1
|
Elbatrawy AA, Ademoye TA, Alnakhala H, Tripathi A, Zami A, Ostafe R, Dettmer U, Fortin JS. Discovery of small molecule benzothiazole and indole derivatives tackling tau 2N4R and α-synuclein fibrils. Bioorg Med Chem 2024; 100:117613. [PMID: 38330847 PMCID: PMC10921547 DOI: 10.1016/j.bmc.2024.117613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Tau and α-synuclein aggregates are the main histopathological hallmarks present in Alzheimer's disease (AD), Parkinson's disease (PD), and other neurodegenerative disorders. Intraneuronal hyperphosphorylated tau accumulation is significantly connected to the degree of cognitive impairment in AD patients. In particular, the longest 2N4R tau isoform has a propensity to rapidly form oligomers and mature fibrils. On the other hand, misfolding of α-synuclein (α-syn) is the characteristic feature in PD and dementia with Lewy bodies (DLB). There is a strong crosstalk between the two prone-to-aggregation proteins as they coprecipitated in some brains of AD, PD, and DLB patients. Simultaneous targeting of both proteinaceous oligomers and aggregates is still challenging. Here, we rationally designed and synthesized benzothiazole- and indole-based compounds using the structural hybridization strategy between the benzothiazole N744 cyanine dye and the diphenyl pyrazole Anle138b that showed anti-aggregation activity towards 2N4R tau and α-syn, respectively. The anti-aggregation effect of the prepared compounds was monitored using the thioflavin-T (ThT) fluorescence assay, while transmission electron microscopy (TEM) was employed to detect fibrils upon the completion of a time-course study with the ThT assay. Moreover, the photo-induced crosslinking of unmodified protein (PICUP) assay was used to determine the formation of oligomers. Specifically, compounds 46 and 48 demonstrated the highest anti-aggregation activity by decreasing the ThT fluorescence to 4.0 and 14.8%, respectively, against α-syn. Although no noticeable effect on 2N4R tau oligomers, 46 showed promising anti-oligomer activity against α-syn. Both compounds induced a significantly high anti-aggregation effect against the two protein fibrils as visualized by TEM. Moreover, compound 48 remarkably inhibited α-syn inclusion and cell confluence using M17D cells. Collectively, compounds 46 and 48 could serve as a basic structure for further optimization to develop clinically active AD and PD disease-modifying agents.
Collapse
Affiliation(s)
- Ahmed A Elbatrawy
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Taiwo A Ademoye
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Heba Alnakhala
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Arati Tripathi
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ashique Zami
- Molecular Evolution, Protein Engineering, and Production facility in Discovery Park, Purdue University, West Lafayette, IN 47907, USA
| | - Raluca Ostafe
- Molecular Evolution, Protein Engineering, and Production facility in Discovery Park, Purdue University, West Lafayette, IN 47907, USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jessica S Fortin
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
2
|
Klemmensen MM, Borrowman SH, Pearce C, Pyles B, Chandra B. Mitochondrial dysfunction in neurodegenerative disorders. Neurotherapeutics 2024; 21:e00292. [PMID: 38241161 PMCID: PMC10903104 DOI: 10.1016/j.neurot.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/07/2023] [Indexed: 01/21/2024] Open
Abstract
Recent advances in understanding the role of mitochondrial dysfunction in neurodegenerative diseases have expanded the opportunities for neurotherapeutics targeting mitochondria to alleviate symptoms and slow disease progression. In this review, we offer a historical account of advances in mitochondrial biology and neurodegenerative disease. Additionally, we summarize current knowledge of the normal physiology of mitochondria and the pathogenesis of mitochondrial dysfunction, the role of mitochondrial dysfunction in neurodegenerative disease, current therapeutics and recent therapeutic advances, as well as future directions for neurotherapeutics targeting mitochondrial function. A focus is placed on reactive oxygen species and their role in the disruption of telomeres and their effects on the epigenome. The effects of mitochondrial dysfunction in the etiology and progression of Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease are discussed in depth. Current clinical trials for mitochondria-targeting neurotherapeutics are discussed.
Collapse
Affiliation(s)
- Madelyn M Klemmensen
- University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, IA 52242, USA
| | - Seth H Borrowman
- Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Colin Pearce
- Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Benjamin Pyles
- Aper Funis Research, Union River Innovation Center, Ellsworth, ME 04605, USA
| | - Bharatendu Chandra
- University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, IA 52242, USA; Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA.
| |
Collapse
|
3
|
Zhang L, Guo Y, Liu J, Li L, Wang Y, Wu X, Bai Y, Li J, Zhang Q, Hui Y. Transcranial direct current stimulation of the prefrontal cortex improves depression-like behaviors in rats with Parkinson's disease. Brain Res 2024; 1822:148649. [PMID: 37923003 DOI: 10.1016/j.brainres.2023.148649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/28/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Depression associated with Parkinson's disease (PD) seriously affects patients, and there is a lack of effective treatments. Transcranial direct current stimulation (tDCS) is increasingly used as a new non-invasive neuromodulation technique in the treatment of neuropsychiatric diseases. However, there is a paucity of research on tDCS for PD-related depression. Our study used PD model rats established with unilateral destruction of the medial forebrain bundle (MFB) to observe the modulatory effects of tDCS acting on the mPFC on depression-like behaviors. We found that tDCS acting on the mPFC improved depression-like behaviors in PD model rats by increasing sucrose intake in sucrose preference test (n = 7-10 rats/group) and shortening immobility time in forced swimming test (n = 7-8 rats/group). Meanwhile, tDCS decreased the expression of c-Fos protein (n = 8-11 rats/group) and the excitation of glutamatergic neurons (n = 6-8 rats/group) in the PrL and LHb of PD model rats. Western blots showed that tDCS decreased the overexpression of serine 845 phosphorylation site of AMPA receptor GluR1 (p-GluR1-S845) in the PrL and LHb of PD model rats (n = 8-11 rats/group), and the overexpression of p-GluR1-S831 in the LHb (n = 8-11 rats/group). The results of this study show that tDCS acting on the mPFC helps to improve PD-related depression, which involves the modulation of excitability and AMPA receptor phosphorylation on the PrL and LHb neurons.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Libo Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Yixuan Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiang Wu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Yihua Bai
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Jing Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Qiaojun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China.
| | - Yanping Hui
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
4
|
Lau K, Porschen LT, Richter F, Gericke B. Microvascular blood-brain barrier alterations in isolated brain capillaries of mice over-expressing alpha-synuclein (Thy1-aSyn line 61). Neurobiol Dis 2023; 187:106298. [PMID: 37716515 DOI: 10.1016/j.nbd.2023.106298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/22/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
Dysfunction of the blood-brain barrier (BBB) is suggested to play a critical role in the pathological mechanisms of Parkinson's disease (PD). PD-related pathology such as alpha-synuclein accumulation and inflammatory processes potentially affect the integrity of the BBB early in disease progression, which in turn may alter the crosstalk of the central and peripheral immune response. Importantly, BBB dysfunction could also affect drug response in PD. Here we analyzed microvascular changes in isolated brain capillaries and brain sections on a cellular and molecular level during disease progression in an established PD mouse model that overexpresses human wild-type alpha-synuclein (Thy1-aSyn, line 61). BBB alterations observed in Thy1-aSyn mice included reduced vessel density, reduced aquaporin-4 coverage, reduced P-glycoprotein expression, increased low-density lipoprotein receptor-related protein 1 expression, increased pS129-alpha-synuclein deposition, and increased adhesion protein and matrix metalloprotease expression together with alterations in tight junction proteins. Striatal capillaries presented with more dysregulated BBB integrity markers compared to cortical capillaries. These alterations of BBB integrity lead, however, not to an overt IgG leakage in brain parenchyma. Our data reveals intricate alterations in key proteins of BBB function together with histological evidence for altered structure of the brain vasculature. Thy1-aSyn mice represent a useful model to investigate therapeutic targeting of BBB alterations in synucleinopathies.
Collapse
Affiliation(s)
- Kristina Lau
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - Lisa T Porschen
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - Birthe Gericke
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
5
|
Parkinson's Disease, Parkinsonisms, and Mitochondria: the Role of Nuclear and Mitochondrial DNA. Curr Neurol Neurosci Rep 2023; 23:131-147. [PMID: 36881253 DOI: 10.1007/s11910-023-01260-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE OF REVIEW Overwhelming evidence indicates that mitochondrial dysfunction is a central factor in Parkinson's disease (PD) pathophysiology. This paper aims to review the latest literature published, focusing on genetic defects and expression alterations affecting mitochondria-associated genes, in support of their key role in PD pathogenesis. RECENT FINDINGS Thanks to the use of new omics approaches, a growing number of studies are discovering alterations affecting genes with mitochondrial functions in patients with PD and parkinsonisms. These genetic alterations include pathogenic single-nucleotide variants, polymorphisms acting as risk factors, and transcriptome modifications, affecting both nuclear and mitochondrial genes. We will focus on alterations of mitochondria-associated genes described by studies conducted on patients or on animal/cellular models of PD or parkinsonisms. We will comment how these findings can be taken into consideration for improving the diagnostic procedures or for deepening our knowledge on the role of mitochondrial dysfunctions in PD.
Collapse
|
6
|
Richter F, Stanojlovic M, Käufer C, Gericke B, Feja M. A Mouse Model to Test Novel Therapeutics for Parkinson's Disease: an Update on the Thy1-aSyn ("line 61") Mice. Neurotherapeutics 2023; 20:97-116. [PMID: 36715870 PMCID: PMC10119371 DOI: 10.1007/s13311-022-01338-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/31/2023] Open
Abstract
Development of neuroprotective therapeutics for Parkinson's disease (PD) is facing a lack of translation from pre-clinical to clinical trials. One strategy for improvement is to increase predictive validity of pre-clinical studies by using extensively characterized animal models with a comprehensive set of validated pharmacodynamic readouts. Mice over-expressing full-length, human, wild-type alpha-synuclein under the Thy-1 promoter (Thy1-aSyn line 61) reproduce key features of sporadic PD, such as progressive loss of striatal dopamine, alpha-synuclein pathology, deficits in motor and non-motor functions, and elevation of inflammatory markers. Extensive work with this model by multiple laboratories over the past decade further increased confidence in its robustness and validity, especially for analyzing pathomechanisms of alpha-synuclein pathology and down-stream pathways, and for pre-clinical drug testing. Interestingly, while postnatal transgene expression is widespread in central and peripheral neurons, the extent and progression of down-stream pathology differs between brain regions, thereby replicating the characteristic selective vulnerability of neurodegenerative diseases. In-depth characterization of these readouts in conjunction with behavioral deficits has led to more informative endpoints for pre-clinical trials. Each drug tested in Thy1-aSyn line 61 enhances knowledge on how molecular targets, pathology, and functional behavioral readouts are interconnected, thereby further optimizing the platform towards predictive validity for clinical trials. Here, we present the current state of the art using Thy1-aSyn line 61 for drug target discovery, validation, and pre-clinical testing.
Collapse
Affiliation(s)
- Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany.
- Center for Systems Neuroscience Hannover, Hannover, Germany.
| | - Milos Stanojlovic
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Christopher Käufer
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Birthe Gericke
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Malte Feja
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| |
Collapse
|
7
|
Chopade P, Chopade N, Zhao Z, Mitragotri S, Liao R, Chandran Suja V. Alzheimer's and Parkinson's disease therapies in the clinic. Bioeng Transl Med 2023; 8:e10367. [PMID: 36684083 PMCID: PMC9842041 DOI: 10.1002/btm2.10367] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 01/25/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most prevalent neurodegenerative diseases, affecting millions and costing billions each year in the United States alone. Despite tremendous progress in developing therapeutics that manage the symptoms of these two diseases, the scientific community has yet to develop a treatment that effectively slows down, inhibits, or cures neurodegeneration. To gain a better understanding of the current therapeutic frontier for the treatment of AD and PD, we provide a review on past and present therapeutic strategies for these two major neurodegenerative disorders in the clinical trial process. We briefly recap currently US Food and Drug Administration-approved therapies, and then explore trends in clinical trials across the variables of therapy mechanism of disease intervention, administration route, use of delivery vehicle, and outcome measures, across the clinical phases over time for "Drug" and "Biologic" therapeutics. We then present the success rate of past clinical trials and analyze the intersections in therapeutic approaches for AD and PD, revealing the shift in clinical trials away from therapies targeting neurotransmitter systems that provide symptomatic relief, and towards anti-aggregation, anti-inflammatory, anti-oxidant, and regeneration strategies that aim to inhibit the root causes of disease progression. We also highlight the evolving distribution of the types of "Biologic" therapies investigated, and the slowly increasing yet still severe under-utilization of delivery vehicles for AD and PD therapeutics. We then briefly discuss novel preclinical strategies for treating AD and PD. Overall, this review aims to provide a succinct overview of the clinical landscape of AD and PD therapies to better understand the field's therapeutic strategy in the past and the field's evolution in approach to the present, to better inform how to effectively treat AD and PD in the future.
Collapse
Affiliation(s)
| | | | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of PharmacyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Samir Mitragotri
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringCambridgeMassachusettsUSA
| | - Rick Liao
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringCambridgeMassachusettsUSA
| | - Vineeth Chandran Suja
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringCambridgeMassachusettsUSA
| |
Collapse
|
8
|
Jacob B, Vogelaar A, Cadenas E, Camarero JA. Using the Cyclotide Scaffold for Targeting Biomolecular Interactions in Drug Development. Molecules 2022; 27:molecules27196430. [PMID: 36234971 PMCID: PMC9570680 DOI: 10.3390/molecules27196430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/28/2022] Open
Abstract
This review provides an overview of the properties of cyclotides and their potential for developing novel peptide-based therapeutics. The selective disruption of protein–protein interactions remains challenging, as the interacting surfaces are relatively large and flat. However, highly constrained polypeptide-based molecular frameworks with cell-permeability properties, such as the cyclotide scaffold, have shown great promise for targeting those biomolecular interactions. The use of molecular techniques, such as epitope grafting and molecular evolution employing the cyclotide scaffold, has shown to be highly effective for selecting bioactive cyclotides.
Collapse
Affiliation(s)
- Binu Jacob
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA
| | - Alicia Vogelaar
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA
| | - Enrique Cadenas
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA
| | - Julio A. Camarero
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 9033, USA
- Correspondence:
| |
Collapse
|
9
|
Onaolapo AY, Ojo FO, Olofinnade AT, Falade J, Lawal IA, Onaolapo OJ. Microbiome-Based Therapies in Parkinson's Disease: Can Tuning the Microbiota Become a Viable Therapeutic Strategy? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 22:CNSNDDT-EPUB-126136. [PMID: 36056826 DOI: 10.2174/1871527321666220903114559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/20/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Progressive neurodegenerative disorders such as Parkinson's disease (PD) have continued to baffle medical science, despite strides in the understanding of their pathology. The inability of currently available therapies to halt disease progression is a testament to an incomplete understanding of pathways crucial to disease initiation, progression and management. Science has continued to link the activities and equilibrium of the gut microbiome to the health and proper functioning of brain neurons. They also continue to stir interest in the potential applications of technologies that may shift the balance of the gut microbiome towards achieving a favourable outcome in PD management. There have been suggestions that an improved understanding of the roles of the gut microbiota is likely to lead to the emergence of an era where their manipulation becomes a recognized strategy for PD management. This review examines the current state of our journey in the quest to understand how the gut microbiota can influence several aspects of PD. We highlight the relationship between the gut microbiome/microbiota and PD pathogenesis, as well as preclinical and clinical evidence evaluating the effect of postbiotics, probiotics and prebiotics in PD management. This is with a view to ascertaining if we are at the threshold of discovering the application of a usable tool in our quest for disease modifying therapies in PD.
Collapse
Affiliation(s)
- Adejoke Y Onaolapo
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Folusho O Ojo
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Anthony T Olofinnade
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Clinical Sciences, College of Medicine, Lagos State University, Lagos State
| | - Joshua Falade
- Department of Mental Health, Afe-Babalola University Ado-Ekiti Ekiti State Nigeria
| | - Ismail A Lawal
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Department of Anatomy, Faculty of Health Sciences. Alhikmah University Ilorin, Kwara State, Nigeria
| | - Olakunle J Onaolapo
- Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
10
|
Wang J, Tian Y, Shi X, Feng Z, Jiang L, Hao Y. Safety and Efficacy of Cell Transplantation on Improving Motor Symptoms in Patients With Parkinson’s Disease: A Meta-Analysis. Front Hum Neurosci 2022; 16:849069. [PMID: 35601911 PMCID: PMC9120834 DOI: 10.3389/fnhum.2022.849069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/28/2022] [Indexed: 12/04/2022] Open
Abstract
Background The past four decades have seen the growing use of tissue or cell transplants in Parkinson’s disease (PD) treatment. Parkinson’s cell therapy is a promising new treatment; however, efficacy of cell transplantation for Parkinson’s disease are entirely unclear. Objective To conduct a meta-analysis and a systematic review of the efficacy of cell therapy in patients with PD. Methods A systematic literature review and meta-analysis of 10 studies were performed to assess the efficacy of cell therapy in Parkinson’s patients. To achieve this, we compared the change in Unified Parkinson’s Disease Rating Scale (UPDRS) II and III scale scores to baseline and assessed the incidence of transplant-related adverse events. The MINORS score and the I2 index were applied to evaluate the quality of studies between-study heterogeneity, respectively. Results The literature search yielded 10 articles (n = 120). The improvement in motor function based on the UPDRSIII assessment was −14.044 (95% CI: −20.761, −7.327) (p < 0.001), whereas improvement in daily living ability based on the UPDRSII assessment was −5.661 (95% CI: −7.632, −3.689) (p < 0.001). Conclusion The present findings demonstrate important clues on the therapeutic effect of cell therapy in alleviating motor impairment and daily living ability in PD patients.
Collapse
Affiliation(s)
- Jiaming Wang
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Yu Tian
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Xin Shi
- Department of Neurosurgery, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, Shenzhen, China
| | - Zhaohai Feng
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Lei Jiang
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Yujun Hao
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| |
Collapse
|
11
|
Gulcan HO. Selected natural and synthetic agents effective against Parkinson's disease with diverse mechanisms. Curr Top Med Chem 2021; 22:199-208. [PMID: 34844541 DOI: 10.2174/1568026621666211129141316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/08/2021] [Accepted: 11/28/2021] [Indexed: 11/22/2022]
Abstract
Similar to other neurodegenerative diseases, Parkinson's disease (PD) has been extensively investigated with respect to its neuropathological background and possible treatment options. Since the symptomatic outcomes are generally related to dopamine deficiency, the current treatment strategies towards PD mainly employ dopaminergic agonists as well as the compounds acting on dopamine metabolism. These drugs do not provide disease modifying properties; therefore alternative drug discovery studies focus on targets involved in the progressive neurodegenerative character of PD. This study has aimed to present the pathophysiology of PD concomitant to the representation of drugs and promising molecules displaying activity against the validated and non-validated targets of PD.
Collapse
Affiliation(s)
- Hayrettin Ozan Gulcan
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, 99520, T.R. North Cyprus, via Mersin 10. Turkey
| |
Collapse
|
12
|
Kim SR, Kim JY, Kim HY, So HY, Chung SJ. Factors Associated with Medication Beliefs in Patients with Parkinson's Disease: A Cross-Sectional Study. J Mov Disord 2021; 14:133-143. [PMID: 33915673 PMCID: PMC8175818 DOI: 10.14802/jmd.20147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/02/2021] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Medication beliefs are a significant determinant of medication adherence in chronic illness. This study aimed to identify demographic, clinical, and medication-related factors associated with medication beliefs in patients with Parkinson's disease (PD). METHODS We used a descriptive cross-sectional design with a convenience sample of 173 PD patients who had been taking antiparkinson drugs for more than one year. RESULTS The subjects who believed PD medication was more necessary had more severe illness, younger age of onset, longer illness duration, and longer duration of levodopa therapy. They had higher levels of non-motor symptoms and depression, number of medication uses, number of drugs, and levodopa equivalent dose, and they reported fluctuation of motor symptoms and dyskinesia. The subjects who used catechol-O-methyltransferase (COMT) inhibitors, dopamine agonists, amantadine, and monoamine oxidase-B (MAO-B) inhibitors had significantly higher necessity scores than those who did not use them. The subjects who had higher concerns about PD medications had higher levels of non-motor symptoms and depression. The subjects using amantadine and anticholinergics had significantly higher concern scores than those who did not use them. Positive necessity-concerns differentials were associated with severe illness, the presence of motor fluctuation and dyskinesia, and the use of COMT inhibitors. Based on stepwise multiple regression, the most significant factors influencing necessity beliefs were severe illness, followed by depression and motor fluctuation. CONCLUSION Severe illness, higher levels of depression, and motor fluctuation are independent factors influencing patients' beliefs regarding medication necessity. Therefore, these characteristics should be considered in medication belief assessment and interventions for PD patients.
Collapse
Affiliation(s)
- Sung Reul Kim
- College of Nursing, Korea University Nursing Research Institute, Korea University, Seoul, Korea
| | - Ji Young Kim
- College of Nursing, Jeonbuk National University, Jeonju, Korea
| | - Hye Young Kim
- College of Nursing, Jeonbuk National University, Jeonju, Korea
| | - Hui Young So
- Department of Nursing, Asan Medical Center, Seoul, Korea
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Prasuhn J, Brüggemann N. Genotype-driven therapeutic developments in Parkinson's disease. Mol Med 2021; 27:42. [PMID: 33874883 PMCID: PMC8056568 DOI: 10.1186/s10020-021-00281-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Remarkable advances have been reached in the understanding of the genetic basis of Parkinson's disease (PD), with the identification of monogenic causes (mPD) and a plethora of gene loci leading to an increased risk for idiopathic PD. The expanding knowledge and subsequent identification of genetic contributions fosters the understanding of molecular mechanisms leading to disease development and progression. Distinct pathways involved in mitochondrial dysfunction, oxidative stress, and lysosomal function have been identified and open a unique window of opportunity for individualized treatment approaches. These genetic findings have led to an imminent progress towards pathophysiology-targeted clinical trials and potentially disease-modifying treatments in the future. MAIN BODY OF THE MANUSCRIPT In this review article we will summarize known genetic contributors to the pathophysiology of Parkinson's disease, the molecular mechanisms leading to disease development, and discuss challenges and opportunities in clinical trial designs. CONCLUSIONS The future success of clinical trials in PD is mainly dependent on reliable biomarker development and extensive genetic testing to identify genetic cases. Whether genotype-dependent stratification of study participants will extend the potential application of new drugs will be one major challenge in conceptualizing clinical trials. However, the latest developments in genotype-driven treatments will pave the road to individualized pathophysiology-based therapies in the future.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
14
|
Vissers MFJM, Heuberger JAAC, Groeneveld GJ. Targeting for Success: Demonstrating Proof-of-Concept with Mechanistic Early Phase Clinical Pharmacology Studies for Disease-Modification in Neurodegenerative Disorders. Int J Mol Sci 2021; 22:1615. [PMID: 33562713 PMCID: PMC7915613 DOI: 10.3390/ijms22041615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/23/2022] Open
Abstract
The clinical failure rate for disease-modifying treatments (DMTs) that slow or stop disease progression has been nearly 100% for the major neurodegenerative disorders (NDDs), with many compounds failing in expensive and time-consuming phase 2 and 3 trials for lack of efficacy. Here, we critically review the use of pharmacological and mechanistic biomarkers in early phase clinical trials of DMTs in NDDs, and propose a roadmap for providing early proof-of-concept to increase R&D productivity in this field of high unmet medical need. A literature search was performed on published early phase clinical trials aimed at the evaluation of NDD DMT compounds using MESH terms in PubMed. Publications were selected that reported an early phase clinical trial with NDD DMT compounds between 2010 and November 2020. Attention was given to the reported use of pharmacodynamic (mechanistic and physiological response) biomarkers. A total of 121 early phase clinical trials were identified, of which 89 trials (74%) incorporated one or multiple pharmacodynamic biomarkers. However, only 65 trials (54%) used mechanistic (target occupancy or activation) biomarkers to demonstrate target engagement in humans. The most important categories of early phase mechanistic and response biomarkers are discussed and a roadmap for incorporation of a robust biomarker strategy for early phase NDD DMT clinical trials is proposed. As our understanding of NDDs is improving, there is a rise in potentially disease-modifying treatments being brought to the clinic. Further increasing the rational use of mechanistic biomarkers in early phase trials for these (targeted) therapies can increase R&D productivity with a quick win/fast fail approach in an area that has seen a nearly 100% failure rate to date.
Collapse
Affiliation(s)
- Maurits F. J. M. Vissers
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, The Netherlands; (J.A.A.C.H.); (G.J.G.)
- Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Jules A. A. C. Heuberger
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, The Netherlands; (J.A.A.C.H.); (G.J.G.)
| | - Geert Jan Groeneveld
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, The Netherlands; (J.A.A.C.H.); (G.J.G.)
- Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
15
|
Borsche M, Pereira SL, Klein C, Grünewald A. Mitochondria and Parkinson's Disease: Clinical, Molecular, and Translational Aspects. JOURNAL OF PARKINSONS DISEASE 2021; 11:45-60. [PMID: 33074190 PMCID: PMC7990451 DOI: 10.3233/jpd-201981] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction represents a well-established player in the pathogenesis of both monogenic and idiopathic Parkinson’s disease (PD). Initially originating from the observation that mitochondrial toxins cause PD, findings from genetic PD supported a contribution of mitochondrial dysfunction to the disease. Here, proteins encoded by the autosomal recessively inherited PD genes Parkin, PTEN-induced kinase 1 (PINK1), and DJ-1 are involved in mitochondrial pathways. Additional evidence for mitochondrial dysfunction stems from models of autosomal-dominant PD due to mutations in alpha-synuclein (SNCA) and leucine-rich repeat kinase 2 (LRRK2). Moreover, patients harboring alterations in mitochondrial polymerase gamma (POLG) often exhibit signs of parkinsonism. While some molecular studies suggest that mitochondrial dysfunction is a primary event in PD, others speculate that it is the result of impaired mitochondrial clearance. Most recent research even implicated damage-associated molecular patterns released from non-degraded mitochondria in neuroinflammatory processes in PD. Here, we summarize the manifold literature dealing with mitochondria in the context of PD. Moreover, in light of recent advances in the field of personalized medicine, patient stratification according to the degree of mitochondrial impairment followed by mitochondrial enhancement therapy may hold potential for at least a subset of genetic and idiopathic PD cases. Thus, in the second part of this review, we discuss therapeutic approaches targeting mitochondrial dysfunction with the aim to prevent or delay neurodegeneration in PD.
Collapse
Affiliation(s)
- Max Borsche
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Sandro L Pereira
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Anne Grünewald
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
16
|
Hyung S, Lee SR, Kim J, Kim Y, Kim S, Kim HN, Jeon NL. A 3D disease and regeneration model of peripheral nervous system-on-a-chip. SCIENCE ADVANCES 2021; 7:eabd9749. [PMID: 33514550 PMCID: PMC7846159 DOI: 10.1126/sciadv.abd9749] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/11/2020] [Indexed: 05/09/2023]
Abstract
Demyelinating diseases involve loss of myelin sheaths and eventually lead to neurological problems. Unfortunately, the precise mechanisms remain unknown, and there are no effective therapies. To overcome these limitations, a reliable and physiologically relevant in vitro model is required. Here, we present a three-dimensional peripheral nervous system (PNS) microfluidic platform that recapitulates the full spectrum of myelination, demyelination, and remyelination using primary Schwann cells (SCs) and motor neurons (MNs). The platform enables reproducible hydrogel patterning and long-term stable coculture of MNs and SCs over 40 days in vitro based on three distinct design factors. Furthermore, the on-demand detachable substrate allows in-depth biological analysis. We demonstrated the possibility of mimicking segmental demyelination by lysophosphatidylcholine, and recovery of myelin structure by application of two drugs: benzatropine or methylcobalamin. This 3D PNS disease-on-a-chip may serve as a potential platform for understanding the pathophysiology of demyelination and screening drugs for remyelination.
Collapse
Affiliation(s)
- Sujin Hyung
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
- Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
| | - Seung-Ryeol Lee
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jiho Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Youngtaek Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Suryong Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hong Nam Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Noo Li Jeon
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea.
- Institute of Advanced Machinery and Design Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Staats R, Michaels TCT, Flagmeier P, Chia S, Horne RI, Habchi J, Linse S, Knowles TPJ, Dobson CM, Vendruscolo M. Screening of small molecules using the inhibition of oligomer formation in α-synuclein aggregation as a selection parameter. Commun Chem 2020; 3:191. [PMID: 36703335 PMCID: PMC9814678 DOI: 10.1038/s42004-020-00412-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/15/2020] [Indexed: 01/29/2023] Open
Abstract
The aggregation of α-synuclein is a central event in Parkinsons's disease and related synucleinopathies. Since pharmacologically targeting this process, however, has not yet resulted in approved disease-modifying treatments, there is an unmet need of developing novel methods of drug discovery. In this context, the use of chemical kinetics has recently enabled accurate quantifications of the microscopic steps leading to the proliferation of protein misfolded oligomers. As these species are highly neurotoxic, effective therapeutic strategies may be aimed at reducing their numbers. Here, we exploit this quantitative approach to develop a screening strategy that uses the reactive flux toward α-synuclein oligomers as a selection parameter. Using this approach, we evaluate the efficacy of a library of flavone derivatives, identifying apigenin as a compound that simultaneously delays and reduces the formation of α-synuclein oligomers. These results demonstrate a compound selection strategy based on the inhibition of the formation of α-synuclein oligomers, which may be key in identifying small molecules in drug discovery pipelines for diseases associated with α-synuclein aggregation.
Collapse
Affiliation(s)
- Roxine Staats
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Thomas C T Michaels
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Patrick Flagmeier
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Sean Chia
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Robert I Horne
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Johnny Habchi
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Sara Linse
- Department of Chemistry, Division for Biochemistry and Structural Biology, Lund University, 221 00, Lund, Sweden
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| |
Collapse
|
18
|
Moreira CG, Morawska MM, Baumann A, Masneuf S, Linnebank M, Sommerauer M, Landolt HP, Noain D, Baumann CR. Improved functional and histochemical outcomes in l-DOPA plus tolcapone treated VMAT2-deficient mice. Neuropharmacology 2020; 181:108353. [PMID: 33038358 DOI: 10.1016/j.neuropharm.2020.108353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/03/2020] [Accepted: 10/05/2020] [Indexed: 01/02/2023]
Abstract
Parkinson disease is typically treated with L-3,4-dihydroxyphenylalanine (or levodopa) co-prescribed with concentration stabilizers to prevent undesired motor fluctuations. However, the beneficial role of the chronic combined therapy on disease progression has not been thoroughly explored. We hypothesized that tolcapone, a catechol-O-methyl-transferase inhibitor, co-administered with levodopa may offer beneficial long-term disease-modifying effects through its dopamine stabilization actions. Here, we followed vesicular monoamine transporter 2-deficient and wild-type mice treated twice daily per os with vehicle, levodopa (20 mg/kg), tolcapone (15 mg/kg) or levodopa (12.5 mg/kg) + tolcapone (15 mg/kg) for 17 weeks. We assessed open field, bar test and rotarod performances at baseline and every 4th week thereafter, corresponding to OFF-medication weeks. Finally, we collected coronal sections from the frontal caudate-putamen and determined the reactivity level of dopamine transporter. Vesicular monoamine transporter 2-deficient mice responded positively to chronic levodopa + tolcapone intervention in the bar test during OFF-periods. Neither levodopa nor tolcapone interventions offered significant improvements on their own. Similarly, chronic levodopa + tolcapone intervention was associated with partially rescued dopamine transporter levels, whereas animals treated solely with levodopa or tolcapone did not present this effect. Interestingly, 4-month progression of bar test scores correlated significantly with dopamine-transporter-label density. Overall, we observed a moderate functional and histopathological improvement effect by chronic dopamine replacement when combined with tolcapone in vesicular monoamine transporter 2-deficient mice. Altogether, chronic stabilization of dopamine levels by catechol-O-methyl-transferase inhibition, besides its intended immediate actions, arises as a potential long-term beneficial approach during the progression of Parkinson disease.
Collapse
Affiliation(s)
- Carlos G Moreira
- Neurology Department, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Marta M Morawska
- Neurology Department, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Aron Baumann
- Neurology Department, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Sophie Masneuf
- Neurology Department, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Michael Linnebank
- Neurology Department, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Michael Sommerauer
- Neurology Department, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zurich, Irchel Campus Y17, Winterthurerstrasse 190, 8057 Zurich, Switzerland; University Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Daniela Noain
- Neurology Department, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.
| | - Christian R Baumann
- Neurology Department, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland; University Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
19
|
Srivastav S, Anand BG, Fatima M, Prajapati KP, Yadav SS, Kar K, Mondal AC. Piperine-Coated Gold Nanoparticles Alleviate Paraquat-Induced Neurotoxicity in Drosophila melanogaster. ACS Chem Neurosci 2020; 11:3772-3785. [PMID: 33125229 DOI: 10.1021/acschemneuro.0c00366] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is the most common progressive neurodegenerative disease known to impart bradykinesia leading to diverse metabolic complications. Currently, scarcity of effective drug candidates against this long-term devastating disorder poses a big therapeutic challenge. Here, we have synthesized biocompatible, polycrystalline, and uniform piperine-coated gold nanoparticles (AuNPspiperine) to specifically target paraquat-induced metabolic complications both in Drosophila melanogaster and SH-SY5Y cells. Our experimental evidence clearly revealed that AuNPspiperine can effectively reverse paraquat-induced lethal effects in both in vitro and in vivo model systems of PD. AuNPspiperine were found to suppress oxidative stress and mitochondrial dysfunction, leading to inhibition of apoptotic cell death in paraquat-treated flies. AuNPspiperine were also found to protect SH-SY5Y cells against paraquat-induced toxicity at the cellular level preferably by maintaining mitochondrial membrane potential. Both experimental and computational data point to the possible influence of AuNPspiperine in regulating the homeostasis of parkin and p53 which may turn out to be the key factors in reducing PD symptoms. The findings of this work may facilitate the development of piperine-based nanoformulations against PD.
Collapse
Affiliation(s)
- Saurabh Srivastav
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Bibin G. Anand
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Mahino Fatima
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | | | - Suresh Singh Yadav
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Karunakar Kar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Amal Chandra Mondal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| |
Collapse
|
20
|
Lazdon E, Stolero N, Frenkel D. Microglia and Parkinson's disease: footprints to pathology. J Neural Transm (Vienna) 2020; 127:149-158. [DOI: 10.1007/s00702-020-02154-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/26/2020] [Indexed: 12/11/2022]
|
21
|
Parmar M, Grealish S, Henchcliffe C. The future of stem cell therapies for Parkinson disease. Nat Rev Neurosci 2020; 21:103-115. [DOI: 10.1038/s41583-019-0257-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2019] [Indexed: 01/07/2023]
|
22
|
Jarras H, Bourque M, Poirier AA, Morissette M, Coulombe K, Di Paolo T, Soulet D. Neuroprotection and immunomodulation of progesterone in the gut of a mouse model of Parkinson's disease. J Neuroendocrinol 2020; 32:e12782. [PMID: 31430407 DOI: 10.1111/jne.12782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/24/2022]
Abstract
Gastrointestinal symptoms appear in Parkinson's disease patients many years before motor symptoms, suggesting the implication of dopaminergic neurones of the gut myenteric plexus. Inflammation is also known to be increased in PD. We previously reported neuroprotection with progesterone in the brain of mice lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and hypothesised that it also has neuroprotective and immunomodulatory activities in the gut. To test this hypothesis, we investigated progesterone administered to adult male C57BL/6 mice for 10 days and treated with MPTP on day 5. In an additional experiment, progesterone was administered for 5 days following MPTP treatment. Ilea were collected on day 10 of treatment and microdissected to isolate the myenteric plexus. Dopaminergic neurones were reduced by approximately 60% and pro-inflammatory macrophages were increased by approximately 50% in MPTP mice compared to intact controls. These changes were completely prevented by progesterone administered before and after MPTP treatment and were normalised by 8 mg kg-1 progesterone administered after MPTP. In the brain of MPTP mice, brain-derived neurotrophic peptide (BDNF) and glial fibrillary acidic protein (GFAP) were associated with progesterone neuroprotection. In the myenteric plexus, increased BDNF levels compared to controls were measured in MPTP mice treated with 8 mg kg-1 progesterone started post MPTP, whereas GFAP levels remained unchanged. In conclusion, the results obtained in the present study show neuroprotective and anti-inflammatory effects of progesterone in the myenteric plexus of MPTP mice that are similar to our previous findings in the brain. Progesterone is non-feminising and could be used for both men and women in the pre-symptomatic stages of the disease.
Collapse
Affiliation(s)
- Hend Jarras
- Axe Neurosciences, Centre de Recherche du CHU de Québec (Pavillon CHUL), Quebec, Canada
- Faculty of Pharmacy, Laval University, Quebec, Canada
| | - Mélanie Bourque
- Axe Neurosciences, Centre de Recherche du CHU de Québec (Pavillon CHUL), Quebec, Canada
| | - Andrée-Anne Poirier
- Axe Neurosciences, Centre de Recherche du CHU de Québec (Pavillon CHUL), Quebec, Canada
- Faculty of Pharmacy, Laval University, Quebec, Canada
| | - Marc Morissette
- Axe Neurosciences, Centre de Recherche du CHU de Québec (Pavillon CHUL), Quebec, Canada
| | - Katherine Coulombe
- Axe Neurosciences, Centre de Recherche du CHU de Québec (Pavillon CHUL), Quebec, Canada
| | - Thérèse Di Paolo
- Axe Neurosciences, Centre de Recherche du CHU de Québec (Pavillon CHUL), Quebec, Canada
- Faculty of Pharmacy, Laval University, Quebec, Canada
| | - Denis Soulet
- Axe Neurosciences, Centre de Recherche du CHU de Québec (Pavillon CHUL), Quebec, Canada
- Faculty of Pharmacy, Laval University, Quebec, Canada
| |
Collapse
|
23
|
Kilzheimer A, Hentrich T, Burkhardt S, Schulze-Hentrich JM. The Challenge and Opportunity to Diagnose Parkinson's Disease in Midlife. Front Neurol 2019; 10:1328. [PMID: 31920948 PMCID: PMC6928126 DOI: 10.3389/fneur.2019.01328] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder that affects extensive regions of the nervous system. Its current clinical diagnosis is based on motor symptoms that appear late during disease progression when substantial proportions of the nigrostriatal dopaminergic neuron population are lost already. Although disturbances in sleep and other biofunctions often surface years prior to motor impairments and point to a long prodromal phase, these phenotypic signs in a person's midlife lack predictive power. They do, however, signal the unfolding of the disease and suggest molecular correlates that begin deviating early on. Revealing such trajectories, hence, promises not only a better understanding of prodromal PD but may also enable a much-needed earlier diagnosis. A nexus that may harbor such molecular trajectories is the epigenome as key etiological factors of PD-genetics, age, and environment-influence this substrate. An earlier diagnosis would also allow earlier interventions and lifestyle adjustments to improve brain function and reduce symptoms. In this review, we describe the challenges of diagnosing PD early on and highlight the opportunities that may arise from steering research efforts towards comprehensive interrogations of molecular layers during the long-time neglected midlife phase. In particular, we emphasize how existing cohorts of at-risk individuals, available animal models, and suitable markers may come together and aid in revealing molecular trajectories that offer diagnostic utility for PD in its prodromal stage.
Collapse
|
24
|
Szelenberger R, Kacprzak M, Saluk-Bijak J, Zielinska M, Bijak M. Plasma MicroRNA as a novel diagnostic. Clin Chim Acta 2019; 499:98-107. [PMID: 31499022 DOI: 10.1016/j.cca.2019.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are small, single-stranded, endogenous, non-coding RNAs necessary for proper gene expression. Their mechanism of action controls translation by base-pairing with target messenger RNA (mRNAs) thus leading to translation blockage or mRNA degradation. Many studies have shown that miRNAs play pivotal roles in cancer, cardiovascular disease and neurodegenerative disorders. The lack of blood-derived biomarkers and those markers of poor specificity and sensitivity significantly impact the ability to diagnose in general and at early disease stage specifically. As such, new, non-invasive and quantifiable biomarkers are needed. As post-transcriptional regulators of gene expression, miRNAs have been confirmed to be notably stable in cells, tissues and body fluids. These and other advantages make miRNAs ideal candidates as potential biomarkers and early experimental findings support this finding. This review examines the use of miRNAs as biomarkers in cancer, neurodegenerative, cardiovascular and liver disease and viral infection.
Collapse
Affiliation(s)
- Rafal Szelenberger
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Michal Kacprzak
- Intensive Cardiac Therapy Clinic, Medical University of Lodz, Pomorska 251, 91-213 Lodz, Poland
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Marzenna Zielinska
- Intensive Cardiac Therapy Clinic, Medical University of Lodz, Pomorska 251, 91-213 Lodz, Poland
| | - Michal Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
25
|
Gazerani P. Probiotics for Parkinson's Disease. Int J Mol Sci 2019; 20:E4121. [PMID: 31450864 PMCID: PMC6747430 DOI: 10.3390/ijms20174121] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is a complex neurological disorder classically characterized by impairments in motor system function associated with loss of dopaminergic neurons in the substantia nigra. After almost 200 years since the first description of PD by James Parkinson, unraveling the complexity of PD continues to evolve. It is now recognized that an interplay between genetic and environmental factors influences a diverse range of cellular processes, reflecting on other clinical features including non-motor symptoms. This has consequently highlighted the extensive value of early clinical diagnosis to reduce difficulties of later stage management of PD. Advancement in understanding of PD has made remarkable progress in introducing new tools and strategies such as stem cell therapy and deep brain stimulation. A link between alterations in gut microbiota and PD has also opened a new line. Evidence exists of a bidirectional pathway between the gastrointestinal tract and the central nervous system. Probiotics, prebiotics and synbiotics are being examined that might influence gut-brain axis by altering gut microbiota composition, enteric nervous system, and CNS. This review provides status on use of probiotics for PD. Limitations and future directions will also be addressed to promote further research considering use of probiotics for PD.
Collapse
Affiliation(s)
- Parisa Gazerani
- Biomedicine: Department of Health Science and Technology, Faculty of Medicine, Aalborg University,Frederik Bajers Vej 3B, 9220 Aalborg East, Denmark.
| |
Collapse
|
26
|
Cascorbi I. Challenges in Neuropharmacology. Clin Pharmacol Ther 2019; 105:1050-1053. [DOI: 10.1002/cpt.1407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ingolf Cascorbi
- Institute of Experimental and Clinical PharmacologyUniversity Hospital Schleswig‐Holstein Campus Kiel Germany
| |
Collapse
|
27
|
Schneider EH. Microglial histamine H4R in the pathophysiology of Parkinson’s disease—a new actor on the stage? Naunyn Schmiedebergs Arch Pharmacol 2019; 392:641-645. [DOI: 10.1007/s00210-019-01635-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022]
|
28
|
Camarero JA, Campbell MJ. The Potential of the Cyclotide Scaffold for Drug Development. Biomedicines 2019; 7:biomedicines7020031. [PMID: 31010257 PMCID: PMC6631875 DOI: 10.3390/biomedicines7020031] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Cyclotides are a novel class of micro-proteins (≈30-40 residues long) with a unique topology containing a head-to-tail cyclized backbone structure further stabilized by three disulfide bonds that form a cystine knot. This unique molecular framework makes them exceptionally stable to physical, chemical, and biological degradation compared to linear peptides of similar size. The cyclotides are also highly tolerant to sequence variability, aside from the conserved residues forming the cystine knot, and are orally bioavailable and able to cross cellular membranes to modulate intracellular protein-protein interactions (PPIs), both in vitro and in vivo. These unique properties make them ideal scaffolds for many biotechnological applications, including drug discovery. This review provides an overview of the properties of cyclotides and their potential for the development of novel peptide-based therapeutics. The selective disruption of PPIs still remains a very challenging task, as the interacting surfaces are relatively large and flat. The use of the cell-permeable highly constrained polypeptide molecular frameworks, such as the cyclotide scaffold, has shown great promise, as it provides unique pharmacological properties. The use of molecular techniques, such as epitope grafting, and molecular evolution have shown to be highly effective for the selection of bioactive cyclotides. However, despite successes in employing cyclotides to target PPIs, some of the challenges to move them into the clinic still remain.
Collapse
Affiliation(s)
- Julio A Camarero
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, Los Angeles, CA 9033, USA.
| | - Maria Jose Campbell
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA.
| |
Collapse
|
29
|
Nanodelivery of cerebrolysin reduces pathophysiology of Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2019; 245:201-246. [DOI: 10.1016/bs.pbr.2019.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|