1
|
Dong L, Zhuang X, Yang T, Yan K, Cai Y. A physiologically based pharmacokinetic model of voriconazole in human CNS-Integrating time-dependent inhibition of CYP3A4, genetic polymorphisms of CYP2C19 and possible transporter mechanisms. Int J Antimicrob Agents 2024; 64:107310. [PMID: 39168418 DOI: 10.1016/j.ijantimicag.2024.107310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVES Voriconazole is a classical antifungal drug that is often used to treat CNS fungal infections due to its permeability through the BBB. However, its clinical use remains challenging because of its narrow therapeutic window and wide inter-individual variability. In this study, we proposed an optimised and validated PBPK model by integrating in vitro, in vivo and clinical data to simulate the distribution and PK process of voriconazole in the CNS, providing guidance for clinical individualised treatment. METHODS The model structure was optimised and tissue-to-plasma partition coefficients were obtained through animal experiments. Using the allometric relationships, the distribution of voriconazole in the human CNS was predicted. The model integrated factors affecting inter-individual variation and drug interactions of voriconazole-polymorphisms in the CYP2C19 gene and auto-inhibition and then was validated using real clinical data. RESULTS The overall AFE value showing model predicted differences was 1.1420 in the healthy population; and in the first prediction of plasma and CSF in actual clinical patients, 89.5% of the values were within the 2-fold error interval, indicating good predictive performance of the model. The bioavailability of voriconazole varied at different doses (39%-86%), and the optimised model conformed to this pattern (46%-83%). CONCLUSIONS Combined with the relevant pharmacodynamic indexes, the PBPK model provides a feasible way for precise medication in patients with CNS infection and improve the treatment effect and prognosis.
Collapse
Affiliation(s)
- Liuhan Dong
- Center of Medicine Clinical Research, Department of Pharmacy, Chinese PLA General Hospital, Beijing, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiaomei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Tianli Yang
- Center of Medicine Clinical Research, Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Kaicheng Yan
- Center of Medicine Clinical Research, Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Yun Cai
- Center of Medicine Clinical Research, Department of Pharmacy, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
2
|
Lehner AF, Johnson SD, Dirikolu L, Johnson M, Buchweitz JP. Mass spectrometric methods for evaluation of voriconazole avian pharmacokinetics and the inhibition of its cytochrome P450-induced metabolism. Toxicol Mech Methods 2024; 34:654-668. [PMID: 38389412 DOI: 10.1080/15376516.2024.2322675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Invasive fungal aspergillosis is a leading cause of morbidity and mortality in many species including avian species such as common ravens (Corvus corax). Methods were developed for mass spectral determination of voriconazole in raven plasma as a means of determining pharmacokinetics of this antifungal agent. Without further development, GC/MS/MS (gas chromatography-tandem quadrupole mass spectrometry) proved to be inferior to LC/MS/MS (liquid chromatography-tandem quadrupole mass spectrometry) for measurement of voriconazole levels in treated raven plasma owing to numerous heat-induced breakdown products despite protection of voriconazole functional groups with trimethylsilyl moieties. LC/MS/MS measurement revealed in multi-dosing experiments that the ravens were capable of rapid or ultrarapid metabolism of voriconazole. This accounted for the animals' inability to raise the drug into the therapeutic range regardless of dosing regimen unless cytochrome P450 (CYP) inhibitors were included. Strategic selection of CYP inhibitors showed that of four selected compounds including cimetidine, enrofloxacin and omeprazole, only ciprofloxacin (Cipro) was able to maintain voriconazole levels in the therapeutic range until the end of the dosing period. The optimal method of administration involved maintenance doses of voriconazole at 6 mg/kg and ciprofloxacin at 20 mg/kg. Higher doses of voriconazole such as 18 mg/kg were also tenable without apparent induction of toxicity. Although most species employ CYP2C19 to metabolize voriconazole, it was necessary to speculate that voriconazole might be subject to metabolism by CYP1A2 in the ravens to explain the utility of ciprofloxacin, a previously unknown enzymatic route. Finally, despite its widespread catalog of CYP inhibitions including CYP1A2 and CYP2C19, cimetidine may be inadequate at enhancing voriconazole levels owing to its known effects on raising gastric pH, a result that may limit voriconazole solubility.
Collapse
Affiliation(s)
- Andreas F Lehner
- Section of Toxicology, Michigan State University Veterinary Diagnostic Laboratory, Michigan State University, East Lansing, MI, USA
| | - Sharmie D Johnson
- Department of Veterinary Services, Wildlife World Zoo & Aquarium & Safari Park, Litchfield Park, AZ, USA
| | - Levent Dirikolu
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Margaret Johnson
- Section of Toxicology, Michigan State University Veterinary Diagnostic Laboratory, Michigan State University, East Lansing, MI, USA
| | - John P Buchweitz
- Section of Toxicology, Michigan State University Veterinary Diagnostic Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
3
|
Li Y, Zhang Y, Zhao J, Bian J, Zhao Y, Hao X, Liu B, Hu L, Liu F, Yang C, Feng Y, Huang L. Combined impact of hypoalbuminemia and pharmacogenomic variants on voriconazole trough concentration: data from a real-life clinical setting in the Chinese population. J Chemother 2024; 36:179-189. [PMID: 37599449 DOI: 10.1080/1120009x.2023.2247208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/01/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
Voriconazole (VRC) displays highly variable pharmacokinetics impacting treatment efficacy and safety. To provide evidence for optimizing VRC therapy regimens, the authors set out to determine the factors impacting VRC steady-state trough concentration (Cmin) in patients with various albumin (Alb) level. A total of 275 blood samples of 120 patients and their clinical characteristics and genotypes of CYP2C19, CYP3A4, CYP3A5, CYP2C9, FMO3, ABCB1, POR, NR1I2 and NR1I3 were included in this study. Results of multivariate linear regression analysis demonstrated that C-reactive protein (CRP) and total bilirubin (T-Bil) were predictors of the VRC Cmin adjusted for dose in patients with hypoalbuminemia (Alb < 35 g/L) (R2 = 0.16, P < 0.001). Additionally, in patients with normal albumin level (Alb ≥ 35 g/L), it resulted in a significant model containing factors of the poor metabolizer (PM) CYP2C19 genotype and CRP level (R2 = 0.26, P < 0.001). Therefore, CRP and T-Bil levels ought to receive greater consideration than genetic factors in patients with hypoalbuminemia.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ying Zhang
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jinxia Zhao
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jialu Bian
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yinyu Zhao
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xu Hao
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Boyu Liu
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Lei Hu
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Fang Liu
- Department of Mathematics and Physics, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Changqing Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yufei Feng
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Lin Huang
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| |
Collapse
|
4
|
Yang H, Du R, Xing X, Li Y, Qiu B. Efficacy and influencing factor analysis of Voriconazole in the treatment of invasive fungal infections. Diagn Microbiol Infect Dis 2023; 107:116047. [PMID: 37688949 DOI: 10.1016/j.diagmicrobio.2023.116047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/06/2023] [Accepted: 07/28/2023] [Indexed: 09/11/2023]
Abstract
Current study aims to explore the correlation between the administered dose and efficacy of voriconazole in the treatment of invasive fungal infection (IFI). The correlation between different doses of Voriconazole and plasma concentrations as well as clinical efficacy was counted. Consequently, 40 strains of pathogenic micro-organisms were isoninelated and cultured from etiological samples. A total of 66 patients with steady-state trough serum concentrations ranging from 1.0 to 5.5 μg/mL were measured, with a compliance rate of 79.5%. Chi-square test showed that there was a significant correlation between Voriconazole steady-state serum trough concentration and treatment efficacy. In addition, the result of Pearson test showed that steady-state trough serum concentration of Voriconazole was significantly positively correlated with the administered dose (γ = 0.866, P < 0.001). On conclusion, Voriconazole is effective in treatment of IFI, and there is a significant dose-plasma concentration correlation with efficacy.
Collapse
Affiliation(s)
- Haotian Yang
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Runxuan Du
- Department of Reproductive Genetics, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xiaoqing Xing
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Ying Li
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Bo Qiu
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, Hebei, China.
| |
Collapse
|
5
|
O'Keeffe JC, Singh N, Slavin MA. Approach to diagnostic evaluation and prevention of invasive fungal disease in patients prior to allogeneic hematopoietic stem cell transplant. Transpl Infect Dis 2023; 25 Suppl 1:e14197. [PMID: 37988269 DOI: 10.1111/tid.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/15/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
In recent years, advancements in the treatment landscape for hematological malignancies, such as acute myeloid leukemia and acute lymphoblastic leukemia, have significantly improved disease prognosis and overall survival. However, the treatment landscape is changing and the emergence of targeted oral therapies and immune-based treatments has brought forth new challenges in evaluating and preventing invasive fungal diseases (IFDs). IFD disproportionately affects immunocompromised hosts, particularly those undergoing therapy for acute leukemia and allogeneic hematopoietic stem cell transplant. This review aims to provide a comprehensive overview of the pretransplant workup, identification, and prevention of IFD in patients with hematological malignancy. The pretransplant period offers a critical window to assess each patient's risk factors and implement appropriate prophylactic measures. Risk assessment includes evaluation of disease, host, prior treatments, and environmental factors, allowing a dynamic evaluation that considers disease progression and treatment course. Diagnostic screening, involving various biomarkers and radiological modalities, plays a crucial role in early detection of IFD. Antifungal prophylaxis choice is based on available evidence as well as individual risk assessment, potential for drug-drug interactions, toxicity, and patient adherence. Therapeutic drug monitoring ensures effective antifungal stewardship and optimal treatment. Patient education and counselling are vital in minimizing environmental exposures to fungal pathogens and promoting medication adherence. A well-structured and individualized approach, encompassing risk assessment, prophylaxis, surveillance, and patient education, is essential for effectively preventing IFD in hematological malignancies, ultimately leading to improved patient outcomes and overall survival.
Collapse
Affiliation(s)
- Jessica C O'Keeffe
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Nikhil Singh
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
- Department of Pharmacy, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| | - Monica A Slavin
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Kluwe F, Michelet R, Huisinga W, Zeitlinger M, Mikus G, Kloft C. Towards Model-Informed Precision Dosing of Voriconazole: Challenging Published Voriconazole Nonlinear Mixed-Effects Models with Real-World Clinical Data. Clin Pharmacokinet 2023; 62:1461-1477. [PMID: 37603216 PMCID: PMC10520167 DOI: 10.1007/s40262-023-01274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND AND OBJECTIVES Model-informed precision dosing (MIPD) frequently uses nonlinear mixed-effects (NLME) models to predict and optimize therapy outcomes based on patient characteristics and therapeutic drug monitoring data. MIPD is indicated for compounds with narrow therapeutic range and complex pharmacokinetics (PK), such as voriconazole, a broad-spectrum antifungal drug for prevention and treatment of invasive fungal infections. To provide guidance and recommendations for evidence-based application of MIPD for voriconazole, this work aimed to (i) externally evaluate and compare the predictive performance of a published so-called 'hybrid' model for MIPD (an aggregate model comprising features and prior information from six previously published NLME models) versus two 'standard' NLME models of voriconazole, and (ii) investigate strategies and illustrate the clinical impact of Bayesian forecasting for voriconazole. METHODS A workflow for external evaluation and application of MIPD for voriconazole was implemented. Published voriconazole NLME models were externally evaluated using a comprehensive in-house clinical database comprising nine voriconazole studies and prediction-/simulation-based diagnostics. The NLME models were applied using different Bayesian forecasting strategies to assess the influence of prior observations on model predictivity. RESULTS The overall best predictive performance was obtained using the aggregate model. However, all NLME models showed only modest predictive performance, suggesting that (i) important PK processes were not sufficiently implemented in the structural submodels, (ii) sources of interindividual variability were not entirely captured, and (iii) interoccasion variability was not adequately accounted for. Predictive performance substantially improved by including the most recent voriconazole observations in MIPD. CONCLUSION Our results highlight the potential clinical impact of MIPD for voriconazole and indicate the need for a comprehensive (pre-)clinical database as basis for model development and careful external model evaluation for compounds with complex PK before their successful use in MIPD.
Collapse
Affiliation(s)
- Franziska Kluwe
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
- Graduate Research Training Program PharMetrX, Berlin/Potsdam, Germany
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
| | - Wilhelm Huisinga
- Institute of Mathematics, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Gerd Mikus
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Im Neuenheimer Feld 419, 69120 Heidelberg, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
| |
Collapse
|
7
|
McCreary EK, Davis MR, Narayanan N, Andes DR, Cattaneo D, Christian R, Lewis RE, Watt KM, Wiederhold NP, Johnson MD. Utility of triazole antifungal therapeutic drug monitoring: Insights from the Society of Infectious Diseases Pharmacists: Endorsed by the Mycoses Study Group Education and Research Consortium. Pharmacotherapy 2023; 43:1043-1050. [PMID: 37459118 DOI: 10.1002/phar.2850] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 08/15/2023]
Abstract
Triazole antifungals (i.e., fluconazole, itraconazole, voriconazole, posaconazole, and isavuconazole) are commonly used in clinical practice to prevent or treat invasive fungal infections. Most triazole antifungals require therapeutic drug monitoring (TDM) due to highly variable pharmacokinetics, known drug interactions, and established relationships between exposure and response. On behalf of the Society of Infectious Diseases Pharmacists (SIDP), this insight describes the pharmacokinetic principles and pharmacodynamic targets of commonly used triazole antifungals and provides the rationale for utility of TDM within each agent.
Collapse
Affiliation(s)
- Erin K McCreary
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Matthew R Davis
- Infectious Disease Connect, Inc., Pittsburgh, Pennsylvania, USA
| | - Navaneeth Narayanan
- Department of Pharmacy Practice and Administration, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - David R Andes
- Departments of Medicine and Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, Department of Laboratory Medicine, Luigi Sacco University Hospital, Milan, Italy
| | - Robbie Christian
- Department of Pharmacy, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Russell E Lewis
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Kevin M Watt
- Division of Pediatric Clinical Pharmacology and Division of Critical Care, University of Utah, Salt Lake City, Utah, USA
| | - Nathan P Wiederhold
- Department of Pathology and Laboratory Medicine, Fungus Testing Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Melissa D Johnson
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
8
|
Roy M, Karhana S, Shamsuzzaman M, Khan MA. Recent drug development and treatments for fungal infections. Braz J Microbiol 2023; 54:1695-1716. [PMID: 37219748 PMCID: PMC10484882 DOI: 10.1007/s42770-023-00999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Fungal infections are now becoming a hazard to individuals which has paved the way for research to expand the therapeutic options available. Recent advances in drug design and compound screening have also increased the pace of the development of antifungal drugs. Although several novel potential molecules are reported, those discoveries have yet to be translated from bench to bedside. Polyenes, azoles, echinocandins, and flucytosine are among the few antifungal agents that are available for the treatment of fungal infections, but such conventional therapies show certain limitations like toxicity, drug interactions, and the development of resistance which limits the utility of existing antifungals, contributing to significant mortality and morbidity. This review article focuses on the existing therapies, the challenges associated with them, and the development of new therapies, including the ongoing and recent clinical trials, for the treatment of fungal infections. Advancements in antifungal treatment: a graphical overview of drug development, adverse effects, and future prospects.
Collapse
Affiliation(s)
- Madhura Roy
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Sonali Karhana
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Md Shamsuzzaman
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Sahqra, Kingdom of Saudi Arabia
| | - Mohd Ashif Khan
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
9
|
Telles JP, Morales R, Yamada CH, Marins TA, D'Amaro Juodinis V, Sztajnbok J, Silva M, Bassetti BR, Albiero J, Tuon FF. Optimization of Antimicrobial Stewardship Programs Using Therapeutic Drug Monitoring and Pharmacokinetics-Pharmacodynamics Protocols: A Cost-Benefit Review. Ther Drug Monit 2023; 45:200-208. [PMID: 36622029 DOI: 10.1097/ftd.0000000000001067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/08/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE Antimicrobial stewardship programs are important for reducing antimicrobial resistance because they can readjust antibiotic prescriptions to local guidelines, switch intravenous to oral administration, and reduce hospitalization times. Pharmacokinetics-pharmacodynamics (PK-PD) empirically based prescriptions and therapeutic drug monitoring (TDM) programs are essential for antimicrobial stewardship, but there is a need to fit protocols according to cost benefits. The cost benefits can be demonstrated by reducing toxicity and hospital stay, decreasing the amount of drug used per day, and preventing relapses in infection. Our aim was to review the data available on whether PK-PD empirically based prescriptions and TDM could improve the cost benefits of an antimicrobial stewardship program to decrease global hospital expenditures. METHODS A narrative review based on PubMed search with the relevant studies of vancomycin, aminoglycosides, beta-lactams, and voriconazole. RESULTS TDM protocols demonstrated important cost benefit for patients treated with vancomycin, aminoglycosides, and voriconazole mainly due to reduce toxicities and decreasing the hospital length of stay. In addition, PK-PD strategies that used infusion modifications to meropenem, piperacillin-tazobactam, ceftazidime, and cefepime, such as extended or continuous infusion, demonstrated important cost benefits, mainly due to reducing daily drug needs and lengths of hospital stays. CONCLUSIONS TDM protocols and PK-PD empirically based prescriptions improve the cost-benefits and decrease the global hospital expenditures.
Collapse
Affiliation(s)
- João Paulo Telles
- - AC Camargo Cancer Center, Infectious Diseases Department, São Paulo
- - Laboratory of Emerging Infectious Diseases, Pontifical Catholic University of Paraná, Curitiba
| | - Ronaldo Morales
- - Clinical Pharmacokinetics Center, School of Pharmaceutical Sciences, University of São Paulo
- - Pediatric Intensive Care Unit, Department of Pediatrics, Hospital Sírio-Libanês. São Paulo
| | - Carolina Hikari Yamada
- - Laboratory of Emerging Infectious Diseases, Pontifical Catholic University of Paraná, Curitiba
- - Hospital Universitário Evangélico Mackenzie, Department of Infectious Diseases, Curitiba
| | - Tatiana A Marins
- - Hospital Israelita Albert Einstein, Department of Clinical Pharmacy, São Paulo
| | | | - Jaques Sztajnbok
- - Instituto de Infectologia Emílio Ribas, São Paulo
- - Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (ICr/HC-FMUSP)
| | - Moacyr Silva
- - Hospital Israelita Albert Einstein, Department of Infection Prevention and Control, São Paulo
| | - Bil Randerson Bassetti
- - Hospital Santa Rita de Cássia, Department of Infectious Disease and Infection Control, Vitória ; and
| | - James Albiero
- - Universidade Estadual de Maringá, Pharmacy Department, Programa de Pós-Graduação em Assistência Farmacêutica, Maringá, Brazil
| | - Felipe Francisco Tuon
- - Laboratory of Emerging Infectious Diseases, Pontifical Catholic University of Paraná, Curitiba
| |
Collapse
|
10
|
Voriconazole exposure is influenced by inflammation: A population pharmacokinetic model. Int J Antimicrob Agents 2023; 61:106750. [PMID: 36758777 DOI: 10.1016/j.ijantimicag.2023.106750] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Voriconazole is an antifungal drug used for the treatment of invasive fungal infections. Due to highly variable drug exposure, therapeutic drug monitoring (TDM) has been recommended. TDM may be helpful to predict exposure accurately, but covariates, such as severe inflammation, that influence the metabolism of voriconazole have not been included in the population pharmacokinetic (popPK) models suitable for routine TDM. OBJECTIVES To investigate whether the effect of inflammation, reflected by C-reactive protein (CRP), could improve a popPK model that can be applied in clinical care. PATIENTS AND METHODS Data from two previous studies were included in the popPK modelling. PopPK modelling was performed using Edsim++. Different popPK models were compared using Akaike Information Criterion and goodness-of-fit plots. RESULTS In total, 1060 voriconazole serum concentrations from 54 patients were included in this study. The final model was a one-compartment model with non-linear elimination. Only CRP was a significant covariate, and was included in the final model and found to affect the maximum rate of enzyme activity (Vmax). For the final popPK model, the mean volume of distribution was 145 L [coefficient of variation percentage (CV%)=61%], mean Michaelis-Menten constant was 5.7 mg/L (CV%=119%), mean Vmax was 86.4 mg/h (CV%=99%) and mean bioavailability was 0.83 (CV%=143%). Internal validation using bootstrapping resulted in median values close to the population parameter estimates. CONCLUSIONS This one-compartment model with non-linear elimination and CRP as a covariate described the pharmacokinetics of voriconazole adequately.
Collapse
|
11
|
Takesue Y, Hanai Y, Oda K, Hamada Y, Ueda T, Mayumi T, Matsumoto K, Fujii S, Takahashi Y, Miyazaki Y, Kimura T. Clinical Practice Guideline for the Therapeutic Drug Monitoring of Voriconazole in Non-Asian and Asian Adult Patients: Consensus Review by the Japanese Society of Chemotherapy and the Japanese Society of Therapeutic Drug Monitoring. Clin Ther 2022; 44:1604-1623. [DOI: 10.1016/j.clinthera.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022]
|
12
|
Ye Q, Yu X, Chen W, Li M, Gu S, Huang L, Zhan Q, Wang C. Impact of extracorporeal membrane oxygenation on voriconazole plasma concentrations: A retrospective study. Front Pharmacol 2022; 13:972585. [PMID: 36059951 PMCID: PMC9428491 DOI: 10.3389/fphar.2022.972585] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/19/2022] [Indexed: 12/03/2022] Open
Abstract
Aims: We aimed to assess the impact of extracorporeal membrane oxygenation (ECMO) on voriconazole exposure. Methods: Adult critically ill patients with or without ECMO support receiving intravenous voriconazole therapy were included in this retrospective study conducted in a tertiary referral intensive care unit. The first therapeutic drug monitoring (TDM) results of voriconazole in ECMO patients and non-ECMO patients were collected, and the prevalence of subtherapeutic concentrations was analyzed. Multivariate analyses were performed to evaluate the effect of ECMO on voriconazole exposure. Results: A total of 132 patients (including 66 patients with ECMO support) were enrolled and their respective first voriconazole trough concentrations (Cmin) were recorded. The median Cmin of the ECMO group and the non-ECMO group was 1.9 (1.4–4.4) and 4.4 (3.2–6.9) mg/L, respectively (p = 0.000), and the proportion of the two groups in subtherapeutic concentrations range (<2 mg/L) was 51.5% and 7.6%, respectively (p = 0.000). Multiple linear regression analysis of voriconazole Cmin identified that the use of ECMO and coadministration of glucocorticoids were associated with significantly reduced concentrations, while increasing SOFA score and increasing daily dose were associated with significantly increased concentrations. The model accounted for 32.2% of the variability of voriconazole Cmin. Furthermore, binary logistic regression demonstrated that the use of ECMO was an independent risk factor (OR = 7.78, p = 0.012) for insufficient voriconazole exposure. Conclusion: Our findings showed that, in addition to the known drug interactions, ECMO is a significant covariable affecting voriconazole exposure. In addition, SOFA score was identified as a factor associated with increased voriconazole concentration.
Collapse
Affiliation(s)
- Qinghua Ye
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Xin Yu
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Wenqian Chen
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Min Li
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Sichao Gu
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Linna Huang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Qingyuan Zhan
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing, China
- *Correspondence: Qingyuan Zhan,
| | - Chen Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Huang W, Zheng Y, Huang H, Cheng Y, Liu M, Chaphekar N, Wu X. External evaluation of population pharmacokinetic models for voriconazole in Chinese adult patients with hematological malignancy. Eur J Clin Pharmacol 2022; 78:1447-1457. [PMID: 35764817 DOI: 10.1007/s00228-022-03359-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/19/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Patients with hematological malignancies are prone to invasive fungal disease due to long-term chemotherapy or radiotherapy. Voriconazole is a second-generation triazole broad-spectrum antibiotic used to prevent or treat invasive fungal infections. Many population pharmacokinetic (pop PK) models have been published for voriconazole, and various diagnostic methods are available to validate the performance of these pop PK models. However, most of the published models have not been strictly evaluated externally. The purpose of this study is to evaluate these models externally and assess their predictive capabilities. METHODS The external dataset consists of adults receiving voriconazole treatment at Fujian Medical University Union Hospital. We re-established the published models based on their final estimated values in the literature and used our external dataset for initial screening. Each model was evaluated based on the following outcomes: prediction-based diagnostics, prediction- and variability-corrected visual predictive check (pvcVPC), normalized prediction distribution errors (NPDE), and Bayesian simulation results with one to two prior observations. RESULTS A total of 237 samples from 166 patients were collected as an external dataset. After screening, six candidate models suitable for the external dataset were finally obtained for comparison. Among the models, none demonstrated excellent predictive performance. Bayesian simulation shows that all models' prediction precision and accuracy were significantly improved when one or two prior concentrations were given. CONCLUSIONS The published pop PK models of voriconazole have significant differences in prediction performance, and none of the models could perfectly predict the concentrations of voriconazole for our data. Therefore, extensive evaluation should precede the adoption of any model in clinical practice.
Collapse
Affiliation(s)
- Weikun Huang
- Department of Pharmacy, Fujian Medical University Union Hospital, Gulou District, 29 Xinquan Rd., Fuzhou, 350001, Fujian, China.,School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - You Zheng
- Department of Pharmacy, Fujian Medical University Union Hospital, Gulou District, 29 Xinquan Rd., Fuzhou, 350001, Fujian, China.,School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Huiping Huang
- Department of Pharmacy, Fujian Medical University Union Hospital, Gulou District, 29 Xinquan Rd., Fuzhou, 350001, Fujian, China.,School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Yu Cheng
- Department of Pharmacy, Fujian Medical University Union Hospital, Gulou District, 29 Xinquan Rd., Fuzhou, 350001, Fujian, China
| | - Maobai Liu
- Department of Pharmacy, Fujian Medical University Union Hospital, Gulou District, 29 Xinquan Rd., Fuzhou, 350001, Fujian, China
| | - Nupur Chaphekar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xuemei Wu
- Department of Pharmacy, Fujian Medical University Union Hospital, Gulou District, 29 Xinquan Rd., Fuzhou, 350001, Fujian, China. .,School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
14
|
Bustos-Merlo A, Rosales-Castillo A, Sotorrío Simo V. Unexpected cause of ischemic lesions in an immunocompetent patient. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2022; 40:273-274. [PMID: 35248519 PMCID: PMC8890675 DOI: 10.1016/j.eimce.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 01/17/2023]
|
15
|
Aiuchi N, Nakagawa J, Sakuraba H, Takahata T, Kamata K, Saito N, Ueno K, Ishiyama M, Yamagata K, Kayaba H, Niioka T. Impact of polymorphisms of pharmacokinetics-related genes and the inflammatory response on the metabolism of voriconazole. Pharmacol Res Perspect 2022; 10:e00935. [PMID: 35199485 PMCID: PMC8866912 DOI: 10.1002/prp2.935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
The effects of inflammatory responses and polymorphisms of the genes encoding cytochrome P450 (CYP) (CYP2C19 and CYP3A5), flavin-containing monooxygenase 3 (FMO3), pregnane X receptor (NR1I2), constitutive androstane receptor (NR1I3), and CYP oxidoreductase (POR) on the ratio of voriconazole (VRCZ) N-oxide to VRCZ (VNO/VRCZ) and steady-state trough concentrations (C0h ) of VRCZ were investigated. A total of 56 blood samples were collected from 36 Japanese patients. Results of multiple linear regression analyses demonstrated that the presence of the extensive metabolizer CYP2C19 genotype, the dose per administration, and the presence of the NR1I2 rs3814057 C/C genotype were independent factors influencing the VNO/VRCZ ratio in patients with CRP levels of less than 40 mg/L (standardized regression coefficients (SRC) = 0.448, -0.301, and 0.390, respectively; all p < .05). With regard to the concentration of VRCZ itself, in addition to the above factors, the presence of the NR1I2 rs7643645 G/G and rs3814055 T/T genotypes were found to be independent factors influencing the VRCZ C0h in these patients (SRC = -0.430, 0.424, -0.326, 0.406 and -0.455, respectively; all p < .05). On the contrary, in patients with CRP levels of at least 40 mg/L, no independent factors were found to affect VNO/VRCZ and VRCZ C0h . Inflammatory responses, and CYP2C19 and NR1I2 polymorphisms may be useful information for the individualization of VRCZ dosages.
Collapse
Affiliation(s)
- Naoya Aiuchi
- Department of PharmacyHirosaki University HospitalHirosakiAomoriJapan
| | - Junichi Nakagawa
- Department of PharmacyHirosaki University HospitalHirosakiAomoriJapan
| | - Hirotake Sakuraba
- Department of Gastroenterology and HematologyHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| | - Takenori Takahata
- Department of Gastroenterology and HematologyHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| | - Kosuke Kamata
- Department of Gastroenterology and HematologyHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| | - Norihiro Saito
- Department of Clinical Laboratory MedicineHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| | - Kayo Ueno
- Department of PharmacyHirosaki University HospitalHirosakiAomoriJapan
| | - Masahiro Ishiyama
- Department of Clinical LaboratoryHirosaki University HospitalHirosakiAomoriJapan
| | - Kazufumi Yamagata
- Department of Bioscience and Laboratory MedicineHirosaki University Graduate School of Health SciencesHirosakiJapan
| | - Hiroyuki Kayaba
- Department of Clinical Laboratory MedicineHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| | - Takenori Niioka
- Department of PharmacyHirosaki University HospitalHirosakiAomoriJapan
- Department of Pharmaceutical ScienceHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| |
Collapse
|
16
|
Kably B, Launay M, Derobertmasure A, Lefeuvre S, Dannaoui E, Billaud EM. Antifungal Drugs TDM: Trends and Update. Ther Drug Monit 2022; 44:166-197. [PMID: 34923544 DOI: 10.1097/ftd.0000000000000952] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE The increasing burden of invasive fungal infections results in growing challenges to antifungal (AF) therapeutic drug monitoring (TDM). This review aims to provide an overview of recent advances in AF TDM. METHODS We conducted a PubMed search for articles during 2016-2020 using "TDM" or "pharmacokinetics" or "drug-drug-interaction" with "antifungal," consolidated for each AF. Selection was limited to English language articles with human data on drug exposure. RESULTS More than 1000 articles matched the search terms. We selected 566 publications. The latest findings tend to confirm previous observations in real-life clinical settings. The pharmacokinetic variability related to special populations is not specific but must be considered. AF benefit-to-risk ratio, drug-drug interaction (DDI) profiles, and minimal inhibitory concentrations for pathogens must be known to manage at-risk situations and patients. Itraconazole has replaced ketoconazole in healthy volunteers DDI studies. Physiologically based pharmacokinetic modeling is widely used to assess metabolic azole DDI. AF prophylactic use was studied more for Aspergillus spp. and Mucorales in oncohematology and solid organ transplantation than for Candida (already studied). Emergence of central nervous system infection and severe infections in immunocompetent individuals both merit special attention. TDM is more challenging for azoles than amphotericin B and echinocandins. Fewer TDM requirements exist for fluconazole and isavuconazole (ISZ); however, ISZ is frequently used in clinical situations in which TDM is recommended. Voriconazole remains the most challenging of the AF, with toxicity limiting high-dose treatments. Moreover, alternative treatments (posaconazole tablets, ISZ) are now available. CONCLUSIONS TDM seems to be crucial for curative and/or long-term maintenance treatment in highly variable patients. TDM poses fewer cost issues than the drugs themselves or subsequent treatment issues. The integration of clinical pharmacology into multidisciplinary management is now increasingly seen as a part of patient care.
Collapse
Affiliation(s)
- Benjamin Kably
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Européen Georges Pompidou, AP-HP Centre
- Faculté de Médecine, Université de Paris, Paris, France
| | - Manon Launay
- Laboratoire de Pharmacologie-Toxicologie-Gaz du sang, Hôpital Nord-CHU Saint Etienne, Saint-Etienne
| | - Audrey Derobertmasure
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Européen Georges Pompidou, AP-HP Centre
| | - Sandrine Lefeuvre
- Laboratoire de Toxicologie et Pharmacocinétique, CHU de Poitiers, Poitiers; and
| | - Eric Dannaoui
- Faculté de Médecine, Université de Paris, Paris, France
- Unité de Parasitologie-Mycologie, Laboratoire de Microbiologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Eliane M Billaud
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Européen Georges Pompidou, AP-HP Centre
- Faculté de Médecine, Université de Paris, Paris, France
| |
Collapse
|
17
|
Li S, Wu S, Gong W, Cao P, Chen X, Liu W, Xiang L, Wang Y, Huang J. Application of Population Pharmacokinetic Analysis to Characterize CYP2C19 Mediated Metabolic Mechanism of Voriconazole and Support Dose Optimization. Front Pharmacol 2022; 12:730826. [PMID: 35046798 PMCID: PMC8762230 DOI: 10.3389/fphar.2021.730826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: The aims of this study were to establish a joint population pharmacokinetic model for voriconazole and its N-oxide metabolite in immunocompromised patients, to determine the extent to which the CYP2C19 genetic polymorphisms influenced the pharmacokinetic parameters, and to evaluate and optimize the dosing regimens using a simulating approach. Methods: A population pharmacokinetic analysis was conducted using the Phoenix NLME software based on 427 plasma concentrations from 78 patients receiving multiple oral doses of voriconazole (200 mg twice daily). The final model was assessed by goodness of fit plots, non-parametric bootstrap method, and visual predictive check. Monte Carlo simulations were carried out to evaluate and optimize the dosing regimens. Results: A one-compartment model with first-order absorption and mixed linear and concentration-dependent-nonlinear elimination fitted well to concentration-time profile of voriconazole, while one-compartment model with first-order elimination well described the disposition of voriconazole N-oxide. Covariate analysis indicated that voriconazole pharmacokinetics was substantially influenced by the CYP2C19 genetic variations. Simulations showed that the recommended maintenance dose regimen would lead to subtherapeutic levels in patients with different CYP2C19 genotypes, and elevated daily doses of voriconazole might be required to attain the therapeutic range. Conclusions: The joint population pharmacokinetic model successfully characterized the pharmacokinetics of voriconazole and its N-oxide metabolite in immunocompromised patients. The proposed maintenance dose regimens could provide a rationale for dosage individualization to improve clinical outcomes and minimize drug-related toxicities.
Collapse
Affiliation(s)
- SiChan Li
- Department of Clinical Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - SanLan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - WeiJing Gong
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Xin Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanyu Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liping Xiang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Yang Wang
- Department of Clinical Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - JianGeng Huang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Chau MM, Daveson K, Alffenaar JWC, Gwee A, Ho SA, Marriott DJE, Trubiano JA, Zhao J, Roberts JA. Consensus guidelines for optimising antifungal drug delivery and monitoring to avoid toxicity and improve outcomes in patients with haematological malignancy and haemopoietic stem cell transplant recipients, 2021. Intern Med J 2021; 51 Suppl 7:37-66. [PMID: 34937141 DOI: 10.1111/imj.15587] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Antifungal agents can have complex dosing and the potential for drug interaction, both of which can lead to subtherapeutic antifungal drug concentrations and poorer clinical outcomes for patients with haematological malignancy and haemopoietic stem cell transplant recipients. Antifungal agents can also be associated with significant toxicities when drug concentrations are too high. Suboptimal dosing can be minimised by clinical assessment, laboratory monitoring, avoidance of interacting drugs, and dose modification. Therapeutic drug monitoring (TDM) plays an increasingly important role in antifungal therapy, particularly for antifungal agents that have an established exposure-response relationship with either a narrow therapeutic window, large dose-exposure variability, cytochrome P450 gene polymorphism affecting drug metabolism, the presence of antifungal drug interactions or unexpected toxicity, and/or concerns for non-compliance or inadequate absorption of oral antifungals. These guidelines provide recommendations on antifungal drug monitoring and TDM-guided dosing adjustment for selected antifungal agents, and include suggested resources for identifying and analysing antifungal drug interactions. Recommended competencies for optimal interpretation of antifungal TDM and dose recommendations are also provided.
Collapse
Affiliation(s)
- Maggie M Chau
- Pharmacy Department, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Kathryn Daveson
- Department of Infectious Diseases and Microbiology, The Canberra Hospital, Garran, Australian Capital Territory, Australia
| | - Jan-Willem C Alffenaar
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Camperdown, New South Wales, Australia.,Pharmacy Department, Westmead Hospital, Westmead, New South Wales, Australia.,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Camperdown, New South Wales, Australia
| | - Amanda Gwee
- Infectious Diseases Unit, The Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia.,Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Su Ann Ho
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Deborah J E Marriott
- Department of Clinical Microbiology and Infectious Diseases, St Vincent's Hospital, Darlinghurst, New South Wales, Australia.,Faculty of Science, University of Technology, Ultimo, New South Wales, Australia.,Faculty of Medicine, The University of New South Wales, Kensington, New South Wales, Australia
| | - Jason A Trubiano
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Jessie Zhao
- Department of Haematology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Jason A Roberts
- The University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Department of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | | |
Collapse
|
19
|
Yang P, Liu W, Zheng J, Zhang Y, Yang L, He N, Zhai S. Predicting the Outcome of Voriconazole Individualized Medication Using Integrated Pharmacokinetic/Pharmacodynamic Model. Front Pharmacol 2021; 12:711187. [PMID: 34721012 PMCID: PMC8548711 DOI: 10.3389/fphar.2021.711187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Therapeutic drug monitoring is considered to be an effective tool for the individualized use of voriconazole. However, drug concentration measurement alone doesn’t take into account the susceptibility of the infecting microorganisms to the drug. Linking pharmacodynamic data with the pharmacokinetic profile of individuals is expected to be an effective method to predict the probability of a certain therapeutic outcome. The objective of this study was to individualize voriconazole regimens by integrating individual pharmacokinetic parameters and pathogen susceptibility data through Monte Carlo simulations The individual pharmacokinetic parameters of 35 hospitalized patients who received voriconazole were calculated based on a validated population pharmacokinetic model. The area under the concentration-time curve for free drug/minimal inhibitory concentration (fAUCss/MIC) > 25 was selected as the pharmacokinetic/pharmacodynamic (PK/PD) parameter predicting the efficacy of voriconazole. The cumulative fraction of response (CFR) of the target value was assessed. To verify this conclusion, a logistic regression analysis was used to explore the relationship between actual clinical efficiency and the CFR value. For the 35 patients, the area under the free drug concentration-time curve (fAUCss) was calculated to be 34.90 ± 21.67 mgh/L. According to the dualistic logistic regression analysis, the minimal inhibitory concentration (MIC) value of different kinds of fungi had a great influence on the effectiveness of clinical treatment. It also showed that the actual clinical efficacy and the CFR value of fAUCss/MIC had a high degree of consistency. The results suggest that it is feasible to individualize voriconazole dosing and predict clinical outcomes through the integration of data on pharmacokinetics and antifungal susceptibility.
Collapse
Affiliation(s)
- Ping Yang
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Wei Liu
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Jiajia Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Yuanyuan Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Li Yang
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Na He
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Suodi Zhai
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| |
Collapse
|
20
|
Zhao Y, Hou J, Xiao Y, Wang F, Zhang B, Zhang M, Jiang Y, Li J, Gong G, Xiang D, Yan M. Predictors of Voriconazole Trough Concentrations in Patients with Child-Pugh Class C Cirrhosis: A Prospective Study. Antibiotics (Basel) 2021; 10:antibiotics10091130. [PMID: 34572712 PMCID: PMC8470058 DOI: 10.3390/antibiotics10091130] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
This prospective observational study aimed to clinically describe voriconazole administrations and trough concentrations in patients with Child–Pugh class C and to investigate the variability of trough concentration. A total of 144 voriconazole trough concentrations from 43 Child–Pugh class C patients were analyzed. The majority of patients (62.8%) received adjustments. The repeated measured trough concentration was higher than the first and final ones generally (median, 4.33 vs. 2.99, 3.90 mg/L). Eight patients with ideal initial concentrations later got supratherapeutic with no adjusted daily dose, implying accumulation. There was a significant difference in concentrations among the six groups by daily dose (p = 0.006). The bivariate correlation analysis showed that sex, CYP2C19 genotyping, daily dose, prothrombin time activity, international normalized ratio, platelet, and Model for end-stage liver disease score were significant factors for concentration. Subsequently, the first four factors mentioned above entered into a stepwise multiple linear regression model (variance inflation factor <5), implying that CYP2C19 testing makes sense for precision medicine of Child–Pugh class C cirrhosis patients. The equation fits well and explains the 34.8% variety of concentrations (R2 = 0.348). In conclusion, it needs more cautious administration clinically due to no recommendation for Child–Pugh class C patients in the medication label. The adjustment of the administration regimen should be mainly based on the results of repeated therapeutic drug monitoring.
Collapse
Affiliation(s)
- Yichang Zhao
- The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.Z.); (J.H.); (Y.X.); (F.W.); (B.Z.); (M.Z.); (Y.J.); (J.L.); (G.G.); (D.X.)
- Institute of Clinical Pharmacy, Central South University, Changsha 410011, China
| | - Jingjing Hou
- The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.Z.); (J.H.); (Y.X.); (F.W.); (B.Z.); (M.Z.); (Y.J.); (J.L.); (G.G.); (D.X.)
- Institute of Clinical Pharmacy, Central South University, Changsha 410011, China
| | - Yiwen Xiao
- The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.Z.); (J.H.); (Y.X.); (F.W.); (B.Z.); (M.Z.); (Y.J.); (J.L.); (G.G.); (D.X.)
- Institute of Clinical Pharmacy, Central South University, Changsha 410011, China
| | - Feng Wang
- The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.Z.); (J.H.); (Y.X.); (F.W.); (B.Z.); (M.Z.); (Y.J.); (J.L.); (G.G.); (D.X.)
- Institute of Clinical Pharmacy, Central South University, Changsha 410011, China
| | - Bikui Zhang
- The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.Z.); (J.H.); (Y.X.); (F.W.); (B.Z.); (M.Z.); (Y.J.); (J.L.); (G.G.); (D.X.)
- Institute of Clinical Pharmacy, Central South University, Changsha 410011, China
| | - Min Zhang
- The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.Z.); (J.H.); (Y.X.); (F.W.); (B.Z.); (M.Z.); (Y.J.); (J.L.); (G.G.); (D.X.)
- Department of Infection, Central South University, Changsha 410011, China
| | - Yongfang Jiang
- The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.Z.); (J.H.); (Y.X.); (F.W.); (B.Z.); (M.Z.); (Y.J.); (J.L.); (G.G.); (D.X.)
- Department of Infection, Central South University, Changsha 410011, China
| | - Jiakai Li
- The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.Z.); (J.H.); (Y.X.); (F.W.); (B.Z.); (M.Z.); (Y.J.); (J.L.); (G.G.); (D.X.)
- Institute of Clinical Pharmacy, Central South University, Changsha 410011, China
| | - Guozhong Gong
- The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.Z.); (J.H.); (Y.X.); (F.W.); (B.Z.); (M.Z.); (Y.J.); (J.L.); (G.G.); (D.X.)
- Department of Infection, Central South University, Changsha 410011, China
| | - Daxiong Xiang
- The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.Z.); (J.H.); (Y.X.); (F.W.); (B.Z.); (M.Z.); (Y.J.); (J.L.); (G.G.); (D.X.)
- Institute of Clinical Pharmacy, Central South University, Changsha 410011, China
| | - Miao Yan
- The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.Z.); (J.H.); (Y.X.); (F.W.); (B.Z.); (M.Z.); (Y.J.); (J.L.); (G.G.); (D.X.)
- Institute of Clinical Pharmacy, Central South University, Changsha 410011, China
- Correspondence: ; Tel.: +86-0731-8529-2098; Fax: +86-0731-8443-6720
| |
Collapse
|
21
|
Bustos-Merlo A, Rosales-Castillo A, Sotorrío Simo V. Unexpected cause of ischemic lesions in an immunocompetent patient. Enferm Infecc Microbiol Clin 2021; 40:S0213-005X(21)00221-4. [PMID: 34384600 PMCID: PMC8350789 DOI: 10.1016/j.eimc.2021.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Antonio Bustos-Merlo
- Servicio de Medicina Interna, Hospital Universitario Virgen de las Nieves, Granada, España
| | | | - Virginia Sotorrío Simo
- Servicio de Medicina Interna, Hospital Universitario Virgen de las Nieves, Granada, España
| |
Collapse
|
22
|
Yasu T, Matsumoto Y, Sugita T. Pharmacokinetics of voriconazole and its alteration by Candida albicans infection in silkworms. J Antibiot (Tokyo) 2021; 74:443-449. [PMID: 34045695 DOI: 10.1038/s41429-021-00428-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 11/09/2022]
Abstract
Voriconazole (VRCZ) is a triazole antifungal agent used for the treatment and prophylaxis of invasive fungal infections. Therapeutic drug monitoring of VRCZ is widely applied clinically because of the large inter-individual variability that is generally observed in VRCZ exposure. The blood levels of VRCZ are increased during an underlying inflammatory reaction, which is associated with infections. Silkworms are useful experimental animals for evaluating the pharmacokinetics and toxicity of compounds. In this study, we investigated the pharmacokinetic parameters, such as elimination half-life, clearance, and distribution volume of VRCZ using silkworms. The pharmacokinetic parameters of VRCZ were determined based on the concentrations in silkworm hemolymph after injection of VRCZ. The elimination half-life of VRCZ in silkworms was found to be similar to that observed in humans. In addition, we assessed the impact of Candida albicans infection on VRCZ concentrations in a silkworm infection model. The VRCZ concentration at 12 h after injection in the Candida albicans-infected group was significantly higher than that in the non-infected group. In the silkworm infection model, we were able to reproduce the relationship between inflammation and VRCZ blood concentrations, as observed in humans. We demonstrate that silkworms can be an effective alternative model animal for studying the pharmacokinetics of VRCZ. We also show that silkworms can be used to indicate essential infection and inflammation-based pharmacokinetic variations in VRCZ, which is usually observed in the clinic.
Collapse
Affiliation(s)
- Takeo Yasu
- Department of Medicinal Therapy Research, Pharmaceutical Education and Research Center, Meiji Pharmaceutical University, Kiyose, Japan.
| | - Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Japan.
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Japan
| |
Collapse
|
23
|
Zhang Y, Hou K, Liu F, Luo X, He S, Hu L, Yang C, Huang L, Feng Y. The influence of CYP2C19 polymorphisms on voriconazole trough concentrations: Systematic review and meta-analysis. Mycoses 2021; 64:860-873. [PMID: 33896064 DOI: 10.1111/myc.13293] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Voriconazole primary metabolism is catalysed by CYP2C19. A large variability of trough concentrations in patients with invasive fungal infection treated with voriconazole has been observed in clinical practice. It remains controversial whether the CYP2C19 polymorphisms are responsible for voriconazole metabolism in the individual variation. OBJECTIVES The primary aim of this study was to assess the effect of CYP2C19 polymorphisms on voriconazole trough concentrations. METHODS Following a systematic literature review, we performed a meta-analysis for mean differences (MD) of voriconazole trough concentrations (Cmin ), voriconazole dosage adjusted trough concentrations (Cmin /D) and for risk ratio (RR) of the proportion of patients in the target therapeutic range between pairwise comparisons of CYP2C19 phenotypes. RESULTS Compared with normal metabolisers (NMs), intermediate metabolisers (IMs) (MD: 0.82, 95% CI: 0.57 to 1.07, I2 = 44%, p < .00001) or poor metabolisers (PMs) (MD: 1.59, 95% CI: 1.14 to 2.05, I2 = 46%, p < .00001) had significantly higher voriconazole Cmin (μg·ml-1 ), while rapid metabolisers (RMs) had significantly lower voriconazole Cmin (MD: -0,87, 95% CI: -1.35 to -0.38, I2 = 0%, p = .0004). In addition, IMs had significantly lower Cmin than PMs (MD: -0.59, 95% CI: -0.97 to -0.20, I2 = 22%, p = .003). Similarly, the Cmin /D (μg·kg·ml-1 ·mg-1 ) was significantly higher in IMs (MD: 0.13, 95% CI: 0.05 to 0.22, I2 = 0%, p = .002) and PMs (MD: 0.20, 95% CI: 0.07 to 0.34, I2 = 0%, p = .003) than that in NMs, and also, IMs had significantly lower Cmin /D than PMs (MD: -0.11, 95% CI: -0.14 to -0.08, I2 = 0%, p < .00001). Furthermore, PMs had a significantly higher proportion of the target therapeutic range than NMs (RR: 1.34, 95% CI: 1.09 to 1.64, I2 = 50%, p = .005). CONCLUSIONS Compared to NMs, IMs and PMs had higher voriconazole trough concentrations, especially in Asians, while RMs had lower voriconazole trough concentrations. In addition, PMs had a higher proportion of the target therapeutic range than NMs, especially in Asians. CYP2C19 genotyping is expected to be used to preemptively guide the individualisation of voriconazole in clinical practice.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacy, Peking University People's Hospital, Beijing, China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kelu Hou
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Fang Liu
- Department of Mathematics and Physics, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Xingxian Luo
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Shiyu He
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Lei Hu
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Changqing Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lin Huang
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Yufei Feng
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| |
Collapse
|
24
|
Wang X, Ye C, Xun T, Mo L, Tong Y, Ni W, Huang S, Liu B, Zhan X, Yang X. Bacteroides Fragilis Polysaccharide A Ameliorates Abnormal Voriconazole Metabolism Accompanied With the Inhibition of TLR4/NF-κB Pathway. Front Pharmacol 2021; 12:663325. [PMID: 33995087 PMCID: PMC8115215 DOI: 10.3389/fphar.2021.663325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/15/2021] [Indexed: 12/26/2022] Open
Abstract
The antifungal agent voriconazole (VRC) exhibits extreme inter-individual and intra-individual variation in terms of its clinical efficacy and toxicity. Inflammation, as reflected by C-reactive protein (CRP) concentrations, significantly affects the metabolic ratio and trough concentrations of voriconazole. Bacteroides fragilis (B. fragilis) is an important component of the human intestinal microbiota. Clinical data have shown that B. fragilis abundance is comparatively higher in patients not presenting with adverse drug reactions, and inflammatory cytokine (IL-1β) levels are negatively correlated with B. fragilis abundance. B. fragilis natural product capsular polysaccharide A (PSA) prevents various inflammatory disorders. We tested the hypothesis that PSA ameliorates abnormal voriconazole metabolism by inhibiting inflammation. Germ-free animals were administered PSA intragastrically for 5 days after lipopolysaccharide (LPS) stimulation. Their blood and liver tissues were collected to measure VRC concentrations. PSA administration dramatically improved the resolution phase of LPS-induced hepatic VRC metabolism and inflammatory factor secretion. It reversed inflammatory lesions and alleviated hepatic pro-inflammatory factor secretion. Both in vitro and in vivo data demonstrate that PSA reversed LPS-induced IL-1β secretion, downregulated the TLR4/NF-κB signaling pathway and upregulated CYP2C19 and P-gp. To the best of our knowledge, this study is the first to show that PSA from the probiotic B. fragilis ameliorates abnormal voriconazole metabolism by inhibiting TLR4-mediated NF-κB transcription and regulating drug metabolizing enzyme and transporter expression. Thus, PSA could serve as a clinical adjunct therapy.
Collapse
Affiliation(s)
- Xiaokang Wang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Chunxiao Ye
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Tianrong Xun
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Liqian Mo
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Tong
- Department of Hematology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Wensi Ni
- Department of Pediatric, Shenzhen University General Hospital, Shenzhen, China
| | - Suping Huang
- Department of Intensive Care Unit, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Bin Liu
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xia Zhan
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xixiao Yang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Zhang Y, Zhao S, Wang C, Zhou P, Zhai S. Application of a Physiologically Based Pharmacokinetic Model to Characterize Time-dependent Metabolism of Voriconazole in Children and Support Dose Optimization. Front Pharmacol 2021; 12:636097. [PMID: 33815119 PMCID: PMC8010309 DOI: 10.3389/fphar.2021.636097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Voriconazole is a potent antifungal drug with complex pharmacokinetics caused by time-dependent inhibition and polymorphisms of metabolizing enzymes. It also exhibits different pharmacokinetic characteristics between adults and children. An understanding of these alterations in pharmacokinetics is essential for pediatric dose optimization. Objective: To determine voriconazole plasma exposure in the pediatric population and further investigate optimal dosage regimens. Methods: An adult and pediatric physiologically based pharmacokinetic (PBPK) model of voriconazole, integrating auto-inhibition of cytochrome P450 3A4 (CYP3A4) and CYP2C19 gene polymorphisms, was developed. The model was evaluated with visual predictive checks and quantitative measures of the predicted/observed ratio of the area under the plasma concentration-time curve (AUC) and maximum concentration (Cmax). The validated pediatric PBPK model was used in simulations to optimize pediatric dosage regimens. The probability of reaching a ratio of free drug (unbound drug concentration) AUC during a 24-h period to minimum inhibitory concentration greater than or equal to 25 (fAUC24h/MIC ≥ 25) was assessed as the pharmacokinetic/pharmacodynamic index. Results: The developed PBPK model well represented voriconazole's pharmacokinetic characteristics in adults; 78% of predicted/observed AUC ratios and 85% of Cmax ratios were within the 1.25-fold range. The model maintained satisfactory prediction performance for intravenous administration in pediatric populations after incorporating developmental changes in anatomy/physiology and metabolic enzymes, with all predicted AUC values within 2-fold and 73% of the predicted Cmax within 1.25-fold of the observed values. The simulation results of the PBPK model suggested that different dosage regimens should be administered to children according to their age, CYP2C19 genotype, and infectious fungal genera. Conclusion: The PBPK model integrating CYP3A4 auto-inhibition and CYP2C19 gene polymorphisms successfully predicted voriconazole pharmacokinetics during intravenous administration in children and could further be used to optimize dose strategies. The infectious fungal genera should be considered in clinical settings, and further research with large sample sizes is required to confirm the current findings.
Collapse
Affiliation(s)
- Yahui Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Sixuan Zhao
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Chuhui Wang
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Pengxiang Zhou
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Suodi Zhai
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
26
|
Population Pharmacokinetics of Voriconazole in Patients With Invasive Aspergillosis: Serum Albumin Level as a Novel Marker for Clearance and Dosage Optimization. Ther Drug Monit 2020; 42:872-879. [PMID: 32947557 DOI: 10.1097/ftd.0000000000000799] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Voriconazole (VRCZ) is an antifungal triazole recommended as an effective first-line agent for treating invasive aspergillosis. OBJECTIVES To develop a population pharmacokinetic model of VRCZ and trough concentration-based dosing simulation for dynamic patient conditions. METHODS The authors combined plasma VRCZ data from intensive sampling, and retrospective trough concentration monitoring for analysis. Nonlinear mixed-effects modeling with subsequent model validation was performed. The recommended dosage regimens were simulated based on the developed model. RESULTS The study participants included 106 patients taking oral VRCZ. A linear one-compartment model with first-order elimination and absorption best described the observed data. The CYP2C19 phenotypes did not influence the pharmacokinetic parameters. Serum albumin (SA) levels and gamma-glutamyl transferase significantly correlated with the VRCZ clearance rate, whereas the actual body weight influenced the volume. A visual predictive check showed good consistency with the observed data, whereas SA levels across the treatment course correlated with linear clearance, irrespective of the CYP2C19 phenotype. Patients with SA levels ≤30 g/L had lower linear clearance than that in patients with SA levels >30 g/L. Dosing simulation based on the developed model indicated that patients with SA levels of ≤30 g/L required a lower daily maintenance dose to attain the therapeutic trough level. CONCLUSIONS SA level was identified as a novel marker associated with VRCZ clearance. This marker may be a practical choice for physicians to perform therapeutic drug monitoring and optimize VRCZ dosage.
Collapse
|
27
|
Zhao YC, Lin XB, Zhang BK, Xiao YW, Xu P, Wang F, Xiang DX, Xie XB, Peng FH, Yan M. Predictors of Adverse Events and Determinants of the Voriconazole Trough Concentration in Kidney Transplantation Recipients. Clin Transl Sci 2020; 14:702-711. [PMID: 33202102 PMCID: PMC7993276 DOI: 10.1111/cts.12932] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Voriconazole is the mainstay for the treatment of invasive fungal infections in patients who underwent a kidney transplant. Variant CYP2C19 alleles, hepatic function, and concomitant medications are directly involved in the metabolism of voriconazole. However, the drug is also associated with numerous adverse events. The purpose of this study was to identify predictors of adverse events using binary logistic regression and to measure its trough concentration using multiple linear modeling. We conducted a prospective analysis of 93 kidney recipients cotreated with voriconazole and recorded 213 trough concentrations of it. Predictors of the adverse events were voriconazole trough concentration with the odds ratios (OR) of 2.614 (P = 0.016), cytochrome P450 2C19 (CYP2C19), and hemoglobin (OR 0.181, P = 0.005). The predictive power of these three factors was 91.30%. We also found that CYP2C19 phenotypes, hemoglobin, platelet count, and concomitant use of ilaprazole had quantitative relationships with voriconazole trough concentration. The fit coefficient of this regression equation was R2 = 0.336, demonstrating that the model explained 33.60% of interindividual variability in the disposition of voriconazole. In conclusion, predictors of adverse events are CYP2C19 phenotypes, hemoglobin, and voriconazole trough concentration. Determinants of the voriconazole trough concentration were CYP2C19 phenotypes, platelet count, hemoglobin, concomitant use of ilaprazole. If we consider these factors during voriconazole use, we are likely to maximize the treatment effect and minimize adverse events.
Collapse
Affiliation(s)
- Yi-Chang Zhao
- Department of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xiao-Bin Lin
- Department of Pharmacy, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bi-Kui Zhang
- Department of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yi-Wen Xiao
- Department of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ping Xu
- Department of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Feng Wang
- Department of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Da-Xiong Xiang
- Department of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xu-Biao Xie
- Department of Urological Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng-Hua Peng
- Department of Urological Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Miao Yan
- Department of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
28
|
Wang X, Zhao J, Wen T, Liao X, Luo B. Predictive Value of FMO3 Variants on Plasma Disposition and Adverse Reactions of Oral Voriconazole in Febrile Neutropenia. Pharmacology 2020; 106:202-210. [PMID: 32998136 DOI: 10.1159/000510327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/20/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND OBJECTIVES With the increasing number of patients with febrile neutropenia (FN), voriconazole (VRC) has been widely used in hospitals for first-line treatment of FN. The study was designed for evaluating the influence of FMO3 mutation on the plasma disposition and adverse reactions of VRC in FN. MATERIALS AND METHODS A single-center observational study was conducted in the inpatient ward for 4 years. The genotypes of FMO3 and cytochrome P450 (CYP) 2C19 were detected by PCR-restriction fragment length polymorphism. Patients with neutropenia were screened according to the CYP2C19 metabolic phenotype and other inclusion criteria. Five days after empirical administration of VRC, blood concentrations of VRC and nitrogen oxides in patients' blood were determined by liquid chromatography-electrospray tandem mass spectrometry (LC-ESI MS/MS). Serum parameters and clinical adverse reaction symptoms in the medical records were collected and statistically analyzed. RESULTS A total of 165 patients with neutropenia with the intermediate metabolic phenotype of CYP2C19 were screened. At the initial stage of oral VRC treatment, patients with the FMO3 E308G genotype had a poorer plasma disposal ability to VRC than those with the wide type of FMO3 (WT) genotype (p = 0.0005). Moreover, patients with the FMO3 E308G genotype were more likely to have adverse drug reactions and abnormal serum parameters after receiving VRC treatment. For example, the serum potassium level in the FMO3 E308G genotype group was significantly lower than that in the WT group (p = 0.028), the abnormal level of total bilirubin in the FMO3 E308G genotype group was significantly higher than that in the WT group (p = 0.049), and the aspartate aminotransferase level in the E308G group was significantly higher than that in the WT group (p = 0.05). The incidence of atopic dermatitis and visual impairment in the FMO3 E308G genotype group was 67 and 75%, respectively, and the incidences of peripheral neuroedema, headache, and diarrhea were 57, 50, and 60%, respectively, which were significantly different from those in the WT group. CONCLUSION FMO3 E308G reduces the activity of the FMO3 enzyme by decreasing the metabolic ability of VRC, which increases the plasma concentration of VRC and may also lead to adverse reactions in patients with FN.
Collapse
Affiliation(s)
- Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China,
| | - Jingjing Zhao
- Department of Pharmacy, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ting Wen
- Department of Pharmacology, Wuhan Mental Health Center Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xueyi Liao
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Bin Luo
- Department of Pharmacy, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
29
|
Impact of Albumin and Omeprazole on Steady-State Population Pharmacokinetics of Voriconazole and Development of a Voriconazole Dosing Optimization Model in Thai Patients with Hematologic Diseases. Antibiotics (Basel) 2020; 9:antibiotics9090574. [PMID: 32899425 PMCID: PMC7557832 DOI: 10.3390/antibiotics9090574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 01/16/2023] Open
Abstract
This study aimed to identify factors that significantly influence the pharmacokinetics of voriconazole in Thai adults with hematologic diseases, and to determine optimal voriconazole dosing regimens. Blood samples were collected at steady state in 65 patients (237 concentrations) who were taking voriconazole to prevent or treat invasive aspergillosis. The data were analyzed using a nonlinear mixed-effects modeling approach. Monte Carlo simulation was applied to optimize dosage regimens. Data were fitted with the one-compartment model with first-order absorption and elimination. The apparent oral clearance (CL/F) was 3.43 L/h, the apparent volume of distribution (V/F) was 47.6 L, and the absorption rate constant (Ka) was fixed at 1.1 h−1. Albumin and omeprazole ≥ 40 mg/day were found to significantly influence CL/F. The simulation produced the following recommended maintenance doses of voriconazole: 50, 100, and 200 mg every 12 h for albumin levels of 1.5–3, 3.01–4, and 4.01–4.5 g/dL, respectively, in patients who receive omeprazole ≤ 20 mg/day. Patients who receive omeprazole ≥ 40 mg/day and who have serum albumin level 1.5–3 and 3.01–4.5 g/dL should receive voriconazole 50 and 100 mg, every 12 h, respectively. Albumin level and omeprazole dosage should be carefully considered when determining the appropriate dosage of voriconazole in Thai patients.
Collapse
|
30
|
Kim HY, Märtson AG, Dreesen E, Spriet I, Wicha SG, McLachlan AJ, Alffenaar JW. Saliva for Precision Dosing of Antifungal Drugs: Saliva Population PK Model for Voriconazole Based on a Systematic Review. Front Pharmacol 2020; 11:894. [PMID: 32595511 PMCID: PMC7304296 DOI: 10.3389/fphar.2020.00894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/01/2020] [Indexed: 12/16/2022] Open
Abstract
Precision dosing for many antifungal drugs is now recommended. Saliva sampling is considered as a non-invasive alternative to plasma sampling for therapeutic drug monitoring (TDM). However, there are currently no clinically validated saliva models available. The aim of this study is firstly, to conduct a systematic review to evaluate the evidence supporting saliva-based TDM for azoles, echinocandins, amphotericin B, and flucytosine. The second aim is to develop a saliva population pharmacokinetic (PK) model for eligible drugs, based on the evidence. Databases were searched up to July 2019 on PubMed® and Embase®, and 14 studies were included in the systematic review for fluconazole, voriconazole, itraconazole, and ketoconazole. No studies were identified for isavuconazole, posaconazole, flucytosine, amphotericin B, caspofungin, micafungin, or anidulafungin. Fluconazole and voriconazole demonstrated a good saliva penetration with an average S/P ratio of 1.21 (± 0.31) for fluconazole and 0.56 (± 0.18) for voriconazole, both with strong correlation (r = 0.89-0.98). Based on the evidence for TDM and available data, population PK analysis was performed on voriconazole using Nonlinear Mixed Effects Modeling (NONMEM 7.4). 137 voriconazole plasma and saliva concentrations from 11 patients (10 adults, 1 child) were obtained from the authors of the included study. Voriconazole pharmacokinetics was best described by one-compartment PK model with first-order absorption, parameterized by clearance of 4.56 L/h (36.9% CV), volume of distribution of 60.7 L, absorption rate constant of 0.858 (fixed), and bioavailability of 0.849. Kinetics of the voriconazole distribution from plasma to saliva was identical to the plasma kinetics, but the extent of distribution was lower, modeled by a scale factor of 0.5 (4% CV). A proportional error model best accounted for the residual variability. The visual and simulation-based model diagnostics confirmed a good predictive performance of the saliva model. The developed saliva model provides a promising framework to facilitate saliva-based precision dosing of voriconazole.
Collapse
Affiliation(s)
- Hannah Yejin Kim
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Department of Pharmacy, Westmead Hospital, Westmead, NSW, Australia
- Marie Bashir Institute of Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia
| | - Anne-Grete Märtson
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, Netherlands
| | - Erwin Dreesen
- Department of Pharmaceutical and Pharmacological Sciences, Clinical Pharmacology and Pharmacotherapy, KU Leuven, Leuven, Belgium
| | - Isabel Spriet
- Department of Pharmaceutical and Pharmacological Sciences, Clinical Pharmacology and Pharmacotherapy, KU Leuven, Leuven, Belgium
- Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
| | - Sebastian G. Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| | - Andrew J. McLachlan
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Jan-Willem Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Department of Pharmacy, Westmead Hospital, Westmead, NSW, Australia
- Marie Bashir Institute of Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
31
|
|
32
|
Shen J, Wang B, Wang S, Chen F, Meng D, Jiang H, Zhou Y, Geng P, Zhou Q, Liu B. Effects of Voriconazole on the Pharmacokinetics of Vonoprazan in Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2199-2206. [PMID: 32581516 PMCID: PMC7280087 DOI: 10.2147/dddt.s255427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Purpose The purpose of this study was to examine the effects of voriconazole on the pharmacokinetics of vonoprazan. Methods Fifteen Sprague-Dawley rats were randomly divided into three groups: five rats in each group, including control group, single-dose group (a single dose of 30 mg/kg of voriconazole), and multiple-dose group (multiple doses of 30 mg/(kg•day) per dose of voriconazole). Each group of rats was given an oral dose of 10 mg/kg vonoprazan 30 min after the administration of voriconazole or vehicle. After the oral administration of vonoprazan, 50 µL of blood was collected into 1.5-mL heparinized tubes via the caudal vein. The concentration of vonoprazan in plasma was quantified by ultra-performance liquid chromatography/tandem mass spectrometry. Both in vitro effects of voriconazole on vonoprazan and the mechanism of the observed inhibition were studied in rat liver microsomes. Results When orally administered, voriconazole increased the area under the plasma concentration-time curve (AUC), prolonged the elimination half-life (t1/2), and decreased the clearance (CL) of vonoprazan; there was no significant difference between the single-dose and multiple-dose groups. Voriconazole inhibited the metabolism of vonoprazan at an IC50 of 2.93 μM and showed mixed inhibition. The results of the in vivo experiments were consistent with those of the in vitro experiments. Conclusion Our findings provide the evidence of drug-drug interactions between voriconazole and vonoprazan that could occur with pre-administration of voriconazole. Thus, clinicians should pay attention to the resulting changes in pharmacokinetic parameters and accordingly, adjust the dose of vonoprazan in clinical settings.
Collapse
Affiliation(s)
- Jiquan Shen
- Department of Orthopaedics, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China
| | - Bo Wang
- Department of Orthopaedics, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China
| | - Shuanghu Wang
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China.,School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Feifei Chen
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China
| | - Deru Meng
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China
| | - Hui Jiang
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China
| | - Yunfang Zhou
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China
| | - Peiwu Geng
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China
| | - Quan Zhou
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China
| | - Bin Liu
- Department of Orthopaedics, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China
| |
Collapse
|
33
|
Applying Pharmacogenomics to Antifungal Selection and Dosing: Are We There Yet? CURRENT FUNGAL INFECTION REPORTS 2020; 14:63-75. [PMID: 32256938 DOI: 10.1007/s12281-020-00371-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Purpose of Review This review summarizes recent literature for applying pharmacogenomics to antifungal selection and dosing, providing an approach to implementing antifungal pharmacogenomics in clinical practice. Recent Findings The Clinical Pharmacogenetics Implementation Consortium published guidelines on CYP2C19 and voriconazole, with recommendations to use alternative antifungals or adjust voriconazole dose with close therapeutic drug monitoring (TDM). Recent studies demonstrate an association between CYP2C19 phenotype and voriconazole levels, clinical outcomes, and adverse events. Additionally, CYP2C19-guided preemptive dose adjustment demonstrated benefit in two prospective studies for prophylaxis. Pharmacokinetic-pharmacodynamic modeling studies have generated proposed voriconazole treatment doses based on CYP2C19 phenotypes, with further validation studies needed. Summary Sufficient evidence is available for implementing CYP2C19-guided voriconazole selection and dosing among select patients at risk for invasive fungal infections. The institution needs appropriate infrastructure for pharmacogenomic testing, integration of results in the clinical decision process, with TDM confirmation of goal trough achievement, to integrate antifungal pharmacogenomics into routine clinical care.
Collapse
|
34
|
Patel JN, Hamadeh IS, Robinson M, Shahid Z, Symanowski J, Steuerwald N, Hamilton A, Reese ES, Plesca DC, Arnall J, Taylor M, Trivedi J, Grunwald MR, Gerber J, Ghosh N, Avalos B, Copelan E. Evaluation of CYP2C19 Genotype-Guided Voriconazole Prophylaxis After Allogeneic Hematopoietic Cell Transplant. Clin Pharmacol Ther 2019; 107:571-579. [PMID: 31549386 DOI: 10.1002/cpt.1642] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/22/2019] [Indexed: 01/09/2023]
Abstract
There is a high risk of voriconazole failure in those with subtherapeutic drug concentrations, which is more common in CYP2C19 (cytochrome P450 2C19) rapid/ultrarapid metabolizers (RMs/UMs). We evaluated CYP2C19 genotype-guided voriconazole dosing on drug concentrations and clinical outcomes in adult allogeneic hematopoietic cell transplant recipients. Poor (PMs), intermediate (IMs), and normal metabolizers (NMs) received voriconazole 200 mg twice daily; RMs/UMs received 300 mg twice daily. Steady-state trough concentrations were obtained after 5 days, targeting 1.0-5.5 mg/L. Of 89 evaluable patients, 29% had subtherapeutic concentrations compared with 50% in historical controls (P < 0.001). Zero, 26%, 50%, and 16% of PMs, IMs, NMs, and RMs/UMs were subtherapeutic. Voriconazole success rate was 78% compared with 54% in historical controls (P < 0.001). No patients experienced an invasive fungal infection (IFI). Genotype-guided dosing resulted in $4,700 estimated per patient savings as compared with simulated controls. CYP2C19 genotype-guided voriconazole dosing reduced subtherapeutic drug concentrations and effectively prevented IFIs.
Collapse
Affiliation(s)
- Jai N Patel
- Department of Cancer Pharmacology, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Issam S Hamadeh
- Department of Cancer Pharmacology, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Myra Robinson
- Department of Biostatistics, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Zainab Shahid
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - James Symanowski
- Department of Biostatistics, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Nury Steuerwald
- Molecular Biology Core Laboratory, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Alicia Hamilton
- Molecular Biology Core Laboratory, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Emily S Reese
- Translational Research, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Dragos C Plesca
- Department of Pharmacy, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Justin Arnall
- Department of Pharmacy, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Margaret Taylor
- Department of Pharmacy, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Jigar Trivedi
- Department of Pharmacy, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Michael R Grunwald
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Jonathan Gerber
- Division of Hematology/Oncology, Department of Medicine, UMass Memorial Health Care, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Nilanjan Ghosh
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Belinda Avalos
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Edward Copelan
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| |
Collapse
|
35
|
Ren QX, Li XG, Mu JS, Bi JF, Du CH, Wang YH, Zhu H, Lv P, Zhao QG. Population Pharmacokinetics of Voriconazole and Optimization of Dosage Regimens Based on Monte Carlo Simulation in Patients With Liver Cirrhosis. J Pharm Sci 2019; 108:3923-3931. [PMID: 31562869 DOI: 10.1016/j.xphs.2019.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 12/21/2022]
Abstract
Because voriconazole metabolism is highly influenced by liver function, the dose regimen of voriconazole should be carefully assessed in patients with liver cirrhosis. We aimed to identify significant factors associated with plasma concentrations. Blood samples were collected from patients with liver cirrhosis who received voriconazole, and voriconazole concentrations were determined. One-compartment model with first-order absorption and elimination appropriately characterized the in vivo process of voriconazole. The typical population value of voriconazole clearance (CL) was 1.45 L/h and the volume of distribution (V) was 132.12 L. The covariate analysis identified that CYP2C19 gene phenotype and Child-Pugh classification were strongly associated with CL and body weight had a significant influence on V. The results of the Monte Carlo simulation suggested that CYP2C19 gene phenotype was a critical factor for determining voriconazole dosage in patients with liver cirrhosis. The extensive metabolizer patients with Aspergillus fumigatus infections could be treated effectively with a recommended dose of 75 mg twice daily in mild to moderate liver cirrhosis and 100 mg once daily in moderate severe liver cirrhosis. However, the recommended dosage for Candida albicans infections patients was not achieved in present study.
Collapse
Affiliation(s)
- Qiu-Xia Ren
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Xin-Gang Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jin-Song Mu
- Intensive Care Unit, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Jing-Feng Bi
- Research Center for Clinical and Translational Medicine, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Chun-Hui Du
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Yan-Hong Wang
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Hong Zhu
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Peng Lv
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Qing-Guo Zhao
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
36
|
Espinoza N, Galdames J, Navea D, Farfán MJ, Salas C. Frequency of the CYP2C19*17 polymorphism in a Chilean population and its effect on voriconazole plasma concentration in immunocompromised children. Sci Rep 2019; 9:8863. [PMID: 31222084 PMCID: PMC6586657 DOI: 10.1038/s41598-019-45345-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/03/2019] [Indexed: 11/09/2022] Open
Abstract
Invasive fungal infections (IFIs) are the most frequent cause of morbidity and mortality in immunocompromised children. Voriconazole is the first-line antifungal choice in the treatment of IFIs like aspergillosis. Voriconazole pharmacokinetics vary widely among patients and voriconazole is metabolized mainly in the liver by the CYP2C19 enzyme, which is highly polymorphic. The CYP2C19*17 allele is characterized by the presence of four single nucleotide polymorphisms expressing an ultra-rapid enzyme phenotype with an accelerated voriconazole metabolism, is associated with low (sub-therapeutic) plasma levels in patients treated with the standard dose. Considering that in our center a high percentage of children have sub-therapeutic levels of voriconazole when treated with standard doses, we sought to determine the frequency of the CYP2C19*17 polymorphism (rs12248560) in a Chilean population and determine the association between voriconazole concentrations and the rs12248560 variant in immunocompromised children. First, we evaluated the frequency of the rs12248560 variant in a group of 232 healthy Chilean children, and we found that 180 children (77.6%) were non-carriers of the rs12248560 variant, 49 children (21.1%) were heterozygous carriers for rs12248560 variant and only 3 children (1.3%) were homozygous carriers for rs12248560 variant, obtaining an allelic frequency of 12% for variant in a Chilean population. To determine the association between voriconazole concentrations and the rs12248560 variant, we analyzed voriconazole plasma concentrations in a second group of 33 children treated with voriconazole. In these patients, carriers of the rs12248560 variant presented significantly lower voriconazole plasma concentrations than non-carriers (p = 0,011). In this study, we show the presence of the rs12248560 variant in a Chilean population and its accelerating effect on the pharmacokinetics of voriconazole in pediatric patients. From these data, it would be advisable to consider the variant of the patient prior to calculating the dosage of voriconazole.
Collapse
Affiliation(s)
- N Espinoza
- Laboratorio Clínico, Hospital Dr. Luis Calvo Mackenna, Santiago, Chile
| | - J Galdames
- Laboratorio Clínico, Hospital Dr. Luis Calvo Mackenna, Santiago, Chile
| | - D Navea
- Laboratorio Clínico, Hospital Dr. Luis Calvo Mackenna, Santiago, Chile
| | - M J Farfán
- Laboratorio Clínico, Hospital Dr. Luis Calvo Mackenna, Santiago, Chile. .,Departamento de Pediatría y Cirugía Infantil, Campus Oriente, Hospital Dr. Luis Calvo Mackenna, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | - C Salas
- Laboratorio Clínico, Hospital Dr. Luis Calvo Mackenna, Santiago, Chile.
| |
Collapse
|
37
|
Ray S, Balaini N, Chakravarty K, Pattanayak S, Goel A, Takkar A, Lal V. Special scenarios in the management of central nervous system aspergillosis: a case series and review of literature. Postgrad Med J 2019; 95:382-389. [DOI: 10.1136/postgradmedj-2018-136095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/14/2019] [Accepted: 04/07/2019] [Indexed: 12/12/2022]
Abstract
Aspergillus is a rare but important opportunistic pathogen to invade the central nervous system (CNS). It is a significant pathogen of not only immunocompromised but also immunocompetent patients. Its manifestations are pleiotropic, reflecting multiple mechanisms of pathogenesis and host interactions. Despite significant advances in diagnostic methods and therapeutic options, the mortality remains high. Several advances have been made in medications and surgical management, yet, current treatment practices lack uniformity. Patient woes are further heightened by the high costs of treatment and prolonged duration of therapy. In view of the challenging aspects of this disease, we present a short review of four challenging cases touching on the varied aspects of management of CNS aspergillosis covering pathogenesis, diagnostic pitfalls, surgical and medical options and evidence-based guidelines for the management of the same.
Collapse
|
38
|
Pharmacogenetic testing for the treatment of aspergillosis with voriconazole in two HIV-positive patients. Pharmacogenet Genomics 2019; 29:155-157. [PMID: 31211761 DOI: 10.1097/fpc.0000000000000377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Liu Y, Qiu T, Liu Y, Wang J, Hu K, Bao F, Zhang C. Model-based Voriconazole Dose Optimization in Chinese Adult Patients With Hematologic Malignancies. Clin Ther 2019; 41:1151-1163. [PMID: 31079860 DOI: 10.1016/j.clinthera.2019.04.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/06/2019] [Accepted: 04/15/2019] [Indexed: 11/29/2022]
Abstract
PURPOSE The objective of this study was to characterize the population pharmacokinetics of voriconazole and to identify factors that significantly affect pharmacokinetic parameters and to further investigate optimal dosage regimens in Chinese adult patients with hematologic malignancies. METHODS A prospective population pharmacokinetic analysis was performed on 186 concentration measurements obtained from 41 adult patients with hematologic malignancies. All enrolled patients were treated with voriconazole for diagnosed or suspected invasive fungal diseases. Oral voriconazole was routinely administered at a maintenance dose of 200 mg q12h. Serial blood samples were collected after steady-state of each patient. Monte Carlo simulation was applied to optimize dosage strategies. FINDINGS A one-compartment model with first-order absorption and elimination adequately described the data. The typical voriconazole clearance was 4.18 L/h, the volume of distribution was 88.9 L, and the absorption rate constant was 0.729 h-1. Clearance and steady-state exposure (AUC0-12) were found to be significantly associated with age and CYP2C19 phenotype. The average AUC0-12 of elderly patients (aged 60-90 years) was 2.1 times higher than that of relative younger patients (aged 18-59 years). The average AUC0-12 of poor metabolizers (PMs) was approximately 2.5 and 1.8 times higher than that of extensive and intermediate metabolizers (IMs), respectively. Considering both efficacy and tolerability, dosage regimens of 100 and 50 mg orally administered every 12 hours were recommended for elderly IMs and PMs, respectively. IMPLICATIONS A population pharmacokinetic model for voriconazole in Chinese adult patients with hematologic malignancies was successfully developed and could well capture voriconazole's pharmacokinetic characteristics. Age and CYP2C19 phenotype were found to significantly influence voriconazole clearance and should be taken into consideration clinically for dose optimization. The optimal dosage strategies in specific clinical scenarios were proposed in this study based on model simulation. Because of the high incidence of mutant CYP2C19*2 and *3 alleles, genetic testing seems to be necessary for Asian elderly patients when voriconazole treatment is initiated.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pharmacy, Peking University Third Hospital, Beijing, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Centre, Beijing, China
| | - Tingting Qiu
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Yan Liu
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Jijun Wang
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Kai Hu
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Fang Bao
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Chao Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing, China; Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
40
|
Successful Release of Voriconazole and Flavonoids from MAPLE Deposited Bioactive Surfaces. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9040786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We explored the potential of biomimetic thin films fabricated by means of matrix-assisted pulsed laser evaporation (MAPLE) for releasing combinations of active substances represented by flavonoids (quercetin dihydrate and resveratrol) and antifungal compounds (amphotericin B and voriconazole) embedded in a polyvinylpyrrolidone biopolymer; the antifungal activity of the film components was evaluated using in vitro microbiological assays. Thin films were deposited using a pulsed KrF* excimer laser source which were structurally characterized using atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR). High-quality thin films with chemical structures similar to dropcast ones were created using an optimum laser fluence of ~80 mJ/cm2. Bioactive substances were included within the polymer thin films using the MAPLE technique. The results of the in vitro microbiology assay, which utilized a modified disk diffusion approach and were performed using two fungal strains (Candida albicans American Type Culture Collection (ATCC) 90028 and Candida parapsilosis American Type Culture Collection (ATCC) 22019), revealed that voriconazole was released in an active form from the polyvinylpyrrolidone matrix. The results of this study show that the MAPLE-deposited bioactive thin films have a promising potential for use in designing combination devices, such as drug delivery devices, and medical device surfaces with antifungal activity.
Collapse
|
41
|
Kim Y, Rhee SJ, Park WB, Yu KS, Jang IJ, Lee S. A Personalized CYP2C19 Phenotype-Guided Dosing Regimen of Voriconazole Using a Population Pharmacokinetic Analysis. J Clin Med 2019; 8:E227. [PMID: 30744151 PMCID: PMC6406770 DOI: 10.3390/jcm8020227] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 12/11/2022] Open
Abstract
Highly variable and non-linear pharmacokinetics of voriconazole are mainly caused by CYP2C19 polymorphisms. This study aimed to develop a mechanistic population pharmacokinetic model including the CYP2C19 phenotype, and to assess the appropriateness of various dosing regimens based on the therapeutic target. A total of 1,828 concentrations from 193 subjects were included in the population pharmacokinetic analysis. A three-compartment model with an inhibition compartment appropriately described the voriconazole pharmacokinetics reflecting auto-inhibition. Voriconazole clearance in the CYP2C19 intermediate metabolizers (IMs) and poor metabolizers (PMs) decreased by 17% and 53% compared to that in the extensive metabolizers (EMs). There was a time-dependent inhibition of clearance to 16.2% of its original value in the CYP2C19 EMs, and the extent of inhibition differed according to the CYP2C19 phenotypes. The proposed CYP2C19 phenotype-guided initial dosing regimens are 400 mg twice daily (bid) for EMs, 200 mg bid for IMs, and 100 mg bid for PMs. This CYP2C19 phenotype-guided initial dosing regimen will provide a rationale for individualizing the optimal voriconazole therapy.
Collapse
Affiliation(s)
- Yun Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea.
| | - Su-Jin Rhee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea.
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea.
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea.
| | - In-Jin Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea.
| | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea.
| |
Collapse
|
42
|
|
43
|
Cojutti PG, Merelli M, Allegri L, Damante G, Bassetti M, Pea F. Successful and safe long-term treatment of cerebral aspergillosis with high-dose voriconazole guided by therapeutic drug monitoring. Br J Clin Pharmacol 2018; 85:266-269. [PMID: 30414213 DOI: 10.1111/bcp.13789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/17/2018] [Accepted: 10/02/2018] [Indexed: 12/26/2022] Open
Abstract
We report the case of a patient who had cerebral aspergillosis after otorhinolaryngologic surgery and who was successfully and safely treated with high-dose voriconazole (200 mg q6h) for more than 1 year thanks to a TDM-guided approach coupled with pharmacological review and with genotyping of CYP2C19 polymorphisms. The findings support the idea that personalized medicine based on TDM coupled with the need of avoiding drug-drug interactions may be helpful for maximizing the net benefit (probability of efficacy vs. probability of adverse events) of voriconazole in the management of long-term treatment of cerebral aspergillosis.
Collapse
Affiliation(s)
- Pier Giorgio Cojutti
- Department of Medicine, University of Udine, Udine, Italy.,Institute of Clinical Pharmacology, Santa Maria della Misericordia University Hospital, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Maria Merelli
- Clinic of Infectious Diseases, Santa Maria della Misericordia University Hospital, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Lorenzo Allegri
- Department of Medicine, University of Udine, Udine, Italy.,Institute of Medical Genetic, Santa Maria della Misericordia University Hospital, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Giuseppe Damante
- Department of Medicine, University of Udine, Udine, Italy.,Institute of Medical Genetic, Santa Maria della Misericordia University Hospital, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Matteo Bassetti
- Department of Medicine, University of Udine, Udine, Italy.,Clinic of Infectious Diseases, Santa Maria della Misericordia University Hospital, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Federico Pea
- Department of Medicine, University of Udine, Udine, Italy.,Institute of Clinical Pharmacology, Santa Maria della Misericordia University Hospital, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| |
Collapse
|