1
|
Wang M, Zhang W, Zang W. Repetitive transcranial magnetic stimulation improves cognition, depression, and walking ability in patients with Parkinson's disease: a meta-analysis. BMC Neurol 2024; 24:490. [PMID: 39716169 DOI: 10.1186/s12883-024-03990-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024] Open
Abstract
OBJECTIVE To evaluate the efficacy of repetitive transcranial magnetic stimulation (rTMS) on cognitive function, depression, and walking ability in patients with Parkinson's disease. METHODS A comprehensive search was conducted in PubMed, Web of Science, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), Chinese Biomedical Literature Database (CBM), VIP Database, and Wanfang Database. Randomized controlled trials (RCTs) on rTMS treatment in Parkinson's disease patients were retrieved, covering the period from the inception of each database to July 2024. The quality of the included studies was assessed using the Cochrane risk of bias tool. Two researchers independently screened the literature, extracted data, and assessed the risk of bias in the studies. Data synthesis and analysis were performed using RevMan 5.4 and Stata 17.0 software. RESULTS A total of 15 studies were included. The meta-analysis revealed that rTMS significantly improved the MOCA score (MD = 2.98, 95% CI 2.08, 3.88, P = 0.000), TUGT score (SMD=-0.72, 95% CI -1.43, 0.00, P = 0.048), FOG-Q score (SMD=-0.54, 95% CI -0.97, -0.11, P = 0.01), and UPDRS-III score (SMD=-0.66, 95% CI -0.84, -0.47, P = 0.000) in Parkinson's disease patients, and also alleviated depressive symptoms as measured by the HAMD (SMD=-0.43, 95% CI -0.72, -0.13, P = 0.004). CONCLUSIONS rTMS can improve cognitive function, depressive symptoms, and walking ability in patients with Parkinson's disease.
Collapse
Affiliation(s)
- Mingchen Wang
- Cangzhou Hopsital of Integrated Traditional Chinese and Western of Hebei Province, Cangzhou, Hebei, 061000, China
- Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, Hebei, China
| | - Wenyu Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| | - Wanli Zang
- School of Physical Education, Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Chen Y, Jiang H, Wei Y, Ye S, Jiang J, Mak M, Pang MYC, Gao Q, Huang M. Effects of non-invasive brain stimulation over the supplementary motor area on motor function in Parkinson's disease: A systematic review and meta-analysis. Brain Stimul 2024; 18:1-14. [PMID: 39667490 DOI: 10.1016/j.brs.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/03/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Motor dysfunction profoundly affects individuals with Parkinson's disease (PD). Non-invasive brain stimulation (NIBS) targeting the supplementary motor area (SMA), a critical region for movement-related processing, offers a promising approach to enhance motor function for PD. OBJECTIVE This systematic review and meta-analysis aims to evaluate the efficacy of NIBS over the SMA (SMA-NIBS) in alleviating motor symptoms in PD. METHODS We conducted literature searches in MEDLINE, EMBASE, Physiotherapy Evidence Database, Web of Science, the Chinese National Knowledge Infrastructure, and Scopus. The meta-analysis utilized an inverse variance method and a random-effects model. Subgroup analyses were performed based on stimulation types (e.g., TMS and tDCS), stimulation protocols (e.g., facilitatory and inhibitory stimulation), and medication status during stimulation. RESULTS Twenty randomized control trials involving 442 individuals with PD were included. Compared to sham stimulation, SMA-NIBS significantly improved motor function as measured by the motor section of Unified Parkinson's Disease Rating Scale (UPDRS-III) (mean differences [MD]: -3.45, 95 % confidence interval [CI]: -5.65 to -1.26). Subgroup analysis revealed that only TMS (MD: -3.62, 95%CI: -6.15 to -1.08), not tDCS (MD: -2.47, 95 % CI: -5.03 to 0.08), has significant effect on motor function. Both facilitatory (MD: -2.59, 95 % CI: -3.37 to -1.82) and inhibitory stimulation (MD: -4.98, 95 % CI: -9.29 to -0.66) significantly improved the UPDRS-III score. Effectiveness was observed only during ON medication. Statistically significant effects of SMA-NIBS were reported on Freezing of Gait Questionnaire, not timed up and go test and walking speed. CONCLUSION SMA-NIBS is a promising approach to enhance motor function in PD.
Collapse
Affiliation(s)
- Yawen Chen
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
| | - Hanhong Jiang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yixin Wei
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Saiqing Ye
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
| | - Jiaxin Jiang
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
| | - Margaret Mak
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
| | - Marco Y C Pang
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
| | - Qiang Gao
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Meizhen Huang
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China.
| |
Collapse
|
3
|
Gouriou E, Bourque M, Schneider C, Di Paolo T. Exploring Magnetic and Electrical Brain Stimulation in Parkinsonian Dyskinetic Monkeys. Can J Neurol Sci 2024:1-12. [PMID: 39530289 DOI: 10.1017/cjn.2024.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND Parkinson's disease (PD) chronic L-Dopa treatment often triggers motor complications, such as L-Dopa-induced dyskinesias (LID). LID are reported to be associated with abnormal glutamatergic activity between the striatum and primary motor cortex (M1), resulting in M1 hyperactivation. Beneficial noninvasive brain stimulation (NIBS) paradigms were reported to normalize glutamatergic activity. The objective of the present study was thus to set up a NIBS paradigm in parkinsonian monkeys to investigate motor behavior under basal conditions and with L-Dopa treatment-inducing dyskinesias. METHODS Motor behavior was investigated in five 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) dyskinetic female Macaca fascicularis monkey models of PD, allowing us to monitor the administration of NIBS and drugs. NIBS used were inhibitory protocols, that is, cathodal transcranial direct current stimulation (c-tDCS) and continuous theta-burst stimulation (cTBS). A procedure of three weeks was developed to progressively acclimate animals to the experimental conditions, equipment and noise of c-tDCS and cTBS before stimulating them with either vehicle or L-Dopa. RESULTS One session of c-tDCS with L-Dopa yielded no effect, whereas five sessions briefly reduced LID but decreased the duration of L-Dopa anti-PD effects. cTBS alone improved (decreased) parkinsonian scores as compared to sham stimulation or vehicle alone. Two sessions of cTBS with L-Dopa decreased LID without affecting L-Dopa anti-PD effects. CONCLUSION This is the first study testing c-tDCS and cTBS on the motor behavior of MPTP dyskinetic monkeys. As compared to medicated patients, MPTP monkeys offer the opportunity to evaluate NIBS after-effects in drug-free and LID conditions, which are critical in the search for new PD treatment.
Collapse
Affiliation(s)
- Estelle Gouriou
- Noninvasive Neurostimulation Laboratory, Neuroscience Unit, Research Center of CHU de Québec - Université Laval, Quebec, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, Canada
- Faculty of Medicine, Université Laval, Quebec, Canada
| | - Mélanie Bourque
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, Canada
| | - Cyril Schneider
- Noninvasive Neurostimulation Laboratory, Neuroscience Unit, Research Center of CHU de Québec - Université Laval, Quebec, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, Canada
- Faculty of Medicine, Université Laval, Quebec, Canada
- Faculty of Medicine, School of Rehabilitation Science, Université Laval, Quebec, Canada
| | - Thérèse Di Paolo
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, Canada
- Faculty of Pharmacy, Université Laval, Quebec, Canada
| |
Collapse
|
4
|
Wang Y, Ding Y, Guo C. Assessment of noninvasive brain stimulation interventions in Parkinson's disease: a systematic review and network meta-analysis. Sci Rep 2024; 14:14219. [PMID: 38902308 PMCID: PMC11189909 DOI: 10.1038/s41598-024-64196-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
A network meta-analysis of randomized controlled trials was conducted to compare and rank the effectiveness of various noninvasive brain stimulation (NIBS) for Parkinson's disease (PD). We searched PubMed, Web of Science, Cochrane Library, Embase, China National Knowledge Infrastructure (CNKI), Wanfang Database, China Science and Technology Journal Database (VIP), and Chinese Biomedical Literature Service System (SinoMed) databases from the date of database inception to April 30th, 2024. Two researchers independently screened studies of NIBS treatment in patients with PD based on inclusion and exclusion criteria. Two researchers independently performed data extraction of the included studies using an Excel spreadsheet and assessed the quality of the literature according to the Cochrane Risk of Bias Assessment Tool (RoB2). Network meta-analysis was performed in StataMP 17.0. A total of 28 studies involving 1628 PD patients were included. The results showed that HF-rTMS over the SMA (SMD = - 2.01; 95% CI [- 2.87, - 1.15]), HF-rTMS over the M1 and DLPFC (SMD = - 1.80; 95% CI [- 2.90, - 0.70]), HF-rTMS over the M1 (SMD = - 1.10; 95% CI [- 1.55, - 0.65]), a-tDCS over the DLPFC (SMD = - 1.08; 95% CI [- 1.90, - 0.27]), HF-rTMS over the M1 and PFC (SMD = - 0.92; 95% CI [- 1.71, - 0.14]), LF-rTMS over the M1 (SMD = - 0.72; 95% CI [- 1.17, - 0.28]), and HF-rTMS over the DLPFC (SMD = - 0.70; 95% CI [- 1.21, - 0.19]) were significantly improved motor function compared with sham stimulation. The SUCRA three highest ranked were HF-rTMS over the SMA (95.1%), HF-rTMS over the M1 and DLPFC (89.6%), and HF-rTMS over the M1 (73.0%). In terms of enhanced cognitive function, HF-rTMS over the DLPFC (SMD = 0.80; 95% CI [0.03,1.56]) was significantly better than sham stimulation. The SUCRA three most highly ranked were a-tDCS over the M1 (69.8%), c-tDCS over the DLPFC (66.9%), and iTBS over the DLPFC (65.3%). HF-rTMS over the M1 (SMD = - 1.43; 95% CI [- 2.26, - 0.61]) and HF-rTMS over the DLPFC (SMD = - 0.79; 95% CI [- 1.45, - 0.12)]) significantly improved depression. The SUCRA three highest ranked were HF-rTMS over the M1 (94.1%), LF-rTMS over the M1 (71.8%), and HF-rTMS over the DLPFC (69.0%). HF-rTMS over the SMA may be the best option for improving motor symptoms in PD patients. a-tDCS and HF-rTMS over the M1 may be the NIBS with the most significant effects on cognition and depression, separately.Trial registration: International Prospective Register of Systematic Review, PROSPERO (CRD42023456088).
Collapse
Affiliation(s)
- Yueying Wang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yi Ding
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Chenchen Guo
- Department of Rehabilitation Medicine, Neck, Shoulder, Lumbago and Leg Pain Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
5
|
González-Zamorano Y, José Sánchez-Cuesta F, Moreno-Verdú M, Arroyo-Ferrer A, Fernández-Carnero J, Chaudhuri KR, Fieldwalker A, Romero JP. TDCS for parkinson's disease disease-related pain: A randomized trial. Clin Neurophysiol 2024; 161:133-146. [PMID: 38479239 DOI: 10.1016/j.clinph.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/05/2023] [Accepted: 01/04/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVE To evaluate the effects of transcranial direct current stimulation (tDCS) on Parkinson's disease (PD)-related pain. METHODS This triple-blind randomized controlled trial included twenty-two patients (age range 38-85, 10 male) with PD-related pain. Eleven subjects received ten sessions of 20 minutes tDCS over the primary motor cortex contralateral to pain at 2 mA intensity. Eleven subjects received sham stimulation. Outcome measures included changes in the Kinǵs Parkinsońs Pain Scale (KPPS), Brief Pain Inventory (BPI), widespread mechanical hyperalgesia (WMH), temporal summation of pain (TS), and conditioned pain modulation (CPM). RESULTS Significant differences were found in KPPS between groups favoring the active-tDCS group compared to the sham-tDCS group at 15-days follow-up (p = 0.014) but not at 2 days post-intervention (p = 0.059). The active-group showed significant improvements over the sham-group after 15 days (p = 0.017). Significant changes were found in CPM between groups in favor of active-tDCS group at 2 days post-intervention (p = 0.002) and at 15 days (p = 0.017). No meaningful differences were observed in BPI or TS. CONCLUSIONS tDCS of the primary motor cortex alleviates perceived PD-related pain, reduces pain sensitization, and enhances descending pain inhibition. SIGNIFICANCE This is the first study to test and demonstrate the use of tDCS for improving PD-related pain.
Collapse
Affiliation(s)
- Yeray González-Zamorano
- International Doctorate School, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28933 Alcorcón, Spain; Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28933 Alcorcón, Spain; Cognitive Neuroscience, Pain and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain; Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain.
| | - Francisco José Sánchez-Cuesta
- Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain; Faculty of Experimental Sciences, Francisco de Vitoria University, 28223 Pozuelo de Alarcón, Spain.
| | - Marcos Moreno-Verdú
- Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain; Faculty of Experimental Sciences, Francisco de Vitoria University, 28223 Pozuelo de Alarcón, Spain
| | - Aida Arroyo-Ferrer
- Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain; Faculty of Experimental Sciences, Francisco de Vitoria University, 28223 Pozuelo de Alarcón, Spain.
| | - Josué Fernández-Carnero
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28933 Alcorcón, Spain; Cognitive Neuroscience, Pain and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain.
| | - K Ray Chaudhuri
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom.
| | - Anna Fieldwalker
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| | - Juan Pablo Romero
- Cognitive Neuroscience, Pain and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain; Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain; Faculty of Experimental Sciences, Francisco de Vitoria University, 28223 Pozuelo de Alarcón, Spain; Brain Damage Unit, Beata María Ana Hospital, 28007 Madrid, Spain.
| |
Collapse
|
6
|
Smid A, Dominguez-Vega ZT, van Laar T, Oterdoom DLM, Absalom AR, van Egmond ME, Drost G, van Dijk JMC. Objective clinical registration of tremor, bradykinesia, and rigidity during awake stereotactic neurosurgery: a scoping review. Neurosurg Rev 2024; 47:81. [PMID: 38355824 PMCID: PMC10866747 DOI: 10.1007/s10143-024-02312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 02/16/2024]
Abstract
Tremor, bradykinesia, and rigidity are incapacitating motor symptoms that can be suppressed with stereotactic neurosurgical treatment like deep brain stimulation (DBS) and ablative surgery (e.g., thalamotomy, pallidotomy). Traditionally, clinicians rely on clinical rating scales for intraoperative evaluation of these motor symptoms during awake stereotactic neurosurgery. However, these clinical scales have a relatively high inter-rater variability and rely on experienced raters. Therefore, objective registration (e.g., using movement sensors) is a reasonable extension for intraoperative assessment of tremor, bradykinesia, and rigidity. The main goal of this scoping review is to provide an overview of electronic motor measurements during awake stereotactic neurosurgery. The protocol was based on the PRISMA extension for scoping reviews. After a systematic database search (PubMed, Embase, and Web of Science), articles were screened for relevance. Hundred-and-three articles were subject to detailed screening. Key clinical and technical information was extracted. The inclusion criteria encompassed use of electronic motor measurements during stereotactic neurosurgery performed under local anesthesia. Twenty-three articles were included. These studies had various objectives, including correlating sensor-based outcome measures to clinical scores, identifying optimal DBS electrode positions, and translating clinical assessments to objective assessments. The studies were highly heterogeneous in device choice, sensor location, measurement protocol, design, outcome measures, and data analysis. This review shows that intraoperative quantification of motor symptoms is still limited by variable signal analysis techniques and lacking standardized measurement protocols. However, electronic motor measurements can complement visual evaluations and provide objective confirmation of correct placement of the DBS electrode and/or lesioning. On the long term, this might benefit patient outcomes and provide reliable outcome measures in scientific research.
Collapse
Affiliation(s)
- Annemarie Smid
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1 HPC AB71, 9713 GZ, Groningen, Netherlands.
| | - Zeus T Dominguez-Vega
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 HPC AB71, 9713 GZ, Groningen, Netherlands
| | - Teus van Laar
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 HPC AB71, 9713 GZ, Groningen, Netherlands
| | - D L Marinus Oterdoom
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1 HPC AB71, 9713 GZ, Groningen, Netherlands
| | - Anthony R Absalom
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 HPC AB71, 9713 GZ, Groningen, Netherlands
| | - Martje E van Egmond
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 HPC AB71, 9713 GZ, Groningen, Netherlands
| | - Gea Drost
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1 HPC AB71, 9713 GZ, Groningen, Netherlands
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 HPC AB71, 9713 GZ, Groningen, Netherlands
| | - J Marc C van Dijk
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1 HPC AB71, 9713 GZ, Groningen, Netherlands
| |
Collapse
|
7
|
Rems L, Rainot A, Wiczew D, Szulc N, Tarek M. Cellular excitability and ns-pulsed electric fields: Potential involvement of lipid oxidation in the action potential activation. Bioelectrochemistry 2024; 155:108588. [PMID: 37879163 DOI: 10.1016/j.bioelechem.2023.108588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Recent studies showed that nanosecond pulsed electric fields (nsPEFs) can activate voltage-gated ion channels (VGICs) and trigger action potentials (APs) in excitable cells. Under physiological conditions, VGICs' activation takes place on time scales of the order 10-100 µs. These time scales are considerably longer than the applied pulse duration, thus activation of VGICs by nsPEFs remains puzzling and there is no clear consensus on the mechanisms involved. Here we propose that changes in local electrical properties of the cell membrane due to lipid oxidation might be implicated in AP activation. We first use MD simulations of model lipid bilayers with increasing concentration of primary and secondary lipid oxidation products and demonstrate that oxidation not only increases the bilayer conductance, but also the bilayer capacitance. Equipped with MD-based characterization of electrical properties of oxidized bilayers, we then resort to AP modelling at the cell level with Hodgkin-Huxley-type models. We confirm that a local change in membrane properties, particularly the increase in membrane conductance, due to formation of oxidized membrane lesions can be high enough to trigger an AP, even when no external stimulus is applied. However, excessive accumulation of oxidized lesions (or other conductive defects) can lead to altered cell excitability.
Collapse
Affiliation(s)
- Lea Rems
- University of Ljubljana, Faculty of Electrical Engineering, SI-1000 Ljubljana, Slovenia.
| | | | - Daniel Wiczew
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France
| | - Natalia Szulc
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France.
| |
Collapse
|
8
|
Song YT, Liu YB, Xiang HB, Manyande A, He ZG. The Application of Deep Brain Stimulation for Parkinson's Disease on the Motor Pathway: A Bibliometric Analysis across 10 Years. Curr Med Sci 2023; 43:1247-1257. [PMID: 38153631 DOI: 10.1007/s11596-023-2811-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/27/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND AND OBJECTIVE Since its initial report by James Parkinson in 1817, Parkinson's disease (PD) has remained a central subject of research and clinical advancement. The disease is estimated to affect approximately 1% of adults aged 60 and above. Deep brain stimulation, emerging as an alternative therapy for end-stage cases, has offered a lifeline to numerous patients. This review aimed to analyze publications pertaining to the impact of deep brain stimulation on the motor pathway in patients with PD over the last decade. METHODS Data were obtained from the Web of Science Core Collection through the library of Huazhong University of Science and Technology (China). The search strategy encompassed the following keywords: "deep brain stimulation", "Parkinson's disease", "motor pathway", and "human", from January 1, 2012, to December 1, 2022. Additionally, this review visualized the findings using the Citespace software. RESULTS The results indicated that the United States, the United Kingdom, Germany, and China were the primary contributors to this research field. University College London, Capital Medical University, and Maastricht University were the top 3 research institutions in the research area. Tom Foltynie ranked first with 6 publications, and the journals of Brain and Brain Stimulation published the greatest number of relevant articles. The prevailing research focal points in this domain, as determined by keywords "burst analysis", "encompassed neuronal activity", "nucleus", "hyper direct pathway", etc. CONCLUSION: This study has provided a new perspective through bibliometric analysis of the deep brain stimulation therapy for treating patients with PD, which can shed light on future research to advance our comprehension of this particular field of study.
Collapse
Affiliation(s)
- Yong-Tang Song
- Medical Association of Hubei Province, Wuhan, 430060, China
| | - Yan-Bo Liu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Bing Xiang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, 0044, UK
| | - Zhi-Gang He
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
Wei YX, Tu LD, He L, Qiu YT, Su W, Zhang L, Ma RT, Gao Q. Research hotspots and trends of transcranial magnetic stimulation in Parkinson's disease: a bibliometric analysis. Front Neurosci 2023; 17:1280180. [PMID: 37928722 PMCID: PMC10620724 DOI: 10.3389/fnins.2023.1280180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Background Transcranial magnetic stimulation (TMS), as a non-invasive neuromodulation technique, has been widely used in the treatment of Parkinson's disease (PD). The increasing application of TMS has promoted an increasing number of clinical studies. In this paper, a bibliometric analysis of existing studies was conducted to reveal current research hotspots and guide future research directions. Method Relevant articles and reviews were obtained from the Science Citation Index Expanded of Web of Science Core Collection database. Data related to publications, countries, institutions, authors, journals, citations, and keywords in the studies included in the review were systematically analyzed using VOSviewer 1.6.18 and Citespace 6.2.4 software. Result A total of 1,894 papers on the topic of TMS in PD between 1991 and 2022 were analyzed and visualized to identify research hotspots and trends in the field. The number of annual publications in this field of study has increased gradually over the past 30 years, with the number of annual publications peaking in 2022 (n = 150). In terms of publications and total citations, countries, institutions, and authors from North America and Western Europe were found to make significant contributions to the field. The current hotspot focuses on the effectiveness of TMS for PD in different stimulation modes or different stimulated brain regions. The keyword analysis indicates that the latest research is oriented to the mechanism study of TMS for motor symptoms in PD, and the non-motor symptoms are also receiving more attention. Conclusion Our study offers insights into the current hotspots and emerging trends of TMS in the rehabilitation of PD. These findings may serve as a guide for future research and the application of TMS for PD.
Collapse
Affiliation(s)
- Yi-Xin Wei
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Liang-Dan Tu
- Neurology Department, West China Hospital, Sichuan University, Chengdu, China
| | - Lin He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Yi-Tong Qiu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Su
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Li Zhang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Run-Ting Ma
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Gao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Qiu Y, Yin Z, Wang M, Duan A, Xie M, Wu J, Wang Z, Chen G. Motor function improvement and acceptability of non-invasive brain stimulation in patients with Parkinson's disease: a Bayesian network analysis. Front Neurosci 2023; 17:1212640. [PMID: 37564368 PMCID: PMC10410144 DOI: 10.3389/fnins.2023.1212640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023] Open
Abstract
Background Parkinson's disease (PD) is a neurodegenerative disorder defined by progressive motor and non-motor symptoms. Currently, the pro-cognitive effects of transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS) are well-supported in previous literatures. However, controversy surrounding the optimal therapeutic target for motor symptom improvement remains. Objective This network meta-analysis (NMA) was conducted to comprehensively evaluate the optimal strategy to use rTMS and tDCS to improve motor symptoms in PD. Methods We searched PubMed, Embase, and Cochrane electronic databases for eligible randomized controlled studies (RCTs). The primary outcome was the changes of Unified Parkinson's Disease Rating Scale (UPDRS) part III score, the secondary outcomes were Time Up and Go Test (TUGT) time, and Freezing of Gait Questionnaire (FOGQ) score. The safety outcome was indicated by device-related adverse events (AEs). Result We enrolled 28 studies that investigated various strategies, including high-frequency rTMS (HFrTMS), low-frequency rTMS (LFrTMS), anodal tDCS (AtDCS), AtDCS_ cathode tDCS (CtDCS), HFrTMS_LFrTMS, and Sham control groups. Both HFrTMS (short-term: mean difference (MD) -5.21, 95% credible interval (CrI) -9.26 to -1.23, long-term: MD -4.74, 95% CrI -6.45 to -3.05), and LFrTMS (long-term: MD -4.83, 95% CrI -6.42 to -3.26) were effective in improving UPDRS-III score compared with Sham stimulation. For TUGT time, HFrTMS (short-term: MD -2.04, 95% CrI -3.26 to -0.8, long-term: MD -2.66, 95% CrI -3.55 to -1.77), and AtDCS (short-term: MD -0.8, 95% CrI -1.26 to -0.34, long-term: MD -0.69, 95% CrI -1.31 to -0.08) produced a significant difference compared to Sham stimulation. However, no statistical difference was found in FOGQ score among the various groups. According to the surface under curve ranking area, HFrTMS ranked first in short-term UPDRS-III score (0.77), short-term (0.82), and long-term (0.84) TUGT time, and short-term FOGQ score (0.73). With respect to the safety outcomes, all strategies indicated few and self-limiting AEs. Conclusion HFrTMS may be the optimal non-invasive brain stimulation (NIBS) intervention to improve motor function in patients with PD while NIBS has generally been well tolerated. However, further studies focusing on the clinical outcomes resulting from the different combined schedules of tDCS and rTMS are required. Systematic review registration https://inplasy.com/inplasy-2023-4-0087/, identifier: 202340087.
Collapse
Affiliation(s)
- Youjia Qiu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ziqian Yin
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Menghan Wang
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Aojie Duan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Minjia Xie
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Zhou L, Jin Y, Wu D, Cun Y, Zhang C, Peng Y, Chen N, Yang X, Zhang S, Ning R, Kuang P, Wang Z, Zhang P. Current evidence, clinical applications, and future directions of transcranial magnetic stimulation as a treatment for ischemic stroke. Front Neurosci 2023; 17:1177283. [PMID: 37534033 PMCID: PMC10390744 DOI: 10.3389/fnins.2023.1177283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive brain neurostimulation technique that can be used as one of the adjunctive treatment techniques for neurological recovery after stroke. Animal studies have shown that TMS treatment of rats with middle cerebral artery occlusion (MCAO) model reduced cerebral infarct volume and improved neurological dysfunction in model rats. In addition, clinical case reports have also shown that TMS treatment has positive neuroprotective effects in stroke patients, improving a variety of post-stroke neurological deficits such as motor function, swallowing, cognitive function, speech function, central post-stroke pain, spasticity, and other post-stroke sequelae. However, even though numerous studies have shown a neuroprotective effect of TMS in stroke patients, its possible neuroprotective mechanism is not clear. Therefore, in this review, we describe the potential mechanisms of TMS to improve neurological function in terms of neurogenesis, angiogenesis, anti-inflammation, antioxidant, and anti-apoptosis, and provide insight into the current clinical application of TMS in multiple neurological dysfunctions in stroke. Finally, some of the current challenges faced by TMS are summarized and some suggestions for its future research directions are made.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yaju Jin
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Danli Wu
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yongdan Cun
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Chengcai Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yicheng Peng
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Na Chen
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Xichen Yang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Simei Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Rong Ning
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Peng Kuang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Zuhong Wang
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Pengyue Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
12
|
Yeh CH, Zhang C, Shi W, Lo MT, Tinkhauser G, Oswal A. Cross-Frequency Coupling and Intelligent Neuromodulation. CYBORG AND BIONIC SYSTEMS 2023; 4:0034. [PMID: 37266026 PMCID: PMC10231647 DOI: 10.34133/cbsystems.0034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
Cross-frequency coupling (CFC) reflects (nonlinear) interactions between signals of different frequencies. Evidence from both patient and healthy participant studies suggests that CFC plays an essential role in neuronal computation, interregional interaction, and disease pathophysiology. The present review discusses methodological advances and challenges in the computation of CFC with particular emphasis on potential solutions to spurious coupling, inferring intrinsic rhythms in a targeted frequency band, and causal interferences. We specifically focus on the literature exploring CFC in the context of cognition/memory tasks, sleep, and neurological disorders, such as Alzheimer's disease, epilepsy, and Parkinson's disease. Furthermore, we highlight the implication of CFC in the context and for the optimization of invasive and noninvasive neuromodulation and rehabilitation. Mainly, CFC could support advancing the understanding of the neurophysiology of cognition and motor control, serve as a biomarker for disease symptoms, and leverage the optimization of therapeutic interventions, e.g., closed-loop brain stimulation. Despite the evident advantages of CFC as an investigative and translational tool in neuroscience, further methodological improvements are required to facilitate practical and correct use in cyborg and bionic systems in the field.
Collapse
Affiliation(s)
- Chien-Hung Yeh
- School of Information and Electronics,
Beijing Institute of Technology, Beijing, China
| | - Chuting Zhang
- School of Information and Electronics,
Beijing Institute of Technology, Beijing, China
| | - Wenbin Shi
- School of Information and Electronics,
Beijing Institute of Technology, Beijing, China
| | - Men-Tzung Lo
- Department of Biomedical Sciences and Engineering,
National Central University, Taoyuan, Taiwan
| | - Gerd Tinkhauser
- Department of Neurology,
Bern University Hospital and University of Bern, Bern, Switzerland
| | - Ashwini Oswal
- MRC Brain Network Dynamics Unit,
University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Guisande N, di Nunzio MP, Martinez N, Rosso OA, Montani F. Chaotic dynamics of the Hénon map and neuronal input-output: A comparison with neurophysiological data. CHAOS (WOODBURY, N.Y.) 2023; 33:043111. [PMID: 37097953 DOI: 10.1063/5.0142773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
In this study, the Hénon map was analyzed using quantifiers from information theory in order to compare its dynamics to experimental data from brain regions known to exhibit chaotic behavior. The goal was to investigate the potential of the Hénon map as a model for replicating chaotic brain dynamics in the treatment of Parkinson's and epilepsy patients. The dynamic properties of the Hénon map were compared with data from the subthalamic nucleus, the medial frontal cortex, and a q-DG model of neuronal input-output with easy numerical implementation to simulate the local behavior of a population. Using information theory tools, Shannon entropy, statistical complexity, and Fisher's information were analyzed, taking into account the causality of the time series. For this purpose, different windows over the time series were considered. The findings revealed that neither the Hénon map nor the q-DG model could perfectly replicate the dynamics of the brain regions studied. However, with careful consideration of the parameters, scales, and sampling used, they were able to model some characteristics of neural activity. According to these results, normal neural dynamics in the subthalamic nucleus region may present a more complex spectrum within the complexity-entropy causality plane that cannot be represented by chaotic models alone. The dynamic behavior observed in these systems using these tools is highly dependent on the studied temporal scale. As the size of the sample studied increases, the dynamics of the Hénon map become increasingly different from those of biological and artificial neural systems.
Collapse
Affiliation(s)
- Natalí Guisande
- Instituto de Física de La Plata (IFLP), Universidad Nacional de La Plata, CONICET CCT-La Plata, Diagonal 113 entre 63 y 64, La Plata 1900, Buenos Aires, Argentina
| | - Monserrat Pallares di Nunzio
- Instituto de Física de La Plata (IFLP), Universidad Nacional de La Plata, CONICET CCT-La Plata, Diagonal 113 entre 63 y 64, La Plata 1900, Buenos Aires, Argentina
| | - Nataniel Martinez
- Instituto de Física de Mar del Plata, Universidad Nacional de Mar del Plata & CONICET, Mar del Plata 7600, Buenos Aires, Argentina
| | - Osvaldo A Rosso
- Instituto de Física de La Plata (IFLP), Universidad Nacional de La Plata, CONICET CCT-La Plata, Diagonal 113 entre 63 y 64, La Plata 1900, Buenos Aires, Argentina
- Instituto de Física, Universidade Federal de Alagoas (UFAL), BR 104 Norte km 97, 57072-970 Maceió, Brazil
| | - Fernando Montani
- Instituto de Física de La Plata (IFLP), Universidad Nacional de La Plata, CONICET CCT-La Plata, Diagonal 113 entre 63 y 64, La Plata 1900, Buenos Aires, Argentina
| |
Collapse
|
14
|
Missé RG, dos Santos AM, Borges IBP, Simões MSM, Silvério LR, Correia BL, Kim AWS, Caetano AM, Pasoto SG, Saad CGS, Domiciano DS, Tanaka C, Greve JMD, Baptista AF, Shinjo SK. Transcranial direct current electrical stimulation in combination with aerobic exercise: A pilot study in post-COVID-19 systemic autoimmune rheumatic patients. World J Rheumatol 2023; 11:1-12. [DOI: 10.5499/wjr.v11.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 02/01/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND Systemic autoimmune rheumatic diseases (SARDs) are a group of diseases with multiorgan involvement and a high prevalence of chronic pain and fatigue. Patients with SARDs and post-coronavirus disease 2019 (COVID-19) syndrome experience aggravation of symptoms. In this context, it is essential to establish strategies to reduce chronic pain and fatigue and improve quality of life.
AIM To assess the efficacy of transcranial direct current stimulation (tDCS) for the treatment of fatigue and pain-associated post-COVID-19 syndrome in patients with SARDs.
METHODS This study included nine patients with different types of SARDs. All patients had reverse transcription-polymerase chain reaction (RT-PCR) test confirmed COVID-19 as well as significant, persistent fatigue and pain that began to worsen after infection. Anodal tDCS was administered in five daily sessions (2mA, 20 min). Concomitantly, patients were involved in aerobic exercise program. All participants were evaluated using specific questionnaires and strength assessment by handgrip and physical function by timed-up-and-go test and sit-to-stand test at baseline (within one week before tDCS protocol), and one week after tDCS protocol. During all procedures, the patients’ treatments remained unchanged.
RESULTS The sample comprised eight women and one man with a mean age of 48.7 ± 9.6 years. After the tDCS protocol, pain and fatigue significantly improved on the visual analog scale (P < 0.05). The physical function also improved 9.5 ± 2.7 vs 6.8 ± 0.8 (P = 0.001) for timed-up-go-test and 10.3 ± 3.7 vs 15.1 ± 4.0 (P = 0.037) for sit-to-stand test. None of the patients experienced any adverse events.
CONCLUSION The present study showed that tDCS in combination with aerobic exercise was effective in improving physical function, and reducing fatigue/pain in SARDs patients with post-COVID-19 syndrome.
Collapse
Affiliation(s)
- Rafael Giovani Missé
- Division of Rheumatology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Alexandre Moura dos Santos
- Division of Rheumatology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Isabela Bruna Pires Borges
- Division of Rheumatology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Marlise Sítima Mendes Simões
- Division of Rheumatology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Lorenza Rosa Silvério
- Division of Rheumatology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Bruna Lindoso Correia
- Division of Rheumatology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ana Wook Sook Kim
- Division of Rheumatology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Aline Marques Caetano
- Division of Rheumatology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Sandra Gofinet Pasoto
- Division of Rheumatology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Carla Gonçalves Schahin Saad
- Division of Rheumatology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Diogo Souza Domiciano
- Division of Rheumatology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Clarice Tanaka
- Departamento de Fisioterapia, Fonoaudiologia e Terapia Ocupacional, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Núcleo de Assistência e Pesquisa em Neuromodulação, Sao Paulo, Brazil
| | - Julia Maria D’Andrea Greve
- Laboratório de Estudos do Movimento, Instituto de Ortopedia e Traumatologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Samuel Katsuyuki Shinjo
- Division of Rheumatology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
15
|
Gu Z, Chen H, Zhao H, Yang W, Song Y, Li X, Wang Y, Du D, Liao H, Pan W, Li X, Gao Y, Han H, Tong Z. New insight into brain disease therapy: nanomedicines-crossing blood-brain barrier and extracellular space for drug delivery. Expert Opin Drug Deliv 2022; 19:1618-1635. [PMID: 36285632 DOI: 10.1080/17425247.2022.2139369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Brain diseases including brain tumor, Alzheimer's disease, Parkinson's disease, etc. are difficult to treat. The blood-brain barrier (BBB) is a major obstacle for drug delivery into the brain. Although nano-package and receptor-mediated delivery of nanomedicine markedly increases BBB penetration, it yet did not extensively improve clinical cure rate. Recently, brain extracellular space (ECS) and interstitial fluid (ISF) drainage in ECS have been found to determine whether a drug dissolved in ISF can reach its target cells. Notably, an increase in tortuosity of ECS associated with slower ISF drainage induced by the accumulated harmful substances, such as: amyloid-beta (Aβ), α-synuclein, and metabolic wastes, causes drug delivery failure. AREAS COVERED The methods of nano-package and receptor-mediated drug delivery and the penetration efficacy of nanomedicines across BBB and ECS are assessed. EXPERT OPINION Invasive delivering drug via ECS and noninvasive near-infrared photo-sensitive nanomedicines may provide a promising benefit to patients with brain disease.
Collapse
Affiliation(s)
- Ziqi Gu
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Haishu Chen
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Han Zhao
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Wanting Yang
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yilan Song
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xiang Li
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yang Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Dan Du
- Department of Radiology, Peking University Third Hospital, Beijing, China.,Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China
| | - Haikang Liao
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Wenhao Pan
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, China.,NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China
| | - Hongbin Han
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Radiology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China.,Peking University Shenzhen Graduate School, Shenzhen, China
| | - Zhiqian Tong
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China.,The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Cerebellar deep brain stimulation for movement disorders. Neurobiol Dis 2022; 175:105899. [DOI: 10.1016/j.nbd.2022.105899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
|
17
|
Neuroprotection and Non-Invasive Brain Stimulation: Facts or Fiction? Int J Mol Sci 2022; 23:ijms232213775. [PMID: 36430251 PMCID: PMC9692544 DOI: 10.3390/ijms232213775] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Non-Invasive Brain Stimulation (NIBS) techniques, such as transcranial Direct Current Stimulation (tDCS) and repetitive Magnetic Transcranial Stimulation (rTMS), are well-known non-pharmacological approaches to improve both motor and non-motor symptoms in patients with neurodegenerative disorders. Their use is of particular interest especially for the treatment of cognitive impairment in Alzheimer's Disease (AD), as well as axial disturbances in Parkinson's (PD), where conventional pharmacological therapies show very mild and short-lasting effects. However, their ability to interfere with disease progression over time is not well understood; recent evidence suggests that NIBS may have a neuroprotective effect, thus slowing disease progression and modulating the aggregation state of pathological proteins. In this narrative review, we gather current knowledge about neuroprotection and NIBS in neurodegenerative diseases (i.e., PD and AD), just mentioning the few results related to stroke. As further matter of debate, we discuss similarities and differences with Deep Brain Stimulation (DBS)-induced neuroprotective effects, and highlight possible future directions for ongoing clinical studies.
Collapse
|
18
|
Zhang W, Deng B, Xie F, Zhou H, Guo JF, Jiang H, Sim A, Tang B, Wang Q. Efficacy of repetitive transcranial magnetic stimulation in Parkinson's disease: A systematic review and meta-analysis of randomised controlled trials. EClinicalMedicine 2022; 52:101589. [PMID: 35923424 PMCID: PMC9340539 DOI: 10.1016/j.eclinm.2022.101589] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive form of brain stimulation that positively regulates the motor and non-motor symptoms of Parkinson's disease (PD). Although, most reviews and meta-analysis have shown that rTMS intervention is effective in treating motor symptoms and depression, very few have used randomised controlled trials (RCTs) to analyse the efficacy of this intervention in PD. We aimed to review RCTs of rTMS in patients with PD to assess the efficacy of rTMS on motor and non-motor function in patients with PD. METHODS In this systematic review and meta-analysis, we searched PubMed, MEDLINE and Web of Science databases for RCTs on rTMS in PD published between January 1, 1988 to January 1, 2022. Eligible studies included sham-controlled RCTs that used rTMS stimulation for motor or non-motor symptoms in PD. RCTs not focusing on the efficacy of rTMS in PD were excluded. Summary data were extracting from those RCTs by two investigators independently. We then calculated standardised mean difference with random-effect models. The main outcome included motor and non-motor examination of scales that were used in PD motor or non-motor assessment. This study was registered with PROSPERO, CRD42022329633. FINDINGS Fourteen studies with 469 patients met the criteria for our meta-analysis. Twelve eligible studies with 381 patients were pooled to analyse the efficacy of rTMS on motor function improvement. The effect size on motor scale scores was 0.51 (P < 0.0001) and were not distinctly heterogeneous (I2 = 29%). Five eligible studies with 202 patients were collected to evaluate antidepressant-like effects. The effect size on depression scale scores was 0.42 (P = 0.004), and were not distinctly heterogeneous (I2 = 25%), indicating a significant anti-depressive effect (P = 0.004). The results suggest that high-frequency of rTMS on primary motor cortex (M1) is effective in improving motor symptoms; while the dorsolateral prefrontal cortex (DLPFC) may be a potentially effective area in alleviating depressive symptom. INTERPRETATION The findings suggest that rTMS could be used as a possible adjuvant therapy for PD mainly to improve motor symptoms, but could have potential efficacy on depressive symptoms of PD. However, further investigation is needed. FUNDING The National Natural Science Foundation of China (NO: 81873777, 82071414), Initiated Foundation of Zhujiang Hospital (NO: 02020318005), Scientific Research Foundation of Guangzhou (NO: 202206010005), and Science and Technology Program of Guangdong of China (NO: 2020A0505100037).
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, PR China
| | - Bin Deng
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, PR China
| | - Fen Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, PR China
| | - Hang Zhou
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, PR China
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Amy Sim
- Department of Neurology, Texas Tech University Health Sciences Centre El Paso, El Paso, TX 79905, USA
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, PR China
- Corresponding author at: Department of Neurology, Zhujiang Hospital, Southern Medical University, Gongye Road 253, Guangzhou, Guangdong Province 510282, PR China.
| |
Collapse
|
19
|
Impacts of stimulus parameters and configurations on motor cortex direct electrical stimulation using intrinsic optical imaging: a pilot study. Biomed Eng Online 2022; 21:58. [PMID: 36038875 PMCID: PMC9422127 DOI: 10.1186/s12938-022-01026-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 08/16/2022] [Indexed: 11/15/2022] Open
Abstract
Background Motor cortex stimulation applied as a clinical treatment for neuropathic disorders for decades. With stimulation electrodes placed directly on the cortical surface, this neuromodulation method provides higher spatial resolution than other non-invasive therapies. Yet, the therapeutic effects reported were not in conformity with different syndromes. One of the main issues is that the stimulation parameters are always determined by clinical experience. The lack of understanding about how the stimulation current propagates in the cortex and various stimulation parameters and configurations obstruct the development of this method. Methods In this study, we investigated the effect of different stimulation configurations on cortical responses to motor cortical stimulations using intrinsic optical imaging. Results Our results showed that the cortical activation of electrical stimulation is not only related to the current density but also related to the propagation distance. Besides, stimulation configurations also affect the propagation of the stimulation current. Conclusions All these results provide preliminary experimental evidence for parameter and electrode configuration optimizations.
Collapse
|
20
|
Li P, Luo N, Sun S, Li Y, Shen D, Zhu X, Zhou L, Zhou H, Liu J. Neuroprotective Effects of Intermittent Theta Burst Stimulation in Parkinson’s Disease (NET-PD): A Study Protocol for a Delayed-Start Randomized Double-Blind Sham-Controlled Trial. J Clin Med 2022; 11:jcm11174972. [PMID: 36078903 PMCID: PMC9456365 DOI: 10.3390/jcm11174972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Background: As a typical high-disability neurodegenerative disease, Parkinson’s disease (PD) progresses variably, and patients who are clinically insensitive to dopaminergic therapy and whose symptoms fail to improve are commonly observed. As a result, achieving early neuron protection is critical. Methods/Design: The NET-PD study is a 2-year prospective single-center, double-blind, multi-arm, delayed-start, sham-controlled clinical trial assessing the long-term neuroprotective effect of intermittent theta burst stimulation (iTBS) in PD patients. Patients diagnosed with PD, aged 50–80, Hoehn–Yahr stage ≤4, and who maintain medication stability during the study will be enrolled. Clinical assessment and multi-modal markers are used to clarify the clinical improvement and dynamic neuronal changes in PD patients. With a standard deviation of 2, a test level of 0.05, a dropout rate of 10%, and a degree of certainty of 0.9, 60 PD patients are required for this study. Results: The NET-PD project was funded in March 2022, data collection began in July 2022, and is currently in the recruitment phase with two PD patients already enrolled. Data collection is expected to be completed in June 2024. The results are expected for publication in December 2024. Discussion: Previous research has demonstrated a rudimentary method for assessing and delaying PD progression in clinical medication trials. The NET-PD study adopts a rigorous methodology and specific disease-modifying designs to demonstrate the neuroprotective effect of iTBS on PD and investigate the potential mechanism of iTBS in regulating brain and motor functions. We hope to provide supposition for the subsequent exploration of diverse neuroprotection methods.
Collapse
Affiliation(s)
- Puyu Li
- Department of Neurology, Institute of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Ningdi Luo
- Department of Neurology, Institute of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Sainan Sun
- Department of Outpatient, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yuanyuan Li
- Department of Neurology, Institute of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Dingding Shen
- Department of Neurology, Institute of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Xue Zhu
- Department of Neurology, Institute of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Liche Zhou
- Department of Neurology, Institute of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Haiyan Zhou
- Department of Neurology, Institute of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Jun Liu
- Department of Neurology, Institute of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
- Correspondence:
| |
Collapse
|
21
|
Hosny M, Zhu M, Gao W, Fu Y. A novel deep learning model for STN localization from LFPs in Parkinson’s disease. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Action and emotion perception in Parkinson's disease: A neuroimaging meta-analysis. Neuroimage Clin 2022; 35:103031. [PMID: 35569229 PMCID: PMC9112018 DOI: 10.1016/j.nicl.2022.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/01/2022] [Accepted: 05/02/2022] [Indexed: 11/23/2022]
Abstract
The neural substrates for action and emotion perception deficits in PD are still unclear. We addressed this issue via coordinate-based meta-analyses of previous fMRI data. PD patients exhibit decreased response in the basal ganglia. PD patients exhibit a trend toward decreased response in the parietal areas. PD patients exhibit a trend toward increased activation in the posterior cerebellum.
Patients with Parkinson disease (PD) may show impairments in the social perception. Whether these deficits have been consistently reported, it remains to be clarified which brain alterations subtend them. To this aim, we conducted a neuroimaging meta-analysis to compare the brain activity during social perception in patients with PD versus healthy controls. Our results show that PD patients exhibit a significantly decreased response in the basal ganglia (putamen and pallidum) and a trend toward decreased activity in the mirror system, particularly in the left parietal cortex (inferior parietal lobule and intraparietal sulcus). This reduced activation may be tied to a disruption of cognitive resonance mechanisms and may thus constitute the basis of impaired others’ representations underlying action and emotion perception. We also found increased activation in the posterior cerebellum in PD, although only in a within-group analysis and not in comparison with healthy controls. This cerebellar activation may reflect compensatory mechanisms, an aspect that deserves further investigation. We discuss the clinical implications of our findings for the development of novel social skill training programs for PD patients.
Collapse
|
23
|
Chu ECP, Chen ATC, Chiang R. Chiropractic care of Parkinson's disease and deformity. J Med Life 2022; 15:717-722. [PMID: 35815091 PMCID: PMC9262267 DOI: 10.25122/jml-2021-0418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurological disease characterized by muscle stiffness, tremor, slowness of movement, and difficulties with posture and walking. Muscle and joint pain are frequent non-motor symptoms of PD. Pain associated with PD is mainly caused by a combination of truncal dystonia, stooped posture, and muscle rigidity. However, PD deformities were rarely discussed in the literature. A 68-year-old Asian female with PD treated with Levodopa for six years complained of progressive neck pain, contractures, and subluxation of both hands in the last two years. A positron emission tomography (PET) scan revealed decreased rostrocaudal gradient uptake in both posterior putamen. After 9 months of multimodal chiropractic rehabilitation, the patient had significant improvement in symptoms, including pain resolution as per the numeric rating scale and physical and mental improvement as per the PD questionnaire. Radiographic measurement showed significantly improved postural alignment and stability. Measurement of joint motion and angles showed an improvement in hand deformity. Although PD is a neurodegenerative disease that is not curable, multimodal rehabilitation may improve neurological and musculoskeletal functions by inducing proprioceptive balance, motor strength, and joint movement. The current study may illustrate multimodal rehabilitation addressing orthopedic deformity associated with symptoms in a PD patient.
Collapse
Affiliation(s)
- Eric Chun-Pu Chu
- New York Chiropractic and Physiotherapy Centre, EC Healthcare, Hong Kong SAR, China,Corresponding Author: Eric Chun-Pu Chu, New York Chiropractic and Physiotherapy Centre, EC Healthcare, Hong Kong SAR, China. E-mail:
| | - Alan Te-Chang Chen
- New York Chiropractic and Physiotherapy Centre, EC Healthcare, Hong Kong SAR, China
| | - Ricky Chiang
- School of Health and Rehabilitation Sciences, University of Queensland, St. Lucia, Australia
| |
Collapse
|
24
|
Uwishema O, Onyeaka H, Badri R, Yücel AN, Korkusuz AK, Ajagbe AO, Abuleil A, Chaaya C, Alhendawi BHM, Chalhoub E. The understanding of Parkinson's disease through genetics and new therapies. Brain Behav 2022; 12:e2577. [PMID: 35451243 PMCID: PMC9120874 DOI: 10.1002/brb3.2577] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/17/2022] [Accepted: 03/26/2022] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Parkinson's disease is one of the progressive neurodegenerative diseases from which people suffer for years. The mechanism of this disease is associated with a decrease in the number of dopaminergic neurons in the substantia nigra (SN) while Lewy bodies are still present. As a result, both motor-ridity, tremor, and bradykinesia-and non-motor symptoms such as anxiety and depression. Nowadays, it is well known that the cause behind Parkinson's disease is mainly environmental changes, genetic susceptibility, and toxins. Unfortunately, there is no cure for the disease but treatments. The replacement of lost neurons, α-synuclein and apomorphine, is currently being studied for new therapies. This article focuses on history, mechanism, factors causing Parkinson's disease as well as future therapies for the cure of the diseases. METHODOLOGY Data were collected from medical journals published on PubMed, The Lancet, Cells, and Nature Reviews Neurology databases with a predefined search strategy. All articles considering new therapies for Parkinson's disease were considered. RESULTS The pathophysiology of Parkinson's disease is currently reasonably understood. However, there is no definitive cure so all the treatments focus mainly on reducing or limiting the symptoms. Current treatment studies focus on genetics, replacing lost neurons, α-synuclein and apomorphine. CONCLUSION Parkinson's disease is the most common movement disorder worldwide because of the loss of dopaminergic neurons in the substantia nigra. Its symptoms include motor dysfunctions such as rigidity, tremor, and bradykinesia and non-motor dysfunctions such as anxiety and depression. Through genetics, environmental changes and toxins analysis, it is now known that future new therapies are working on replacing lost neurons, α-synuclein and apomorphine.
Collapse
Affiliation(s)
- Olivier Uwishema
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Department of Project and EducationClinton Global Initiative UniversityNew YorkUSA
- Department of General MedicineFaculty of MedicineKaradeniz Technical UniversityTrabzonTurkey
| | - Helen Onyeaka
- Department of Chemical EngineeringSchool of Chemical EngineeringUniversity of BirminghamEdgbastonBirminghamUK
| | - Rawa Badri
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Department of ResearchMycetoma Research CentreKhartoumSudan
- Department of MedicineFaculty of MedicineUniversity of KhartoumKhartoumSudan
| | - Ayşe Nazlı Yücel
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Department of General MedicineFaculty of MedicineAnkara Yıldırım Beyazıt UniversityAnkaraTurkey
| | - Ahmet Kayhan Korkusuz
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Department of General MedicineFaculty of MedicineIstanbul Medipol UniversityIstanbulTurkey
- Department of Regenerative MedicineRegenerative and Restorative Medicine Research Center (REMER)Istanbul Medipol UniversityIstanbulTurkey
| | - Abayomi Oyeyemi Ajagbe
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health SciencesNile University of NigeriaAbujaNigeria
| | - Amro Abuleil
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Department of Health ScienceFaculty of Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Céline Chaaya
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Department of General MedicineFaculty of MedicineUniversity of Saint Joseph of BeirutBeirutLebanon
| | - Baraa H. M. Alhendawi
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Department of General MedicineFaculty of MedicineAl‐Quds University, Al‐Azhar branchGazaPalestine
| | - Elie Chalhoub
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Department of General MedicineFaculty of MedicineUniversity of Saint Joseph of BeirutBeirutLebanon
| |
Collapse
|
25
|
Smid A, Elting JWJ, van Dijk JMC, Otten B, Oterdoom DLM, Tamasi K, Heida T, van Laar T, Drost G. Intraoperative Quantification of MDS-UPDRS Tremor Measurements Using 3D Accelerometry: A Pilot Study. J Clin Med 2022; 11:jcm11092275. [PMID: 35566401 PMCID: PMC9104023 DOI: 10.3390/jcm11092275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/10/2022] [Accepted: 04/16/2022] [Indexed: 02/05/2023] Open
Abstract
The most frequently used method for evaluating tremor in Parkinson’s disease (PD) is currently the internationally standardized Movement Disorder Society—Unified PD Rating Scale (MDS-UPDRS). However, the MDS-UPDRS is associated with limitations, such as its inherent subjectivity and reliance on experienced raters. Objective motor measurements using accelerometry may overcome the shortcomings of visually scored scales. Therefore, the current study focuses on translating the MDS-UPDRS tremor tests into an objective scoring method using 3D accelerometry. An algorithm to measure and classify tremor according to MDS-UPDRS criteria is proposed. For this study, 28 PD patients undergoing neurosurgical treatment and 26 healthy control subjects were included. Both groups underwent MDS-UPDRS tests to rate tremor severity, while accelerometric measurements were performed at the index fingers. All measurements were performed in an off-medication state. Quantitative measures were calculated from the 3D acceleration data, such as tremor amplitude and area-under-the-curve of power in the 4−6 Hz range. Agreement between MDS-UPDRS tremor scores and objective accelerometric scores was investigated. The trends were consistent with the logarithmic relationship between tremor amplitude and MDS-UPDRS score reported in previous studies. The accelerometric scores showed a substantial concordance (>69.6%) with the MDS-UPDRS ratings. However, accelerometric kinetic tremor measures poorly associated with the given MDS-UPDRS scores (R2 < 0.3), mainly due to the noise between 4 and 6 Hz found in the healthy controls. This study shows that MDS-UDPRS tremor tests can be translated to objective accelerometric measurements. However, discrepancies were found between accelerometric kinetic tremor measures and MDS-UDPRS ratings. This technology has the potential to reduce rater dependency of MDS-UPDRS measurements and allow more objective intraoperative monitoring of tremor.
Collapse
Affiliation(s)
- Annemarie Smid
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.M.C.v.D.); (D.L.M.O.); (K.T.); (G.D.)
- Correspondence:
| | - Jan Willem J. Elting
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.W.J.E.); (T.v.L.)
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - J. Marc C. van Dijk
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.M.C.v.D.); (D.L.M.O.); (K.T.); (G.D.)
| | - Bert Otten
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| | - D. L. Marinus Oterdoom
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.M.C.v.D.); (D.L.M.O.); (K.T.); (G.D.)
| | - Katalin Tamasi
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.M.C.v.D.); (D.L.M.O.); (K.T.); (G.D.)
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Tjitske Heida
- Department of Biomedical Signals and Systems, Faculty EEMCS, TechMed Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands;
| | - Teus van Laar
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.W.J.E.); (T.v.L.)
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Gea Drost
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.M.C.v.D.); (D.L.M.O.); (K.T.); (G.D.)
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.W.J.E.); (T.v.L.)
| |
Collapse
|
26
|
Eldaief MC, Dickerson BC, Camprodon JA. Transcranial Magnetic Stimulation for the Neurological Patient: Scientific Principles and Applications. Semin Neurol 2022; 42:149-157. [PMID: 35213900 PMCID: PMC9838190 DOI: 10.1055/s-0041-1742265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Non-invasive brain stimulation has been increasingly recognized for its potential as an investigational, diagnostic and therapeutic tool across the clinical neurosciences. Transcranial magnetic stimulation (TMS) is a non-invasive method of focal neuromodulation. Diagnostically, TMS can be used to probe cortical excitability and plasticity, as well as for functional mapping. Therapeutically, depending on the pattern employed, TMS can either facilitate or inhibit stimulated cortex potentially modulating maladaptive physiology through its effects on neuroplasticity. Despite this potential, applications of TMS in neurology have only been approved for diagnostic clinical neurophysiology, pre-surgical mapping of motor and language cortex, and the treatment of migraines. In this article, we discuss the principles of TMS and its clinical applications in neurology, including experimental applications in stroke rehabilitation, seizures, autism spectrum disorder, neurodegenerative disorders, movement disorders, tinnitus, chronic pain and functional neurological disorder. To promote increased cross-talk across neurology and psychiatry, we also succinctly review the TMS literature for the treatment of major depression and obsessive compulsive disorder. Overall, we argue that larger clinical trials that are better informed by circuit-level biomarkers and pathophysiological models will lead to an expansion of the application of TMS for patients cared for by neurologists.
Collapse
Affiliation(s)
- Mark C. Eldaief
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts,Department of Psychology, Center for Brain Science, Neuroimaging Facility, Harvard University, Cambridge, Massachusetts
| | - Bradford C. Dickerson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Joan A. Camprodon
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
| |
Collapse
|
27
|
Disbrow EA, Glassy ND, Dressler EM, Russo K, Franz EA, Turner RS, Ventura MI, Hinkley L, Zweig R, Nagarajan SS, Ledbetter CR, Sigvardt KA. Cortical oscillatory dysfunction in Parkinson disease during movement activation and inhibition. PLoS One 2022; 17:e0257711. [PMID: 35245294 PMCID: PMC8896690 DOI: 10.1371/journal.pone.0257711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/08/2021] [Indexed: 12/27/2022] Open
Abstract
Response activation and inhibition are functions fundamental to executive control that are disrupted in Parkinson disease (PD). We used magnetoencephalography to examine event related changes in oscillatory power amplitude, peak latency and frequency in cortical networks subserving these functions and identified abnormalities associated with PD. Participants (N = 18 PD, 18 control) performed a cue/target task that required initiation of an un-cued movement (activation) or inhibition of a cued movement. Reaction times were variable but similar across groups. Task related responses in gamma, alpha, and beta power were found across cortical networks including motor cortex, supplementary and pre- supplementary motor cortex, posterior parietal cortex, prefrontal cortex and anterior cingulate. PD-related changes in power and latency were noted most frequently in the beta band, however, abnormal power and delayed peak latency in the alpha band in the pre-supplementary motor area was suggestive of a compensatory mechanism. PD peak power was delayed in pre-supplementary motor area, motor cortex, and medial frontal gyrus only for activation, which is consistent with deficits in un-cued (as opposed to cued) movement initiation characteristic of PD.
Collapse
Affiliation(s)
- Elizabeth A. Disbrow
- LSU Health Shreveport Center for Brain Health, Shreveport, Louisiana, United States of America
- Department of Neurology, LSU Health Shreveport, Shreveport, Louisiana, United States of America
- * E-mail:
| | - Nathaniel D. Glassy
- LSU Health Shreveport Center for Brain Health, Shreveport, Louisiana, United States of America
| | - Elizabeth M. Dressler
- LSU Health Shreveport Center for Brain Health, Shreveport, Louisiana, United States of America
| | - Kimberley Russo
- Department of Psychology, UC Berkeley, Berkeley, California, United States of America
| | - Elizabeth A. Franz
- Action Brain and Cognition Laboratory, Department of Psychology, and fMRIotago, University of Otago, Dunedin, New Zealand
| | - Robert S. Turner
- Department of Neurobiology and Center for the Neural Basis of Cognition University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Maria I. Ventura
- Department of Psychiatry, UC Davis, Sacramento, California, United States of America
| | - Leighton Hinkley
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, United States of America
| | - Richard Zweig
- LSU Health Shreveport Center for Brain Health, Shreveport, Louisiana, United States of America
- Department of Neurology, LSU Health Shreveport, Shreveport, Louisiana, United States of America
| | - Srikantan S. Nagarajan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, United States of America
| | - Christina R. Ledbetter
- LSU Health Shreveport Center for Brain Health, Shreveport, Louisiana, United States of America
- Department of Neurosurgery, LSU Health Shreveport, Shreveport, Louisiana, United States of America
| | - Karen A. Sigvardt
- Department of Neurology, UC Davis, Sacramento, California, United States of America
| |
Collapse
|
28
|
Temporal Interference (TI) Stimulation Boosts Functional Connectivity in Human Motor Cortex: A Comparison Study with Transcranial Direct Current Stimulation (tDCS). Neural Plast 2022; 2022:7605046. [PMID: 35140781 PMCID: PMC8820942 DOI: 10.1155/2022/7605046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/30/2021] [Accepted: 12/14/2021] [Indexed: 01/10/2023] Open
Abstract
Temporal interference (TI) could stimulate deep motor cortex and induce movement without affecting the overlying cortex in previous mouse studies. However, there is still lack of evidence on potential TI effects in human studies. To fill this gap, we collected resting-state functional magnetic resonance imaging data on 40 healthy young participants both before and during TI stimulation on the left primary motor cortex (M1). We also chose a widely used simulation approach (tDCS) as a baseline condition. In the stimulation session, participants were randomly allocated to 2 mA TI or tDCS for 20 minutes. We used a seed-based whole brain correlation analysis method to quantify the strength of functional connectivity among different brain regions. Our results showed that both TI and tDCS significantly boosted functional connection strength between M1 and secondary motor cortex (premotor cortex and supplementary motor cortex). This is the first time to demonstrate substantial stimulation effect of TI in the human brain.
Collapse
|
29
|
Wang X, Xiong Y, Lin J, Lou X. Target Selection for Magnetic Resonance-Guided Focused Ultrasound in the Treatment of Parkinson's Disease. J Magn Reson Imaging 2022; 56:35-44. [PMID: 35081263 DOI: 10.1002/jmri.28080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/03/2023] Open
Abstract
Parkinson's disease (PD) is a common, progressive, and incurable neurodegenerative disease. Pharmacological treatment is the first-line therapy for PD, including carbidopa-levodopa, dopamine agonists. However, some patients respond poorly to medication. For these patients, functional neurosurgical treatment is an important option. Magnetic resonance-guided focused ultrasound (MRgFUS) is a novel, minimally invasive surgical option for patients refractory to drugs. Currently, several important anatomical structures can be targeted by MRgFUS in the treatment of PD. However, there is no uniform standard for target selection. This review summarizes the clinical studies on MRgFUS for PD, focusing on the relationship between different treatment targets and the relieved symptoms, to help clinicians determine the ideal therapeutic target for individual patients. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Radiology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Yongqin Xiong
- Department of Radiology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Jiaji Lin
- Department of Radiology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| |
Collapse
|
30
|
Cosentino G, Todisco M, Blandini F. Noninvasive neuromodulation in Parkinson's disease: Neuroplasticity implication and therapeutic perspectives. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:185-198. [PMID: 35034733 DOI: 10.1016/b978-0-12-819410-2.00010-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Noninvasive brain stimulation techniques can be used to study in vivo the changes of cortical activity and plasticity in subjects with Parkinson's disease (PD). Also, an increasing number of studies have suggested a potential therapeutic effect of these techniques. High-frequency repetitive transcranial magnetic stimulation (rTMS) and anodal transcranial direct current stimulation (tDCS) represent the most used stimulation paradigms to treat motor and nonmotor symptoms of PD. Both techniques can enhance cortical activity, compensating for its reduction related to subcortical dysfunction in PD. However, the use of suboptimal stimulation parameters can lead to therapeutic failure. Clinical studies are warranted to clarify in PD the additional effects of these stimulation techniques on pharmacologic and neurorehabilitation treatments.
Collapse
Affiliation(s)
- Giuseppe Cosentino
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Massimiliano Todisco
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Movement Disorders Research Center, IRCCS Mondino Foundation, Pavia, Italy.
| | - Fabio Blandini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Movement Disorders Research Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
31
|
Nooristani M, Augereau T, Moïn-Darbari K, Bacon BA, Champoux F. Using Transcranial Electrical Stimulation in Audiological Practice: The Gaps to Be Filled. Front Hum Neurosci 2021; 15:735561. [PMID: 34887736 PMCID: PMC8650084 DOI: 10.3389/fnhum.2021.735561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/01/2021] [Indexed: 11/30/2022] Open
Abstract
The effects of transcranial electrical stimulation (tES) approaches have been widely studied for many decades in the motor field, and are well known to have a significant and consistent impact on the rehabilitation of people with motor deficits. Consequently, it can be asked whether tES could also be an effective tool for targeting and modulating plasticity in the sensory field for therapeutic purposes. Specifically, could potentiating sensitivity at the central level with tES help to compensate for sensory loss? The present review examines evidence of the impact of tES on cortical auditory excitability and its corresponding influence on auditory processing, and in particular on hearing rehabilitation. Overall, data strongly suggest that tES approaches can be an effective tool for modulating auditory plasticity. However, its specific impact on auditory processing requires further investigation before it can be considered for therapeutic purposes. Indeed, while it is clear that electrical stimulation has an effect on cortical excitability and overall auditory abilities, the directionality of these effects is puzzling. The knowledge gaps that will need to be filled are discussed.
Collapse
Affiliation(s)
- Mujda Nooristani
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Thomas Augereau
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Karina Moïn-Darbari
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | | | - François Champoux
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| |
Collapse
|
32
|
Filipović SR, Kačar A, Milanović S, Ljubisavljević MR. Neurophysiological Predictors of Response to Medication in Parkinson's Disease. Front Neurol 2021; 12:763911. [PMID: 34867748 PMCID: PMC8635106 DOI: 10.3389/fneur.2021.763911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Although dopaminergic medication has been the foundation of Parkinson's disease (PD) therapy for decades, sensitive and specific therapeutic response biomarkers that allow for better treatment optimization are lacking. Objective: We tested whether the features of Transcranial Magnetic Stimulation-based neurophysiological measures taken off-medication are associated with dopaminergic medication-induced clinical effects. Method: Motor cortex excitability [short-latency intracortical inhibition (SICI), intracortical facilitation (ICF), short-latency afferent inhibition (SAI), and input-output (IO) curve], and plasticity [paired associative stimulation (PAS) protocol] neurophysiological measures were examined in 23 PD patients off-medication. Clinical features were quantified by the motor section of the Unified Parkinson's Disease Scale (total score and lateralized total, bradykinesia, and rigidity sub-scores), and the differences between measures off-medication and on-medication (following the usual morning dose), were determined. Total daily dopaminergic medication dose (expressed as levodopa equivalent daily dose-LEDD), was also determined. Results: SICI significantly correlated with changes in lateralized UPDRS motor and bradykinesia sub-scores, suggesting that patients with stronger basal intracortical inhibition benefit more from dopaminergic treatment than patients with weaker intracortical inhibition. Also, ICF significantly negatively correlated with LEDD, suggesting that patients with stronger intracortical facilitation require less dopaminergic medication to achieve optimal therapeutic benefit. Both associations were independent of disease severity and duration. Conclusions: The results suggest variability of (patho) physiological phenotypes related to intracortical inhibitory and facilitatory mechanisms determining clinical response to dopaminergic medication in PD. Measures of intracortical excitability may help predict patients' response to dopaminergic therapy, thus potentially providing a background for developing personalized therapy in PD.
Collapse
Affiliation(s)
- Saša R. Filipović
- Department for Human Neuroscience, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Kačar
- Department for Human Neuroscience, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
- Department of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sladjan Milanović
- Department for Human Neuroscience, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Miloš R. Ljubisavljević
- Department for Human Neuroscience, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
- Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| |
Collapse
|
33
|
da Silva Machado CB, da Silva LM, Gonçalves AF, Andrade PRD, Mendes CKTT, de Assis TJCF, Godeiro Júnior CDO, Andrade SM. Multisite non-invasive brain stimulation in Parkinson's disease: A scoping review. NeuroRehabilitation 2021; 49:515-531. [PMID: 34776426 PMCID: PMC8764602 DOI: 10.3233/nre-210190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND: Parkinson’s disease (PD) is a progressive neurodegenerative disorder, characterized by cardinal motor symptoms in addition to cognitive impairment. New insights concerning multisite non-invasive brain stimulation effects have been gained, which can now be used to develop innovative treatment approaches. OBJECTIVE: Map the researchs involving multisite non-invasive brain stimulation in PD, synthesize the available evidence and discuss future directions. METHODS: The databases PubMed, PsycINFO, CINAHL, LILACS and The Cochrane Library were searched from inception until April 2020, without restrictions on the date of publication or the language in which it was published. The reviewers worked in pairs and sequentially evaluated the titles, abstracts and then the full text of all publications identified as potentially relevant. RESULTS: Twelve articles met the inclusion criteria. The target brain regions included mainly the combination of a motor and a frontal area, such as stimulation of the primary motor córtex associated with the dorsolateral prefrontal cortex. Most of the trials showed that this modality was only more effective for the motor component, or for the cognitive and/or non-motor, separately. CONCLUSIONS: Despite the results being encouraging for the use of the multisite aproach, the indication for PD management should be carried out with caution and deserves scientific deepening.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Clécio de Oliveira Godeiro Júnior
- Division of Neurology, CHU of Grenoble, Grenoble Alpes University, La Tronche, Grenoble, France.,Division of Neurology, Hospital Universitario Onofre Lopes, Federal University of Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
34
|
A novel deep recurrent convolutional neural network for subthalamic nucleus localization using local field potential signals. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Nascimento LR, do Carmo WA, de Oliveira GP, Arêas FZDS, Dias FMV. Transcranial direct current stimulation provides no clinically important benefits over walking training for improving walking in Parkinson's disease: a systematic review. J Physiother 2021; 67:190-196. [PMID: 34147400 DOI: 10.1016/j.jphys.2021.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022] Open
Abstract
QUESTIONS Does walking training combined with transcranial direct current stimulation (tDCS) improve walking (ie, speed, cadence and step length) and reduce falls and freezing, compared with no/sham intervention, in people with Parkinson's disease? Is walking training combined with tDCS superior to walking training alone? Are any benefits carried over to social participation and/or maintained beyond the intervention period? DESIGN A systematic review with meta-analyses of randomised clinical trials. PARTICIPANTS Ambulatory adults with a clinical diagnosis of Parkinson's disease. INTERVENTION tDCS combined with walking training. OUTCOME MEASURES Primary outcomes were walking speed, cadence and step length. Secondary outcomes were number of falls, fear of falling, freezing of gait and social participation. RESULTS Five trials involving 117 participants were included. The mean PEDro score of the included trials was 8 out of 10. Participants undertook training for 30 to 60 minutes, two to three times per week, on average for 4 weeks. Moderate-quality evidence indicated that the addition of tDCS to walking training produced negligible additional benefit over the effect of walking training alone on walking speed (MD -0.01 m/s, 95% CI -0.05 to 0.04), step length (MD 1.2 cm, 95% CI -1.2 to 3.5) or cadence (MD -3 steps/minute, 95% CI -6 to 1). No evidence was identified with which to estimate the effect of the addition of tDCS to walking training on freezing of gait, falls and social participation. CONCLUSION The addition of tDCS to walking training provided no clinically important benefits on walking in ambulatory people with Parkinson's disease. REGISTRATION PROSPERO CRD42020162908.
Collapse
Affiliation(s)
- Lucas Rodrigues Nascimento
- Center of Health Sciences, Discipline of Physiotherapy, Universidade Federal do Espírito Santo, Vitória, Brazil; NeuroGroup, Discipline of Physiotherapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Willian Assis do Carmo
- Center of Health Sciences, Discipline of Physiotherapy, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Gabriela Pinto de Oliveira
- Center of Health Sciences, Discipline of Physiotherapy, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Fernando Zanela da Silva Arêas
- Center of Health Sciences, Discipline of Physiotherapy, Universidade Federal do Espírito Santo, Vitória, Brazil; Laboratory of Cognitive Sciences and Neuropsychopharmacology, Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Fernanda Moura Vargas Dias
- Center of Health Sciences, Discipline of Physiotherapy, Universidade Federal do Espírito Santo, Vitória, Brazil
| |
Collapse
|
36
|
Potvin-Desrochers A, Paquette C. Potential Non-invasive Brain Stimulation Targets to Alleviate Freezing of Gait in Parkinson's Disease. Neuroscience 2021; 468:366-376. [PMID: 34102265 DOI: 10.1016/j.neuroscience.2021.05.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/14/2021] [Accepted: 05/31/2021] [Indexed: 11/15/2022]
Abstract
Freezing of gait (FOG) is a common motor symptom in Parkinson's disease (PD). Although FOG reduces quality of life, affects mobility and increases the risk of falls, there are little to no effective treatments to alleviate FOG. Non-invasive brain stimulation (NIBS) has recently yielded attention as a potential treatment to reduce FOG symptoms however, stimulation parameters and protocols remain inconsistent and require further research. Specifically, targets for stimulation require careful review. Thus, with current neuroimaging and neuro-electrophysiological evidence, we consider potential cortical targets thought to be involved in the pathophysiology of FOG according to the Interference model, and within reach of NIBS. We note that the primary motor cortex, the supplementary motor area and the dorsolateral prefrontal cortex have already drawn attention as NIBS targets for FOG, but based on neuroimaging evidence the premotor cortex, the medial prefrontal cortex, the cerebellum, and more particularly, the posterior parietal cortex should be considered as potential regions for stimulation. We also discuss different methodological considerations, such as stimulation type, medication state, and hemisphere to target, and future perspectives for NIBS protocols in FOG.
Collapse
Affiliation(s)
- Alexandra Potvin-Desrochers
- Department of Kinesiology and Physical Education, Currie Gymnasium, 475 Pine Avenue West, McGill University, Montréal, Québec H2W 1S4, Canada; Integrated Program in Neuroscience, Montreal Neurological Institute, 3801 University Street, McGill University, Montréal, Québec H3A 2B4, Canada; Centre for Interdisciplinary Research in Rehabilitation (Jewish Rehabilitation Hospital Research Site and CISSS Laval), 3205 Place Alton-Goldbloom, Laval, Québec H7V 1R2, Canada
| | - Caroline Paquette
- Department of Kinesiology and Physical Education, Currie Gymnasium, 475 Pine Avenue West, McGill University, Montréal, Québec H2W 1S4, Canada; Integrated Program in Neuroscience, Montreal Neurological Institute, 3801 University Street, McGill University, Montréal, Québec H3A 2B4, Canada; Centre for Interdisciplinary Research in Rehabilitation (Jewish Rehabilitation Hospital Research Site and CISSS Laval), 3205 Place Alton-Goldbloom, Laval, Québec H7V 1R2, Canada.
| |
Collapse
|
37
|
Cho J, Seong G, Chang Y, Kim C. Energy-Efficient Integrated Circuit Solutions Toward Miniaturized Closed-Loop Neural Interface Systems. Front Neurosci 2021; 15:667447. [PMID: 34135727 PMCID: PMC8200530 DOI: 10.3389/fnins.2021.667447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/13/2021] [Indexed: 11/29/2022] Open
Abstract
Miniaturized implantable devices play a crucial role in neural interfaces by monitoring and modulating neural activities on the peripheral and central nervous systems. Research efforts toward a compact wireless closed-loop system stimulating the nerve automatically according to the user's condition have been maintained. These systems have several advantages over open-loop stimulation systems such as reduction in both power consumption and side effects of continuous stimulation. Furthermore, a compact and wireless device consuming low energy alleviates foreign body reactions and risk of frequent surgical operations. Unfortunately, however, the miniaturized closed-loop neural interface system induces several hardware design challenges such as neural activity recording with severe stimulation artifact, real-time stimulation artifact removal, and energy-efficient wireless power delivery. Here, we will review recent approaches toward the miniaturized closed-loop neural interface system with integrated circuit (IC) techniques.
Collapse
Affiliation(s)
- Jaeouk Cho
- Biomedical Energy-Efficient Electronics Laboratory, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Geunchang Seong
- Biomedical Energy-Efficient Electronics Laboratory, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Yonghee Chang
- Biomedical Energy-Efficient Electronics Laboratory, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Chul Kim
- Biomedical Energy-Efficient Electronics Laboratory, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for Health Science and Technology, Daejeon, South Korea
| |
Collapse
|
38
|
Detection of subthalamic nucleus using novel higher-order spectra features in microelectrode recordings signals. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Mo J, Priefer R. Medical Devices for Tremor Suppression: Current Status and Future Directions. BIOSENSORS-BASEL 2021; 11:bios11040099. [PMID: 33808056 PMCID: PMC8065649 DOI: 10.3390/bios11040099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 01/14/2023]
Abstract
Tremors are the most prevalent movement disorder that interferes with the patient’s daily living, and physical activities, ultimately leading to a reduced quality of life. Due to the pathophysiology of tremor, developing effective pharmacotherapies, which are only suboptimal in the management of tremor, has many challenges. Thus, a range of therapies are necessary in managing this progressive, aging-associated disorder. Surgical interventions such as deep brain stimulation are able to provide durable tremor control. However, due to high costs, patient and practitioner preference, and perceived high risks, their utilization is minimized. Medical devices are placed in a unique position to bridge this gap between lifestyle interventions, pharmacotherapies, and surgical treatments to provide safe and effective tremor suppression. Herein, we review the mechanisms of action, safety and efficacy profiles, and clinical applications of different medical devices that are currently available or have been previously investigated for tremor suppression. These devices are primarily noninvasive, which can be a beneficial addition to the patient’s existing pharmacotherapy and/or lifestyle intervention.
Collapse
|
40
|
Howell B, Isbaine F, Willie JT, Opri E, Gross RE, De Hemptinne C, Starr PA, McIntyre CC, Miocinovic S. Image-based biophysical modeling predicts cortical potentials evoked with subthalamic deep brain stimulation. Brain Stimul 2021; 14:549-563. [PMID: 33757931 DOI: 10.1016/j.brs.2021.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/19/2021] [Accepted: 03/14/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Subthalamic deep brain stimulation (DBS) is an effective surgical treatment for Parkinson's disease and continues to advance technologically with an enormous parameter space. As such, in-silico DBS modeling systems have become common tools for research and development, but their underlying methods have yet to be standardized and validated. OBJECTIVE Evaluate the accuracy of patient-specific estimates of neural pathway activations in the subthalamic region against intracranial, cortical evoked potential (EP) recordings. METHODS Pathway activations were modeled in eleven patients using the latest advances in connectomic modeling of subthalamic DBS, focusing on the hyperdirect pathway (HDP) and corticospinal/bulbar tract (CSBT) for their relevance in human research studies. Correlations between pathway activations and respective EP amplitudes were quantified. RESULTS Good model performance required accurate lead localization and image fusions, as well as appropriate selection of fiber diameter in the biophysical model. While optimal model parameters varied across patients, good performance could be achieved using a global set of parameters that explained 60% and 73% of electrophysiologic activations of CSBT and HDP, respectively. Moreover, restricted models fit to only EP amplitudes of eight standard (monopolar and bipolar) electrode configurations were able to extrapolate variation in EP amplitudes across other directional electrode configurations and stimulation parameters, with no significant reduction in model performance across the cohort. CONCLUSIONS Our findings demonstrate that connectomic models of DBS with sufficient anatomical and electrical details can predict recruitment dynamics of white matter. These results will help to define connectomic modeling standards for preoperative surgical targeting and postoperative patient programming applications.
Collapse
Affiliation(s)
- Bryan Howell
- Department of Biomedical Engineering, Case Western Reserve University, USA
| | | | - Jon T Willie
- Department of Neurosurgery, Emory University, USA
| | - Enrico Opri
- Department of Neurology, Emory University, USA
| | | | | | - Philip A Starr
- Department of Neurological Surgery, University of California San Francisco, USA
| | - Cameron C McIntyre
- Department of Biomedical Engineering, Case Western Reserve University, USA
| | | |
Collapse
|
41
|
Colella M, Paffi A, De Santis V, Apollonio F, Liberti M. Effect of skin conductivity on the electric field induced by transcranial stimulation techniques in different head models. Phys Med Biol 2021; 66:035010. [PMID: 33496268 DOI: 10.1088/1361-6560/abcde7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study aims at quantifying the effect that using different skin conductivity values has on the estimation of the electric (E)-field distribution induced by transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) in the brain of two anatomical models. The induced E-field was calculated with numerical simulations inside MIDA and Duke models, assigning to the skin a conductivity value estimated from a multi-layered skin model and three values taken from literature. The effect of skin conductivity variations on the local E-field induced by tDCS in the brain was up to 70%. In TMS, minor local differences, in the order of 20%, were obtained in regions of interest for the onset of possible side effects. Results suggested that an accurate model of the skin is necessary in all numerical studies that aim at precisely estimating the E-field induced during TMS and tDCS applications. This also highlights the importance of further experimental studies on human skin characterization, especially at low frequencies.
Collapse
Affiliation(s)
- Micol Colella
- Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome 'La Sapienza', Rome, Italy
| | - Alessandra Paffi
- Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome 'La Sapienza', Rome, Italy
| | - Valerio De Santis
- Department of Industrial and Information Engineering and Economics (DIIEE), University of L'Aquila, L'Aquila, Italy
| | - Francesca Apollonio
- Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome 'La Sapienza', Rome, Italy
| | - Micaela Liberti
- Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome 'La Sapienza', Rome, Italy
| |
Collapse
|
42
|
New Approaches Based on Non-Invasive Brain Stimulation and Mental Representation Techniques Targeting Pain in Parkinson's Disease Patients: Two Study Protocols for Two Randomized Controlled Trials. Brain Sci 2021; 11:brainsci11010065. [PMID: 33561080 PMCID: PMC7825448 DOI: 10.3390/brainsci11010065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/26/2020] [Accepted: 01/01/2021] [Indexed: 12/14/2022] Open
Abstract
Pain is an under-reported but prevalent symptom in Parkinson’s Disease (PD), impacting patients’ quality of life. Both pain and PD conditions cause cortical excitability reduction and non-invasive brain stimulation. Mental representation techniques are thought to be able to counteract it, also resulting effectively in chronic pain conditions. We aim to conduct two independent studies in order to evaluate the efficacy of transcranial direct current stimulation (tDCS) and mental representation protocol in the management of pain in PD patients during the ON state: (1) tDCS over the Primary Motor Cortex (M1); and (2) Action Observation (AO) and Motor Imagery (MI) training through a Brain-Computer Interface (BCI) using Virtual Reality (AO + MI-BCI). Both studies will include 32 subjects in a longitudinal prospective parallel randomized controlled trial design under different blinding conditions. The main outcomes will be score changes in King’s Parkinson’s Disease Pain Scale, Brief Pain Inventory, Temporal Summation, Conditioned Pain Modulation, and Pain Pressure Threshold. Assessment will be performed pre-intervention, post-intervention, and 15 days post-intervention, in both ON and OFF states.
Collapse
|
43
|
Madrid J, Benninger DH. Non-invasive brain stimulation for Parkinson's disease: Clinical evidence, latest concepts and future goals: A systematic review. J Neurosci Methods 2020; 347:108957. [PMID: 33017643 DOI: 10.1016/j.jneumeth.2020.108957] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/27/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is becoming a major public-health issue in an aging population. Available approaches to treat advanced PD still have limitations; new therapies are needed. The non-invasive brain stimulation (NIBS) may offer a complementary approach to treat advanced PD by personalized stimulation. Although NIBS is not as effective as the gold-standard levodopa, recent randomized controlled trials show promising outcomes in the treatment of PD symptoms. Nevertheless, only a few NIBS-stimulation paradigms have shown to improve PD's symptoms. Current clinical recommendations based on the level of evidence are reported in Table 1 through Table 3. Furthermore, novel technological advances hold promise and may soon enable the non-invasive stimulation of deeper brain structures for longer periods.
Collapse
Affiliation(s)
- Julian Madrid
- Service of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| | - David H Benninger
- Service of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| |
Collapse
|
44
|
Monastero R, Baschi R, Nicoletti A, Pilati L, Pagano L, Cicero CE, Zappia M, Brighina F. Transcranial random noise stimulation over the primary motor cortex in PD-MCI patients: a crossover, randomized, sham-controlled study. J Neural Transm (Vienna) 2020; 127:1589-1597. [PMID: 32965593 PMCID: PMC7666273 DOI: 10.1007/s00702-020-02255-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/14/2020] [Indexed: 02/04/2023]
Abstract
Mild cognitive impairment (MCI) is a very common non-motor feature of Parkinson’s disease (PD) and the non-amnestic single-domain is the most frequent subtype. Transcranial random noise stimulation (tRNS) is a non-invasive technique, which is capable of enhancing cortical excitability. As the main contributor to voluntary movement control, the primary motor cortex (M1) has been recently reported to be involved in higher cognitive functioning. The aim of this study is to evaluate the effects of tRNS applied over M1 in PD-MCI patients in cognitive and motor tasks. Ten PD-MCI patients, diagnosed according to the Movement Disorder Society, Level II criteria for MCI, underwent active (real) and placebo (sham) tRNS single sessions, at least 1 week apart. Patients underwent cognitive (Digit Span Forward and Backward, Digit Symbol, Visual Search, Letter Fluency, Stroop Test) and motor assessments (Unified Parkinson’s Disease Rating Scale [UPDRS-ME], specific timed trials for bradykinesia, 10-m walk and Timed up and go tests) before and after each session. A significant improvement in motor ability (UPDRS-ME and lateralized scores, ps from 0.049 to 0.003) was observed after real versus sham tRNS. On the contrary, no significant differences were found in other motor tasks and cognitive assessment both after real and sham stimulations. These results confirm that tRNS is a safe and effective tool for improving motor functioning in PD-MCI. Future studies using a multisession tRNS applied over multitargeted brain areas (i.e., dorsolateral prefrontal cortex and M1) are required to clarify the role of tRNS regarding rehabilitative intervention in PD.
Collapse
Affiliation(s)
- Roberto Monastero
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Via La Loggia 1, 90129, Palermo, Italy.
| | - Roberta Baschi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Via La Loggia 1, 90129, Palermo, Italy
| | - Alessandra Nicoletti
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Section of Neurosciences, University of Catania, Catania, Italy
| | - Laura Pilati
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Via La Loggia 1, 90129, Palermo, Italy
| | - Lorenzo Pagano
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Via La Loggia 1, 90129, Palermo, Italy
| | - Calogero Edoardo Cicero
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Section of Neurosciences, University of Catania, Catania, Italy
| | - Mario Zappia
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Section of Neurosciences, University of Catania, Catania, Italy
| | - Filippo Brighina
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Via La Loggia 1, 90129, Palermo, Italy
| |
Collapse
|
45
|
Enhancing rehabilitation and functional recovery after brain and spinal cord trauma with electrical neuromodulation. Curr Opin Neurol 2020; 32:828-835. [PMID: 31567546 PMCID: PMC6855343 DOI: 10.1097/wco.0000000000000750] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW This review discusses recent advances in the rehabilitation of motor deficits after traumatic brain injury (TBI) and spinal cord injury (SCI) using neuromodulatory techniques. RECENT FINDINGS Neurorehabilitation is currently the only treatment option for long-term improvement of motor functions that can be offered to patients with TBI or SCI. Major advances have been made in recent years in both preclinical and clinical rehabilitation. Activity-dependent plasticity of neuronal connections and circuits is considered key for successful recovery of motor functions, and great therapeutic potential is attributed to the combination of high-intensity training with electrical neuromodulation. First clinical case reports have demonstrated that repetitive training enabled or enhanced by electrical spinal cord stimulation can yield substantial improvements in motor function. Described achievements include regaining of overground walking capacity, independent standing and stepping, and improved pinch strength that recovered even years after injury. SUMMARY Promising treatment options have emerged from research in recent years using neurostimulation to enable or enhance intense training. However, characterizing long-term benefits and side-effects in clinical trials and identifying patient subsets who can benefit are crucial. Regaining lost motor function remains challenging.
Collapse
|
46
|
Eun JD, Bang YM, Youn J, Cho JW, Kim YH, Chang WH. Feasibility of Transcranial Direct Current Stimulation in Patients with Deep Brain Stimulation: a Case Report. BRAIN & NEUROREHABILITATION 2020; 13:e13. [PMID: 36741797 PMCID: PMC9879368 DOI: 10.12786/bn.2020.13.e13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 11/08/2022] Open
Abstract
Although deep brain stimulation (DBS) has been reported to be effective to ameliorate motor and non-motor dysfunctions, freezing of gait (FoG) is often resistant to DBS in patients with Parkinson's disease (PD). Transcranial direct current stimulation (tDCS) has been reported as an alternative therapeutic strategy to ameliorate FoG in PD patients. In this case report, we describe the effects of cumulative tDCS over the primary motor cortex of the lower leg to reduce FoG in 2 cases of PD patients with DBS. Two PD patients who had undergone DBS of the subthalamic nucleus visited the rehabilitation medicine department for refractory FoG. Each patient received cumulative tDCS over the primary motor cortex of the lower leg over to reduce FoG. Neither patient required change in dose of dopaminergic medication during the tDCS period nor a significant side effect during and after tDCS. Although the FoG-questionnaire (FoG-Q) in case 1 showed no change after 10 tDCS treatments, the patient in case 2 reported a significant improvement of FoG-Q from 11 to 3 after 5 days of tDCS. We present the safety and feasibility of tDCS in PD patients with DBS who showed refractory FoG.
Collapse
Affiliation(s)
- Jong Dae Eun
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yu Min Bang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jinyoung Youn
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Whan Cho
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Science and Technology, Department of Medical Device Management and Research, Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
47
|
Computational modelling of the long-term effects of brain stimulation on the local and global structural connectivity of epileptic patients. PLoS One 2020; 15:e0221380. [PMID: 32027654 PMCID: PMC7004372 DOI: 10.1371/journal.pone.0221380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/18/2020] [Indexed: 11/25/2022] Open
Abstract
Computational studies of the influence of different network parameters on the dynamic and topological network effects of brain stimulation can enhance our understanding of different outcomes between individuals. In this study, a brain stimulation session along with the subsequent post-stimulation brain activity is simulated for a period of one day using a network of modified Wilson-Cowan oscillators coupled according to diffusion imaging based structural connectivity. We use this computational model to examine how differences in the inter-region connectivity and the excitability of stimulated regions at the time of stimulation can affect post-stimulation behaviours. Our findings indicate that the initial inter-region connectivity can heavily affect the changes that stimulation induces in the connectivity of the network. Moreover, differences in the excitability of the stimulated regions seem to lead to different post-stimulation connectivity changes across the model network, including on the internal connectivity of non-stimulated regions.
Collapse
|
48
|
Daskalakis ZJ, Tyndale RF. A Physiological Marriage Made in Heaven: Treating and Measuring the Brain Through Stimulation. Clin Pharmacol Ther 2019; 106:691-695. [PMID: 31509631 DOI: 10.1002/cpt.1576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Rachel F Tyndale
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|