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37212, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Department
of Cell and Developmental Biology, Vanderbilt
University, Nashville, Tennessee 37212, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| |
Collapse
|
5
|
Macdonald JK, Mehta AS, Drake RR, Angel PM. Molecular analysis of the extracellular microenvironment: from form to function. FEBS Lett 2024; 598:602-620. [PMID: 38509768 PMCID: PMC11049795 DOI: 10.1002/1873-3468.14852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
The extracellular matrix (ECM) proteome represents an important component of the tissue microenvironment that controls chemical flux and induces cell signaling through encoded structure. The analysis of the ECM represents an analytical challenge through high levels of post-translational modifications, protease-resistant structures, and crosslinked, insoluble proteins. This review provides a comprehensive overview of the analytical challenges involved in addressing the complexities of spatially profiling the extracellular matrix proteome. A synopsis of the process of synthesizing the ECM structure, detailing inherent chemical complexity, is included to present the scope of the analytical challenge. Current chromatographic and spatial techniques addressing these challenges are detailed. Capabilities for multimodal multiplexing with cellular populations are discussed with a perspective on developing a holistic view of disease processes that includes both the cellular and extracellular microenvironment.
Collapse
Affiliation(s)
- Jade K Macdonald
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
6
|
Abstract
Imaging mass spectrometry is a well-established technology that can easily and succinctly communicate the spatial localization of molecules within samples. This review communicates the recent advances in the field, with a specific focus on matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) applied on tissues. The general sample preparation strategies for different analyte classes are explored, including special considerations for sample types (fresh frozen or formalin-fixed,) strategies for various analytes (lipids, metabolites, proteins, peptides, and glycans) and how multimodal imaging strategies can leverage the strengths of each approach is mentioned. This work explores appropriate experimental design approaches and standardization of processes needed for successful studies, as well as the various data analysis platforms available to analyze data and their strengths. The review concludes with applications of imaging mass spectrometry in various fields, with a focus on medical research, and some examples from plant biology and microbe metabolism are mentioned, to illustrate the breadth and depth of MALDI IMS.
Collapse
Affiliation(s)
- Jessica L Moore
- Department of Proteomics, Discovery Life Sciences, Huntsville, Alabama 35806, United States
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
7
|
Uras I, Karayel-Basar M, Sahin B, Baykal AT. Detection of early proteomic alterations in 5xFAD Alzheimer's disease neonatal mouse model via MALDI-MSI. Alzheimers Dement 2023; 19:4572-4589. [PMID: 36934297 DOI: 10.1002/alz.13008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 03/20/2023]
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder, characterized by memory deficit and dementia. AD is considered a multifactorial disorder where multiple processes like amyloid-beta and tau accumulation, axonal degeneration, synaptic plasticity, and autophagic processes plays an important role. In this study, the spatial proteomic differences in the neonatal 5xFAD brain tissue were investigated using MALDI-MSI coupled to LC-MS/MS, and the statistically significantly altered proteins were associated with AD. Thirty-five differentially expressed proteins (DEPs) between the brain tissues of neonatal 5xFAD and their littermate mice were detected via MALDI-MSI technique. Among the 35 proteins identified, 26 of them were directly associated with AD. Our results indicated a remarkable resemblance in the protein expression profiles of neonatal 5xFAD brain when compared to AD patient specimens or AD mouse models. These findings showed that the molecular alterations in the AD brain existed even at birth and that some proteins are neurodegenerative presages in neonatal AD brain. HIGHLIGHTS: Spatial proteomic alterations in the 5xFAD mouse brain compared to the littermate. 26 out of 35 differentially expressed proteins associated with Alzheimer's disease (AD). Molecular alterations and neurodegenerative presages in neonatal AD brain. Alterations in the synaptic function an early and common neurobiological thread.
Collapse
Affiliation(s)
- Irep Uras
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Merve Karayel-Basar
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Betul Sahin
- Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
8
|
Claes BR, Krestensen KK, Yagnik G, Grgic A, Kuik C, Lim MJ, Rothschild KJ, Vandenbosch M, Heeren RMA. MALDI-IHC-Guided In-Depth Spatial Proteomics: Targeted and Untargeted MSI Combined. Anal Chem 2023; 95:2329-2338. [PMID: 36638208 PMCID: PMC9893213 DOI: 10.1021/acs.analchem.2c04220] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Recently, a novel technology was published, utilizing the strengths of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) and immunohistochemistry (IHC), achieving highly multiplexed, targeted imaging of biomolecules in tissue. This new technique, called MALDI-IHC, opened up workflows to target molecules of interest using MALDI-MSI that are usually targeted by standard IHC. In this paper, the utility of targeted MALDI-IHC and its complementarity with untargeted on-tissue bottom-up spatial proteomics is explored using breast cancer tissue. Furthermore, the MALDI-2 effect was investigated and demonstrated to improve MALDI-IHC. Formalin-fixed paraffin-embedded (FFPE) human breast cancer tissue sections were stained for multiplex MALDI-IHC with six photocleavable mass-tagged (PC-MT) antibodies constituting a breast cancer antibody panel (CD20, actin-αSM, HER2, CD68, vimentin, and panCK). K-means spatial clusters were created based on the MALDI-IHC images and cut out using laser-capture microdissection (LMD) for further untargeted LC-MS-based bottom-up proteomics analyses. Numerous peptides could be tentatively assigned to multiple proteins, of which three proteins were also part of the antibody panel (vimentin, keratins, and actin). Post-ionization with MALDI-2 showed an increased intensity of the PC-MTs and suggests options for the development of new mass-tags. Although the on-tissue digestion covered a wider range of proteins, the MALDI-IHC allowed for easy and straightforward identification of proteins that were not detected in untargeted approaches. The combination of the multiplexed MALDI-IHC with image-guided proteomics showed great potential to further investigate diseases by providing complementary information from the same tissue section and without the need for customized instrumentation.
Collapse
Affiliation(s)
- Britt
S. R. Claes
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Kasper K. Krestensen
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Gargey Yagnik
- AmberGen,
Inc., 44 Manning Road, Billerica, Massachusetts 01821, United States
| | - Andrej Grgic
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Christel Kuik
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Mark J. Lim
- AmberGen,
Inc., 44 Manning Road, Billerica, Massachusetts 01821, United States
| | - Kenneth J. Rothschild
- AmberGen,
Inc., 44 Manning Road, Billerica, Massachusetts 01821, United States,Molecular
Biophysics Laboratory, Department of Physics and Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Michiel Vandenbosch
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Ron M. A. Heeren
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands,
| |
Collapse
|
9
|
Device-Controlled Microcondensation for Spatially Confined On-Tissue Digests in MALDI Imaging of N-Glycans. Pharmaceuticals (Basel) 2022; 15:ph15111356. [PMID: 36355528 PMCID: PMC9698097 DOI: 10.3390/ph15111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/11/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
On-tissue enzymatic digestion is a prerequisite for MALDI mass spectrometry imaging (MSI) and spatialomic analysis of tissue proteins and their N-glycan conjugates. Despite the more widely accepted importance of N-glycans as diagnostic and prognostic biomarkers of many diseases and their potential as pharmacodynamic markers, the crucial sample preparation step, namely on-tissue digestion with enzymes like PNGaseF, is currently mainly carried out by specialized laboratories using home-built incubation arrangements, e.g., petri dishes placed in an incubator. Standardized spatially confined enzyme digests, however, require precise control and possible regulation of humidity and temperature, as high humidity increases the risk of analyte dislocation and low humidity compromises enzyme function. Here, a digestion device that controls humidity by cyclic ventilation and heating of the slide holder and the chamber lid was designed to enable controlled micro-condensation on the slide and to stabilize and monitor the digestion process. The device presented here may help with standardization in MSI. Using sagittal mouse brain sections and xenografted human U87 glioblastoma cells in CD1 nu/nu mouse brain, a device-controlled workflow for MALDI MSI of N-glycans was developed.
Collapse
|
10
|
Veličković D, Sharma K, Alexandrov T, Hodgin JB, Anderton CR. Controlled Humidity Levels for Fine Spatial Detail Information in Enzyme-Assisted N-Glycan MALDI MSI. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1577-1580. [PMID: 35802124 DOI: 10.1021/jasms.2c00120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Investigation of the spatial distribution of N-glycans in tissue specimens has emerged as a powerful tool in clinical research, in part, because altered N-glycans are often a hallmark of disease progression. Mass spectrometry imaging of N-glycans relies on peptide N-glycanase spraying and tissue incubation for efficient in situ release of N-glycans from their carrier proteins. Unstandardized and uncontrolled incubation steps often cause significant delocalization of released N-glycans, resulting in the inability to link given N-glycan composition to a specific microanatomical region in the tissue. Herein, we optimized the incubation step to provide accurate and sensitive MALDI-MSI of N-glycans. Specifically, we tested saturated solutions of various salts that maintain constant relative humidity in the incubation chamber. We showed that the best performance was achieved using a saturated solution of KNO3 that maintains an 89% RH. Under these conditions, near maximal sensitivity was achieved with the minutest ion delocalization, which we demonstrated at a 35 μm spatial resolution, where we observed six distinct spatial patterns that colocalize to distinct microanatomical compartments in a kidney nephrectomy tissue section.
Collapse
Affiliation(s)
- Dušan Veličković
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Kumar Sharma
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, The University of Texas Health, San Antonio, Texas 78229, United States
| | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jeffrey B Hodgin
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109 United States
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
11
|
Rujchanarong D, Scott D, Park Y, Brown S, Mehta AS, Drake R, Sandusky GE, Nakshatri H, Angel PM. Metabolic Links to Socioeconomic Stresses Uniquely Affecting Ancestry in Normal Breast Tissue at Risk for Breast Cancer. Front Oncol 2022; 12:876651. [PMID: 35832545 PMCID: PMC9273232 DOI: 10.3389/fonc.2022.876651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
A primary difference between black women (BW) and white women (WW) diagnosed with breast cancer is aggressiveness of the tumor. Black women have higher mortalities with similar incidence of breast cancer compared to other race/ethnicities, and they are diagnosed at a younger age with more advanced tumors with double the rate of lethal, triple negative breast cancers. One hypothesis is that chronic social and economic stressors result in ancestry-dependent molecular responses that create a tumor permissive tissue microenvironment in normal breast tissue. Altered regulation of N-glycosylation of proteins, a glucose metabolism-linked post-translational modification attached to an asparagine (N) residue, has been associated with two strong independent risk factors for breast cancer: increased breast density and body mass index (BMI). Interestingly, high body mass index (BMI) levels have been reported to associate with increases of cancer-associated N-glycan signatures. In this study, we used matrix assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) to investigate molecular pattern changes of N-glycosylation in ancestry defined normal breast tissue from BW and WW with significant 5-year risk of breast cancer by Gail score. N-glycosylation was tested against social stressors including marital status, single, education, economic status (income), personal reproductive history, the risk factors BMI and age. Normal breast tissue microarrays from the Susan G. Komen tissue bank (BW=43; WW= 43) were used to evaluate glycosylation against socioeconomic stress and risk factors. One specific N-glycan (2158 m/z) appeared dependent on ancestry with high sensitivity and specificity (AUC 0.77, Brown/Wilson p-value<0.0001). Application of a linear regression model with ancestry as group variable and socioeconomic covariates as predictors identified a specific N-glycan signature associated with different socioeconomic stresses. For WW, household income was strongly associated to certain N-glycans, while for BW, marital status (married and single) was strongly associated with the same N-glycan signature. Current work focuses on understanding if combined N-glycan biosignatures can further help understand normal breast tissue at risk. This study lays the foundation for understanding the complexities linking socioeconomic stresses and molecular factors to their role in ancestry dependent breast cancer risk.
Collapse
Affiliation(s)
- Denys Rujchanarong
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| | - Danielle Scott
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| | - Yeonhee Park
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States
| | - Sean Brown
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| | - Richard Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| | - George E. Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
12
|
Høiem TS, Andersen MK, Martin‐Lorenzo M, Longuespée R, Claes BS, Nordborg A, Dewez F, Balluff B, Giampà M, Sharma A, Hagen L, Heeren RM, Bathen TF, Giskeødegård GF, Krossa S, Tessem M. An optimized MALDI MSI protocol for spatial detection of tryptic peptides in fresh frozen prostate tissue. Proteomics 2022; 22:e2100223. [PMID: 35170848 PMCID: PMC9285595 DOI: 10.1002/pmic.202100223] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/19/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022]
Abstract
MALDI MS imaging (MSI) is a powerful analytical tool for spatial peptide detection in heterogeneous tissues. Proper sample preparation is crucial to achieve high quality, reproducible measurements. Here we developed an optimized protocol for spatially resolved proteolytic peptide detection with MALDI time-of-flight MSI of fresh frozen prostate tissue sections. The parameters tested included four different tissue washes, four methods of protein denaturation, four methods of trypsin digestion (different trypsin densities, sprayers, and incubation times), and five matrix deposition methods (different sprayers, settings, and matrix concentrations). Evaluation criteria were the number of detected and excluded peaks, percentage of high mass peaks, signal-to-noise ratio, spatial localization, and average intensities of identified peptides, all of which were integrated into a weighted quality evaluation scoring system. Based on these scores, the optimized protocol included an ice-cold EtOH+H2 O wash, a 5 min heating step at 95°C, tryptic digestion incubated for 17h at 37°C and CHCA matrix deposited at a final amount of 1.8 μg/mm2 . Including a heat-induced protein denaturation step after tissue wash is a new methodological approach that could be useful also for other tissue types. This optimized protocol for spatial peptide detection using MALDI MSI facilitates future biomarker discovery in prostate cancer and may be useful in studies of other tissue types.
Collapse
Affiliation(s)
- Therese S. Høiem
- Department of Circulation and Medical ImagingNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
| | - Maria K. Andersen
- Department of Circulation and Medical ImagingNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
| | - Marta Martin‐Lorenzo
- Maastricht MultiModal Molecular Imaging Institute (M4I)Maastricht UniversityMaastrichtNetherlands
| | - Rémi Longuespée
- Department of Clinical Pharmacology and PharmacoepidemiologyHeidelberg University HospitalHeidelbergGermany
| | - Britt S.R. Claes
- Maastricht MultiModal Molecular Imaging Institute (M4I)Maastricht UniversityMaastrichtNetherlands
| | - Anna Nordborg
- Department of Biotechnology and NanomedicineSINTEF IndustryTrondheimNorway
| | - Frédéric Dewez
- Maastricht MultiModal Molecular Imaging Institute (M4I)Maastricht UniversityMaastrichtNetherlands
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging Institute (M4I)Maastricht UniversityMaastrichtNetherlands
| | - Marco Giampà
- Department of Clinical and Molecular MedicineNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
| | - Animesh Sharma
- Department of Clinical and Molecular MedicineNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
- PROMEC Core Facility for Proteomics and ModomicsNTNU ‐ Norwegian University of Science and Technology and the Central Norway Regional Health Authority NorwayTrondheimNorway
| | - Lars Hagen
- Department of Clinical and Molecular MedicineNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
- PROMEC Core Facility for Proteomics and ModomicsNTNU ‐ Norwegian University of Science and Technology and the Central Norway Regional Health Authority NorwayTrondheimNorway
- Clinic of Laboratory MedicineSt. Olavs HospitalTrondheim University HospitalTrondheimNorway
| | - Ron M.A. Heeren
- Maastricht MultiModal Molecular Imaging Institute (M4I)Maastricht UniversityMaastrichtNetherlands
| | - Tone F. Bathen
- Department of Circulation and Medical ImagingNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
- Department of radiology and nuclear medicineSt. Olavs HospitalTrondheim University HospitalTrondheimNorway
| | - Guro F. Giskeødegård
- K.G. Jebsen Center for Genetic EpidemiologyDepartment of Public Health and NursingNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
| | - Sebastian Krossa
- Department of Circulation and Medical ImagingNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
| | - May‐Britt Tessem
- Department of Circulation and Medical ImagingNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
- Department of SurgerySt. Olavs HospitalTrondheim University HospitalTrondheimNorway
| |
Collapse
|
13
|
Karayel-Basar M, Uras I, Kiris I, Sahin B, Akgun E, Baykal AT. Spatial proteomic alterations detected via MALDI-MS imaging implicate neuronal loss in a Huntington's disease mouse (YAC128) brain. Mol Omics 2022; 18:336-347. [PMID: 35129568 DOI: 10.1039/d1mo00440a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder that occurs with the increase of CAG trinucleotide repeats in the huntingtin gene. To understand the mechanisms of HD, powerful proteomics techniques, such as liquid chromatography-tandem mass spectrometry (LC-MS/MS) were employed. However, one major drawback of these methods is loss of the region-specific quantitative information of the proteins due to analysis of total tissue lysates. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a MS-based label-free technique that works directly on tissue sections and gathers m/z values with their respective regional information. In this study, we established a data processing protocol that includes several software programs and methods to determine spatial protein alterations between the brain samples of a 12 month-old YAC128 HD mouse model and their non-transgenic littermates. 22 differentially expressed proteins were revealed with their respective regional information, and possible relationships of several proteins were discussed. As a validation of the MALDI-MSI analysis, a differentially expressed protein (GFAP) was verified using immunohistochemical staining. Furthermore, since several proteins detected in this study have previously been associated with neuronal loss, neuronal loss in the cortical region was demonstrated using an anti-NeuN immunohistochemical staining method. In conclusion, the findings of this research have provided insights into the spatial proteomic changes between HD transgenic and non-transgenic littermates and therefore, we suggest that MALDI-MSI is a powerful technique to determine spatial proteomic alterations between biological samples, and the data processing that we present here can be employed as a complementary tool for the data analysis.
Collapse
Affiliation(s)
- Merve Karayel-Basar
- Department of Medical Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Irep Uras
- Department of Medical Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Irem Kiris
- Department of Medical Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Betul Sahin
- Acibadem Labmed Clinical Laboratories, R&D Center, Istanbul, Turkey
| | - Emel Akgun
- Department of Medical Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
14
|
Miyake Y, Kusaka S, Murata I, Toyoda M. Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry Imaging of L-4-Phenylalanineboronic Acid (BPA) in a Brain Tumor Model Rat for Boron Neutron Capture Therapy (BNCT). Mass Spectrom (Tokyo) 2022; 11:A0105. [PMID: 36713803 PMCID: PMC9853116 DOI: 10.5702/massspectrometry.a0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a cell-selective particle therapy for cancer using boron containing drugs. Boron compounds are accumulated in high concentration of tens ppm level of boron in target tumors to cause lethal damage to tumor tissue. The examination of boron distribution in target tumor and normal tissue is important to evaluate the efficiency of therapy. The matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is a powerful tool to visualize the distribution of target analyte in biological samples. In this manuscript, we report a trial to visualize the distribution of a typical BNCT drug, L-4-phenylalanine boronic acid (BPA) in a brain tumor model rat using MALDI-MSI technique. We performed a MALDI-MSI with high mass resolution targeting to [BPA+H]+ at m/z 210 in a BPA-treated rat brain section using a spiral orbit-type time of flight (SpiralTOF) mass spectrometer. Several BPA ion species, [BPA+H]+, [BPA-H2O+Na]+, [BPA+DHB-2H2O+Na]+ and [BPA+DHB-2H2O+K]+ were detected separate from peaks originated from biomolecules or matrix reagent by achieving the mass resolving power of approximately 20,000 (full width at half maximum; FWHM) at m/z 210. The mass images with 60 μm spatial resolution obtained from these BPA ion species in a mass window of 0.02 Da revealed their localization in the tumor region. Additionally, the mass image obtained from [BPA+H]+ also likely showed the distribution of BPA inside the tumor. MALDI-MSI with high mass resolution targeting to [BPA+H]+ has a great potential to visualize the distribution of BPA in brain tissue with tumor.
Collapse
Affiliation(s)
- Yumi Miyake
- Forefront Research Center, Graduate School of Science, Osaka University, 1–1 Machikaneyama, Toyonaka, Osaka 560–0043, Japan,Correspondence to: Yumi Miyake, Forefront Research Center, Graduate School of Science, Osaka University, 1–1 Machikaneyama, Toyonaka, Osaka 560–0043, Japan, e-mail:
| | - Sachie Kusaka
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, aoka 2–1, Suita, Osaka 565–0871, Japan
| | - Isao Murata
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, aoka 2–1, Suita, Osaka 565–0871, Japan
| | - Michisato Toyoda
- Forefront Research Center, Graduate School of Science, Osaka University, 1–1 Machikaneyama, Toyonaka, Osaka 560–0043, Japan,MS open innovation project in JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1–1 Machikaneyama, Toyonaka, Osaka 560–0043, Japan
| |
Collapse
|
15
|
A Mass Spectrometry Imaging Based Approach for Prognosis Prediction in UICC Stage I/II Colon Cancer. Cancers (Basel) 2021; 13:cancers13215371. [PMID: 34771536 PMCID: PMC8582467 DOI: 10.3390/cancers13215371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Tumor treatment is heavily dictated by the tumor progression status. However, in colon cancer, it is difficult to predict disease progression in the early stages. In this study, we have employed a proteomic analysis using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). MALDI-MSI is a technique that measures the molecular content of (tumor) tissue. We analyzed tumor samples of 276 patients. If the patients developed distant metastasis, they were considered to have a more aggressive tumor type than the patients that did not. In this comparative study, we have developed bioinformatics methods that can predict the tendency of tumor progression and advance a couple of molecules that could be used as prognostic markers of colon cancer. The prediction of tumor progression can help to choose a more adequate treatment for each individual patient. Abstract Currently, pathological evaluation of stage I/II colon cancer, following the Union Internationale Contre Le Cancer (UICC) guidelines, is insufficient to identify patients that would benefit from adjuvant treatment. In our study, we analyzed tissue samples from 276 patients with colon cancer utilizing mass spectrometry imaging. Two distinct approaches are herein presented for data processing and analysis. In one approach, four different machine learning algorithms were applied to predict the tendency to develop metastasis, which yielded accuracies over 90% for three of the models. In the other approach, 1007 m/z features were evaluated with regards to their prognostic capabilities, yielding two m/z features as promising prognostic markers. One feature was identified as a fragment from collagen (collagen 3A1), hinting that a higher collagen content within the tumor is associated with poorer outcomes. Identification of proteins that reflect changes in the tumor and its microenvironment could give a very much-needed prediction of a patient’s prognosis, and subsequently assist in the choice of a more adequate treatment.
Collapse
|
16
|
Removal of optimal cutting temperature (O.C.T.) compound from embedded tissue for MALDI imaging of lipids. Anal Bioanal Chem 2021; 413:2695-2708. [PMID: 33564925 DOI: 10.1007/s00216-020-03128-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/27/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022]
Abstract
Matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) is a common molecular imaging modality used to characterise the abundance and spatial distribution of lipids in situ. There are several technical challenges predominantly involving sample pre-treatment and preparation which have complicated the analysis of clinical tissues by MALDI-MSI. Firstly, the common embedding of samples in optimal cutting temperature (O.C.T.), which contains high concentrations of polyethylene glycol (PEG) polymers, causes analyte signal suppression during mass spectrometry (MS) by competing for available ions during ionisation. This suppressive effect has constrained the application of MALDI-MSI for the molecular mapping of clinical tissues. Secondly, the complexity of the mass spectra is obtained by the formation of multiple adduct ions. The process of analyte ion formation during MALDI can generate multiple m/z peaks from a single lipid species due to the presence of alkali salts in tissues, resulting in the suppression of protonated adduct formation and the generation of multiple near isobaric ions which produce overlapping spatial distributions. Presented is a method to simultaneously remove O.C.T. and endogenous salts. This approach was applied to lipid imaging in order to prevent analyte suppression, simplify data interpretation, and improve sensitivity by promoting lipid protonation and reducing the formation of alkali adducts.
Collapse
|
17
|
Noor A, Zafar S, Zerr I. Neurodegenerative Proteinopathies in the Proteoform Spectrum-Tools and Challenges. Int J Mol Sci 2021; 22:1085. [PMID: 33499319 PMCID: PMC7865347 DOI: 10.3390/ijms22031085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Proteinopathy refers to a group of disorders defined by depositions of amyloids within living tissue. Neurodegenerative proteinopathies, including Alzheimer's disease, Parkinson's disease, Creutzfeldt-Jakob disease, and others, constitute a large fraction of these disorders. Amyloids are highly insoluble, ordered, stable, beta-sheet rich proteins. The emerging theory about the pathophysiology of neurodegenerative proteinopathies suggests that the primary amyloid-forming proteins, also known as the prion-like proteins, may exist as multiple proteoforms that contribute differentially towards the disease prognosis. It is therefore necessary to resolve these disorders on the level of proteoforms rather than the proteome. The transient and hydrophobic nature of amyloid-forming proteins and the minor post-translational alterations that lead to the formation of proteoforms require the use of highly sensitive and specialized techniques. Several conventional techniques, like gel electrophoresis and conventional mass spectrometry, have been modified to accommodate the proteoform theory and prion-like proteins. Several new ones, like imaging mass spectrometry, have also emerged. This review aims to discuss the proteoform theory of neurodegenerative disorders along with the utility of these proteomic techniques for the study of highly insoluble proteins and their associated proteoforms.
Collapse
Affiliation(s)
- Aneeqa Noor
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.N.); (I.Z.)
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Saima Zafar
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.N.); (I.Z.)
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, H-12, 44000 Islamabad, Pakistan
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.N.); (I.Z.)
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| |
Collapse
|
18
|
Drake RR, Scott DA, Angel PM. Imaging Mass Spectrometry. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
19
|
MALDI-MSI spatially maps N-glycan alterations to histologically distinct pulmonary pathologies following irradiation. Sci Rep 2020; 10:11559. [PMID: 32665567 PMCID: PMC7360629 DOI: 10.1038/s41598-020-68508-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 06/20/2020] [Indexed: 12/15/2022] Open
Abstract
Radiation-induced lung injury is a highly complex combination of pathological alterations that develop over time and severity of disease development is dose-dependent. Following exposures to lethal doses of irradiation, morbidity and mortality can occur due to a combination of edema, pneumonitis and fibrosis. Protein glycosylation has essential roles in a plethora of biological and immunological processes. Alterations in glycosylation profiles have been detected in diseases ranging from infection, inflammation and cancer. We utilized mass spectrometry imaging to spatially map N-glycans to distinct pathological alterations during the clinically latent period and at 180 days post-exposure to irradiation. Results identified alterations in a number of high mannose, hybrid and complex N-glycans that were localized to regions of mucus and alveolar-bronchiolar hyperplasia, proliferations of type 2 epithelial cells, accumulations of macrophages, edema and fibrosis. The glycosylation profiles indicate most alterations occur prior to the onset of clinical symptoms as a result of pathological manifestations. Alterations in five N-glycans were identified as a function of time post-exposure. Understanding the functional roles N-glycans play in the development of these pathologies, particularly in the accumulation of macrophages and their phenotype, may lead to new therapeutic avenues for the treatment of radiation-induced lung injury.
Collapse
|
20
|
Colley M, Liang S, Tan C, Trobough KP, Bach SB, Chun YHP. Mapping and Identification of Native Proteins of Developing Teeth in Mouse Mandibles. Anal Chem 2020; 92:7630-7637. [PMID: 32362116 PMCID: PMC7898936 DOI: 10.1021/acs.analchem.0c00359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mass spectrometry imaging is a powerful tool of increasing utility due to its ability to spatially resolve molecular biomarkers directly from sectioned tissues. One hindrance to its universality is that no single protocol is sufficient for every tissue type, fixation, and pretreatment. Mineralized tissues are uniquely challenging as extensive decalcification protocols are necessary to achieve thin sections. In this study, we optimized a method to image tryptic peptides by matrix-assisted laser desorption ionization mass spectrometry of decalcified, formalin-fixed paraffin-embedded mouse hemimandibles. Using a combination of on-tissue MS/MS and hydrogel extraction LC-MS/MS, peptides from the enamel, dentin, periodontal ligament, alveolar bone, pulp, and other regions are identified and mapped. This breakthrough method provides a comprehensive approach to biomarker discovery in dental and craniofacial tissues which is highly relevant given that diseases originating from this region of the body are the most prevalent across all populations.
Collapse
Affiliation(s)
- Madeline Colley
- Department of Chemistry, UT San Antonio, San Antonio, TX, USA
| | - Sitai Liang
- Department of Periodontics, UT Health San Antonio, San Antonio, TX, USA
| | - Chunyan Tan
- Department of Periodontics, UT Health San Antonio, San Antonio, TX, USA
| | - Kyle P. Trobough
- Department of Periodontics, UT Health San Antonio, San Antonio, TX, USA
| | | | - Yong-Hee Patricia Chun
- Department of Periodontics, UT Health San Antonio, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
21
|
Boughton BA, Thomas ORB, Demarais NJ, Trede D, Swearer SE, Grey AC. Detection of small molecule concentration gradients in ocular tissues and humours. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4460. [PMID: 31654531 DOI: 10.1002/jms.4460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/02/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
The eye is an elegant organ consisting of a number of tissues and fluids with specialised functions that together allow it to effectively transmit and transduce light input to the brain for visual perception. One key determinant of this integrated function is the spatial relationship of ocular tissues. Biomolecular distributions within the main ocular tissues cornea, lens, and retina have been studied extensively in isolation, yet the potential for metabolic communication between ocular tissues via the ocular humours has been difficult to visualise. To address this limitation, the current study presents a method to map spatial distributions of metabolites and small molecules in whole eyes, including ocular humours. Using a tape-transfer system and freeze-drying, the spatial distribution of ocular small molecules was investigated in mouse, rat, fish (black bream), and rabbit eyes using negative ion mode MALDI imaging mass spectrometry. Full-scan imaging was used for discovery experiments, while MS/MS imaging for identification and localisation was also demonstrated. In all eyes, metabolites such as glutathione and phospholipids were localised in the main ocular tissues. In addition, in rodent eyes, major metabolites were distributed relatively uniformly in ocular humours. In contrast, both uniform and spatially defined ocular metabolite distributions were observed in the black bream eye. Tissue and ocular humour distributions were reproducible, as demonstrated by the three-dimensional analysis of a mouse eye, and able to be captured with high spatial resolution analysis. The presented method could be used to further investigate the role of inter-tissue metabolism in ocular health, and to support the development of therapeutics to treat major ocular diseases.
Collapse
Affiliation(s)
- Berin A Boughton
- Metabolomics Australia, University of Melbourne, Melbourne, Australia
| | - Oliver R B Thomas
- School of BioSciences, University of Melbourne, Melbourne, Australia
| | - Nicholas J Demarais
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Stephen E Swearer
- School of BioSciences, University of Melbourne, Melbourne, Australia
| | - Angus C Grey
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
Guo C, Baluya DL, Thompson EA, Whitley EM, Cressman ENK. Correlation of molecular and morphologic effects of thermoembolization in a swine model using mass spectrometry imaging. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4477. [PMID: 31804009 PMCID: PMC7145752 DOI: 10.1002/jms.4477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 05/03/2023]
Abstract
Hepatocellular carcinoma is a growing worldwide problem with a high mortality rate. This malignancy does not respond well to chemotherapy, and most patients present late in their disease at which time surgery is no longer an option. Over the past three decades, minimally invasive methods have evolved to treat unresectable disease and prolong survival. Intra-arterial embolization techniques are used for large or multiple tumors but have distressingly high levels of local recurrence and can be costly to implement. A new method called thermoembolization was recently reported, which destroys target tissue by combining reactive exothermic chemistry with an extreme local change in pH and ischemia. Described herein are experiments performed using this technique in vivo in a swine model. A microcatheter was advanced under fluoroscopic guidance into a branch of the hepatic artery to deliver a targeted dose of dichloroacetyl chloride dissolved in ethiodized oil into the liver. The following day, the animals were imaged by computed tomography and euthanized. Assessing the reaction product distribution and establishing a correlation with the effects are important for understanding the effects. This presented a significant challenge, however, as the reagent used does not contain a chromophore and is not otherwise readily detectable. Mass spectrometry imaging was employed to determine spatial distribution in treated samples. Additional insights on the biology were obtained by correlating the results with histology, immunohistochemistry, and immunofluorescence. The results are encouraging and may lead to a therapy with less local recurrence and improved overall survival for patients with this disease.
Collapse
Affiliation(s)
- Chunxiao Guo
- Department of Interventional Radiology, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Dodge L Baluya
- Department of Interventional Radiology, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Emily A Thompson
- Department of Interventional Radiology, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Elizabeth M Whitley
- Department of Veterinary Medicine and Surgery, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Erik N K Cressman
- Department of Interventional Radiology, UT MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
23
|
Judd AM, Gutierrez DB, Moore JL, Patterson NH, Yang J, Romer CE, Norris JL, Caprioli RM. A recommended and verified procedure for in situ tryptic digestion of formalin-fixed paraffin-embedded tissues for analysis by matrix-assisted laser desorption/ionization imaging mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:716-727. [PMID: 31254303 PMCID: PMC6711785 DOI: 10.1002/jms.4384] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 05/06/2023]
Abstract
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a molecular imaging technology uniquely capable of untargeted measurement of proteins, lipids, and metabolites while retaining spatial information about their location in situ. This powerful combination of capabilities has the potential to bring a wealth of knowledge to the field of molecular histology. Translation of this innovative research tool into clinical laboratories requires the development of reliable sample preparation protocols for the analysis of proteins from formalin-fixed paraffin-embedded (FFPE) tissues, the standard preservation process in clinical pathology. Although ideal for stained tissue analysis by microscopy, the FFPE process cross-links, disrupts, or can remove proteins from the tissue, making analysis of the protein content challenging. To date, reported approaches differ widely in process and efficacy. This tutorial presents a strategy derived from systematic testing and optimization of key parameters, for reproducible in situ tryptic digestion of proteins in FFPE tissue and subsequent MALDI IMS analysis. The approach describes a generalized method for FFPE tissues originating from virtually any source.
Collapse
Affiliation(s)
- Audra M. Judd
- Mass Spectrometry Research Center, Vanderbilt University, Nashville TN, 37235
- Departments of Biochemistry, Vanderbilt University, Nashville TN, 37235
- Correspondence: Dr. Richard M. Caprioli, 9160 MRB III, Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA, Phone: (615) 322-4336, Fax: (615) 343-8372,
| | - Danielle B. Gutierrez
- Mass Spectrometry Research Center, Vanderbilt University, Nashville TN, 37235
- Departments of Biochemistry, Vanderbilt University, Nashville TN, 37235
- Correspondence: Dr. Richard M. Caprioli, 9160 MRB III, Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA, Phone: (615) 322-4336, Fax: (615) 343-8372,
| | - Jessica L. Moore
- Mass Spectrometry Research Center, Vanderbilt University, Nashville TN, 37235
- Departments of Biochemistry, Vanderbilt University, Nashville TN, 37235
| | - Nathan Heath Patterson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville TN, 37235
- Departments of Biochemistry, Vanderbilt University, Nashville TN, 37235
| | - Junhai Yang
- Mass Spectrometry Research Center, Vanderbilt University, Nashville TN, 37235
- Departments of Biochemistry, Vanderbilt University, Nashville TN, 37235
| | - Carrie E. Romer
- Mass Spectrometry Research Center, Vanderbilt University, Nashville TN, 37235
| | - Jeremy L. Norris
- Mass Spectrometry Research Center, Vanderbilt University, Nashville TN, 37235
- Departments of Biochemistry, Vanderbilt University, Nashville TN, 37235
- Departments of Chemistry, Vanderbilt University, Nashville TN, 37235
| | - Richard M. Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville TN, 37235
- Departments of Biochemistry, Vanderbilt University, Nashville TN, 37235
- Departments of Chemistry, Vanderbilt University, Nashville TN, 37235
- Departments of Pharmacology, Vanderbilt University, Nashville TN, 37235
- Departments of Medicine, Vanderbilt University, Nashville TN, 37235
| |
Collapse
|