1
|
Xu C, Yuan Z, Chen Z, Liao Z, Li S, Feng Y, Tang Z, Nian J, Huang X, Zhong H, Xie Q. Perturbational complexity index in assessing responsiveness to rTMS treatment in patients with disorders of consciousness: a cross-over randomized controlled trial study. J Neuroeng Rehabil 2024; 21:167. [PMID: 39300529 DOI: 10.1186/s12984-024-01455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Disorders of Consciousness (DoC) caused by severe brain injuries represent a challenging clinical entity, which is easy to misdiagnosis and lacks effective treatment options. Repetitive Transcranial Magnetic Stimulation (rTMS) is a non-invasive neuroelectric stimulation method that shows promise in improving consciousness for DoC, especially in minimally conscious state (MCS). However, there is little evidence of its effectiveness, especially in RCT studies. METHODS Twenty MCS patients participated in a double-blind, randomized, crossover, sham-controlled clinical study to evaluate the safety and efficacy of rTMS for MCS. Subjects were randomized into two groups: one group received rTMS-active for 10 consecutive days (n = 10), and the other group received rTMS-sham for 10 consecutive days (n = 10). After a 10-day washout period, the two groups were crossed over and received the opposite treatment. the rTMS protocol consisted of 2,000 pulses per day in the left dorsolateral prefrontal cortex (L-DLPFC), sent at 10 Hz. The stimulation intensity was 90% of the resting motor threshold. Coma Recovery Scale Revised (CRS-R), the main evaluation index, was evaluated before and after each phase in a double-blind manner. Meanwhile RS-EEG and TMS-EEG data were acquired and relative alpha power (RAP), and perturbational complexity index based on state transitions (PCIst) were caculated. RESULTS One-way ANOVA revealed significantly higher scores in rTMS-active treatment compared to rTMS-sham across various measures, including CRS-R total score, RAP, PCIst (all P < 0.05). Among the 20 MCS patients, 7 (35%) were identified as responders following rTMS treatment. Compared to rTMS-sham, responder scores for CRS-R, RAP, and PCIst (all P < 0.05) were significantly elevated after rTMS-active treatment. Conversely, there was no significant difference observed in non-responders. Furthermore, post-hoc analysis revealed that baseline PCIst was significantly higher in responders than non-responders. Upon a 6-month follow-up, CRS-R scores significantly increased in all 20 patients (P = 0.026). However, the responder group exhibited a more favorable prognosis compared to the non-responder group (P = 0.031). CONCLUSIONS Applying 10 Hz rTMS to L-DLPFC significantly increased consciousness level in MCS patients. PCIst is a neurophysiological index that has the potential to evaluate and predict therapeutic efficacy. TRIAL REGISTRATION www. CLINICALTRIALS gov , identifier: NCT05187000.
Collapse
Affiliation(s)
- Chengwei Xu
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
- School of Rehabilitation Sciences, Southern Medical University, 1023 Shatai SouthRoad, Guangzhou, Guangdong, 510515, China
| | - Zhanxing Yuan
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai SouthRoad, Guangzhou, Guangdong, 510515, China
| | - Zerong Chen
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Ziqin Liao
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Shuiyan Li
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yanqi Feng
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Ziqiang Tang
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Jichan Nian
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xiyan Huang
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Haili Zhong
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Qiuyou Xie
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China.
- Department of hyperbaric oxygenation, Zhujiang Hospital of Southern Medical University, Guangzhou, China.
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai SouthRoad, Guangzhou, Guangdong, 510515, China.
- School of Rehabilitation Sciences, Southern Medical University, 1023 Shatai SouthRoad, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
2
|
Noda Y, Takano M, Wada M, Mimura Y, Nakajima S. Validation of the number of pulses required for TMS-EEG in the prefrontal cortex considering test feasibility. Neuroscience 2024; 554:63-71. [PMID: 39002755 DOI: 10.1016/j.neuroscience.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) combined with electroencephalography (EEG), TMS-EEG, is a useful neuroscientific tool for the assessment of neurophysiology in the human cerebral cortex. Theoretically, TMS-EEG data is expected to have a better data quality as the number of stimulation pulses increases. However, since TMS-EEG testing is a modality that is examined on human subjects, the burden on the subject and tolerability of the test must also be carefully considered. METHOD In this study, we aimed to determine the number of stimulation pulses that satisfy the reliability and validity of data quality in single-pulse TMS (spTMS) for the dorsolateral prefrontal cortex (DLPFC). TMS-EEG data for (1) 40-pulse, (2) 80-pulse, (3) 160-pulse, and (4) 240-pulse conditions were extracted from spTMS experimental data for the left DLPFC of 20 healthy subjects, and the similarities between TMS-evoked potentials (TEP) and oscillations across the conditions were evaluated. RESULTS As a result, (2) 80-pulse and (3) 160-pulse conditions showed highly equivalent to the benchmark condition of (4) 240-pulse condition. However, (1) 40-pulse condition showed only weak to moderate equivalence to the (4) 240-pulse condition. Thus, in the DLPFC TMS-EEG experiment, 80 pulses of stimulations was found to be a reasonable enough number of pulses to extract reliable TEPs, compared to 160 or 240 pulses. CONCLUSIONS This is the first substantial study to examine the appropriate number of stimulus pulses that are reasonable and feasible for TMS-EEG testing of the DLPFC.
Collapse
Affiliation(s)
- Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| | - Mayuko Takano
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Teijin Pharma Ltd., Tokyo, Japan
| | - Masataka Wada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yu Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Mijancos-Martínez G, Bachiller A, Fernández-Linsenbarth I, Romero S, Serna LY, Molina V, Mañanas MÁ. Individualized time windows enhance TMS-EEG signal characterization and improve assessment of cortical function in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01859-z. [PMID: 38969752 DOI: 10.1007/s00406-024-01859-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/20/2024] [Indexed: 07/07/2024]
Abstract
Transcranial magnetic stimulation and electroencephalography (TMS-EEG) recordings are crucial to directly assess cortical excitability and inhibition in a non-invasive and task-free manner. TMS-EEG signals are characterized by TMS-evoked potentials (TEPs), which are employed to evaluate cortical function. Nonetheless, different time windows (TW) have been used to compute them over the years. Moreover, these TWs tend to be the same for all participants omitting the intersubject variability. Therefore, the objective of this study is to assess the effect of using different TWs to compute the TEPs, moving from a common fixed TW to more adaptive individualized TWs. Twenty-nine healthy (HC) controls and twenty schizophrenia patients (SCZ) underwent single-pulse (SP) TMS-EEG protocol. Firstly, only the HC were considered to evaluate the TEPs for three different TWs in terms of amplitude and topographical distribution. Secondly, the SCZ patients were included to determine which TW is better to characterize the brain alterations of SCZ. The results indicate that a more individualized TW provides a better characterization of the SP TMS-EEG signals, although all of them show the same tendency. Regarding the comparison between groups, the individualized TW is the one that provides a better differentiation between populations. They also provide further support to the possible imbalance of cortical excitability/inhibition in the SCZ population due to its reduced activity in the N45 TEP and greater amplitude values in the N100. Results also suggest that the SCZ brain has a baseline hyperactive state since the TEPs of the SCZ appear earlier than those of the HC.
Collapse
Affiliation(s)
- Gema Mijancos-Martínez
- Biomedical Engineering Research Centre (CREB), Department of Automatic Control (ESAII), Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Barcelona, Spain.
- Institute of Research Sant Joan de Déu, Barcelona, Spain.
| | - Alejandro Bachiller
- Biomedical Engineering Research Centre (CREB), Department of Automatic Control (ESAII), Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Barcelona, Spain
- Institute of Research Sant Joan de Déu, Barcelona, Spain
| | | | - Sergio Romero
- Biomedical Engineering Research Centre (CREB), Department of Automatic Control (ESAII), Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Barcelona, Spain
- Institute of Research Sant Joan de Déu, Barcelona, Spain
- CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Leidy Y Serna
- Biomedical Engineering Research Centre (CREB), Department of Automatic Control (ESAII), Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Barcelona, Spain
- CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Vicente Molina
- Psychiatry Department, School of Medicine, University of Valladolid, Valladolid, Spain
- Psychiatry Service, Clinical Hospital of Valladolid, Valladolid, Spain
- Neurosciences Institute of Castilla y Léon (INCYL), University of Salamanca, Salamanca, Spain
| | - Miguel Ángel Mañanas
- Biomedical Engineering Research Centre (CREB), Department of Automatic Control (ESAII), Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Barcelona, Spain
- Institute of Research Sant Joan de Déu, Barcelona, Spain
- CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
4
|
Shanok NA, Muzac S, Brown L, Barrera M, Rodriguez R. Synergistic use of deep TMS therapy with IV ketamine infusions for major depressive disorder: a pilot study. Psychopharmacology (Berl) 2024; 241:1427-1433. [PMID: 38472415 DOI: 10.1007/s00213-024-06573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
OBJECTIVE Major Depressive Disorder (MDD) is a pervasive psychiatric condition effecting approximately 21 million adults in the U.S. (8.4%). An estimated 30-60% of patients are resistant to traditional treatment approaches (medications and talk-therapy), alluding to the need for additional options. Two promising treatment modalities include transcranial magnetic stimulation (TMS) and ketamine infusions; both have shown efficacy in standalone studies but have scarcely been investigated synergistically in the same group of participants. METHOD In the current study, 169 participants with treatment-resistant MDD received 36 treatments of Deep TMS-only (H1 + H7 protocols), while 66 received 36 treatments of Deep TMS (H1 + H7 protocols) and 6 IV infusions of ketamine over the course of 9 weeks. Depressive symptoms were compared pre- and -post treatment in both conditions using the PHQ-9. RESULTS In both treatment groups, depressive symptoms were significantly reduced from pre-to-post and there were no significant differences in response between the TMS + ketamine condition and the TMS-only condition. The TMS + ketamine condition had an 80.30% response rate (53 out of 66) and 43.42% remission rate (28 out of 66) compared to a 76.92% response (130 out of 169) and 39.64% remission (67 out of 16) in the TMS-only condition. CONCLUSION These results support the notion that TMS treatments yield high response rates in treatment-resistant cases; however, in this investigation there was no added benefit for including 6 sessions of IV ketamine in conjunction with TMS. Future investigations using randomized-control designs and robust outcome measures are warranted.
Collapse
Affiliation(s)
| | - Sabrina Muzac
- Delray Center for Brain Science, Delray Beach, FL, USA
| | - Leah Brown
- Delray Center for Brain Science, Delray Beach, FL, USA
| | | | | |
Collapse
|
5
|
Palmisano A, Pandit S, Smeralda CL, Demchenko I, Rossi S, Battelli L, Rivolta D, Bhat V, Santarnecchi E. The Pathophysiological Underpinnings of Gamma-Band Alterations in Psychiatric Disorders. Life (Basel) 2024; 14:578. [PMID: 38792599 PMCID: PMC11122172 DOI: 10.3390/life14050578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 05/26/2024] Open
Abstract
Investigating the biophysiological substrates of psychiatric illnesses is of great interest to our understanding of disorders' etiology, the identification of reliable biomarkers, and potential new therapeutic avenues. Schizophrenia represents a consolidated model of γ alterations arising from the aberrant activity of parvalbumin-positive GABAergic interneurons, whose dysfunction is associated with perineuronal net impairment and neuroinflammation. This model of pathogenesis is supported by molecular, cellular, and functional evidence. Proof for alterations of γ oscillations and their underlying mechanisms has also been reported in bipolar disorder and represents an emerging topic for major depressive disorder. Although evidence from animal models needs to be further elucidated in humans, the pathophysiology of γ-band alteration represents a common denominator for different neuropsychiatric disorders. The purpose of this narrative review is to outline a framework of converging results in psychiatric conditions characterized by γ abnormality, from neurochemical dysfunction to alterations in brain rhythms.
Collapse
Affiliation(s)
- Annalisa Palmisano
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, TUD Dresden University of Technology, 01069 Dresden, Germany
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Siddhartha Pandit
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
| | - Carmelo L. Smeralda
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Siena Brain Investigation and Neuromodulation (SI-BIN) Laboratory, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, 53100 Siena, Italy;
| | - Ilya Demchenko
- Interventional Psychiatry Program, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (I.D.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Simone Rossi
- Siena Brain Investigation and Neuromodulation (SI-BIN) Laboratory, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, 53100 Siena, Italy;
| | - Lorella Battelli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Davide Rivolta
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (I.D.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Department of Neurology and Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
6
|
Guidali G, Zazio A, Lucarelli D, Marcantoni E, Stango A, Barchiesi G, Bortoletto M. Effects of transcranial magnetic stimulation (TMS) current direction and pulse waveform on cortico-cortical connectivity: A registered report TMS-EEG study. Eur J Neurosci 2023; 58:3785-3809. [PMID: 37649453 DOI: 10.1111/ejn.16127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/14/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Transcranial magnetic stimulation (TMS)-evoked potentials (TEPs) are a promising proxy for measuring effective connectivity, that is, the directed transmission of physiological signals along cortico-cortical tracts, and for developing connectivity-based biomarkers. A crucial point is how stimulation parameters may affect TEPs, as they may contribute to the general variability of findings across studies. Here, we manipulated two TMS parameters (i.e. current direction and pulse waveform) while measuring (a) an early TEP component reflecting contralateral inhibition of motor areas, namely, M1-P15, as an operative model of interhemispheric cortico-cortical connectivity, and (b) motor-evoked potentials (MEP) for the corticospinal pathway. Our results showed that these two TMS parameters are crucial to evoke the M1-P15, influencing its amplitude, latency, and replicability. Specifically, (a) M1-P15 amplitude was strongly affected by current direction in monophasic stimulation; (b) M1-P15 latency was significantly modulated by current direction for monophasic and biphasic pulses. The replicability of M1-P15 was substantial for the same stimulation condition. At the same time, it was poor when stimulation parameters were changed, suggesting that these factors must be controlled to obtain stable single-subject measures. Finally, MEP latency was modulated by current direction, whereas non-statistically significant changes were evident for amplitude. Overall, our study highlights the importance of TMS parameters for early TEP responses recording and suggests controlling their impact in developing connectivity biomarkers from TEPs. Moreover, these results point out that the excitability of the corticospinal tract, which is commonly used as a reference to set TMS intensity, may not correspond to the excitability of cortico-cortical pathways.
Collapse
Affiliation(s)
- Giacomo Guidali
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Agnese Zazio
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Delia Lucarelli
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Eleonora Marcantoni
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Antonietta Stango
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Guido Barchiesi
- Department of Philosophy, University of Milano, Milan, Italy
| | - Marta Bortoletto
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
7
|
Ursumando L, Ponzo V, Monteleone AM, Menghini D, Fucà E, Lazzaro G, Esposito R, Picazio S, Koch G, Zanna V, Vicari S, Costanzo F. The efficacy of non-invasive brain stimulation in the treatment of children and adolescents with Anorexia Nervosa: study protocol of a randomized, double blind, placebo-controlled trial. J Eat Disord 2023; 11:127. [PMID: 37533058 PMCID: PMC10394844 DOI: 10.1186/s40337-023-00852-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Current psychological and pharmacological treatments for Anorexia Nervosa (AN) provide only moderate effective support, and there is an urgent need for research to improve therapies, especially in developing age. Non-invasive brain stimulation has suggested to have the potential to reducing AN symptomatology, via targeting brain alterations, such as hyperactivity of right prefrontal cortex (PFC). We suppose that transcranial direct current stimulation (tDCS) to the PFC may be effective in children and adolescents with AN. METHODS We will conduct a randomized, double blind, add-on, placebo-controlled trial to investigate the efficacy of tDCS treatment on clinical improvement. We will also investigate brain mechanisms and biomarkers changes acting in AN after tDCS treatment. Eighty children or adolescent with AN (age range 10-18 years) will undergo treatment-as-usual including psychiatric, nutritional and psychological support, plus tDCS treatment (active or sham) to PFC (F3 anode/F4 cathode), for six weeks, delivered three times a week. Psychological, neurophysiological and physiological measures will be collected at baseline and at the end of treatment. Participants will be followed-up one, three, six months and one year after the end of treatment. Psychological measures will include parent- and self-report questionnaires on AN symptomatology and other psychopathological symptoms. Neurophysiological measures will include transcranial magnetic stimulation (TMS) with electroencephalography and paired pulse TMS and repetitive TMS to investigate changes in PFC connectivity, reactivity and plasticity after treatment. Physiological measures will include changes in the functioning of the endogenous stress response system, body mass index (BMI) and nutritional state. DISCUSSION We expect that tDCS treatment to improve clinical outcome by reducing the symptoms of AN assessed as changes in Eating Disorder Risk composite score of the Eating Disorder Inventory-3. We also expect that at baseline there will be differences between the right and left hemisphere in some electrophysiological measures and that such differences will be reduced after tDCS treatment. Finally, we expect a reduction of endogenous stress response and an improvement in BMI and nutritional status after tDCS treatment. This project would provide scientific foundation for new treatment perspectives in AN in developmental age, as well as insight into brain mechanisms acting in AN and its recovery. Trial registration The study was registered at ClinicalTrials.gov (ID: NCT05674266) and ethical approval for the study was granted by the local research ethics committee (process number 763_OPBG_2014).
Collapse
Affiliation(s)
- Luciana Ursumando
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Viviana Ponzo
- Neurosurgery Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Deny Menghini
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Elisa Fucà
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Giulia Lazzaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Romina Esposito
- Experimental Neuropsychophysiology Lab, IRCCS S. Lucia Foundation, Rome, Italy
| | - Silvia Picazio
- Experimental Neuropsychophysiology Lab, IRCCS S. Lucia Foundation, Rome, Italy
- Department of Psychology, University "Sapienza" of Rome, Rome, Italy
| | - Giacomo Koch
- Experimental Neuropsychophysiology Lab, IRCCS S. Lucia Foundation, Rome, Italy
- Section of Human Phisiology, University of Ferrara, Ferrara, Italy
| | - Valeria Zanna
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
- Department of Life Science and Public Health, Catholic University of the Sacred Heart, 00168, Rome, Italy
| | - Floriana Costanzo
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy.
| |
Collapse
|
8
|
Poorganji M, Zomorrodi R, Hawco C, Hill AT, Hadas I, Zrenner C, Rajji TK, Chen R, Voineskos D, Blumberger DM, Daskalakis ZJ. Isolating sensory artifacts in the suprathreshold TMS-EEG signal over DLPFC. Sci Rep 2023; 13:6796. [PMID: 37100795 PMCID: PMC10130812 DOI: 10.1038/s41598-023-29920-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/13/2023] [Indexed: 04/28/2023] Open
Abstract
Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) is an effective way to evaluate neurophysiological processes at the level of the cortex. To further characterize the TMS-evoked potential (TEP) generated with TMS-EEG, beyond the motor cortex, we aimed to distinguish between cortical reactivity to TMS versus non-specific somatosensory and auditory co-activations using both single-pulse and paired-pulse protocols at suprathreshold stimulation intensities over the left dorsolateral prefrontal cortex (DLPFC). Fifteen right-handed healthy participants received six blocks of stimulation including single and paired TMS delivered as active-masked (i.e., TMS-EEG with auditory masking and foam spacing), active-unmasked (TMS-EEG without auditory masking and foam spacing) and sham (sham TMS coil). We evaluated cortical excitability following single-pulse TMS, and cortical inhibition following a paired-pulse paradigm (long-interval cortical inhibition (LICI)). Repeated measure ANOVAs revealed significant differences in mean cortical evoked activity (CEA) of active-masked, active-unmasked, and sham conditions for both the single-pulse (F(1.76, 24.63) = 21.88, p < 0.001, η2 = 0.61) and LICI (F(1.68, 23.49) = 10.09, p < 0.001, η2 = 0.42) protocols. Furthermore, global mean field amplitude (GMFA) differed significantly across the three conditions for both single-pulse (F(1.85, 25.89) = 24.68, p < 0.001, η2 = 0.64) and LICI (F(1.8, 25.16) = 14.29, p < 0.001, η2 = 0.5). Finally, only active LICI protocols but not sham stimulation ([active-masked (0.78 ± 0.16, P < 0.0001)], [active-unmasked (0.83 ± 0.25, P < 0.01)]) resulted in significant signal inhibition. While previous findings of a significant somatosensory and auditory contribution to the evoked EEG signal are replicated by our study, an artifact attenuated cortical reactivity can reliably be measured in the TMS-EEG signal with suprathreshold stimulation of DLPFC. Artifact attenuation can be accomplished using standard procedures, and even when masked, the level of cortical reactivity is still far above what is produced by sham stimulation. Our study illustrates that TMS-EEG of DLPFC remains a valid investigational tool.
Collapse
Affiliation(s)
- Mohsen Poorganji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Colin Hawco
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Aron T Hill
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, VIC, Australia
| | - Itay Hadas
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0603, USA
| | - Christoph Zrenner
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Tarek K Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| | - Robert Chen
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Daphne Voineskos
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0603, USA.
| |
Collapse
|
9
|
Poorganji M, Zomorrodi R, Zrenner C, Bansal A, Hawco C, Hill AT, Hadas I, Rajji TK, Chen R, Zrenner B, Voineskos D, Blumberger DM, Daskalakis ZJ. Pre-Stimulus Power but Not Phase Predicts Prefrontal Cortical Excitability in TMS-EEG. BIOSENSORS 2023; 13:220. [PMID: 36831986 PMCID: PMC9953459 DOI: 10.3390/bios13020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The cortical response to transcranial magnetic stimulation (TMS) has notable inter-trial variability. One source of this variability can be the influence of the phase and power of pre-stimulus neuronal oscillations on single-trial TMS responses. Here, we investigate the effect of brain oscillatory activity on TMS response in 49 distinct healthy participants (64 datasets) who had received single-pulse TMS over the left dorsolateral prefrontal cortex. Across all frequency bands of theta (4-7 Hz), alpha (8-13 Hz), and beta (14-30 Hz), there was no significant effect of pre-TMS phase on single-trial cortical evoked activity. After high-powered oscillations, whether followed by a TMS pulse or not, the subsequent activity was larger than after low-powered oscillations. We further defined a measure, corrected_effect, to enable us to investigate brain responses to the TMS pulse disentangled from the power of ongoing (spontaneous) oscillations. The corrected_effect was significantly different from zero (meaningful added effect of TMS) only in theta and beta bands. Our results suggest that brain state prior to stimulation might play some role in shaping the subsequent TMS-EEG response. Specifically, our findings indicate that the power of ongoing oscillatory activity, but not phase, can influence brain responses to TMS. Aligning the TMS pulse with specific power thresholds of an EEG signal might therefore reduce variability in neurophysiological measurements and also has the potential to facilitate more robust therapeutic effects of stimulation.
Collapse
Affiliation(s)
- Mohsen Poorganji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
| | - Christoph Zrenner
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Institute for Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Aiyush Bansal
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
| | - Colin Hawco
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Aron T. Hill
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, VIC 3125, Australia
| | - Itay Hadas
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093-0603, USA
| | - Tarek K. Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Toronto Dementia Research Alliance, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robert Chen
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Brigitte Zrenner
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Daphne Voineskos
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Daniel M. Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Zafiris J. Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093-0603, USA
| |
Collapse
|
10
|
Boosting psychological change: Combining non-invasive brain stimulation with psychotherapy. Neurosci Biobehav Rev 2022; 142:104867. [PMID: 36122739 DOI: 10.1016/j.neubiorev.2022.104867] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022]
Abstract
Mental health disorders and substance use disorders are a leading cause of morbidity and mortality worldwide, and one of the most important challenges for public health systems. While evidence-based psychotherapy is generally pursued to address mental health challenges, psychological change is often hampered by non-adherence to treatments, relapses, and practical barriers (e.g., time, cost). In recent decades, Non-invasive brain stimulation (NIBS) techniques have emerged as promising tools to directly target dysfunctional neural circuitry and promote long-lasting plastic changes. While the therapeutic efficacy of NIBS protocols for mental illnesses has been established, neuromodulatory interventions might also be employed to support the processes activated by psychotherapy. Indeed, combining psychotherapy with NIBS might help tailor the treatment to the patient's unique characteristics and therapeutic goal, and would allow more direct control of the neuronal changes induced by therapy. Herein, we overview emerging evidence on the use of NIBS to enhance the psychotherapeutic effect, while highlighting the next steps in advancing clinical and research methods toward personalized intervention approaches.
Collapse
|
11
|
Yoshikawa T, Higuchi H, Furukawa R, Tateno T. Temporal and spatial profiles of evoked activity induced by magnetic stimulation using millimeter-sized coils in the mouse auditory cortex in vivo. Brain Res 2022; 1796:148092. [PMID: 36115587 DOI: 10.1016/j.brainres.2022.148092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/30/2022]
Abstract
Transcranial magnetic stimulation (TMS), a minimally/non-invasive method of electromagnetic stimulation of brain tissue, has been shown to be beneficial in clinical therapy for specific neurological diseases and disorders. Magnetic stimulation is also used to modulate human and animal brain activity in basic neuroscience studies. Among experimental animal models, mouse models are particularly popular and uniquely representative of brain disorders in basic neuroscience research. TMS in mouse models may play a substantial role in understanding TMS-induced changes in neural networks and plasticity. Although TMS techniques are widely used to examine rodent disease models, techniques specific for mice using small magnetic stimulators have not been intensively developed. Here, we provide a numerical simulation and a practical method of applying TMS to mice by constructing millimeter-sized TMS coils to deliver a low stimulation intensity while maintaining focality. Our results indicate the TMS coils can produce an electrical field with sufficient magnitude to activate the anesthetized mouse cortex in the presence and absence of the skull in vivo. Our results also show that, immediately after magnetic stimulation, local field and action potentials were reliably observed in a manner that depended on the distance between the coil and the brain, implying even a small coil could reliably evoke cortical activity. Therefore, our results show our millimeter-sized coils could produce electric fields sufficient to alter cortical excitability in mice. These coils could be useful in future preclinical studies to examine detailed mechanisms underlying TMS-induced changes in neural activity of the auditory cortex and other cortical regions.
Collapse
Affiliation(s)
- Takahiro Yoshikawa
- Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, 060-0814, Japan
| | - Hisaya Higuchi
- Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, 060-0814, Japan
| | - Ryo Furukawa
- Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, 060-0814, Japan
| | - Takashi Tateno
- Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, 060-0814, Japan.
| |
Collapse
|
12
|
Lioumis P, Rosanova M. The role of neuronavigation in TMS-EEG studies: current applications and future perspectives. J Neurosci Methods 2022; 380:109677. [PMID: 35872153 DOI: 10.1016/j.jneumeth.2022.109677] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
Abstract
Transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) allows measuring non-invasively the electrical response of the human cerebral cortex to a direct perturbation. Complementing TMS-EEG with a structural neuronavigation tool (nTMS-EEG) is key for accurately selecting cortical areas, targeting them, and adjusting the stimulation parameters based on some relevant anatomical priors. This step, together with the employment of visualization tools designed to perform a quality check of TMS-evoked potentials (TEPs) in real-time during acquisition, is key for maximizing the impact of the TMS pulse on the cortex and in ensuring highly reproducible measurements within sessions and across subjects. Moreover, storing stimulation parameters in the neuronavigation system can help in reproducing the stimulation parameters within and across experimental sessions and sharing them across research centers. Finally, the systematic employment of neuronavigation in TMS-EEG studies is also key to standardize measurements in clinical populations in search for reliable diagnostic and prognostic TMS-EEG-based biomarkers for neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Pantelis Lioumis
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| |
Collapse
|
13
|
Collins AR, Cheung J, Croarkin PE, Kolla BP, Kung S. Effects of transcranial magnetic stimulation on sleep quality and mood in patients with major depressive disorder. J Clin Sleep Med 2021; 18:1297-1305. [PMID: 34931606 PMCID: PMC9059593 DOI: 10.5664/jcsm.9846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES It is unknown whether sleep quality improvements after repetitive transcranial magnetic stimulation (rTMS) are inherent to the intervention or related to improvements in depressive symptoms. This retrospective study examined sleep quality in patients with major depressive disorder (MDD) before and after treatment with rTMS, adjusting for age, sex, sedative-hypnotic use, number of rTMS treatments, depression severity and changes in depressive symptoms. METHODS Adults with MDD underwent a six-week course of 10 Hz rTMS over the left dorsolateral prefrontal cortex (DLPFC). Patients completed the Patient Health Questionnaire-9 (PHQ-9) depression rating scale and Pittsburgh Sleep Quality Index (PSQI) before and after treatment. To limit confounding, analysis of depressive symptoms occurred without item 3 (the sleep item) of the PHQ-9. RESULTS Twenty-one patients completed the study, with a mean (± standard deviation) baseline PSQI score of 12.0 (±3.8), compared to 10.5 (±4.3) post-treatment (p = 0.01). The mean baseline PHQ-9 score without item 3 was 17.3 (±3.0), compared to 12.2 (±4.9) post-treatment (p = 0.0001). PSQI and modified PHQ-9 changes were uncorrelated in non-adjusted and adjusted linear regression models, as well as in Spearman's rank-order correlation. CONCLUSIONS Mood and sleep quality improved independently following rTMS treatment, even after adjusting for age, sex, sedative-hypnotic use, number of rTMS treatments and depression severity. These findings suggest that rTMS exerts direct effects on both mood and sleep in patients with MDD.
Collapse
Affiliation(s)
| | - Joseph Cheung
- Mayo Clinic Division of Pulmonary and Sleep Medicine, Jacksonville, FL
| | - Paul E Croarkin
- Mayo Clinic Department of Psychiatry and Psychology, Rochester, MN
| | - Bhanu Prakash Kolla
- Mayo Clinic Department of Psychiatry and Psychology, Rochester, MN.,Center for Sleep Medicine, Mayo Clinic, Rochester, MN
| | - Simon Kung
- Mayo Clinic Department of Psychiatry and Psychology, Rochester, MN
| |
Collapse
|
14
|
Vergallito A, Gallucci A, Pisoni A, Punzi M, Caselli G, Ruggiero GM, Sassaroli S, Romero Lauro LJ. Effectiveness of noninvasive brain stimulation in the treatment of anxiety disorders: a meta-analysis of sham or behaviour-controlled studies. J Psychiatry Neurosci 2021; 46:E592-E614. [PMID: 34753789 PMCID: PMC8580831 DOI: 10.1503/jpn.210050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/23/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The possibility of using noninvasive brain stimulation to treat mental disorders has received considerable attention recently. Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are considered to be effective treatments for depressive symptoms. However, no treatment recommendation is currently available for anxiety disorders, suggesting that evidence is still limited. We conducted a systematic review of the literature and a quantitative analysis of the effectiveness of rTMS and tDCS in the treatment of anxiety disorders. METHODS Following PRISMA guidelines, we screened 3 electronic databases up to the end of February 2020 for English-language, peer-reviewed articles that included the following: a clinical sample of patients with an anxiety disorder, the use of a noninvasive brain stimulation technique, the inclusion of a control condition, and pre/post scores on a validated questionnaire that measured symptoms of anxiety. RESULTS Eleven papers met the inclusion criteria, comprising 154 participants assigned to a stimulation condition and 164 to a sham or control group. We calculated Hedge's g for scores on disorder-specific and general anxiety questionnaires before and after treatment to determine effect size, and we conducted 2 independent random-effects meta-analyses. Considering the well-known comorbidity between anxiety and depression, we ran a third meta-analysis analyzing outcomes for depression scores. Results showed a significant effect of noninvasive brain stimulation in reducing scores on disorder-specific and general anxiety questionnaires, as well as depressive symptoms, in the real stimulation compared to the control condition. LIMITATIONS Few studies met the inclusion criteria; more evidence is needed to strengthen conclusions about the effectiveness of noninvasive brain stimulation in the treatment of anxiety disorders. CONCLUSION Our findings showed that noninvasive brain stimulation reduced anxiety and depression scores compared to control conditions, suggesting that it can alleviate clinical symptoms in patients with anxiety disorders.
Collapse
Affiliation(s)
| | | | - Alberto Pisoni
- From the Department of Psychology, University of Milano Bicocca, Milan, Italy (Vergallito, Pisoni, Punzi, Romero Lauro); the Neuromi, Milan, Italy (Vergallito, Gallucci, Pisoni, Romero Lauro); the Department of Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (Gallucci); the Studi Cognitivi, Milan, Italy (Caselli, Ruggiero, Sassaroli); and the Faculty of Psychology, Sigmund Freud University, Milan, Italy (Caseli, Ruggiero, Sassaroli)
| | | | | | | | | | | |
Collapse
|
15
|
Arai N, Nakanishi T, Nakajima S, Li X, Wada M, Daskalakis ZJ, Goodman MS, Blumberger DM, Mimura M, Noda Y. Insights of neurophysiology on unconscious state using combined transcranial magnetic stimulation and electroencephalography: A systematic review. Neurosci Biobehav Rev 2021; 131:293-312. [PMID: 34555384 DOI: 10.1016/j.neubiorev.2021.09.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 02/02/2023]
Abstract
Unconscious state has been investigated in numerous studies so far, but pathophysiology of this state is not fully understood. Recently, combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) has been developed to allow for non-invasive assessment of neurophysiology in the cerebral cortex. We conducted a systematic literature search for TMS-EEG studies on human unconscious state using PubMed with cross-reference and manual searches. The initial search yielded 137 articles, and 19 of them were identified as relevant, including one article found by manual search. This review included 10 studies for unresponsive wakefulness syndrome (UWS), 9 for minimally conscious states (MCS), 5 for medication-induced unconscious states, and 6 for natural non-rapid eye movement states. These studies analyzed TMS-evoked potential to calculate perturbational complexity index (PCI) and OFF-periods. In particular, PCI was found to be a potentially useful marker to differentiate between UWS and MCS. This review demonstrated that TMS-EEG could represent a promising neuroscientific tool to investigate various unconscious states. Further TMS-EEG research may help elucidate the neural basis of unconscious state.
Collapse
Affiliation(s)
- Naohiro Arai
- Department of Neuropsychiatry, Graduate School of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Tomoya Nakanishi
- Department of Neuropsychiatry, Graduate School of Medicine, Keio University School of Medicine, Tokyo, Japan; Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Graduate School of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Xuemei Li
- Department of Neuropsychiatry, Graduate School of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Masataka Wada
- Department of Neuropsychiatry, Graduate School of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | | | - Michelle S Goodman
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Canada.
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Canada.
| | - Masaru Mimura
- Department of Neuropsychiatry, Graduate School of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Graduate School of Medicine, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
16
|
Pomytkin AN, Lebedeva IS, Tikhonov DV, Kaleda VG. [Rhythmic transcranial magnetic stimulation in the treatment of resistant depression in schizophrenia]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:99-105. [PMID: 34405664 DOI: 10.17116/jnevro202112105299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rhythmic transcranial magnetic stimulation (rTMS) has long been actively used in the treatment of depressive disorders in various mental illnesses. At the same time, the question of the predictability of the results of this method for an individual patient remains open. Based on the existing ideas about the relationship of rTMS mechanisms with changes in the state of neural networks, one of the most perspective line is the search for prognostically significant neurophysiological markers. The study analyzed a wide range of EEG characteristics and evoked potentials recorded before treatment in the groups of responders and nonresponders in patients with depressive symptoms in schizophrenia, who have completed a course of rhythmic transcranial magnetic stimulation. The study revealed associations between an unfavorable treatment outcome and greater coherence in the alpha range (mainly in the caudal regions bilaterally) and less coherence in the beta1 range (involving temporal leads and left-hemisphere asymmetry). At the same time, such indicators as the amplitude of the N100 wave and the negativity of the mismatch were uninformative in terms of predicting the effectiveness of therapy.
Collapse
Affiliation(s)
| | | | | | - V G Kaleda
- Mental Health Research Center, Moscow, Russia
| |
Collapse
|
17
|
Heading for Personalized rTMS in Tinnitus: Reliability of Individualized Stimulation Protocols in Behavioral and Electrophysiological Responses. J Pers Med 2021; 11:jpm11060536. [PMID: 34207847 PMCID: PMC8226921 DOI: 10.3390/jpm11060536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation tool potentially modulating pathological brain activity. Its clinical effectiveness is hampered by varying results and characterized by inter-individual variability in treatment responses. RTMS individualization might constitute a useful strategy to overcome this variability. A precondition for this approach would be that repeatedly applied protocols result in reliable effects. The condition tinnitus provides the advantage of immediate behavioral consequences (tinnitus loudness changes) after interventions and thus offers an excellent model to exemplify TMS personalization. Objective: The aim was to investigate the test–retest reliability of short rTMS stimulations in modifying tinnitus loudness and oscillatory brain activity as well as to examine the feasibility of rTMS individualization in tinnitus. Methods: Three short verum (1, 10, 20 Hz; 200 pulses) and one sham (0.1 Hz; 20 pulses) rTMS protocol were administered on two different days in 22 tinnitus patients. Before and after each protocol, oscillatory brain activity was recorded with electroencephalography (EEG), together with behavioral tinnitus loudness ratings. RTMS individualization was executed on the basis of behavioral and electrophysiological responses. Stimulation responders were identified via consistent sham-superior increases in tinnitus loudness (behavioral responders) and alpha power increases or gamma power decreases (alpha responders/gamma responders) in accordance with the prevalent neurophysiological models for tinnitus. Results: It was feasible to identify individualized rTMS protocols featuring reliable tinnitus loudness changes (55% behavioral responder), alpha increases (91% alpha responder) and gamma decreases (100% gamma responder), respectively. Alpha responses primary occurred over parieto-occipital areas, whereas gamma responses mainly appeared over frontal regions. On the contrary, test–retest correlation analyses per protocol at a group level were not significant neither for behavioral nor for electrophysiological effects. No associations between behavioral and EEG responses were found. Conclusion: RTMS individualization via behavioral and electrophysiological data in tinnitus can be considered as a feasible approach to overcome low reliability at the group level. The present results open the discussion favoring personalization utilizing neurophysiological markers rather than behavioral responses. These insights are not only useful for the rTMS treatment of tinnitus but also for neuromodulation interventions in other pathologies, as our results suggest that the individualization of stimulation protocols is feasible despite absent group-level reliability.
Collapse
|
18
|
Poorganji M, Zomorrodi R, Hawco C, Hill AT, Hadas I, Rajji TK, Chen R, Voineskos D, Daskalakis AA, Blumberger DM, Daskalakis ZJ. Differentiating transcranial magnetic stimulation cortical and auditory responses via single pulse and paired pulse protocols: A TMS-EEG study. Clin Neurophysiol 2021; 132:1850-1858. [PMID: 34147010 DOI: 10.1016/j.clinph.2021.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVE We measured the neurophysiological responses of both active and sham transcranial magnetic stimulation (TMS) for both single pulse (SP) and paired pulse (PP; long interval cortical inhibition (LICI)) paradigms using TMS-EEG (electroencephalography). METHODS Nineteen healthy subjects received active and sham (coil 90° tilted and touching the scalp) SP and PP TMS over the left dorsolateral prefrontal cortex (DLPFC). We measured excitability through SP TMS and inhibition (i.e., cortical inhibition (CI)) through PP TMS. RESULTS Cortical excitability indexed by area under the curve (AUC(25-275ms)) was significantly higher in the active compared to sham stimulation (F(1,18) = 43.737, p < 0.001, η2 = 0.708). Moreover, the amplitude of N100-P200 complex was significantly larger (F(1,18) = 9.118, p < 0.01, η2 = 0.336) with active stimulation (10.38 ± 9.576 µV) compared to sham (4.295 ± 2.323 µV). Significant interaction effects were also observed between active and sham stimulation for both the SP and PP (i.e., LICI) cortical responses. Finally, only active stimulation (CI = 0.64 ± 0.23, p < 0.001) resulted in significant cortical inhibition. CONCLUSION The significant differences between active and sham stimulation in both excitatory and inhibitory neurophysiological responses showed that active stimulation elicits responses from the cortex that are different from the non-specific effects of sham stimulation. SIGNIFICANCE Our study reaffirms that TMS-EEG represents an effective tool to evaluate cortical neurophysiology with high fidelity.
Collapse
Affiliation(s)
- Mohsen Poorganji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Colin Hawco
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Aron T Hill
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Victoria, Australia
| | - Itay Hadas
- Department of Psychiatry, Faculty of Health, University of California San Diego, La Jolla, CA, USA
| | - Tarek K Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Robert Chen
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Krembil Neuroscience Centre, University Health Network, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Daphne Voineskos
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Anastasios A Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, Faculty of Health, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
19
|
Characterizing Cortical Oscillatory Responses in Major Depressive Disorder Before and After Convulsive Therapy: A TMS-EEG Study. J Affect Disord 2021; 287:78-88. [PMID: 33774319 DOI: 10.1016/j.jad.2021.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) is emerging as a powerful technique for interrogating neural circuit dysfunction in psychiatric disorders. Here, we utilized time-frequency analyses to characterize differences in neural oscillatory dynamics between subjects with major depressive disorder (MDD) and healthy controls (HC). We further examined changes in TMS-related oscillatory power following convulsive therapy. METHODS Oscillatory power was examined following TMS over the dorsolateral prefrontal and motor cortices (DLPFC and M1) in 38 MDD subjects, and 22 HCs. We further investigated how these responses changed in the MDD group following an acute course of convulsive therapy (either magnetic seizure therapy [MST, n = 24] or electroconvulsive therapy [ECT, n = 14]). RESULTS Prior to treatment, MDD subjects exhibited increased oscillatory power within delta, theta, and alpha frequency bands with TMS-EEG over the DLPFC, but showed no differences to HCs with stimulation over M1. Following MST, DLPFC stimulation revealed attenuated baseline-normalized power in the delta and theta bands, with reductions in the delta, theta, and alpha power following ECT. TMS over M1 revealed reduced delta and theta power following ECT, with no changes observed following MST. An association was also observed between the treatment- induced change in alpha power and depression severity score. LIMITATIONS Limitations include the modest sample size, open-label MST and ECT treatment designs, and lack of a placebo condition. CONCLUSIONS These results provide evidence of alterations in TMS-related oscillatory activity in MDD, and further suggest modulation of oscillatory power following ECT and MST.
Collapse
|
20
|
Cao KX, Ma ML, Wang CZ, Iqbal J, Si JJ, Xue YX, Yang JL. TMS-EEG: An emerging tool to study the neurophysiologic biomarkers of psychiatric disorders. Neuropharmacology 2021; 197:108574. [PMID: 33894219 DOI: 10.1016/j.neuropharm.2021.108574] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/08/2021] [Accepted: 04/15/2021] [Indexed: 01/02/2023]
Abstract
The etiology of psychiatric disorders remains largely unknown. The exploration of the neurobiological mechanisms of mental illness helps improve diagnostic efficacy and develop new therapies. This review focuses on the application of concurrent transcranial magnetic stimulation and electroencephalography (TMS-EEG) in various mental diseases, including major depressive disorder, bipolar disorder, schizophrenia, autism spectrum disorder, attention-deficit/hyperactivity disorder, substance use disorder, and insomnia. First, we summarize the commonly used protocols and output measures of TMS-EEG; then, we review the literature exploring the alterations in neural patterns, particularly cortical excitability, plasticity, and connectivity alterations, and studies that predict treatment responses and clinical states in mental disorders using TMS-EEG. Finally, we discuss the potential mechanisms underlying TMS-EEG in establishing biomarkers for psychiatric disorders and future research directions.
Collapse
Affiliation(s)
- Ke-Xin Cao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mao-Liang Ma
- Department of Clinical Psychology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Cheng-Zhan Wang
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Javed Iqbal
- School of Psychology, Shaanxi Normal University and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China
| | - Ji-Jian Si
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China; Key Laboratory for Neuroscience of Ministry of Education and Neuroscience, National Health and Family Planning Commission, Peking University, Beijing, China.
| | - Jian-Li Yang
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
21
|
Ahn S, Fröhlich F. Pinging the brain with transcranial magnetic stimulation reveals cortical reactivity in time and space. Brain Stimul 2021; 14:304-315. [PMID: 33516859 DOI: 10.1016/j.brs.2021.01.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Single-pulse transcranial magnetic stimulation (TMS) elicits an evoked electroencephalography (EEG) potential (TMS-evoked potential, TEP), which is interpreted as direct evidence of cortical reactivity to TMS. Thus, combining TMS with EEG can be used to investigate the mechanism underlying brain network engagement in TMS treatment paradigms. However, controversy remains regarding whether TEP is a genuine marker of TMS-induced cortical reactivity or if it is confounded by responses to peripheral somatosensory and auditory inputs. Resolving this controversy is of great significance for the field and will validate TMS as a tool to probe networks of interest in cognitive and clinical neuroscience. OBJECTIVE Here, we delineated the cortical origin of TEP by spatially and temporally localizing successive TEP components, and modulating them with transcranial direct current stimulation (tDCS) to investigate cortical reactivity elicited by single-pulse TMS and its causal relationship with cortical excitability. METHODS We recruited 18 healthy participants in a double-blind, cross-over, sham-controlled design. We collected motor-evoked potentials (MEPs) and TEPs elicited by suprathreshold single-pulse TMS targeting the left primary motor cortex (M1). To causally test cortical and corticospinal excitability, we applied tDCS to the left M1. RESULTS We found that the earliest TEP component (P25) was localized to the left M1. The following TEP components (N45 and P60) were largely localized to the primary somatosensory cortex, which may reflect afferent input by hand-muscle twitches. The later TEP components (N100, P180, and N280) were largely localized to the auditory cortex. As hypothesized, tDCS selectively modulated cortical and corticospinal excitability by modulating the pre-stimulus mu-rhythm oscillatory power. CONCLUSION Together, our findings provide causal evidence that the early TEP components reflect cortical reactivity to TMS.
Collapse
Affiliation(s)
- Sangtae Ahn
- School of Electronics Engineering, Kyungpook National University, Daegu, 41566, South Korea; School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, 41566, South Korea; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Flavio Fröhlich
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
22
|
Rossi S, Antal A, Bestmann S, Bikson M, Brewer C, Brockmöller J, Carpenter LL, Cincotta M, Chen R, Daskalakis JD, Di Lazzaro V, Fox MD, George MS, Gilbert D, Kimiskidis VK, Koch G, Ilmoniemi RJ, Lefaucheur JP, Leocani L, Lisanby SH, Miniussi C, Padberg F, Pascual-Leone A, Paulus W, Peterchev AV, Quartarone A, Rotenberg A, Rothwell J, Rossini PM, Santarnecchi E, Shafi MM, Siebner HR, Ugawa Y, Wassermann EM, Zangen A, Ziemann U, Hallett M. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clin Neurophysiol 2021; 132:269-306. [PMID: 33243615 PMCID: PMC9094636 DOI: 10.1016/j.clinph.2020.10.003] [Citation(s) in RCA: 570] [Impact Index Per Article: 190.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
This article is based on a consensus conference, promoted and supported by the International Federation of Clinical Neurophysiology (IFCN), which took place in Siena (Italy) in October 2018. The meeting intended to update the ten-year-old safety guidelines for the application of transcranial magnetic stimulation (TMS) in research and clinical settings (Rossi et al., 2009). Therefore, only emerging and new issues are covered in detail, leaving still valid the 2009 recommendations regarding the description of conventional or patterned TMS protocols, the screening of subjects/patients, the need of neurophysiological monitoring for new protocols, the utilization of reference thresholds of stimulation, the managing of seizures and the list of minor side effects. New issues discussed in detail from the meeting up to April 2020 are safety issues of recently developed stimulation devices and pulse configurations; duties and responsibility of device makers; novel scenarios of TMS applications such as in the neuroimaging context or imaging-guided and robot-guided TMS; TMS interleaved with transcranial electrical stimulation; safety during paired associative stimulation interventions; and risks of using TMS to induce therapeutic seizures (magnetic seizure therapy). An update on the possible induction of seizures, theoretically the most serious risk of TMS, is provided. It has become apparent that such a risk is low, even in patients taking drugs acting on the central nervous system, at least with the use of traditional stimulation parameters and focal coils for which large data sets are available. Finally, new operational guidelines are provided for safety in planning future trials based on traditional and patterned TMS protocols, as well as a summary of the minimal training requirements for operators, and a note on ethics of neuroenhancement.
Collapse
Affiliation(s)
- Simone Rossi
- Department of Scienze Mediche, Chirurgiche e Neuroscienze, Unit of Neurology and Clinical Neurophysiology, Brain Investigation and Neuromodulation Lab (SI-BIN Lab), University of Siena, Italy.
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University of Goettingen, Germany; Institue of Medical Psychology, Otto-Guericke University Magdeburg, Germany
| | - Sven Bestmann
- Department of Movement and Clinical Neurosciences, UCL Queen Square Institute of Neurology, London, UK and Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Carmen Brewer
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jürgen Brockmöller
- Department of Clinical Pharmacology, University Medical Center, Georg-August University of Goettingen, Germany
| | - Linda L Carpenter
- Butler Hospital, Brown University Department of Psychiatry and Human Behavior, Providence, RI, USA
| | - Massimo Cincotta
- Unit of Neurology of Florence - Central Tuscany Local Health Authority, Florence, Italy
| | - Robert Chen
- Krembil Research Institute and Division of Neurology, Department of Medicine, University of Toronto, Canada
| | - Jeff D Daskalakis
- Center for Addiction and Mental Health (CAMH), University of Toronto, Canada
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico, Roma, Italy
| | - Michael D Fox
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Mark S George
- Medical University of South Carolina, Charleston, SC, USA
| | - Donald Gilbert
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Vasilios K Kimiskidis
- Laboratory of Clinical Neurophysiology, Aristotle University of Thessaloniki, AHEPA University Hospital, Greece
| | | | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering (NBE), Aalto University School of Science, Aalto, Finland
| | - Jean Pascal Lefaucheur
- EA 4391, ENT Team, Faculty of Medicine, Paris Est Creteil University (UPEC), Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, Assistance Publique Hôpitaux de Paris, (APHP), Créteil, France
| | - Letizia Leocani
- Department of Neurology, Institute of Experimental Neurology (INSPE), IRCCS-San Raffaele Hospital, Vita-Salute San Raffaele University, Milano, Italy
| | - Sarah H Lisanby
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD, USA; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institut, Institut Guttmann, Universitat Autonoma Barcelona, Spain
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University of Goettingen, Germany
| | - Angel V Peterchev
- Departments of Psychiatry & Behavioral Sciences, Biomedical Engineering, Electrical & Computer Engineering, and Neurosurgery, Duke University, Durham, NC, USA
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alexander Rotenberg
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - John Rothwell
- Department of Movement and Clinical Neurosciences, UCL Queen Square Institute of Neurology, London, UK and Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Paolo M Rossini
- Department of Neuroscience and Rehabilitation, IRCCS San Raffaele-Pisana, Roma, Italy
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yoshikatzu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Eric M Wassermann
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Abraham Zangen
- Zlotowski Center of Neuroscience, Ben Gurion University, Beer Sheva, Israel
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
23
|
Vittala A, Murphy N, Maheshwari A, Krishnan V. Understanding Cortical Dysfunction in Schizophrenia With TMS/EEG. Front Neurosci 2020; 14:554. [PMID: 32547362 PMCID: PMC7270174 DOI: 10.3389/fnins.2020.00554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
Abstract
In schizophrenia and related disorders, a deeper mechanistic understanding of neocortical dysfunction will be essential to developing new diagnostic and therapeutic techniques. To this end, combined transcranial magnetic stimulation and electroencephalography (TMS/EEG) provides a non-invasive tool to simultaneously perturb and measure neurophysiological correlates of cortical function, including oscillatory activity, cortical inhibition, connectivity, and synchronization. In this review, we summarize the findings from a variety of studies that apply TMS/EEG to understand the fundamental features of cortical dysfunction in schizophrenia. These results lend to future applications of TMS/EEG in understanding the pathophysiological mechanisms underlying cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Aadith Vittala
- Department of Biosciences, Rice University, Houston, TX, United States
| | - Nicholas Murphy
- Department of Psychiatry and Behavioral Science, Baylor College of Medicine, Houston, TX, United States
| | - Atul Maheshwari
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Vaishnav Krishnan
- Department of Psychiatry and Behavioral Science, Baylor College of Medicine, Houston, TX, United States.,Department of Neurology, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
24
|
Borrione L, Bellini H, Razza LB, Avila AG, Baeken C, Brem AK, Busatto G, Carvalho AF, Chekroud A, Daskalakis ZJ, Deng ZD, Downar J, Gattaz W, Loo C, Lotufo PA, Martin MDGM, McClintock SM, O'Shea J, Padberg F, Passos IC, Salum GA, Vanderhasselt MA, Fraguas R, Benseñor I, Valiengo L, Brunoni AR. Precision non-implantable neuromodulation therapies: a perspective for the depressed brain. ACTA ACUST UNITED AC 2020; 42:403-419. [PMID: 32187319 PMCID: PMC7430385 DOI: 10.1590/1516-4446-2019-0741] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
Current first-line treatments for major depressive disorder (MDD) include pharmacotherapy and cognitive-behavioral therapy. However, one-third of depressed patients do not achieve remission after multiple medication trials, and psychotherapy can be costly and time-consuming. Although non-implantable neuromodulation (NIN) techniques such as transcranial magnetic stimulation, transcranial direct current stimulation, electroconvulsive therapy, and magnetic seizure therapy are gaining momentum for treating MDD, the efficacy of non-convulsive techniques is still modest, whereas use of convulsive modalities is limited by their cognitive side effects. In this context, we propose that NIN techniques could benefit from a precision-oriented approach. In this review, we discuss the challenges and opportunities in implementing such a framework, focusing on enhancing NIN effects via a combination of individualized cognitive interventions, using closed-loop approaches, identifying multimodal biomarkers, using computer electric field modeling to guide targeting and quantify dosage, and using machine learning algorithms to integrate data collected at multiple biological levels and identify clinical responders. Though promising, this framework is currently limited, as previous studies have employed small samples and did not sufficiently explore pathophysiological mechanisms associated with NIN response and side effects. Moreover, cost-effectiveness analyses have not been performed. Nevertheless, further advancements in clinical trials of NIN could shift the field toward a more “precision-oriented” practice.
Collapse
Affiliation(s)
- Lucas Borrione
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Helena Bellini
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Lais Boralli Razza
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Ana G Avila
- Centro de Neuropsicologia e Intervenção Cognitivo-Comportamental, Faculdade de Psicologia e Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
| | - Chris Baeken
- Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Department of Psychiatry, University Hospital (UZ Brussel), Brussels, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anna-Katharine Brem
- Max Planck Institute of Psychiatry, Munich, Germany.,Division of Interventional Cognitive Neurology, Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Geraldo Busatto
- Laboratório de Neuroimagem em Psiquiatria (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| | - Andre F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Adam Chekroud
- Spring Health, New York, NY, USA.,Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutic & Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.,Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
| | - Jonathan Downar
- Department of Psychiatry and Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Centre for Mental Health and Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Wagner Gattaz
- Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas,
Faculdade de Medicina, USP, São Paulo, SP, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| | - Colleen Loo
- School of Psychiatry and Black Dog Institute, University of New South Wales, Sydney, Australia
| | - Paulo A Lotufo
- Estudo Longitudinal de Saúde do Adulto (ELSA), Centro de Pesquisa Clínica e Epidemiológica, Hospital Universitário, USP, São Paulo, SP, Brazil
| | - Maria da Graça M Martin
- Laboratório de Ressonância Magnética em Neurorradiologia (LIM-44) and Instituto de Radiologia, Hospital das Clínicas, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| | - Shawn M McClintock
- Neurocognitive Research Laboratory, Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jacinta O'Shea
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity, Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Ives C Passos
- Laboratório de Psiquiatria Molecular e Programa de
Transtorno Bipolar, Hospital de Clínicas de Porto Alegre (HCPA), Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Giovanni A Salum
- Departamento de Psiquiatria, Seção de Afeto Negativo e Processos Sociais (SANPS), HCPA, UFRGS, Porto Alegre, RS, Brazil
| | - Marie-Anne Vanderhasselt
- Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium.,Department of Experimental Clinical and Health Psychology, Psychopathology and Affective Neuroscience Lab, Ghent University, Ghent, Belgium
| | - Renerio Fraguas
- Laboratório de Neuroimagem em Psiquiatria (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, USP, São Paulo, SP, Brazil.,Hospital Universitário, USP, São Paulo, SP, Brazil
| | - Isabela Benseñor
- Estudo Longitudinal de Saúde do Adulto (ELSA), Centro de Pesquisa Clínica e Epidemiológica, Hospital Universitário, USP, São Paulo, SP, Brazil
| | - Leandro Valiengo
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Andre R Brunoni
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil.,Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas,
Faculdade de Medicina, USP, São Paulo, SP, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, USP, São Paulo, SP, Brazil.,Hospital Universitário, USP, São Paulo, SP, Brazil
| |
Collapse
|
25
|
Daskalakis ZJ, Tyndale RF. A Physiological Marriage Made in Heaven: Treating and Measuring the Brain Through Stimulation. Clin Pharmacol Ther 2019; 106:691-695. [PMID: 31509631 DOI: 10.1002/cpt.1576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Rachel F Tyndale
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|